FTIBOMNRAS, T90- ~.2. 750

Mon. Not. R. astr. Soc. (1980) 190, 7—-20

Perturbations and stability of rotating stars — II.
Properties of the eigenvectors and a variational
principle

Bernard F. Schutz Department of Applied Mathematics and Astronomy,
University College, PO Box 78, Cardiff CF1 1XL, Wales

Received 1979 July 9; in original form 1979 April 3

Summary. General properties of the normal modes of linear pulsation of
perfect-fluid rotating stars are considered in some detail. With a view toward
numerical applications, the discussion is restricted to finite-dimensional
versions of the problem. Because the eigenvalue problem is non-selfadjoint,
both left- and right-eigenvectors and their Jordan chains are important. These
are defined and their mutual orthogonality properties derived. It is then
shown that stars which have the time—azimuth reflection symmetry (¢, ¢)~>
(—t, —¢) (which does not require axisymmetry) in their unperturbed state
have the remarkable property that any right-eigenvector can be changed into
the adjoint of the left-eigenvector for the same eigenvalue by the simple
operation of complex conjugation and ¢-reversal. This property permits a
variational principle for the eigenfrequencies of all the normal modes to be
formulated. Two versions are given: one is for the quadratic eigenvalue
problem (the natural one, in which the eigenfrequency enters quadratically);
the other is in ‘phase space’, where the problem is first-order in time and gives
a linear eigenvalue equation. Possible uses of the variational principle are
discussed briefly. Another consequence of the map between left- and right-
eigenvectors is a test for Jordan chains, which are associated with the onset
of dynamical instability.

1 Introduction

This is the second paper of a series which aims at a systematic treatment, both analytic and
numerical, of the normal modes of linear pulsation of rotating, perfect-fluid stellar models.
The first paper discussed the relation of normal modes to the initial-value problem for the
perturbations (Dyson & Schutz 1979, Paper I) and showed that there is a sense in which the
normal modes are complete: any perturbation can be expressed as a linear superposition of
normal modes. This paper discusses detailed properties of the normal modes, some of which
should considerably simplify the numerical effort involved in finding the modes. Some of
the properties were discussed briefly in a recent publication (Schutz 1979), but they will
be elaborated upon and extended here.
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By contrast with the perturbation problem for non-rotating stars, the present problem
is non-selfadjoint, with the result that many new features must be taken into account. From
an analytic point of view, the most important new elements are the possibility of Jordan
chains (incompleteness of eigenvectors), and the distinction between left- and right-
eigenvectors, both types being important in the problem. The first section discusses the
eigenvectors and their mutual orthogonality properties. After that, the principal result is
derived: for stars having the reflection symmetry (¢, ¢) > (—¢, —¢), which excludes
meridional circulation, there exists a simple transformation which turns any right-
eigenvector into a left-eigenvector for the same eigenvalue. One immediate consequence of
this relation is a variational principle for the eigenfrequencies, which is presented in two
different versions. Another consequence is a test for Jordan chains, and a proof that such
chains are associated with the onset of dynamical instability along a sequence of models.
A full discussion of the ‘onset’ of instability, however, requires a study of what happens to
the eigenvalues when the operators in the problem are slightly changed, and this will be
reserved for the third paper in this series (Schutz 1980).

The notation in this paper follows that of Paper I. The only difference is that here I shall
use Dirac bra and ket notation for eigenvectors, because it permits precise labelling of
vectors without cumbersome sub- and superscripts. The problem is approached using
Lagrangian perturbation theory, which Chandrasekhar (1964) used to formulate his
variational principle for non-radial modes of non-rotating stars. The Lagrangian perturbation
equations for rotating stars were derived by Lynden-Bell & Ostriker (1967), who were only
able to formulate a partially successful variational principle. More recently it was discovered
that an ambiguity in the Lagrangian description of perturbations of moving fluids requires
one to exercise some care in constructing stability criteria (Schutz & Sorkin 1977; Bardeen
et al. 1977; Friedman & Schutz 1978a,b). But these considerations are more relevant to
secular stability criteria than to dynamical ones. Moreover, as pointed out by Friedman &
Schutz (1978b), the normal modes which are the subject of the present paper usually have
no ambiguity at all. The Lagrangian description offers such strong advantages over the
Eulerian one, particularly the symmetry* of the basic operators it involves, that it seems
much more suited to the general treatment intended here.

2 Orthogonality properties of eigenvectors and chains

In the space H, introduced in Paper I (‘initial-data space’) the dynamical operator is the
matrix

(e )

(The primes on B and Cin Paper I will be omitted here.)
A right-eigenvector of T for the eigenvalue A, will be called |\, ; 7o):

Tlhn, ro» = )\n | >\n, ro».
Similarly a left-eigenvector is «\,; ol

s Lo 1T = N, K05 Do |

* For the sake of clarity I shall use the mathematicians’ terms ‘symmetric’ and ‘antisymmetric’ in place
of the physicists’ ‘Hermitian’ and ‘anti-Hermitian’. This is because it is important to distinguish between
these concepts and full selfadjointness or anti-selfadjointness. (This is discussed below and in Paper 1.) But
I will depart from the strictness of Paper I and assume that the problem is a finite-dimensional one. This
will always be true for numerical calculations.
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Any eigenvalue A, has both a right- and left-eigenvector, since the condition for the
existence of either is the vanishing of the determinant of 7 — \. An eigenvalue will be said
to be non-degenerate if it has only one right-eigenvector. We will label eigenvalues in such a
way that each A, has only one eigenvector of each type, so that if there is degeneracy we
still maintain separate names for the equal eigenvalues. Thus },, is degenerate if and only if
A\, = A\, for some m # n.

A right Jordan chain (a ‘right-chain’) of length p,, to an eigenvalue A, is a sequence of
vectors

(7D, 7=0,...,00)

such that |\, ;7o) is a right-eigenvector and

T =N st W= N5 154, 7=1,...,Dp. (2.1)
(See Hirsch & Smale (1974) for a discussion of Jordan chains in dynamical problems.) This

can be made to apply for /=0 as well as if we adopt the convention that |\,; r;» =0 if
j < 0. This convention will be convenient below. It follows from equation (2.1) that

(T = N) PN » =0, j=0,...,0, (2.2)
Similarly a left-chain of length p, to A,, is the sequence

s i1, 7=0,...,P0) (2.3)
for which «A,;; [ol is a left-eigenvector and

O GIT = N) =5 g, T=1,..0,p,.

The subspace spanned by the chain is called the characteristic subspace for that eigenvalue.
If A,, has a right-chain of length p,, it has a left-chain of the same length, and vice versa.
The set of all right-chains and right-eigenvectors is a basis for H,:

[{Na;7»,  7=0,...,0,}, Vn]

is a basis. Similarly, the left-chains and left-eigenvectors form a basis for H; the dual or
adjoint space to H, (which can, of course, be identified with H,). The two bases are in fact
dual to one another in the sense that we can choose the eigenvectors in such a way that
(even if \,, = N\,p):

n#Em: g s D=0 Vi, k; 24)
n=m: ;LI\ 1N =0 ifj +k#p,. (2.5)
These two relations imply that, say, (X,; ;| is orthogonal to all of the elements of the basis
of H, except for one, [A,; p, _ ;). It cannot be orthogonal to this as well, for then it would
itself be identically zero. So we can choose a relative normalization of the two bases by
setting «Ag; Iy, I\ ro? =1, which then leads to a compact statement of equations (2.4)
and (2.5):

(O\n;ljlkm;rk))=5nm5j+k,pn. (26)
We will not usually demand this normalization. Notice that equation (2.5) means that the
only non-zero products are between complementary members of the two chains: the end of

one with the beginning of the other. It follows that A, has a non-zero chain if and only if
its left- and right-eigenvectors are orthogonal:

N Lo N3 7o» =0 =N, has a non-zero chain. 2.7
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In cases where a given eigenvalue has only one right-eigenvector, equation (2.7) is in prin-
ciple a test for whether one should also look for a chain. If there is degeneracy (two or more
eigenvectors for a given eigenvalue) and one does not know a priori how to identify the
appropriate basis for the eigenvectors for which equation (2.6) holds, then the condition for
a chain to a particular right-eigenvector to exist is that that eigenvector be orthogonal to all
the left-eigenvectors for that eigenvalue. If there are no chains then any basis for the right-
eigenvectors will define a basis for the left-eigenvectors for which equation (2.6) holds.

