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Pseudotensors in Asymptotically Curvilinear
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We show how to calculate pseudotensor-based conserved quantities for isolated
systems in general relativity. in a way which allows an arbitrary asymptotic
behavior of the coordinate system used. Our method is a generalization of that
given by Persides { 1], and allows the asymptotic evaluation of energy, momen-
tum. and angular momentum in any coordinate system. We carry out the
calculation for the Schutz-Sorkin gravitational Noether operator, which is a
pscudotensorial operator on vector fields that reduces to the familiar pscudo-
tensors for particular choices of the fields.

1. INTRODUCTION

In the classical theories of physics (without gravity), conserved quantities
such as energy, momentum, and angular momentum play a very important
role: They provide us with first integrals of the equations of motion,
cnabling us to solve otherwise intractable problems (such as collisions,
stability properties of physical systems, etc.). There is no doubt that for the
study of gravitating systems one would also like to have these quantities at
hand for the same purposes, but in the domain of general relativity they
acquire a substantially different meaning. For example, while the energy
density of the gravitational field should (by classical analogies) depend on
the square of the first derivatives of the metric tensor g,., one can always
transform this to the Minkowski flat form n,, at any point in space-time,
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and its first derivatives to zero, thus reducing the gravitational energy den-
sity to zero at that point.

That one cannot attach a precise meaning to the local distribution of
energy and momentum is a consequence of the principle of equivalence:
We know that conservation laws result from symmetries or invariances in
the action principle (Noether’s theorems). But a nonvanishing gravitational
field corresponds to a nonflat Riemannian manifold, which in general
possesses no symmetries. The equations of general relativity are invariant
under an infinity of one-parameter groups, viz., the one-parameter sub-
groups of the full group of coordinate transformations: any vector field &*
generates the one-parameter group of transformation x* — x>+ & Then
any vector field gives rise to a conservation law. (Using this suggestion of
Bergmann [2], Komar [3] arrived at his covariantly conserved quantities,
certain of which, in some particular coordinate systems, may be identified
as energy and momentum.) The problem is that for a general gravitational
field, none of these groups has a natural intrinsic meaning.

For isolated systems (ie., those containing matter fields of compact
support) the field far away from the sources has the same form as for
linearized theory, and so one has flux integrals for the total momentum
and angular momentum as long as they are evaluated at infinity in an
asymptotically Lorentzian coordinate system (ALCS). The Penrose [4]
definition does not require an ALCS since it supplies its own Minkowski
space. (For a modification to the original definition of the Penrose mass,
which aparently does away with the problems it presented, but which is
only valid in certain restricted cases, see [5].) The Hawking [6] definition,
on the other hand, requires a Bondi-like coordinate system [7], which is
not an ALCS. Apart from these, the usual way to evaluate energy and
momentum at finite distances is to introduce a so-called pseudotensor.-

While several choices of pseudotensors do give precisely the results
that one expects at infinity, they need to be evaluated in an ALCS for this
to be the case. This is a serious drawback, for ALCSs are not at all easy to
construct except in very simple highly symmetric cases. What one would
like is to extend the family of coordinate systems (possibly to cover all of
them) in which one can evaluate conserved quantities in such a way that
one obtains the same results as for ALCSs. This flexibility may then be
exploited in various ways.

Two especially convenient choices of pseudotensors have been the
Einstein pseudotensor (% [8] and the Landau-Lifshitz pseudotensor 74
[9]. Persides used the latter to show that it gives the Bondi four-momen-
tum at null infinity [1]. Although he works in a particular coordinate
system for simplicity, his result is covariant. But his method only allowed
him to work asymptotically. In the rest of this paper we generalize his
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procedure and show how to compute locally the conserved quantities in
any coordinate system one chooses. The generalization is easy but power-
ful, and it does not seem to have appeared in the literature before.

Although our formalism applies to any gravitational pseudotensor
complex whatsoever, for concreteness we work with the class defined by the
gravitational Noether operator 14 of Schutz and Sorkin [10]. Its operation
on any C' vector field £" is given by

Brayy - & = —(—g)"7 GrE + 0, jE(—g) '] (1)

where
W = (—g)g" g™ — g g"")

and G* is the Einstein tensor.

This operator has the advantage that it does not depend on second
derivatives of the metric, contains r&" and (] as particular cases (for par-
ticular choices of £'), and is rather insensitive to the asymptotic behavior of
g,.- Equation (1) is to be interpreted as the pseudotensorial momentum
density associated with the vector field £'. Integrating this and the

corresponding matter density allows the Schutz and Sorkin {-momentum to
be defined

. P[E, H] :=L (I & 4 1 - &) do, (2)

Here, 14} is the Noether operator for matter: a covariant generalization of
the so-called canonical stress-energy tensor, to which it reduces if ¢ has
constant components; H is a spacelike hypersurface with boundary dH;
da, is the coordinate volume element in an ALCS.

Furthermore, when the field and matter equations are satisfied, the
¢-momentum is conserved and may be written as '

PLE HI=(1/16m) | 000" 4&(~g)""*)do,

=16 W=l (—g) A, ()

where dX, is the coordinate two-surface element.

