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Summary. The normal mode problem for perturbations of a perfect-fluid
rotating star is a non-selfadjoint eigenvalue problem. To study the changes in
the eigenfrequencies when the operators in the problem change slightly, this
paper develops the appropriate lowest-order perturbation theory and
discusses two important cases. In the first case the perturbing operator is the
inclusion of a ‘secular’ effect, such as viscosity or radiation reaction. Here
the main interest is in unperturbed eigenfrequencies that are dynamically
stable, and the perturbed frequencies are analytic functions of the perturba-
tion parameter. Explicit formulae are derived for use in numerical
calculations of secular effects in stars. The second case is the study of the
onset of dynamical instability itself. Here the perturbing operator is a slight
change in the structure of the star. It is found that instability sets in only
through eigenvalues which have Jordan chains, and the perturbation theory is
non-analytic. It is shown that stable modes do not have Jordan chains, and
the marginally stable modes have, in the generic case, chains of length 1. This
gives a fairly complete characterization of the manner in which instability
arises along a sequence of stars.

1 Introduction

The theory of the secular stability of perfect-fluid rotating stars is in reasonably good shape
(Friedman & Schutz 1978), but there have been as yet very few calculations by which we
can judge the astrophysical importance of these instabilities. The only published calculations
are for the modes of the Maclaurin spheroids (Roberts & Stewartson 1963; Chandrasekhar
1969, 1970; Lindblom & Detweiler 1977; Comins 1978, 1979a,b) or for equally unrealistic
systems (Papaloizou & Pringle 1978). This is particularly unfortunate in the case of gravi-
tational-radiation-driven instabilities, which may affect all neutron stars at least in principle,
but whose growth times are extremely sensitive to the exact structure of the star and of
the unstable eigenfunction (Comins 1978). Because the secular terms are so small, it is
likely that there would be substantial numerical errors inherent in any attempt to solve
directly the dynamical equations with the secular terms included. It seems, therefore, that
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Detection of CH in external galaxies 21p

Table 1. Peak line flux densities (St ) and line/continuum ratios (R).

Galaxy CH (3.26 GHz) H,CO (4.83 GHz) OH (1.67 GHz)
SL iR | Sy IR| s IR|
NGC 253 <0003  <0.001 ~0.029  0.020 ~0.19 0.079
LMC (N159) 0013 0.006 ~0.022  0.014 ~0.10 0.05
NGC 4945 0017  0.006 ~0.16 0.080 ~0.82 0.27
NGC 5128 0079  0.026 ~0.14 0.035 ~0.19 0.038

continuum values used are generally lower than the observed values, in keeping with the
discussions in the references above.

For NGC4945 and NGC253 it is likely that the CH emission arises in clouds near the
nucleus. This is supported by the following:

(a) IR| for CH is more than a factor of 10 lower than for H,CO and OH. Such an under-
abundance of CH is similar to that found in clouds near the centre of our Galaxy (see
Whiteoak et al. 1978).

(b) The velocities associated with the CH emission for NGC 4945 are similar to those for
[N11] 6583 A emission, which is concentrated in a region (< 5 arcsec) believed to be at the
nucleus (Whiteoak & Gardner 1979).

For N159 the similarity of the 3264- and 3335-MHz profiles and the low values of [R],
increasing gradually from CH to OH, are typical of clouds not closely associated with H11
regions or nuclei of galaxies (see discussion by Whiteoak et al. 1978). ‘

The values of R for NGC 5128 in Table 1 are derived on the assumption that only the
nuclear source is amplified or absorbed. From observations at adjacent frequencies by Wade
et al. (1971), Christiansen et al. (1977) and Beall et al. (1978), it was estimated that the
intensity of the nuclear component was 3Jy (compared with total continuum of 75 Jy
observed), 4 and 5Jy at CH, H,CO and OH frequencies. The above assumption is supported
by the fact that the CH features are narrow and similar in shape and velocity to those of the
14.5-GHz transitions of H,CO (Gardner & Whiteoak 1979), even though only 10 per cent of
the continuum in the telescope beam at 14.5 GHz is from outside the nucleus.