Note that they are the only orthogonality relations satisfied in general: the right-eigen-
vectors are not orthogonal to one another except if T is selfadjoint, because there the right-
and left-eigenvectors are simply adjoints of one another.

Until now, T could have been an arbitrary operator. Knowing its form, we can derive the
relationship between eigenvectors in H, and those in H, plus the appropriate orthogonality
relations in .

We write the two components of any chain vector in A, as

1
s 72 = (::::;) 2.8)
and similarly in H,": (29)
sl = (s e, Qs IR D).

It is easy to show that equation (2.1) implies

L) \575) =0, (2.10a)
AN 73 = N I N 78D (2.10b)
for eigenvectors and, for chains (with k > 1 and |\,;7%,)= 0),

L) N 7> + (20 +B) N5 rf_ D)+ N3k _5) =0, (2.11a)
N P2Y = NN P + (N3 7). (2.11b)

Two things are notable: first, as one should expect, one can solve the problem in H by
dealing with the |\,; %) vectors alone, afterwards deriving the second components; and
second, the chain relation is far more complicated here than in H,. Equation (2.11) enables
us to replace equation (2.8) by

N ra) )

N 7 >>=(
s Mg s FEY + N 7 _ )

(2.12)
with the convention that |\,; r_;)=0. Notice that the chain {|\,; 74)} of L()\,) has the
same length p,, as the corresponding chain of T.

Similar results obtain for left-chains. They can be summarized by

s Ll = s IR 1Ny + B) + N3 IR 41, O IR D) (2.13)
and
N 2L + O 12 _ 12N, +B) + Nl _,51=0, (2.14)

again with the convention that (\,,; /; | vanishes for k < 0. Notice that here it is the second
component of (A,; Ix| which forms the chain in H and generates the correspondence with
H,.
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Since the set {I\,; rg), Vn, k} generates the set {|\,; ri»} and the set {(\,; [Z]}
generates {{X,; [x|} it is possible to solve the problem in H without reference to H,. From
now on we shall denote by |A,; rg) the right-chains of L(A) in H and by (\,; I | the left-
chains; that is

M 1) = N 1), | =N 1R
These vectors have a more complicated set of orthogonality relations in H. If m # n we find
<>\nal]|(>\n + >\m +B)l>\ma rk> + ()\n, l]&.] |7\m;rk) + O\n, l,l?\m,rk _1> =0, (215)

again with the convention that |\,; ;) and (\,; I; | vanish for negative k. The more tractable
case isn =m:

N3 GIRN A B) Ngs 1) + N b INs 1) + s i N3 1 0 =0, j+Ek #p,,. (2.16)
From this one deduces (setting j = k = 0)
Mns ol (2N, + B) N5 70> =0 <>, hasa Jordan chain, (2.17)

which is the analogue in H of equation (2.7). (Again the same remarks about degeneracy
apply here.)

3 Consequences of symmetry relations

All the formulae of Section 2 are valid for any perturbation problem which is second-order
in time-derivatives, since no properties of the operators B and C were used. From now on we
shall restrict attention to perturbations of a perfect fluid star*. In Section 3.1 we will look
at the results that follow merely because C is selfadjoint and B anti-selfadjoint. In Section
3.2 we will make the additional, very fruitful assumption that the star is symmetric under
the reflection (¢, ¢) > (—¢, — ¢).

3.1 SELFADJOINT OPERATORS AND THE EXISTENCE OF JORDAN CHAINS

If the star is axisymmetric without meridional circulation, Paper I showed that C is self-
adjoint and B anti-selfadjoint. It is likely that this is also true of non-axisymmetric stars
with arbitrary (time-dependent) velocity fields, but this has not been proved. In any case
it should always be possible to construct finite-dimensional approximations for numerical
work that do have these symmetries. The symmetries allow us to show that if A, is an eigen-
value of L(X\) with right-eigenvector |\,; 7o) then —X,, is also an eigenvalue whose left-
eigenvector is (N,;; 7o, the adjoint of |N,; ro). (A bar denotes complex conjugation, and an *
denotes the adjoint transformation.)

By assumption we have

B*=—-B, (C*=(, (3.1)
from which follows
[LOV]*=(A*+AB +C)*=L(—M). (3.2)
Then the adjoint of
L(N) [ Ngs70)=0 (3.3a)

*Our assumption of a perfect fluid can be relaxed to, say, a perfectly elastic body. What matters is that
the equations are derivable from a real Lagrangian, which means the equations conserve energy. See
Friedman & Schutz (1975) for a discussion of this point.
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is
N FolL(=7,) =0 (3.3b)

which proves the proposition. If A, is imaginary (purely oscillatory mode), then it follows
that |A,; ro) is simultaneously a right- and (in adjoint form) a left-eigenvector of \,,. More
generally one can show from equation (2.14) that right-chains for A\, generate left ones
for —\,:

(=Nl = (= D 7 (3.9

By taking the inner product of equation (3.3a) with (\,,;7o| we get a quadratic equation
for A, which I shall call the Hermitian eigenfrequency equation:

0= rolL(AR) Nys 7o)

= N2 s 7o s 700 + X s 70 1B 1N 7o) + A Po L Cl AR Fo). (3.5)
Its two roots can be written
N3 Fol (20, + B) INGs 7o) = £ [0g5 70 1B I Nas 70 — 401570 1 \ss 70 )3 Fo | CIA; 7001 Y2 (3.6)

By comparing this with equation (2.17) we see that Jordan chains occur on the imaginary
axis (where (\,;; 7ol = (\,;; lo|) only if the Hermitian eigenfrequency equation has a double
root, and can only occur for |A,| < ||B||/2, where ||B]| is the norm of B. This is the same
restriction found in Paper I on the imaginary part of a complex eigenfrequency. This and the
double root suggest a connection between Jordan chains and marginal stability. Let us look
more closely at this.

Of the two roots for A, implicit in equation (3.6), one must be the true eigenfrequency.
If this is complex then the other root is the eigenfrequency — A,,. But if A,, is pure imaginary
then there is apparently no need for the other root to be an eigenfrequency at all, and it
certainly is not one with eigenvector |A,; 7o) unless that is also an eigenvector simultaneously
of B and C (a very unlikely circumstance). What significance is there, then, in the
coincidence of the two roots in equation (3.6)? Suppose we have a sequence of unperturbed
stars which is smooth enough for the eigenfrequencies to be continuous functions of the
sequence’s parameter. If we move along the sequence in a direction which makes a particular
mode change from unstable to stable, then before the change both roots of equation (3.6)
represent eigenfrequencies, and these roots coincide (by hypothesis) at the changeover point.
In the absence of degeneracy, equation (2.17) guarantees a Jordan chain here. Therefore,
whenever instability sets in along such a sequence, the Hermitian eigenfrequency equation
will have a double root and the marginal mode will have a Jordan chain.

In the next paper in this series (Schutz 1979b) the onset of instability will be studied in
more detail. The association between instability points and chains will be established by a

~ different method, and it will be demonstrated that chains do not exist along the stable part

of a sequence (except at its end) except under very special conditions. Moreover, the
marginally stable chain will usually be of length 1(p,, = 1), as can easily be understood from
the fact that generally only two modes will merge to become unstable. Regarding the
possible existence of chains to unstable eigenvalues, we have no information.

