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One way to produce complete inspiral-merger-ringdown gravitational waveforms from black-hole-

binary systems is to connect post-Newtonian (PN) and numerical-relativity (NR) results to create

‘‘hybrid’’ waveforms. Hybrid waveforms are central to the construction of some phenomenological

models for gravitational-wave (GW) search templates, and for tests of GW search pipelines. The dominant

error source in hybrid waveforms arises from the PN contribution, and can be reduced by increasing the

number of NR GW cycles that are included in the hybrid. Hybrid waveforms are considered sufficiently

accurate for GW detection if their mismatch error is below 3% (i.e., a fitting factor above 0.97). We

address the question of the length requirements of NR waveforms such that the final hybrid waveforms

meet this requirement, considering nonspinning binaries with q ¼ M2=M1 2 ½1; 4� and equal-mass

binaries with � ¼ Si=M
2
i 2 ½�0:5; 0:5�. We conclude that, for the cases we study, simulations must

contain between three (in the equal-mass nonspinning case) and ten (the � ¼ 0:5 case) orbits before

merger, but there is also evidence that these are the regions of parameter space for which the least number

of cycles will be needed.
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I. INTRODUCTION

Numerical simulations play a key role in efforts to detect
gravitational waves (GWs) from compact-binary coales-
cences, in particular from black-hole binaries. One of their
most direct applications for GW searches has been as input
in phenomenological [1–6] and effective-one-body (EOB)
[7–15] waveform models, which can in turn be used to
construct template banks of theoretical waveforms for use
in matched-filter searches in detector data. As part of the
NINJA project [16] they are also used to test a battery of
search pipelines: the numerical-relativity (NR) waveforms
are injected into simulated detector noise and the search
pipelines attempt to find them [17,18].

Waveform models are constructed by combining infor-
mation from post-Newtonian (PN) calculations of the long
slow inspiral of the binary [19], and NR simulations of the
last orbits and merger. The PN approximation becomes less
accurate as the binary approaches merger, and we will
argue in this paper that, at the current state of the art,
uncertainties in the PN waveforms dominate significantly
over errors in the NR waveforms. Therefore more accurate
waveform models can be produced by using less PN in-
spiral cycles, and correspondingly more NR cycles. The
question we begin to address in this paper is: howmany NR
cycles are necessary in order to produce waveform models
that are sufficiently accurate for GW detection? By this we
mean that the mismatch error in the full waveform (mini-
mized with respect to all search parameters) is less than
3%, as described in Sec. II.

This question is important because NR waveforms from
an extremely large number of binary configurations may be
necessary to produce waveform models that accurately
represent the entire black-hole-binary parameter space.
NR simulations are computationally expensive, and the
computational cost grows drastically with the length of
the simulation. If the number of inspiral cycles in a simu-
lation is to be increased by a factor of 2, for example, the
simulation does not only have to run for twice as long. To
accurately capture the phase evolution of the binary over
this extended time, higher numerical resolutions are re-
quired, and the overall increase in the cost of the simulation
may be by factors of 10, both in memory usage and the
time the simulation takes to run.
Current ‘‘long’’ simulations cover �10 GW cycles be-

fore merger [20], and the longest simulation to date covers
about 30 cycles [21]. The task of exploring the full black-
hole-binary parameter space with long numerical simula-
tions is a large-scale computational challenge that will take
several years with current methods. On such a time scale, it
is crucial to understand as much as possible about any
requirements that may affect the overall cost by an order
of magnitude.
The necessary length of NR waveforms will change with

improvements in the accuracy of PN methods and in-
creased understanding of EOB methods. As such, we can
only make a first step in considering waveform length
requirements. Our method is to study hybrid waveforms,
which are a simple connection of PN and NR results, and
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allow us to focus on the effects of the uncertainties in PN
waveforms without having to take into account any addi-
tional artifacts that might arise in a given waveform-model
construction procedure. For the purposes of this paper,
PN-waveform uncertainties are estimated by the differ-
ences between two common PN approximants. We believe
that this allows us to make the most conclusive statements
that are possible with the current state of the art.