Table 1 indicates that the values of |R| for NGC 5128 are similar for CH, H,CO and OH —
a situation not found in our Galaxy. The high value of R for CH and the predominance of
the 3264-MHz emission are more typical of clouds associated with H 11 regions outside than
inside the nuclear region of our Galaxy. We have also argued (Gardner & Whiteoak 1979)
from a comparison of line/continuum ratios for H,CO at 4.8 and 14.5 GHz that the
molecular cloud is in an outer dust lane well away from either the nucleus or any Hi1
region. The most plausible explanation for the anomalously high values of R for CH is that
there is an overabundance of CH relative to H,CO in NGC 5128 compared with our Galaxy.

To conclude: the 3264-MHz transition of CH has been detected in three galaxies and
possibly in a fourth. As in our Galaxy, the line profiles are similar to those for H,CO. The
results for N159 in the LMC are similar to those for CH clouds in our Galaxy; for NGC 4945
and NGC 253 they suggest relative underabundance of CH in their nuclear regions, as in our
Galaxy; for NGC 5128, however, they indicate an overabundance of CH relative to our
Galaxy.

Because the 3335-MHz transition of CH observed towards continuum regions is usually
much fainter than the 3264-MHz transition, it is not surprising that it was observed in only
one galaxy (LMC), and possibly in another (NGC 4945). The results confirm that, as in our
Galaxy, the molecular clouds are not in local thermodynamic equilibrium, a situation also
suggested by the observations of other molecules in these clouds.
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the best procedure is to solve the pulsation problem without the secular terms and to use the
resulting eigenfunctions to calculate the effect of the secular terms in a perturbation
approximation. This is made possible by the completeness of the unperturbed eigenfunctions\
(Dyson & Schutz 1979 — Paper I). This paper develops such a method and derives explicit
equations for the change in an eigenfrequency in terms of its zero-order eigenfunction when
the secular terms arise from viscosity or radiation reaction.

The onset of dynamical instability is in some sense a simpler problem to study than that
of secular instability, because one does not need to introduce extra terms into the equations:
one simply monitors the behaviour of the eigenfrequencies along the sequence. Nevertheless,
the actual onset of instability is poorly understood. Given that we have as yet no general
criterion for dynamical instability (which is in contrast with the secular case), a better under-
standing of how dynamical instabilities make their appearance may be helpful. This can also
be treated by perturbation theory, since one member of a sequence of stars may be thought
of as a perturbation of an earlier member. We will find that the instability point is always
marked by a Jordan chain, whose length is usually 1.

At this point it may be helpful to explain the principal differences between secular and
dynamical instabilities in this context. The word ‘dynamical’ refers to our basic system of
equations, those which govern linear perturbations of a perfect-fluid star. These equations
are conservative, so the eigenfrequencies either are real or occur in complex-conjugate pairs
(of which one leads to exponential growth of the perturbation). Suppose a sequence of
models is constructed, parameterized by the real variable u, along which the eigenfrequencies
are continuous functions of u. Then dynamical instability in a particular mode sets in at the
value u = ugq if its eigenfrequency is real below uy and complex above it. At uy the mode is
said to be marginally unstable. (We will see below that the property of marginal instability,
although defined here for a particular sequence, is in fact a sequence-independent property
of the star itself.) Although the eigenfrequency is continuous at uyq it is clearly not analytic
in u there (in the complex-variable sense).

By contrast, ‘secular’ instabilities are caused by changing, not the unperturbed model,
but the dynamical equations governing the perturbation. If the added terms are dissipative
then a zero-order real eigenfrequency will acquire an imaginary part, but there is no need
for these to occur in complex-conjugate pairs. Again we say that secular instability in a
particular mode sets in at the value u=pg if its secularly perturbed eigenfrequency
corresponds to exponential decay below ug and to exponential growth above it. This is only
meaningful if the mode is not dynamically unstable. In addition to u there is a parameter ¢
giving the ‘strength’ of the secular terms, and the eigenfrequencies can be — and usually
are — analytic functions of € at € = 0.