It should also be noted that the discussion preceding the previous paragraph is
qualitatively the same for non-rotating stars, where B= 0. Although we are not accustomed
to considering Jordan chains in the selfadjoint problem of a non-rotating star, they do exist
in H, for a zero-frequency (marginally stable) mode, where they provide a good illustration
of the merging of eigenvectors to form a chain. But in H the chain condition (2.11a) is trivial
for chains of length 1 and A,,= B =0.
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3.2 REFLECTION-SYMMETRIC STARS AND THE SYMMETRY OPERATORS

If the star is invariant under the reflection (z, ¢) = (— ¢, — ¢) then many more results follow.
Because the equations of motion are real, any solution to equation (1.1)

Et,r,0,0)={£"(t,r,0,0), £°(t,r0,0), %%, 0,9))

can be mapped into another solution by combining complex conjugation with (¢, ¢)-
reflection:

SE={gr(_t’r’ 07_¢)5 ge(_t’rr ea "‘d))a —‘g¢(~‘t’ v, 63——¢)}‘ (37)

This defines the symmetry operator S. Notice that a star may have this symmetry property
without being axisymmetric: the Dedekind ellipsoids are an example (cf. Chandrasekhar
1969), provided the plane ¢ =0 contains the axis of rotation and the semi-major or semi-
minor axis of the equatorial section.

If € is a mode with time-dependence exp (A?) then SE has time-dependence exp (— D).
We already observed that the symmetries of B and Cimply that if A is an eigenfrequency so
is —\. Now we see that the operator S enables us to find one of the eigenfunctions from
the other. If the star is axisymmetric as well, then the solutions may be Fourier-analysed
in ¢, each component of exp (im¢) being independent of those for other m’s. If § belongs
to a particular m, so does SE, so that S has a natural restriction to fixed m.

In any case, the eigenvectors will be elements of some Hilbert space H, and from now on
we shall use the symbol S to denote the restriction of equation (3.7) to H. There it consists
of ¢-reflection and complex conjugation.

The operator S has two important properties: it is antilinear, which means that

S(ak)=aSE (3.8)
for any complex function «, and it is its own inverse,
S2=1. 3.9)

Because it is antilinear an adjoint operator cannot be defined, so we shall be careful to apply
S to vectors before taking their adjoints. The adjoint of S|\,; 7;) will be denoted by
(S5 Na3 751

How does S affect the operators B and C? In H, consider the equation for any solution
E(t,r,0, ) at, say, t = 0:

g, +BE, +CE=0.

Because S2= 1 we can apply S to this and get

S(Es:) + SBS S(E,) +SCS SE=0.

Since S contains a time-reversal this becomes

(S§);; — SBS(SE); + SCS(SE) = 0. (3.10)
But SE is also a solution:

(S8)s¢ + B(SE), + C(SE) = 0. (3.11)

Since at ¢ = 0 the functions §, and § are arbitrary and independent, the only way equations
(3.10) and (3.11) can both hold is if

SBS=-B, SCS=C (3.12)

An explicit demonstration of this symmetry for B was given in Schutz (1979) (but beware
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that the notation is slightly different, in that the present B is —i times the B of the previous
paper).
From equations (3.8) and (3.12) it follows immediately that if

L(\) N, 70)=0

then

L(— XS N5 70) =0,

i.e. that

= N3 70 = S\ Fo)- ‘ (3.13)

So as previously remarked S maps eigenvectors of A, into those of —A,,. But when com-
bined with equation (3.3) we get a very useful result:

s ol =485 A 7o, (3.149)

that is, the adjoint of S times a right-eigenvector of L () is the left-eigenvector for the same
eigenvalue. This is a remarkable result, that we can find the left-eigenvector from the right
one without knowing any others. For a general matrix the left-eigenvectors are simply the
basis dual to the right ones, and as such a change in any right-eigenvector generally changes
all the left-eigenvectors. But our problem has sufficient symmetry to reduce the problem
to a 11 pairing of the eigenvectors, independently of the others.

For members of chains in H the corresponding relations are

|= N 1> = (= DXS A 1) (3.15)
and
Ny i | =485 N e (3.16)

This immediately enables us to write down a useful criterion for the existence or not of a
Jordan chain to a particular eigenvalue A,,. From equations (2.17) and (3.14) we get, for the
non-degenerate case,

(S; N 1ol (2N, I + B) [N, 7o) = 0 <> Jordan chain. (3.17)
In concrete terms for the case of an axisymmetric star and perturbations with azimuthal
eigenvalue m, where § =E,,(r, 0) exp (im¢) and

BE=2Q(mE +e, x§) (3.18)

(e, being the unit vector along the axis of rotation), this criterion becomes
0= [[ pmamaz O, +im2) (65 + @ - P + 2065768 (3.19)

where the components are on the orthonormal basis of a cylindrical polar coordinate system.
Notice that, although §,, is complex, there are no complex conjugations in equation (3.19)
because the operator S and the adjoint operation in equation (3.14) both involve conjuga-
tion. So equation (3.19) represents a complex equation that a non-degenerate eigenfunction
satisfies if and only if it is associated with a chain. This should be a convenient test to use
numerically. In the degenerate case, |A,; ro) must be orthogonal, in the sense of equation
(3.17), to S applied to each right-eigenvector in order for it to have a chain.
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3.3 S AS A CONJUGATION

Because S is so useful, it is worthwhile looking at it in more detail. The first useful property
it has is, for any |¢) and |n) in H,

Elmy =(S; £ISIm, (3.20)

where (S; £| is the adjoint of S|£). This was proved in Schutz (1979) for the axisymmetric
star. In the general case, we refer back to equation (3.7). The elements of H are vector fields,
E(r,0, ). The inner product (¢ |n) involves

E-n(,0,9) =E'(r,0,0)n"(r,0,0) + E°(r, 0, 9)n’(r,6,9) + E*(, 6, 9)n°(r, 6, 9) (3.21)
again with components referred to an orthonormal basis. The right-hand side of equation
(3.20) involves
(SE) - (S =E'(r, 8, — O, 0, —#) +£°(r,0,—9)7°(, 6, —®) + [ £°(, 6, — 9)]

x [—7°(, 0, —9)], - (3.22)

= E' f](r, 0: —¢)'

So the integrand of the left-hand side of equation (3.20) equals that of the right-hand side
evaluated at the reflected point (¢ > —¢). Since the weight-factor in the integral (1.4) is
just p and is invariant under reflection, it follows that the integrals in equation (3.20) are

equal.
Since S% = 1, it is possible to divide any vector into its even and odd parts under S:

1£) =150 + 182, (3.23a)
1) =%(18) £ S18)), (3.23b)
SlE == (3.23¢)
Similarly any operator D is decomposable into

D=D,+D._, (3.24a)
D, =%(D + SDS), (3.24b)
SD,S=+D.. (3.24¢)
For the operators in this problem, we conclude

B=B_ (3.25a)
c=C, (3.25b)
L\ +)=N - N+iNB+C (3.25¢)
L_(\, +iN;) = 2iNN; +NB. (3.254d)

Clearly L, is selfadjoint and L_ anti-selfadjoint. The evenness or oddness of an expression is
determined by its constituents. Thus D, |&,) and D_|£_) are even vectors while D, |£_) and
D_|%,) are odd.

Notice that if Re () is zero then L(A) is an even operator. This means that if |£) is an
eigenvector for imaginary A, then so is S|£). If there is only a one-dimensional eigensubspace
for A, then |&) and S|&) are linearly dependent. This in turn means that one can choose the
phase of |¢) (see equation (3.32) below) in such a way as to make |£) even (or odd). (If
there is more than one eigenvector then linear combinations can be taken to make them all
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even or odd.) So without loss of generality one can take the eigenvector of any imaginary
eigenvalue to be even under S.

