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Polarization resolution of LISA
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Abstract. We discuss LISA’s ability to resolve different polarizational states of a gravitational
wave with fixed frequency and amplitude. Assuming a binary as the source of the gravitational
wave, its orientation is connected with the polarization of the gravitational wave emitted.
Using methods of signal processing, we calculate the 1-σ uncertainty range for measuring the
orientation of the source.
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1. Introduction

Neutron star binaries are believed to be a copious source of gravitational waves in the
frequency interval from 0.1–100 mHz [3], well within the range of LISA’s best sensitivity.
Emitting in this frequency range, coalescence of such a binary will take place in the far
future. Its dynamics is mainly governed by Newtonian mechanics [7] and its frequency will
remain constant within the typical duration of a measurement performed by LISA, i.e. a
few years.

Apart from determining the position [1, 2] and the frequency of the source, measuring
the polarization state of a gravitational wave is of fundamental interest, as it is related to
the orientation of the emitting binary.

2. Signal from a binary

Consider a binary consisting of two pointlike massesm1 andm2. As the power emitted
in gravitational waves is small, it is reasonable to treat the signal as monochromatic in the
source reference frame.

For such a system, having total massM = m1 +m2 and reduced massµ = m1m2/M,
the tensorht t representing the gravitational wave, is of the form [7]

ht t = 4µ

R
(Mω)2/3<

{(
h+ h×
h× −h+

)
exp[iωg(z − t)]

}
ωg = 2ω (1)

with the amplitudesh+ andh× of the plus- and cross-polarization, respectively. Note that
the frequency of the gravitational waveωg is twice the angular velocityω, i.e. frequency
of the binary.
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To cover different orientations of the binary we have introduced the usual spherical
coordinates(cosβ, α) for the angular momentum of the binary,β denoting the angle
enclosed by the angular momentum and thez-axis, α denoting the angle enclosed by the
projection of the angular momentum onto thex–y-plane and thex-axis.

This leads to a gravitational wave propagating along thez-axis with amplitudes

h+ = 1
2

(
cos2 β + 1

)
cos 2α + i cosβ sin 2α

h× = 1
2

(
cos2 β + 1

)
sin 2α − i cosβ cos 2α.

(2)

Equation (2) shows a fourfold symmetry inα, asα can be replaced by one ofα+π/2, α+
π, α + (3π)/2 without changing (2) up to an overall sign.

Choosing the angular momentum aligned with thez-axis, i.e.β = α = 0 leads to a
circularly polarized gravitational wave, whereas aligning the angular momentum with the
x-axis or the bisector of thex- andy-axes (β = π/2, α = 0 or α = π/4) gives a linearly
plus polarized and a linearly cross polarized gravitational wave, respectively.

Hence,β controls thetypeof polarization, circular or linear, whereasα chooses between
plus or cross linear polarized and left or right circular polarized, respectively.

3. Detector’s response

As the signal is defined with respect to the centre of mass of the source, it is necessary to
transform the signal into the frame of the detector system in order to construct the detector’s
response.

We have chosen to transformht t by means of a matrixD(t; θ, ϕ) which includes the
dependence of the location of the source, given byθ andϕ [1]. Its time dependence is due to
the non-isotropy of LISA’s sensitivity pattern, which gives rise to an amplitude modulation
of the signal.

In addition, the gravitational wave in the detector system suffers a phase-shift varying
with time due to the Doppler effect, described by a time-dependent phase8(t). Thus,H
representing the transformedht t is

H = <{DT (t; θ, ϕ)ht tD(t; θ, ϕ)exp[i(EkgEx − ωgt +8(t))]} (3)

the wavevectorEkg being defined in the detector system.
Again following the arguments of [1] the signalm obtained by LISA is given by

m = π L
λ

√
3
(
H12−

√
3H11

)
(4)

with L and λ denoting LISA’s arm length and the wavelength of the light used andH12

andH11 being the components ofH.

4. Gaussian approximation

To obtain results concerning LISA’s ability to distinguish different orientations of a binary,
we made use of methods of signal processing and extraction presented in [4].

The probabilityP( Eµ|s) dEµ to find a parametrization within the interval [Eµ, Eµ+ dEµ] for
a noisy signals(t; Eµ) = m(t; Eµ) + n(t) is Gaussian for sufficiently high signal-to-noise
ratiosρ [6].