The important difference between the eigenvalue perturbation theory that must be used
here and the usual perturbation theory of selfadjoint operators that physicists are familiar
with from quantum mechanics is that our problem, the oscillation of a rotating star, is
essentially non-selfadjoint. This means that the eigenvectors are not necessarily orthogonal
to one another, so that explicit use has to be made of left-eigenvectors as well as right-
eigenvectors in this problem. A previous paper (Schutz 1980 — Paper II) discussed right-
eigenfunctions and left-eigenfunctions in some detail, and showed that for stars which
possess the reflection symmetry (¢, ¢) > (—¢, — ¢) there was a direct relation between the
right-eigenfunctions and left-eigenfunctions for any particular eigenvalue. We shall use this
relation in some of our perturbation formulae.

This paper is unfortunately not self-contained. It relies on an understanding of the results
of Paper II and it follows the notation of Paper II and of Paper I. Nevertheless, it will be
helpful to write down the basic formulae. The dynamical equation can be written (Lynden-
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Bell & Ostriker 1967; Dyson & Schutz 1979 — Paper I)

02 0 (1.1)
—E+B (— ) +CE)=0,

o2 Y E)+CE)

where B and C are, respectively, antisymmetric and symmetric operators in a Hilbert space

H whose inner product is

<£In>=fp5-ndv, | (1.2)

where p is the density of the star and a bar denotes complex-conjugation. In equation (1.2)
Dirac bra and ket notation has been introduced, and it will be used from now on. The
eigenvalue problem for equation (1.1) comes from the assumption

[£(2)) = 1) exp (\1): (1.3)
(A2 +AB +C)|£)=0. (1.4)

(Note the convention adopted here, that X is the eigenvalue. The ‘frequency’ is i\ or — i},
depending on one’s convention.) In discussing perturbation theory it is more convenient to
deal with the first-order eigenvalue problem in the space H, = H®H, which is ‘initial-data’
space, the space of pairs (|£(¢)), d/dt|£(¢))) = | ). This double-bracket notation will be used
to distinguish elements of H, from their counterparts in H. The associated eigenvalue
problem is

0 1
T =N, T=< ) 1.5
I =Aln ¢ _B (1.5)

The matrix T is not symmetric with respect to the inner product of H, induced by H:
KElm» = (&1 In) + &2ln)

where |n,) and |n,) are the ‘components’ of |n)). Since the eigenvalues \ are eigenvalues of
T, it is T whose perturbation theory we must investigate. As in Paper II we shall assume that
T is a finite-dimensional matrix, as it always is in numerical approximations to the
continuous problem.

2 General remarks on perturbation theory

We shall suppose that a matrix T has eigenvalues {\3} and right- (left-) eigenvectors and
Jordan chain vectors {|AQ; 7} ({¢QA%; I}, with k=0 denoting the eigenvector and
k=1,...,p, forming the chain. Since T is a function of the sequence’s parameter u, the first
question is how the eigenvalues depend on u. We quote three results from Kato (1966,
Chapter II). First, if T is continuous in u then its eigenvalues are continuous in . Moreover,
the dimension of the characteristic subspace of an eigenvalue (that is, the total number of
eigenvectors and Jordan chain vectors associated with that eigenvalue) is ‘conserved’, in
the sense that if an eigenvalue spiits into distinct eigenvalues the sum of the dimensions of
the characteristic subspaces of the distinct eigenvalues equals the total dimension of the
original subspace. In fact, the total projection operator on to these subspaces is continuous
in u. The second result is that if 7T is differentiable in u at some w, then this same total
projection operator is likewise differentiable, but this is not necessarily true of the eigen-
values. If an eigenvalue has no Jordan chain at u, (a ‘semisimple’ eigenvalue) then it is
differentiable at u, even if it splits into several eigenvalues for u > u,, and in fact

M) = Np) + (1 — m)AD () +o(u — uy) (2.1)
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where A!(u,) is an eigenvalue of (dT/du),, testricted to the total characteristic subspace, and
where o(u — ;) is the usual order symbol for a function which goes to zero faster than
i — uq. So if a sequence of models is differentiable, first-order perturbation theory gives at
least an asymptotic expression for the change in the eigenvalue. We can immediately
conclude that if a semisimple eigenvalue at u; splits into several eigenvalues for u > u, in
such a way that the various A(’(i;)’s are not zero, then it must split into the same number
of eigenvalues for u < u;, or in other words that u, is merely a crossing point for the eigen-
values. Now, a dynamical instability point is a value of u where eigenvalues split, since on
the unstable side of it there is a complex-conjugate pair which become equal at the
instability point. But it is not a crossing point, since the eigenvalues are real on the other
side of it. So along a differentiable sequence dynamical instability must occur through a
mode which is not semisimple: it must have a Jordan chain. We concluded this for
continuous sequences by a different argument in Paper II.