If S were simply the operation of complex conjugation then equation (3.23) would
correspond to splitting a vector into its real and imaginary parts. A vector which is ‘real’
(even under ) has components (in coordinates 7, 0, ¢),

£,=(a, b, ic) (3.26)

where a, b and ¢ are real. An ‘imaginary’ vector is just i times this. This can be formalized
by speaking of a complex structure in a six-real-dimensional space R, elements of which have
real components (a;, a2, by, b,, ¢4, ;). This structure is an operator J which acts on this
vector to give

J(ala Azy- ey C2) = (—a'Za a, — b29 bla Cos — cl) (327)
This operator has the property
Ji=—1

required of a complex structure. A ‘real’ vector in R is (a, 0, b, 0,0, ¢), and any vector in R
can be written as a real one plus J times a real one — an imaginary one:

(a19 ay, b19 b2: Ci C2) = (al, 0’ bb O’ Oa C2) + J(a2: 0> b2’ 0: O, cl)- (3'28)

We identify this six-dimensional space R with the three-complex dimensional space H by
Re(§)=ay, Im(E)=a; Re(t”)=b,
Im(§°) =bas, Re(t?)=ci,  Im(E?) =cu. (3.29)

Then S is the conjugation operator with respect to J: it changes the vector (3.28) into its
complex conjugate,J > —J:

S(al,(lz, bls b27 C1, CZ) = (ab —4as, b19 - b2; —Cy, CZ) = (ala 09 bl: 0, 07 c2)
- J(a27 Oa b2’ 09 O, Cl)' (3.30)

The natural Hilbert-space norm in R determined by its complex structure J is the sum of the
squares of the real and imaginary parts of a vector:

l(ah as, bls b2: Cy, C'Z)lz = l(ala 0, bb 09 0, c’Z)I2 + |(a2: 0’ b27 09 07 cl)|2
=al+ai+bi+bi+ci+cl

Apart from the weighting factor p, this is the same as the usual norm of A if equation (3.29)

is used. This is just another way of understanding equation (3.20).

One should note that the identification of an element of H, |£), with a physical perturba-
tion is unchanged if the overall phase of |£) is changed: both |§) and

£ y=exp (ix)|€), x = real constant, (3.31)

give the same physics. Therefore the even and odd parts of |£) can be transformed into one
another:

|£2) = cos x|&,) +isin x|£_),
[£1) =isin x|E,) + cos x|£). (3.32)
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34 SYMMETRIES IN H,

So far we have discussed the symmetries in H, but they must have an expression in H,. In
this section I shall briefly list them. They will be used to develop the variational principle
in H,.

Because S involves time-reversal, and because the second component of a vector in H,
is, physically, the time-derivative of the first, it should not be surprising that the analogue
in H, of S'is

S —(S O) S )2-(1 0) (3.33
Vo —s) Y o 1) %)
Recalling that T is
0 1
-C -B
one can easily show that
$2 TS, =T, (3.34)

again a natural result in view of the time-reversal in S,. Thus 7 is ‘pure imaginary’ with
respect to the natural complex structure associated with S,.

In order to find how to turn a right-eigenvector |A,; 7o) into the left-eigenvector
{\,; 7ol for the same eigenvalue, we need only consult equation (3.16) and the correspon-
dences (2.12) and (2.13). The result is that if we define

SB S 0o S
M=( ) M“=( ) (3.35)
S 0 S SB
then the map is
s L | = KM N T (3.36)
where
|M; N5 71 D = MNP D (3.37)

(Again we have to employ this notation because M has no adjoint.)
It is instructive to factor S, out of M:

—B -1 ~ 0 |

M=WS, W= ( ), wit= ( ) (3.38)
1 0 -1 —-B

The operator W is just the symplectic structure on A,, the anti-selfadjoint symplectic form

that converts H, into the phase space of Hamiltonian mechanics. To see this, observe that if
(18), 1£,) and (|7, |n,)) are any two vectors in H, then we have

—-B -1\ /M
(<&, <%’tl)( )( )=<€|nt>+<§t|n>—<E|Bln>
1 0/ \[np

= — (E|(In) + %BI) + (I (1§, + RBIED) (3.39)
={pgIn) —(Elpy),

where |p,) is the canonical momentum derivable from the Lagrangian which leads to the
dynamical equations:

|pn) = [m) + %B 0. (3.40)
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There is a full discussion of this symplectic structure in Friedman & Schutz (1978a), where
it is used extensively. For our purposes later it suffices to note here that

c 0

E=WT= ( (3.41)
0 1

is the energy operator. That is, the canonical energy of any perturbation [£))is %2(E|E|ED).

The selfadjointness of £ in H, will be important in the variational principle set out in the

next section. Since T is the time-evolution operator, equation (3.41) is an example of the

fact that time and energy are canonically conjugate quantities in Hamiltonian theory.

4 Variational principles for the eigenfrequencies

The variational principle for the quadratic eigenvalue problem in H was given in Schutz
(1979). As is well known (cf. Goertzel & Tralli 1960; Chandrasekhar 1961), whenever one
has a method of transforming a right-eigenvector into a left-eigenvector, independently of
the eigenvalue, then one has at least a candidate for a variational expression. In our case, the
candidates in H and H, are, respectively,

(S;El(N2+AB+(C)|8)=0, 4.1)
and
M;n (T —N) )= — LSy nlE + WX|n)=0. 4.2)

If one does not have a way of mapping any right-eigenvector into its associated left-eigen-
vector, then variational expressions of this sort probably cannot be found. To prove that
equations (4.1) and (4.2) are variational expressions, one must show that if A is a solution of
equations (4.1) (or (4.2)) for a given |£) (|n») and X is unchanged to first order by arbitrary
changes in |£) (|n)), then X is an eigenvalue and |£) (|n)) is its associated eigenvector.

Expression (4.1) will be called the symmetric eigenfrequency equation. If |£) is an eigen-
vector for a complex eigenfrequency (i.e. not an even vector under S) then one of the roots
of equation (4.1) will be an eigenfrequency, but there is no reason to suppose that the other
one is. If |£) is even under S (e.g. an eigenvector for an imaginary eigenfrequency) then the
symmetric eigenfrequency equation and the Hermitian one (3.5) are identical.

The proof that equation (4.1) is the basis of a variational principle is simple. It relies on
the following property: for any vectors |1), |2) and any selfadjoint operator D, even
under S,

(8; 11D, 12 =(S; 2|D,[1). (4.3)

(For an odd anti-selfadjoint operator D_ the relation is exactly the same.) By equation (3.20)
the left-hand side has complex conjugate (1|SD,|2), which by the evenness of D, is
(11D,.S]2), whose complex conjugate is the right-hand side of equation (4.3) because D,
is selfadjoint. This helps us simplify the variation of equation (4.1),

SA(S; E[(2A +B)[E) +(S; 851N +AB + O) 1) +(S; EI(N2+AB + C)[88) =0, (4.4)
by applying equation (4.3) to each coefficient of the last polynomial in A in equation (4.4):
SN(S; EI(2N +B) &) + 2(S; 8EI(A2+AB + O) )= 0. 4.5)
If 6 vanishes for arbitrary |6&) (hence arbitrary S|6£)) then equation (4.5) implies

(N +AB+0)|£)=0.
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This proves the variational principle. The proof that equation (4.2) provides a variational
principle in H, is analogous. It is easier to use the second form, noting that, with respect to
S23

E=F,, W=W._

This formulation is instructive because it practically forces us to write the linear eigenvalue
problem in the form

E|£)=— AW|EN. (4.6)

As this is a linear equation in A involving only selfadjoint and anti-selfadjoint operators it
may be easier to solve numerically than the conventional formulation. As a formal
expression it means that the problem is a selfadjoint eigenvalue problem in phase space,
that is in H, using W as an inner product. (The usual selfadjointness theorems do not apply
here because neither E nor iW is of definite sign.) See Paper I for a further discussion of this
point.