Given a constanta priori probability for all degrees of freedom, i.e. components of the
vector Eµ, the Gaussian probability is centred around the ‘true’ parametrizationEµ0 for the



Polarization resolution of LISA 1527

signal s, i.e. the parametrization that matches the pure signalm(t, Eµ0) and the covariance
matrix σ 2

ij is given by

σ 2
ij = Cij . (5)

The matrixC−1 is called the Fisher matrix and is defined by means of the inner product of
the derivatives of the signal.

C−1
ij = 2

〈
∂is(t; Eµ), ∂j s(t; Eµ)

〉
. (6)

The shorthand notation∂i means the derivative with respect to theith component of the
vector Eµ.

The inner product of two functions is for these purposes defined as a convolution
weighted with the expected spectral densitySn(f ) of the noise (matched filtering) [5]
performed in Fourier space.

〈a, b〉 =
∫ ∞

0
df
ã(f )b̃∗(f )+ ã∗(f )b̃(f )

Sn(f )
. (7)

The relation of the quadratic spectral density of the noiseSn(f ) andρ is given by [6, 7]

ρ2 ≈ 2〈m( Eµ),m( Eµ)〉. (8)

Having a signal which is concentrated within a small frequency interval,Sn(f ) can be
considered as constant over this frequency interval. Thus equation (6) can be written as

C−1
ij = ρ2

∫∞
0 df ∂im̃ ∂j m̃∗ + ∂im̃∗ ∂j m̃∫∞

0 df |m̃|2 . (9)

The ‘error volume’6 is given by the determinant of the covariance matrix,

6 =
√

detC = 1√
detC−1

(10)

thus, from (9) it is easily obtained that

6 ∼ ρ−n (11)

wheren is the dimension ofEµ and hence the dimension of the parameter space.

5. Application to polarization

In the case of the angular momentum of a binary the vectorEµ consists of the two entries
(cosβ, α) and the ‘error volume’6 is usually denoted as the solid angle d�,

6 = d� = dα dβ sinβ (12)

assumingα and cosβ to be uncorrelated. The meaning of d� is the following: given a
unit vector En pointing along the angular momentum of the binary, the top ofEn will move
within the area d� while tilting the plane of rotation of the binary slightly.

Hence, d� is a measure for the accuracy with which the orientation of the binary can
be detected.
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6. Results

All the results presented in the following are obtained by using a fixed signal-to-noise ratio
ρ = 100 as it seems to be reasonable for signals expected in the frequency range around
3 mHz. Moreover, we restricted ourselves to a monochromatic source with a frequencyfg

of 3 mHz.
Figure 1 shows the orientation error as a function of the polarization state for various

source positions. The maximum and minimum curves belong to different values ofα,
hence different initial phases. Whereas the solid angle is close to 100µsr for circularly
polarized gravitational waves, it varies by three orders of magnitude for linearly polarized
gravitational waves for sources close to the poles.

Figure 1. Maximum (broken curves) and minimum (full curves) errors of orientation for various
source positions.

At certain times LISA is insensitive to a given linear polarization emitted by sources
close to or at the poles. Even for a one-year integration time this leads to a considerable
increase in uncertainty. In contrast, such zeros in the sensitivity do not exist for circularly
polarized gravitational waves, leading to the observed insensitivity to the source’s position.

To obtain a result independent of the binary’s orientation, we averaged over every
possible orientation. Therefore, figure 2 gives the averaged error of orientation as a function
of the declination of the source, 0◦ denoting the ecliptic and±90◦ the poles.

The averaged error of orientation increases towards the pole which is clearly an effect
of the poor resolution for linearly polarized gravitational waves described above. However,
the variations with the azimuth of the source are small compared to the overall variations,
giving a distribution close to rotational symmetry.

It should be noted that in contrast with the results obtained by [2] for the angular
resolution, the resolution for the orientation of a binary is best for sources located in the
ecliptic and decreases towards the poles.
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Figure 2. Averaged error of orientation as a function of source declination. Variations with the
azimuth are small compared to overall variations.

7. Conclusion

Using the method of Gaussian approximation, we obtained 110µsr at a signal-to-noise ratio
of 100 as an upper limit for the uncertainty of the orientation of a binary observed by LISA.
Although restricted to monochromatic binaries at a frequency of 3 mHz with circular orbits,
it is clear that this result will encourage the use of LISA as an astronomers’ instrument.
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