Kato’s third result concerns sequences which are in fact (complex-) analytic functions
of their parameter u in some simply connected region D of the complex plane. Here the
number of distinct eigenvalues is constant except at a finite number of exceptional points,
where degeneracy may occur without Jordan chains (semisimple case) or with them. The
total projection operator discussed above is holomorphic even at the exceptional points.
In the semisimple case the eigenvalues are analytic functions of u even at exceptional points,
while those with Jordan chains at an exceptional point are branches of analytic functions
with at most algebraic singularities at the exceptional points. This means that the lowest-
order change in an eigenvalue away from u, is proportional at worst to some fractional
power of u—u,. If the Jordan chain has length p the branch point has order no larger than p.
In treatments of secular stability the perturbed operator is usually taken to have the form
T + eP, which is of course analytic in €, so that the onset of secular instability can be studied
by analytic perturbation theory. This is consistent with the perturbation analysis of the
Maclaurin spheroids by Roberts & Stewartson (1963), who did not assume that the problem
was finite dimensional.

In order to put some flesh on the bare bones of these theorems, let us consider the
operator family 7 + eP. Here €P is either a change in the character of the equations (secular
stability) or a change in T itself brought on by increasing the sequence’s parameter u by €
(dynamical stability). In the latter case, we will therefore be able to apply our first-order
results only to sequences which are at least differentiable, as in equation (2.1).

Suppose that T + eP has an eigenvalue A,,(€) and an associated right-eigenvector |\, (¢€);
o). We expand this in terms of the basis {|A; 7, ) }:

Pm
Ma(€);7a¥ =Y Y amic ()N i), (2.2)
m k=0

where p,,, is the length of the Jordan chain to AY,. Applying T + P to equation (2.2) gives
(T +€eP)Ny(€); 1) = Ny (€) INs(€); 7o)

Y @€ N N e D+ I 7 ) + €PN TN = Y amp(€)Na(€) NG5 7D, (2.3)
m, k m, k

provided we adopt the convention that |AS; 7, ) = 0 if k¥ < 0. Now, if we contract equation
(2.2) with €0 l;| for arbitrary s, employing the notation

BE = (N [P I e, (2 42)
=N L ING 7p 0 (0), (2.4b)
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then the orthogonality relations given in Paper II give

[as pg — j(EVNS + a5y j+1(E)Lf +e Zk am ()P = Ma(€)as, pg _ j (€)1}, (2.5)
m,

where ag = 0 if K > p;. By continuity, the limit € > O gives

(A2 — Ag)as,ps~j'(0) tag p.—j+1(0) =0,

This is a system of equations in j for fixed s and n, whose solution is

a;;(0)=0 Vs, Vj>0,

a5 0(0)=0 if INED S (2.6)
This means that the € = 0 limit of |\, (€); 7o) is a linear combination of those eigenvectors
which have eigenvalues equal to AS. For simplicity, we shall assume there is no degeneracy
at A): no other eigenvalues equal it. Degeneracy can be handled exactly as in selfadjoint
perturbation theory.

If we assume that A, and the a’s are analytic in € at € = 0 then equation (2.6) says that
ap 0= 1+0(e) and a, ; = 0(e),j > 1. Expanding A,, in its Taylor series,

Aa(€) =25 + 8N, +0(e?), 2.7)

* we find that equation (2.5) gives for s = n

(an,pnr~j+1 - 6>\n5i,pn)1jn + EPj%n + 0(62) =0, j=0,...,ppn (2.8)

where §; ,, is the Kronecker delta.
If p,,=0 (no Jordan chains in the unperturbed mode) then equation (2.8) immediately
gives the first-order change in the eigenvalue:

NS 1o | PIAS; o0

SN, = ePl G =€ .
n=¢€For/lo NS 1oIAS; 7o

(2.9)

This is clearly analogous to the familiar formula for the perturbation theory of selfadjoint
operators, but here one must be careful to use «A3; Iy, the left-eigenvector of T, which is
usually not the adjoint of |AS; 7o).