4.1 USING THE VARIATIONAL PRINCIPLE

As the two principles are clearly equivalent, I shall confine my remarks to the one in H. If
equation (4.1) or (4.5) is actually to be used in a numerical search for modes, the search
would be made easier if some of the eigenvalues were not merely stationary but actually
extremal values, as happens in the case of compact selfadjoint operators. But even in the
non-rotating case the eigenvalues cannot be found this way very easily, and in the present
case there is no reason to expect anything better.

One can still attempt a variant on this approach, namely to use a certain chosen set of
functions {|i), i=1,...,N} as a basis for a subspace of H, and to solve the problem
restricted to this subspace. This restriction has two versions, according to whether one
adopts the Hermitian representation of, say, C,

@G = e, @nGi= @i
or the symmetric representation,
©Cii =(S5ilCl)Y, (G = Cii = ©Ci

These are equivalent if every vector S|i) is a linear combination of the basis. When they are
inequivalent, the symmetric representation should give better approximations to the eigen-
values, for reasons discussed in Schutz (1979a).

One other use to which variational principles have been put is the derivation of stability
criteria. We still have no necessary and sufficient condition for the existence of complex
eigenvalues in this problem. Can the variational principle be used to formulate one? The
Hermitian eigenvalue equation (3.5) has proved useful in setting bounds on the complex
eigenvalues (Paper I). It may be hoped that the symmetric eigenvalue equation (4.1), which
contains different information if A, is complex, will similarly prove useful.
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Perturbation theory for eigenvalues
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Summary. The normal mode problem for perturbations of a perfect-fluid
rotating star is a non-selfadjoint eigenvalue problem. To study the changes in
the eigenfrequencies when the operators in the problem change slightly, this
paper develops the appropriate lowest-order perturbation theory and
discusses two important cases. In the first case the perturbing operator is the
inclusion of a ‘secular’ effect, such as viscosity or radiation reaction. Here
the main interest is in unperturbed eigenfrequencies that are dynamically
stable, and the perturbed frequencies are analytic functions of the perturba-
tion parameter. Explicit formulae are derived for use in numerical
calculations of secular effects in stars. The second case is the study of the
onset of dynamical instability itself. Here the perturbing operator is a slight
change in the structure of the star. It is found that instability sets in only
through eigenvalues which have Jordan chains, and the perturbation theory is
non-analytic. It is shown that stable modes do not have Jordan chains, and
the marginally stable modes have, in the generic case, chains of length 1. This
gives a fairly complete characterization of the manner in which instability
arises along a sequence of stars.

1 Introduction

The theory of the secular stability of perfect-fluid rotating stars is in reasonably good shape
(Friedman & Schutz 1978), but there have been as yet very few calculations by which we
can judge the astrophysical importance of these instabilities. The only published calculations
are for the modes of the Maclaurin spheroids (Roberts & Stewartson 1963; Chandrasekhar
1969, 1970; Lindblom & Detweiler 1977; Comins 1978, 1979a,b) or for equally unrealistic
systems (Papaloizou & Pringle 1978). This is particularly unfortunate in the case of gravi-
tational-radiation-driven instabilities, which may affect all neutron stars at least in principle,
but whose growth times are extremely sensitive to the exact structure of the star and of
the unstable eigenfunction (Comins 1978). Because the secular terms are so small, it is
likely that there would be substantial numerical errors inherent in any attempt to solve
directly the dynamical equations with the secular terms included. It seems, therefore, that
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Table 1. Peak line flux densities (St ) and line/continuum ratios (R).

Galaxy CH (3.26 GHz) H,CO (4.83 GHz) OH (1.67 GHz)
SL iR | Sy IR| s IR|
NGC 253 <0003  <0.001 ~0.029  0.020 ~0.19 0.079
LMC (N159) 0013 0.006 ~0.022  0.014 ~0.10 0.05
NGC 4945 0017  0.006 ~0.16 0.080 ~0.82 0.27
NGC 5128 0079  0.026 ~0.14 0.035 ~0.19 0.038

continuum values used are generally lower than the observed values, in keeping with the
discussions in the references above.

For NGC4945 and NGC253 it is likely that the CH emission arises in clouds near the
nucleus. This is supported by the following:

(a) IR| for CH is more than a factor of 10 lower than for H,CO and OH. Such an under-
abundance of CH is similar to that found in clouds near the centre of our Galaxy (see
Whiteoak et al. 1978).

(b) The velocities associated with the CH emission for NGC 4945 are similar to those for
[N11] 6583 A emission, which is concentrated in a region (< 5 arcsec) believed to be at the
nucleus (Whiteoak & Gardner 1979).

For N159 the similarity of the 3264- and 3335-MHz profiles and the low values of [R],
increasing gradually from CH to OH, are typical of clouds not closely associated with H11
regions or nuclei of galaxies (see discussion by Whiteoak et al. 1978). ‘

The values of R for NGC 5128 in Table 1 are derived on the assumption that only the
nuclear source is amplified or absorbed. From observations at adjacent frequencies by Wade
et al. (1971), Christiansen et al. (1977) and Beall et al. (1978), it was estimated that the
intensity of the nuclear component was 3Jy (compared with total continuum of 75 Jy
observed), 4 and 5Jy at CH, H,CO and OH frequencies. The above assumption is supported
by the fact that the CH features are narrow and similar in shape and velocity to those of the
14.5-GHz transitions of H,CO (Gardner & Whiteoak 1979), even though only 10 per cent of
the continuum in the telescope beam at 14.5 GHz is from outside the nucleus.

Table 1 indicates that the values of |R| for NGC 5128 are similar for CH, H,CO and OH —
a situation not found in our Galaxy. The high value of R for CH and the predominance of
the 3264-MHz emission are more typical of clouds associated with H 11 regions outside than
inside the nuclear region of our Galaxy. We have also argued (Gardner & Whiteoak 1979)
from a comparison of line/continuum ratios for H,CO at 4.8 and 14.5 GHz that the
molecular cloud is in an outer dust lane well away from either the nucleus or any Hi1
region. The most plausible explanation for the anomalously high values of R for CH is that
there is an overabundance of CH relative to H,CO in NGC 5128 compared with our Galaxy.

To conclude: the 3264-MHz transition of CH has been detected in three galaxies and
possibly in a fourth. As in our Galaxy, the line profiles are similar to those for H,CO. The
results for N159 in the LMC are similar to those for CH clouds in our Galaxy; for NGC 4945
and NGC 253 they suggest relative underabundance of CH in their nuclear regions, as in our
Galaxy; for NGC 5128, however, they indicate an overabundance of CH relative to our
Galaxy.

Because the 3335-MHz transition of CH observed towards continuum regions is usually
much fainter than the 3264-MHz transition, it is not surprising that it was observed in only
one galaxy (LMC), and possibly in another (NGC 4945). The results confirm that, as in our
Galaxy, the molecular clouds are not in local thermodynamic equilibrium, a situation also
suggested by the observations of other molecules in these clouds.
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the best procedure is to solve the pulsation problem without the secular terms and to use the
resulting eigenfunctions to calculate the effect of the secular terms in a perturbation
approximation. This is made possible by the completeness of the unperturbed eigenfunctions\
(Dyson & Schutz 1979 — Paper I). This paper develops such a method and derives explicit
equations for the change in an eigenfrequency in terms of its zero-order eigenfunction when
the secular terms arise from viscosity or radiation reaction.