For example, if for the Schwarzschild geometry in isotropic coor-
dinates we choose H = {f=const.} and £ =09/dt (in which case 1} reduces
to 1" thus giving the Schwarzschild mass at infinity), (3) gives a value of

S M- M’/(Zp) for the energy inside a sphere of isotropic radius p. This is the
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same as the result obtained by Lynden-Bell and Katz [11], who givi
physical argument that spherically symmetric space-times have a we
defined energy density. For a general space-time which is asymptotical
flat near spacelike infinity, if & is asymptotically a translation Killing ve
tor field, then {3} gives the appropriate ADM four-momentum as 34 i
moved to infinity. If 8/ is kept at a finite distance then the exact expressior
depends on the ALCS and on the way ¢* approaches a Killing field. This
means that the terms like —M7/(2p) in the Schwarzschild example above
will depend upon the ALCS. Therefore, one cannot place much emphasis
on their physical interpretation. Pseudotensors are interesting, not so much
for such localizations of energy, but for their role in conservation and
variational arguments, such as those developed by Schutz and Sorkin,
which we generalize to angular momentum in a future paper {127

Section 2 below generalizes (3) to give quasi-covariant conserved quan-
tities for the isolated system. Section 3 illustrates the formalism with several
examples.

2. THE QUASI-COVARIANT NOETHER OPERATOR
FOR GRAVITY

The integrand in (3) is not a tensor density; thus, different ALCSs will
yield different results. This is not surprising since it just reflects the non-
localizability of energy momentum in general relativity as guaranteed by
the principle of equivalence. The most serious drawback of this expression
for momentum is the requirement of an ALCS, which is not readily
avatlable in most circumstances. When evaluated in, say, an asymptotically
spherical coordinate system, (3) may give an infinite result. We here
generalize (3) to make it workable in any coordinate system, in such a way
that it gives the same results as one would get in some ALCS. .

Let (M, g,.} be the space-time manifold of an isolated gravilaling
system, together with an asymptotically Lorentzian coordinate system
covering a neighborhood of infinity. From now on we restrict attention to
this neighborhood. Associate to it a neighborhood of the flat space-time
with Lorentz coordinates that corresponds to the original ALCS in M, and
give it the Lorentz metric of special relativity in these coordinates:
{M*,5,.). Such a manifold M” always exists for an asymptotically flat
manifold M. Let the | — 1 map between these neighborhoods be called A.

Now work in M" instead of in M, and bring down g** and ¢, 1o M*
using #. Then, g*” is the tensor field in M* with the same components in
these coordinates as g*” in M, and similarly for &,. Alsa -~
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will have the same expression as in M, and it is obviously a scalar density
of weight 2 in M* (just as in M).

It follows that A**# ;(—g)~ "2 £* has weight 1 in M* and this means
that

§ (m e —g) 4)

is the integral of a scalar in M*, where dZ, is the coordinate volume
element in M” (which equals the proper volume element in our frame), and
we have introduced a factor {( —#) ¥? (=1 in our frame) to account for the
weight (n is the determinant of n,,). The integral (4) may therefore be
evaluated in M*, and will of course give the same result as its counterpart
in M. It is easy to make this expression covariant in M*: just replace com-
mas by bars, which denote covariant derivatives with respect to 1,,, ie.

P& HY=(/16m)§ (=) ™08 (n/g)"” 4,

= (/160§ W08 (~5) " dE,, ()

The question of convergence of this integral on space-like hypersurfaces,
for the case of energy, was dealt with by Schutz and Sorkin [10]. (We deal
with the more general case in another paper [12]. We note, however, that
the convergence properties are the same in the general class of coordinate
systems considered as in ALCSs.

Under a coordinate transformation in M* the integral (5) is of course
unaltered (we are just evaluating an integral in two coordinate frames in
flat space). Any coordinate transformation in M induces a unique one in
M, namely, the one which has the same functional form for M’s coor-
dinates as for M*’s. In the new coordinates of M, which need not be an
ALCS, we define P[&, H] by (5), i.e., to be the integral in M” of the tensor
density. This value is of course the same as the original integral in M using
the original ALCS. The procedure, therefore, allows us to calculate the
pseudotensors in any coordinates. We summarize this result as follows:

Proposition. Given any ALCS and a coordinate transformation from
it to any curvilinear coordinate system, we can evaluate the {-momentum
in this second system using (5), obtaining the same result as in the original
ALCS. ‘

The problem now is that this procedure is still impractical, because we
must know the ALCS from which we start in order to calculate the
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Christoffel symbols in M” to be used in (5). Given a particular curvilinear
frame, we can arrive at it from different ALCSs via the appropriate trans-
formations. In each case we obtain for P[&, H] its value in the ALCS we
choose to start with, ie., we will have as many values for P[¢, H] as
ALCSs we can construct for our space-time. This is just the freedom we
had at the beginning, and is consistent with the nonlocalizability of the
¢-momentum.