We can see how the assumption of analyticity breaks down if there is a Jordan chain to
AS. With p,, > 0, equation (2.8) forj = 0 gives

ePon,‘él = . (2.10)

The element of the matrix P cannot be expected to vanish in general, leading to a contra-
diction. We shall look further at this case in our study of dynamical instability in Section 4.
The analytic formula, equation (2.9), suffices for the study of secular instability, to which
we now turn.

3 Analytic perturbation theory and secular stability

Secular instability in a mode is really only of interest when that mode has a purely real
unperturbed frequency (purely imaginary \S). As we shall see in Section 4, such modes
cannot possess Jordan chains if they are not marginally dynamically unstable, so we shall
assume in this section that p,, = 0.
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3.1 viscosITy

In a stationary, isolated star, the only stationary axisymmetric state in the presence of
viscosity is rigid rotation with angular velocity £2. So we shall restrict ourselves to such stars
in this section. They clearly have the reflection symmetry (¢, ¢) > (— ¢, — ¢).

Viscosity changes the dynamical equation to (Friedman & Schutz 1978)

(\*+AB +C)E=— (A +imQ)FE (3.1)
where

o2 1,
—(FE)’ =; V;(nZ") +; Vi(56) (32)
i =% (Vi + VI ) — 139 (3.3)
0 =v;& (34)

(summation on repeated indices). Here n is the coefficient of shear viscosity and ¢ the
coefficient of bulk viscosity. We wish to find a representation of equation (3.1) in H,. The
following operator gives the correct result:

= (—?mSZF —2‘)' 3:3)

Then if |\; 7o) is the right-eigenvector of L(A) we have from Paper 11

|7\,9,, ro)
AS; 7 >>=( ) (3.6)
T AN o)
and
s lol = ((S; Aol (AR +B), (8500570 ). 37)
This gives, from equation (2.9),
(S; A5 7o |FIN; 7o)
BNy = — (NS +imQ) —— o 20 (3.8)
(S; >\n; r0|(2>\n +B)|>\n; ro)
In more concrete terms, suppose that the zero-order eigenfunction is
£9(w,2)
N30y = £ (w, 2) | exp (im), (39)
£ (w,2)
referred to an orthonormal basis in cylindrical polar coordinates. Then
(S;Mmsrol = (6%, — %, £%) exp (—img) (3.10)

is the left-eigenfunction. A rather long but straightforward calculation gives that the numera-
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tor in equation (3.8) is, after an integration by parts,

SN rolFINg; 7o) = jj wdwdz {77 [2(%2‘”)2 +(0k™)? + 20,8 0E"

2 1 — 2
05PN+ 20557 s (EP L () — (3,E%) — (0E?)
w w

m? 1 2
C @ |+ 6| 4ot + )
w w

2
— EP08% -
w

m2
. (e®
+ 2 @) (3.11)
Similarly, the denominator is
(5,08 7ol (A + BYNG, 7o) = — 2 j jpw dw dz {08 +imQ)[(E™)? + (£

— (%] - Q&%= (3.12)

Although complicated, these expressions should be easy enough to evaluate numerically.

3.2 GRAVITATIONAL RADIATION

The gravitational radiation emitted by a pulsating object is generally a very complicated
function of the pulsation, but in the case of a nearly-Newtonian star emitting wavelengths
large compared to the stellar radius, considerable simplification is possible. We will follow
the treatment of Thorne (1969). The important point is that when the wavefield is analysed
in spherical harmonics Y}, at infinity, the dominant radiation usually comes from the lowest
value of I > 2 contributing to the radiation (/ =0 and 1 do not contribute any radiation in
general relativity). The strict statement is that in an asymptotic expansion in powers of
¢!, the radiation from each [ is proportional to ¢~ @*2) While it is possible to have a star
whose quadrupole moment (I = 2) is changing much less rapidly than its octopole moment
(1=3) and so contributes less radiation, it should be safe to assume that this is a rather
contrived circumstance for any star whose unperturbed shape is reasonably non-spherical.
Since for spherical harmonics one always has |m| < [, it follows that an axisymmetric star
with a perturbation of azimuthal eigenvalue m gives off its dominant gravitational radiation
with I=|m|. We shall restrict our attention to this case, and assume the star has the
reflection-symmetry (¢, ¢) > (—¢, — ¢).