The onset of dynamical instability is in some sense a simpler problem to study than that
of secular instability, because one does not need to introduce extra terms into the equations:
one simply monitors the behaviour of the eigenfrequencies along the sequence. Nevertheless,
the actual onset of instability is poorly understood. Given that we have as yet no general
criterion for dynamical instability (which is in contrast with the secular case), a better under-
standing of how dynamical instabilities make their appearance may be helpful. This can also
be treated by perturbation theory, since one member of a sequence of stars may be thought
of as a perturbation of an earlier member. We will find that the instability point is always
marked by a Jordan chain, whose length is usually 1.

At this point it may be helpful to explain the principal differences between secular and
dynamical instabilities in this context. The word ‘dynamical’ refers to our basic system of
equations, those which govern linear perturbations of a perfect-fluid star. These equations
are conservative, so the eigenfrequencies either are real or occur in complex-conjugate pairs
(of which one leads to exponential growth of the perturbation). Suppose a sequence of
models is constructed, parameterized by the real variable u, along which the eigenfrequencies
are continuous functions of u. Then dynamical instability in a particular mode sets in at the
value u = ugq if its eigenfrequency is real below uy and complex above it. At uy the mode is
said to be marginally unstable. (We will see below that the property of marginal instability,
although defined here for a particular sequence, is in fact a sequence-independent property
of the star itself.) Although the eigenfrequency is continuous at uyq it is clearly not analytic
in u there (in the complex-variable sense).

By contrast, ‘secular’ instabilities are caused by changing, not the unperturbed model,
but the dynamical equations governing the perturbation. If the added terms are dissipative
then a zero-order real eigenfrequency will acquire an imaginary part, but there is no need
for these to occur in complex-conjugate pairs. Again we say that secular instability in a
particular mode sets in at the value u=pg if its secularly perturbed eigenfrequency
corresponds to exponential decay below ug and to exponential growth above it. This is only
meaningful if the mode is not dynamically unstable. In addition to u there is a parameter ¢
giving the ‘strength’ of the secular terms, and the eigenfrequencies can be — and usually
are — analytic functions of € at € = 0.

The important difference between the eigenvalue perturbation theory that must be used
here and the usual perturbation theory of selfadjoint operators that physicists are familiar
with from quantum mechanics is that our problem, the oscillation of a rotating star, is
essentially non-selfadjoint. This means that the eigenvectors are not necessarily orthogonal
to one another, so that explicit use has to be made of left-eigenvectors as well as right-
eigenvectors in this problem. A previous paper (Schutz 1980 — Paper II) discussed right-
eigenfunctions and left-eigenfunctions in some detail, and showed that for stars which
possess the reflection symmetry (¢, ¢) > (—¢, — ¢) there was a direct relation between the
right-eigenfunctions and left-eigenfunctions for any particular eigenvalue. We shall use this
relation in some of our perturbation formulae.

This paper is unfortunately not self-contained. It relies on an understanding of the results
of Paper II and it follows the notation of Paper II and of Paper I. Nevertheless, it will be
helpful to write down the basic formulae. The dynamical equation can be written (Lynden-
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Bell & Ostriker 1967; Dyson & Schutz 1979 — Paper I)

02 0 (1.1)
—E+B (— ) +CE)=0,

o2 Y E)+CE)

where B and C are, respectively, antisymmetric and symmetric operators in a Hilbert space

H whose inner product is

<£In>=fp5-ndv, | (1.2)

where p is the density of the star and a bar denotes complex-conjugation. In equation (1.2)
Dirac bra and ket notation has been introduced, and it will be used from now on. The
eigenvalue problem for equation (1.1) comes from the assumption

[£(2)) = 1) exp (\1): (1.3)
(A2 +AB +C)|£)=0. (1.4)

(Note the convention adopted here, that X is the eigenvalue. The ‘frequency’ is i\ or — i},
depending on one’s convention.) In discussing perturbation theory it is more convenient to
deal with the first-order eigenvalue problem in the space H, = H®H, which is ‘initial-data’
space, the space of pairs (|£(¢)), d/dt|£(¢))) = | ). This double-bracket notation will be used
to distinguish elements of H, from their counterparts in H. The associated eigenvalue
problem is

0 1
T =N, T=< ) 1.5
I =Aln ¢ _B (1.5)

The matrix T is not symmetric with respect to the inner product of H, induced by H:
KElm» = (&1 In) + &2ln)

where |n,) and |n,) are the ‘components’ of |n)). Since the eigenvalues \ are eigenvalues of
T, it is T whose perturbation theory we must investigate. As in Paper II we shall assume that
T is a finite-dimensional matrix, as it always is in numerical approximations to the
continuous problem.

2 General remarks on perturbation theory

We shall suppose that a matrix T has eigenvalues {\3} and right- (left-) eigenvectors and
Jordan chain vectors {|AQ; 7} ({¢QA%; I}, with k=0 denoting the eigenvector and
k=1,...,p, forming the chain. Since T is a function of the sequence’s parameter u, the first
question is how the eigenvalues depend on u. We quote three results from Kato (1966,
Chapter II). First, if T is continuous in u then its eigenvalues are continuous in . Moreover,
the dimension of the characteristic subspace of an eigenvalue (that is, the total number of
eigenvectors and Jordan chain vectors associated with that eigenvalue) is ‘conserved’, in
the sense that if an eigenvalue spiits into distinct eigenvalues the sum of the dimensions of
the characteristic subspaces of the distinct eigenvalues equals the total dimension of the
original subspace. In fact, the total projection operator on to these subspaces is continuous
in u. The second result is that if 7T is differentiable in u at some w, then this same total
projection operator is likewise differentiable, but this is not necessarily true of the eigen-
values. If an eigenvalue has no Jordan chain at u, (a ‘semisimple’ eigenvalue) then it is
differentiable at u, even if it splits into several eigenvalues for u > u,, and in fact

M) = Np) + (1 — m)AD () +o(u — uy) (2.1)
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where A!(u,) is an eigenvalue of (dT/du),, testricted to the total characteristic subspace, and
where o(u — ;) is the usual order symbol for a function which goes to zero faster than
i — uq. So if a sequence of models is differentiable, first-order perturbation theory gives at
least an asymptotic expression for the change in the eigenvalue. We can immediately
conclude that if a semisimple eigenvalue at u; splits into several eigenvalues for u > u, in
such a way that the various A(’(i;)’s are not zero, then it must split into the same number
of eigenvalues for u < u;, or in other words that u, is merely a crossing point for the eigen-
values. Now, a dynamical instability point is a value of u where eigenvalues split, since on
the unstable side of it there is a complex-conjugate pair which become equal at the
instability point. But it is not a crossing point, since the eigenvalues are real on the other
side of it. So along a differentiable sequence dynamical instability must occur through a
mode which is not semisimple: it must have a Jordan chain. We concluded this for
continuous sequences by a different argument in Paper II.

Kato’s third result concerns sequences which are in fact (complex-) analytic functions
of their parameter u in some simply connected region D of the complex plane. Here the
number of distinct eigenvalues is constant except at a finite number of exceptional points,
where degeneracy may occur without Jordan chains (semisimple case) or with them. The
total projection operator discussed above is holomorphic even at the exceptional points.
In the semisimple case the eigenvalues are analytic functions of u even at exceptional points,
while those with Jordan chains at an exceptional point are branches of analytic functions
with at most algebraic singularities at the exceptional points. This means that the lowest-
order change in an eigenvalue away from u, is proportional at worst to some fractional
power of u—u,. If the Jordan chain has length p the branch point has order no larger than p.
In treatments of secular stability the perturbed operator is usually taken to have the form
T + eP, which is of course analytic in €, so that the onset of secular instability can be studied
by analytic perturbation theory. This is consistent with the perturbation analysis of the
Maclaurin spheroids by Roberts & Stewartson (1963), who did not assume that the problem
was finite dimensional.