We summarize mismatch calculations in Sec. II,
describe our numerical waveforms in Sec. III, and the
production of hybrid waveforms in Sec. IV. We use hybrids
based on two time-domain PN approximants, the TaylorT1
and TaylorT4 approximants, the accuracy of which we
have already studied over a ten-cycle range before merger
in [22]. We put our previous PN-NR comparisons into the
context of GW searches by computing the mismatch
between hybrids with differing numbers of TaylorT1 and
NR cycles in Sec. V, and demonstrate that the hybrid errors
are indeed dominated by PN effects. We then turn to the
question of length requirements for NR waveforms.

We will explain and justify our approach in Sec. VI.
Since it has already been shown that pure PN waveforms
truncated before merger are sufficient to detect nonspinning
binaries with masses up to 12M� [23], we consider binaries
with total massM> 10M�, and our analysis is with respect
to the Advanced LIGO detector [24]. Our study covers a
significant portion of the parameter space that has already
been treated by NR simulations: nonspinning binaries with
mass ratios up to q ¼ M2=M1 ¼ 4, and equal-mass
binaries with equal, nonprecessing spins up to � ¼ �0:5.
Results for nonspinning binaries are given in Sec. VII, and
spinning binaries are treated in Sec. VIII. We will not
consider phenomenological or EOB methods, and we will
only briefly touch on parameter estimation in Sec. IX. Our
first conclusions about waveform length requirements are
summarized and discussed in the Conclusion.

II. MISMATCHES AND GW DETECTION

The quantity that we will use to assess the detectability
of our hybrid waveforms is the mismatch. The standard
requirement for current GW searches is that the members
of a template bank be separated such that the no more than
10% of signals would be lost due to the mismatch between
the signal and the template, and this translates into a
mismatch between neighboring templates of less than 3%
[25,26]. However, one must also take into account the
mismatch due to errors in the theoretical waveforms; ulti-
mately we want the sum of the template-spacing mismatch
and the waveform-error mismatch to be less than 3%. We
are then free to decide how to divide that mismatch be-
tween template spacing and waveform error. For example,
the authors of the waveform accuracy study in [27] request
that the waveform-error mismatch be below 0.5%. We
could alternatively argue that the waveform error can be
close to 3%, and the template spacing should be made

correspondingly small. This question deserves further
attention, but in this work we will consider 3% as the basic
requirement, and also quote results consistent with a maxi-
mum mismatch requirement of 1.5% and 0.5%.
For two GW signals h1 and h2, we define an inner

product in the Fourier domain weighted by the power
spectral density of the detector noise, SnðfÞ, as [28]

hh1jh2i :¼ 4Re

�Z fmax

fmin

~h1ðfÞ~h�2ðfÞ
SnðfÞ df

�
; (1)

where ½fmin; fmax� is the intersection of the chosen sensi-
tivity range of the detector (½20; 104� Hz in this study) and
the range of validity of the waveform data (in most cases

fM 2 ½1:25� 10�3; 0:15�). ~h1ðfÞ and ~h2ðfÞ denote the
Fourier transform of h1 and h2, respectively. Our data in
general represent the Weyl scalar �4ðtÞ, not the wave

strain hðtÞ, but the two are related by �4 ¼ €hþ � i €h�,
and two time integrations can be performed trivially in the
frequency domain.
Given the definition of the inner product hh1jh2i, we

normalize it and maximize over phase and time offsets in
the data. This is the faithfulness of the waveform: it is a
measure of how ‘‘far’’ a theoretical waveform is from a
supposedly true waveform with the same physical parame-
ters. The faithfulness mismatch is the deviation of the
faithfulness from unity:

M ¼ 1�max
�;�

hh1jh2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihh1jh1ihh2jh2i
p : (2)

In a GW search, the goal is essentially to find the
template-bank member that has the smallest mismatch
with the detector data. We are therefore really interested
in the mismatch optimized over all of the members of a
theoretical waveform family, i.e., minimized with respect
to the binary’s intrinsic physical parameters (the mass,
mass ratio, and spins), and the extrinsic parameters (the
position of the binary in the sky and its orientation). The
fully optimized mismatch is the same as (1� F), where F
is the waveform’s fitting factor. In our study we have access
to signals of isolated binary configurations, and the only
parameter we can optimize with respect to is the total mass.
As such, an optimization of the mismatch with respect to
total mass can be no more than an upper bound on the full
optimized mismatch. But we will argue in Sec. VII that
optimization with respect to the other physical parameters
will not qualitatively alter our results. In Secs. IV and V,
where we assess the sources of physical error in our
hybrids, we will not optimize with respect to total mass.
But in Secs. VI, VII, VIII, and IX, where we make calcu-
lations relevant to GW detection, we will use the mass
optimization, and intend these results to be a reasonable
estimate of the mismatch calculated from the fully opti-
mized fitting factor.
Our main focus in this work is GW detection, but wewill