In Thorne’s treatment, the effect of radiation on the star, which is what we are interested
in, is accounted for by a change in the Newtonian gravitational potential, the addition of a
new radiation-reaction potential. For [ = m this is

8Ppr = 4nGen Fry Yim (0, ¢>)rm, (3.13)
(m+1)(m+2)

- (_1\ymtl
em = (1) m(m — 1)2m + 1) [(2m — DHN]?’ (3.142)
1 2m+1 m .
a0 i ) [0 W) ¥ (3.145)

Because F),, contains an odd number of time-derivatives, it is an energy-dissipating term. If
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we define an element of H
|RR;m )=V [r"Y,,m (0, ¢)] (3.15)

then it is not hard to show that the integral in equation (3.14b) is just
(RR;m|§), (3.16)

since
p()=8p=—v-(pE).

(Recall that the inner product of equation (3.16) is weighted by p.)
The equation of motion involves V8® g and so can be written

2m+1
(7\2+7\B+C)|E>=—477G€m[(z) (RR;mIS)] |RR; m). 3.17)
c

It is clear that this does not fit into the scheme we have employed up till now because it
contains higher than second time-derivatives. On the other hand, the right-hand side of
equation (3.17) must be small for perturbation theory to work, so we do not make any error
at this order if we use the unperturbed time-dependence of |£) on the right-hand side. For a
mode |A; 7o), this amounts to replacing d/dt by AS. We find, then, that each mode has its
own perturbation operator G,,:

(N2+AB +O) N 70) = Gl o) (3.18)
G, = — 41Ge,, (A2 /c)*™ 1| RR; m}{RR; m)|. (3.19)

In H, the appropriate operator is

P_(o 0)
" \g, 0o/

Following equations (3.6), (3.7) and (2.9), we find
SN R0IGRINg; 7o)
(S35 701203 + B) \ps 7o)

(321)

n

If we use the same form (3.9) for |AJ; 7,), the denominator of equation (3.21) is the same as
equation (3.12). To evaluate the numerator it is more convenient to use an orthonormal
basis in spherical polar coordinates, in which § has components (¢7, g9, £?). Then the
numerator is

(S; 7\?1”'0 IGnI?\g; Fo) = — 4ﬂGem(>\g/C)2m+l(Nmm)2

o im 2
X “‘fprzm dr sin 0 d6 (mS'Pm +£%0oPm — -~ gopm )J , (322)
, sin

where we have rewritten Y,,,, as
Y,im = NnmPm €Xp (imo), (3.23)

with Pj; the usual associated Legendre polynomial and N, is the usual normalization
factor

v ' 2m+1 )1/ 2
= . 324
m (417(2m)! (3:24)
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Equation (3.22) should be particularly easy to evaluate because it does not involve
derivatives of §.

4 Non-analytic perturbation theory and the onset of dynamical instability

Here we assume that we have a differentiable sequence of stars with parameter u, so that for
any Mo T(u) can be approximated by T'(uo) +(u — mo)P for sufficiently small (u — uo),
with P =dT/du|, . We are interested in what happens if uo has a Jordan chain to one of its
eigenvalues, AS. Our starting point is equation (2.5), where € stands for u — uo:

{as, ps~j(€))\g tagpg ~j+1(€)} ljs te Z amk(e)Pj:g'km = Na(€)a, P __]-(E)I]-S. (2.5)
m,k
It is easy to verify that the assumption that {ags, k=1,...,ps} are analytic in € when

As 7\, is consistent. Moreover in this case equation (2.5) gives no information about
A, (€). Since we continue to assume that Ay # A,, whenever s # n (no ‘irrelevant’ degeneracy),
we shall concentrate on the case s =n. Then equation (2.5) is solved by allowing A,,(€)
and a, r(€) to depend on fractional powers of €. We try the forms:

M(€) =28 +eMen + ... (4.1)
ay 0(e)=1+ efoog+ ... (4.2)
an,k(e)=efkak+..., k=1,...,Pn, (4.3)

where {8\, oy} are constants and all higher-order terms are dropped. The powers {f\, fx }
must all be non-negative, since the € > 0 limit exists. Let us examine equation (2.5) for
various values of j, keeping only the lowest powers of € in each term. We shall assume that
P%5+#0. This must be regarded as the typical situation. The analysis becomes very much
more complicated if P{ G vanishes, and we hope to return to it in a later publication.
Equation (2.5) for j = 0 becomes

PG5 = eNendhay, 17, (4.4)
since a,, = 0 for k£ > p,. From this we conclude

Nthp, =1, (4.52)
ap, O\ =Pg o/l¢. (4.5b)
Next consider arbitrary j in the range 0 < j < p,:

efon—itlay, ;o If' = e on—iay, SN

The terms depending on P do not appear here because €' is of higher-order than efon—i+1,
as we shall show. So we conclude

At fop—i=Ton—i+1s (4.62)
ap, A=y iy (4.6b)
Finally forj = p, we find

eha,I; =e/ NIy
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where we have only used the lowest-order part of equation (4.2) in the right-hand side.
This leads to

n=h (4.72)
SN =a, (4.7b)

Equations (4.5)—(4.7) can be solved easily. We add equation (4.7a) and all equations (4.6a)
(for all allowed f) together to get

PnlA = fpn’
which when combined with equation (4.5a) gives
1 i
f"=1+pn’ ﬁ=1+pn' (4.8a)

Thus, all fractional powers are terms of lower order than e. Similarly if we multiply equation
(4.7b) and all of equations (4.6b) together we get

BN)Pn = ap,

which together with equation (4.5b) gives

(N)Pntl = PERIIG, o= (8N (4.8b)
We therefore find that the new eigenvalue is

Mal€) = 25 + (PG BIE)! 1P + ... (4.9)

There are 1 + p,, distinct roots one can use in equation (4.9), and for each there is an eigen-
vector linearly independent of the others. So the perturbation completely destroys the chain
if Pg 5 # 0.

Nothing so far has restricted the sign of €, and it should be true for reasonable sequences
that T + eP describes the sequence well for small enough e of either sign*. But we have
assumed that for e < O the eigenvalues are all purely imaginary: no unstable modes. From
equation (4.9) this is possible in only one case: p, = 1 and Pg 5/I¢ real and positive. Any
larger value of p,, will necessarily give roots elsewhere in the complex plane. Moreover, in
this one case, the other side of the critical point, € > 0, will have an unstable mode. We
can therefore draw the remarkable conclusion that, as long as PG ( is never zero, the
dynamically stable part of the sequence can have no Jordan chains at all and dynamical
instability sets in through a Jordan chain of length 1. So dynamical instability sets in in the
simplest possible way. As u increases, our picture shows us that pure-imaginary eigenvalues
with no Jordan chains converge on one another in pairs; where they meet they form a
Jordan chain of length 1, and for larger u they diverge again, this time away from the
imaginary axis.

This picture of instability is expressed in terms of one-dimensional sequences of models,
because that is closest to the way models are constructed numerically. But it is worthwhile
pointing out that every model is just one point in an infinite-dimensional space of all stellar
models. All nearby points are probably accessible along some sequence of models for which

* An interesting exception to this is the beginning of the sequence with a non-rotating, spherical star.
Such a star has an infinite number of zero-frequency modes, which occur as Jordan chains of length 1,
and correspond to setting the star into rotation. They are split — in a stable manner, presumably — as
soon as one moves along the sequence with some rotation, but there is no meaning to going in the ‘other’
direction along the sequence (where they would have complex frequencies).
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the present analysis holds. We are now able to characterize the stability of a model by its
intrinsic properties, without reference to a particular sequence. If a model has only
imaginary {\,} and no chains, then it is not only dynamically stable but also ‘structurally’
stable: all nearby models are also dynamically stable. If all its A,;’s are imaginary, but it has
at least one chain, then it is marginally stable: most small changes in the star will produce a
dynamically unstable model. Moreover, it is a point of marginal stability for nearly any
sequence of stars one may happen to place it on.
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