It is easy to remove this problem by choosing, for a particular space-
time, that coordinate system in M* in which the connection coeflicients are
asymptotically equal to those in the coordinate system in M. For instance,
if we want to evaluate P[{ H] for Schwarzschild’s space-time in
Schwarzschild’s coordinates, without bothering about finding an isotropic
frame or any other ALCS, we can decide on the above choice and use
spherical polar coordinates in M*. This choice selects one particular value
for the {-momentum, but allows us to compute it in the given coordinate
system directly. In particular, it allows to calculate values for energy,
momentum, and angular momentum in situations in which it was
previously not possible by conventional pseudotensor methods, and then to
use these values for the study of the properties of different configurations.

3. ILLUSTRATION OF THE FORMALISM

As a simple illustration of the formalism described above, we evaluate
here the energy for Schwarzschild’s and Kerr’s geometries using different
curvilinear coordinates and vector fields.

3.1. Schwarzschild Space-time in Schwarzschild Coordinates

We use 7, in flat spherical polar coordinates and ¢*=
(0/01)] schwarzschita SO that &.=(1—2M/r)dr. Also, H= {t=const.} n
[r..R], where r=r, defines the horizon of the hole and R is some num-
ber greater than r, . Then

| . 12
PL&, Hgeta =7 lim W="\(~g)~'? ¢, da,,
— X Yt =const
r=R

l 3 -
_m§ h=h (—g) 2 ¢, do,

1 =const.
r=r,

The first integral is to be interpreted as the energy contained inside a
sphere of radius R (field + hole), the second integral as the energy of the
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hole itself (i.e., that contained inside the horizon). If we want the energy of
the complete system, hole plus field, we add that of the hole, i.e.

PLE H]=(/t6n) lim §  ™P(—g) "¢, do,

. “1=const.
r=R

With the above choices for { and the coordinate system, this gives
P[¢, H] = M (independent of radius) (6)

It is interesting to see that even if we had evaluated the above integral
for r=R (with R some finite positive value), we would have obtained
exactly the same result, ie, P[{, H]=M independent of radius. This
agrees with the Penrose mass for the Schwarzschild hole, as calculated by
Tod [13], although the Penrose mass is defined in a completely different
manner. We must stress again, however, that any value at finite distances
obtained with our formalism is inherently coordinate-dependent. In fact,
while this result ascribes all the energy to the region inside the horizon and
no energy to the field outside, we could also obtain the result in Section |
(the Lynden-Bell/Katz result) which does exactly the opposite, by using
instead of the connection coefficients of spherical polar coordinates those of
the coordinate system obtained from Cartesian coordinates under the same
transformation which takes isotropic into Schwarzschild coordinates.
Therefore, even though this may show that no direct physical inter-
pretation can be given to results obtained at finite distances, it also shows
that one can get sensible results even near black hole horizons (see results
below for the Kerr metric) which may allow the extension of the

variational methods of Schutz and Sorkin [10] to systems that include
black holes.

3.2. Kerr Space-time

For Kerr’s space-time in Boyer-Linquist coordinates we may follow
the steps above and obtain P[&, H] = M for the total energy of the system
(field plus hole), with &= (8/d1)|g,. Evaluating the é-momentum at finite
distances, we obtain for the total energy inside a sphere of radius r, an
exact expression in terms of hypergeometric functions

! L4 !
PLEHY, =M+~ {(—azr+ 2Ma’ ~ 4M’a” - + 2Ma* 7)

13 & , 4 . 720 ., 2,
xF(Z, 3 ——2)+[a r—TMa +(3 Mza +§a)
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I 1eMa* /4 . 2 N1 2Ma®
g (3¢ S )"T‘]

35 a
Fl2,5:5 —=
X (2 272 r')

4 .1 2/"1(1“+ 12M2a4+3a° 2Ma“+2a"
597 r’ 53 5r° r 5r’

57 a? 1 79 a’
XF<2'5;5; —?)+<7a6r>F<2,§;—é;~?)} (7)
where 4 =r* = 2Mr + a2
For a=0, P[{,H]=M, in agreement with the result for
Schwarzschild. Far away from the horizon, for small a, P{{ H], =
M — (2Ma*/34) + (2M?*a%/34r) + O(a®) (note that the O(l/r)-term
vanishes). However, the expression in (7) is singular at the horizon where
4 =0. This problem seems to arise from the combination of two facts:
(1) The singularity of the coordinates themselves at the horizon, and
(2) The fact that £" is space-like at and near the horizon. That this is so is
suggested by the fact that nonsingular results are obtained either by using
for &' the four-velocity of a locally nonrotating observer, properly “nor-
malized,” or by working in Kerr-Schild coordinates, which are the
equivalent of the Eddington-Finkelstein coordinates for Schwarzschild’s
space-time and are obtained from the Boyer-Lindquist coordinates via the
transformation

dT=di—(2Mr/d)dr,  d®=dé+ (2Mar/I'4) dr (8)

where F'=r?+ a2

CONCLUSIONS

The results of this paper give us considerably enhanced flexibility in
using pseudotensors, since the natural coordinate systems for
asymptotically flat space-times of isolated systems are spherical near
infinity. We exploit this flexibility in future work on angular momentum
and, in particular, on dev-loping extremum theorems for the angular
momentum of solutions of Linstein’s equations, for nonstationary space-
times.
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