In order to put some flesh on the bare bones of these theorems, let us consider the
operator family 7 + eP. Here €P is either a change in the character of the equations (secular
stability) or a change in T itself brought on by increasing the sequence’s parameter u by €
(dynamical stability). In the latter case, we will therefore be able to apply our first-order
results only to sequences which are at least differentiable, as in equation (2.1).

Suppose that T + eP has an eigenvalue A,,(€) and an associated right-eigenvector |\, (¢€);
o). We expand this in terms of the basis {|A; 7, ) }:

Pm
Ma(€);7a¥ =Y Y amic ()N i), (2.2)
m k=0

where p,,, is the length of the Jordan chain to AY,. Applying T + P to equation (2.2) gives
(T +€eP)Ny(€); 1) = Ny (€) INs(€); 7o)

Y @€ N N e D+ I 7 ) + €PN TN = Y amp(€)Na(€) NG5 7D, (2.3)
m, k m, k

provided we adopt the convention that |AS; 7, ) = 0 if k¥ < 0. Now, if we contract equation
(2.2) with €0 l;| for arbitrary s, employing the notation

BE = (N [P I e, (2 42)
=N L ING 7p 0 (0), (2.4b)
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then the orthogonality relations given in Paper II give

[as pg — j(EVNS + a5y j+1(E)Lf +e Zk am ()P = Ma(€)as, pg _ j (€)1}, (2.5)
m,

where ag = 0 if K > p;. By continuity, the limit € > O gives

(A2 — Ag)as,ps~j'(0) tag p.—j+1(0) =0,

This is a system of equations in j for fixed s and n, whose solution is

a;;(0)=0 Vs, Vj>0,

a5 0(0)=0 if INED S (2.6)
This means that the € = 0 limit of |\, (€); 7o) is a linear combination of those eigenvectors
which have eigenvalues equal to AS. For simplicity, we shall assume there is no degeneracy
at A): no other eigenvalues equal it. Degeneracy can be handled exactly as in selfadjoint
perturbation theory.

If we assume that A, and the a’s are analytic in € at € = 0 then equation (2.6) says that
ap 0= 1+0(e) and a, ; = 0(e),j > 1. Expanding A,, in its Taylor series,

Aa(€) =25 + 8N, +0(e?), 2.7)

* we find that equation (2.5) gives for s = n

(an,pnr~j+1 - 6>\n5i,pn)1jn + EPj%n + 0(62) =0, j=0,...,ppn (2.8)

where §; ,, is the Kronecker delta.
If p,,=0 (no Jordan chains in the unperturbed mode) then equation (2.8) immediately
gives the first-order change in the eigenvalue:

NS 1o | PIAS; o0

SN, = ePl G =€ .
n=¢€For/lo NS 1oIAS; 7o

(2.9)

This is clearly analogous to the familiar formula for the perturbation theory of selfadjoint
operators, but here one must be careful to use «A3; Iy, the left-eigenvector of T, which is
usually not the adjoint of |AS; 7o).

We can see how the assumption of analyticity breaks down if there is a Jordan chain to
AS. With p,, > 0, equation (2.8) forj = 0 gives

ePon,‘él = . (2.10)

The element of the matrix P cannot be expected to vanish in general, leading to a contra-
diction. We shall look further at this case in our study of dynamical instability in Section 4.
The analytic formula, equation (2.9), suffices for the study of secular instability, to which
we now turn.

3 Analytic perturbation theory and secular stability

Secular instability in a mode is really only of interest when that mode has a purely real
unperturbed frequency (purely imaginary \S). As we shall see in Section 4, such modes
cannot possess Jordan chains if they are not marginally dynamically unstable, so we shall
assume in this section that p,, = 0.
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3.1 viscosITy

In a stationary, isolated star, the only stationary axisymmetric state in the presence of
viscosity is rigid rotation with angular velocity £2. So we shall restrict ourselves to such stars
in this section. They clearly have the reflection symmetry (¢, ¢) > (— ¢, — ¢).

Viscosity changes the dynamical equation to (Friedman & Schutz 1978)

(\*+AB +C)E=— (A +imQ)FE (3.1)
where

o2 1,
—(FE)’ =; V;(nZ") +; Vi(56) (32)
i =% (Vi + VI ) — 139 (3.3)
0 =v;& (34)

(summation on repeated indices). Here n is the coefficient of shear viscosity and ¢ the
coefficient of bulk viscosity. We wish to find a representation of equation (3.1) in H,. The
following operator gives the correct result:

= (—?mSZF —2‘)' 3:3)

Then if |\; 7o) is the right-eigenvector of L(A) we have from Paper 11

|7\,9,, ro)
AS; 7 >>=( ) (3.6)
T AN o)
and
s lol = ((S; Aol (AR +B), (8500570 ). 37)
This gives, from equation (2.9),
(S; A5 7o |FIN; 7o)
BNy = — (NS +imQ) —— o 20 (3.8)
(S; >\n; r0|(2>\n +B)|>\n; ro)
In more concrete terms, suppose that the zero-order eigenfunction is
£9(w,2)
N30y = £ (w, 2) | exp (im), (39)
£ (w,2)
referred to an orthonormal basis in cylindrical polar coordinates. Then
(S;Mmsrol = (6%, — %, £%) exp (—img) (3.10)

is the left-eigenfunction. A rather long but straightforward calculation gives that the numera-
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tor in equation (3.8) is, after an integration by parts,

SN rolFINg; 7o) = jj wdwdz {77 [2(%2‘”)2 +(0k™)? + 20,8 0E"

2 1 — 2
05PN+ 20557 s (EP L () — (3,E%) — (0E?)
w w

m? 1 2
C @ |+ 6| 4ot + )
w w

2
— EP08% -
w

m2
. (e®
+ 2 @) (3.11)
Similarly, the denominator is
(5,08 7ol (A + BYNG, 7o) = — 2 j jpw dw dz {08 +imQ)[(E™)? + (£

— (%] - Q&%= (3.12)

Although complicated, these expressions should be easy enough to evaluate numerically.

3.2 GRAVITATIONAL RADIATION

The gravitational radiation emitted by a pulsating object is generally a very complicated
function of the pulsation, but in the case of a nearly-Newtonian star emitting wavelengths
large compared to the stellar radius, considerable simplification is possible. We will follow
the treatment of Thorne (1969). The important point is that when the wavefield is analysed
in spherical harmonics Y}, at infinity, the dominant radiation usually comes from the lowest
value of I > 2 contributing to the radiation (/ =0 and 1 do not contribute any radiation in
general relativity). The strict statement is that in an asymptotic expansion in powers of
¢!, the radiation from each [ is proportional to ¢~ @*2) While it is possible to have a star
whose quadrupole moment (I = 2) is changing much less rapidly than its octopole moment
(1=3) and so contributes less radiation, it should be safe to assume that this is a rather
contrived circumstance for any star whose unperturbed shape is reasonably non-spherical.
Since for spherical harmonics one always has |m| < [, it follows that an axisymmetric star
with a perturbation of azimuthal eigenvalue m gives off its dominant gravitational radiation
with I=|m|. We shall restrict our attention to this case, and assume the star has the
reflection-symmetry (¢, ¢) > (—¢, — ¢).

In Thorne’s treatment, the effect of radiation on the star, which is what we are interested
in, is accounted for by a change in the Newtonian gravitational potential, the addition of a
new radiation-reaction potential. For [ = m this is

8Ppr = 4nGen Fry Yim (0, ¢>)rm, (3.13)
(m+1)(m+2)

- (_1\ymtl
em = (1) m(m — 1)2m + 1) [(2m — DHN]?’ (3.142)
1 2m+1 m .
a0 i ) [0 W) ¥ (3.145)

Because F),, contains an odd number of time-derivatives, it is an energy-dissipating term. If
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we define an element of H
|RR;m )=V [r"Y,,m (0, ¢)] (3.15)

then it is not hard to show that the integral in equation (3.14b) is just
(RR;m|§), (3.16)

since
p()=8p=—v-(pE).

(Recall that the inner product of equation (3.16) is weighted by p.)
The equation of motion involves V8® g and so can be written

2m+1
(7\2+7\B+C)|E>=—477G€m[(z) (RR;mIS)] |RR; m). 3.17)
c

It is clear that this does not fit into the scheme we have employed up till now because it
contains higher than second time-derivatives. On the other hand, the right-hand side of
equation (3.17) must be small for perturbation theory to work, so we do not make any error
at this order if we use the unperturbed time-dependence of |£) on the right-hand side. For a
mode |A; 7o), this amounts to replacing d/dt by AS. We find, then, that each mode has its
own perturbation operator G,,:

(N2+AB +O) N 70) = Gl o) (3.18)
G, = — 41Ge,, (A2 /c)*™ 1| RR; m}{RR; m)|. (3.19)

In H, the appropriate operator is

P_(o 0)
" \g, 0o/

Following equations (3.6), (3.7) and (2.9), we find
SN R0IGRINg; 7o)
(S35 701203 + B) \ps 7o)

(321)

n

If we use the same form (3.9) for |AJ; 7,), the denominator of equation (3.21) is the same as
equation (3.12). To evaluate the numerator it is more convenient to use an orthonormal
basis in spherical polar coordinates, in which § has components (¢7, g9, £?). Then the
numerator is

(S; 7\?1”'0 IGnI?\g; Fo) = — 4ﬂGem(>\g/C)2m+l(Nmm)2

o im 2
X “‘fprzm dr sin 0 d6 (mS'Pm +£%0oPm — -~ gopm )J , (322)
, sin

where we have rewritten Y,,,, as
Y,im = NnmPm €Xp (imo), (3.23)

with Pj; the usual associated Legendre polynomial and N, is the usual normalization
factor

v ' 2m+1 )1/ 2
= . 324
m (417(2m)! (3:24)

© Royal Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1980MNRAS.190....7S

FTIBOMNRAS, T90- ~.2. 750

Perturbations and stability of rotating stars — III 29

Equation (3.22) should be particularly easy to evaluate because it does not involve
derivatives of §.

4 Non-analytic perturbation theory and the onset of dynamical instability

Here we assume that we have a differentiable sequence of stars with parameter u, so that for
any Mo T(u) can be approximated by T'(uo) +(u — mo)P for sufficiently small (u — uo),
with P =dT/du|, . We are interested in what happens if uo has a Jordan chain to one of its
eigenvalues, AS. Our starting point is equation (2.5), where € stands for u — uo:

{as, ps~j(€))\g tagpg ~j+1(€)} ljs te Z amk(e)Pj:g'km = Na(€)a, P __]-(E)I]-S. (2.5)
m,k
It is easy to verify that the assumption that {ags, k=1,...,ps} are analytic in € when

As 7\, is consistent. Moreover in this case equation (2.5) gives no information about
A, (€). Since we continue to assume that Ay # A,, whenever s # n (no ‘irrelevant’ degeneracy),
we shall concentrate on the case s =n. Then equation (2.5) is solved by allowing A,,(€)
and a, r(€) to depend on fractional powers of €. We try the forms:

M(€) =28 +eMen + ... (4.1)
ay 0(e)=1+ efoog+ ... (4.2)
an,k(e)=efkak+..., k=1,...,Pn, (4.3)

where {8\, oy} are constants and all higher-order terms are dropped. The powers {f\, fx }
must all be non-negative, since the € > 0 limit exists. Let us examine equation (2.5) for
various values of j, keeping only the lowest powers of € in each term. We shall assume that
P%5+#0. This must be regarded as the typical situation. The analysis becomes very much
more complicated if P{ G vanishes, and we hope to return to it in a later publication.
Equation (2.5) for j = 0 becomes

PG5 = eNendhay, 17, (4.4)
since a,, = 0 for k£ > p,. From this we conclude

Nthp, =1, (4.52)
ap, O\ =Pg o/l¢. (4.5b)
Next consider arbitrary j in the range 0 < j < p,:

efon—itlay, ;o If' = e on—iay, SN

The terms depending on P do not appear here because €' is of higher-order than efon—i+1,
as we shall show. So we conclude

At fop—i=Ton—i+1s (4.62)
ap, A=y iy (4.6b)
Finally forj = p, we find

eha,I; =e/ NIy
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where we have only used the lowest-order part of equation (4.2) in the right-hand side.
This leads to

n=h (4.72)
SN =a, (4.7b)

Equations (4.5)—(4.7) can be solved easily. We add equation (4.7a) and all equations (4.6a)
(for all allowed f) together to get

PnlA = fpn’
which when combined with equation (4.5a) gives
1 i
f"=1+pn’ ﬁ=1+pn' (4.8a)

Thus, all fractional powers are terms of lower order than e. Similarly if we multiply equation
(4.7b) and all of equations (4.6b) together we get

BN)Pn = ap,

which together with equation (4.5b) gives

(N)Pntl = PERIIG, o= (8N (4.8b)
We therefore find that the new eigenvalue is

Mal€) = 25 + (PG BIE)! 1P + ... (4.9)

There are 1 + p,, distinct roots one can use in equation (4.9), and for each there is an eigen-
vector linearly independent of the others. So the perturbation completely destroys the chain
if Pg 5 # 0.

Nothing so far has restricted the sign of €, and it should be true for reasonable sequences
that T + eP describes the sequence well for small enough e of either sign*. But we have
assumed that for e < O the eigenvalues are all purely imaginary: no unstable modes. From
equation (4.9) this is possible in only one case: p, = 1 and Pg 5/I¢ real and positive. Any
larger value of p,, will necessarily give roots elsewhere in the complex plane. Moreover, in
this one case, the other side of the critical point, € > 0, will have an unstable mode. We
can therefore draw the remarkable conclusion that, as long as PG ( is never zero, the
dynamically stable part of the sequence can have no Jordan chains at all and dynamical
instability sets in through a Jordan chain of length 1. So dynamical instability sets in in the
simplest possible way. As u increases, our picture shows us that pure-imaginary eigenvalues
with no Jordan chains converge on one another in pairs; where they meet they form a
Jordan chain of length 1, and for larger u they diverge again, this time away from the
imaginary axis.

This picture of instability is expressed in terms of one-dimensional sequences of models,
because that is closest to the way models are constructed numerically. But it is worthwhile
pointing out that every model is just one point in an infinite-dimensional space of all stellar
models. All nearby points are probably accessible along some sequence of models for which

* An interesting exception to this is the beginning of the sequence with a non-rotating, spherical star.
Such a star has an infinite number of zero-frequency modes, which occur as Jordan chains of length 1,
and correspond to setting the star into rotation. They are split — in a stable manner, presumably — as
soon as one moves along the sequence with some rotation, but there is no meaning to going in the ‘other’
direction along the sequence (where they would have complex frequencies).
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the present analysis holds. We are now able to characterize the stability of a model by its
intrinsic properties, without reference to a particular sequence. If a model has only
imaginary {\,} and no chains, then it is not only dynamically stable but also ‘structurally’
stable: all nearby models are also dynamically stable. If all its A,;’s are imaginary, but it has
at least one chain, then it is marginally stable: most small changes in the star will produce a
dynamically unstable model. Moreover, it is a point of marginal stability for nearly any
sequence of stars one may happen to place it on.
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