also refer to a quantity that is relevant to parameter
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estimation. If we have two theoretical waveforms for the
same physical system, h1 and h2, each with some associ-
ated uncertainty, then we can define �h ¼ h1 � h2 and
then k�hk2 ¼ h�hj�hi. If k�hk< 1, then the two wave-
forms would be indistinguishable in a detector measure-
ment [27]. The indistinguishability of two waveforms
depends on the signal-to-noise ratio (SNR) of the detec-
tion: if the SNR is sufficiently low, then any two wave-
forms will be indistinguishable (although below an SNR of
eight they will not be considered detectable anyway), and
for two waveforms of arbitrarily low k�hk, we can always
find an SNR high enough such that they can in fact be
distinguished. For example, in [29] we found that current
NR equal-mass nonspinning waveforms from five different
codes would be indistinguishable in the Advanced ground-
based detectors if the SNR is below 25. In [5] it was shown
that q ¼ 2 hybrid waveforms produced with the BAM and
LLAMA [30,31] codes are indistinguishable for an SNR

below roughly 20.
The mismatch error between two waveforms can be

easily related to k�hk [32]. If � ¼ khk is the optimal
SNR, then k�hk=�2 � 2M. This means that if two wave-
forms meet the detection criteria of M< 0:03, then they
will be indistinguishable for � < 4, which is too weak a
signal to be detected. If we want the waveforms to be
indistinguishable at an SNR of � > 8, then the mismatch
must be below about 0.8%. We see, then, that the accuracy
requirements for two waveforms to be indistinguishable
are in general far more stringent than those for detection.
We will return to this point in Sec. IX.

All of the results in this work will be with respect to the
Advanced LIGO detector [24,33], and in general we will
use a low-frequency cutoff of 20 Hz.

III. NUMERICALWAVEFORMS

We consider two families of black-hole binaries. The
first is equal-mass binaries in which the spin of each black
hole is the same, S1=M

2
1 ¼ S2=M

2
2 ¼ �, and the spins are

parallel or antiparallel to the orbital angular momentum.
In these configurations the spins do not precess, making
this a simple subfamily of the black-hole-binary parameter
space. The spins used were � ¼ f0;�0:25;�0:50;�0:75;
�0:85g, although we will only provide length requirements
up to � ¼ �0:5 for reasons that will be explained in
Sec. VIII. The second family is nonspinning binaries
with mass ratios q ¼ M2=M1 ¼ f1; 2; 3; 4g, where we
labeled the individual masses such that M2 	 M1.

The simulations were produced using the BAM code
[34,35]. They cover 6–10 orbits before merger. The phase
error of the waveforms is at most 0.15 rad during the
inspiral phase (up to M! ¼ 0:1), and on the order of
1 rad during merger and ringdown. The amplitude accuracy
is within 1% during the inspiral, and within 5% during the
merger and ringdown. Of more relevance to GW detection
is the mismatch error of the waveforms, which is below

10�4 for all cases. Note that this is well within the detec-
tion requirement of 0.03, and indeed these waveforms are
well within the accuracy requirements for both detection
and parameter estimation with current and planned ground-
based detectors [29]. These waveforms were all presented
in detail in [22,36,37].

IV. HYBRID INSPIRAL-MERGER-RINGDOWN
WAVEFORMS

Complete inspiral-merger-ringdown waveforms that in-
clude arbitrarily large numbers of GW cycles before merger
can be constructed by connecting PN and NR results
[1,2,5,38,39]. We model the inspiral regime using the
time-domain approximants TaylorT1 and TaylorT4 [5,37].
For nonspinning binaries the phase evolution is described to
3.5PN order, and the amplitude is given to 3PN order [40].
For spinning binaries, spin effects in the phase evolution are
included only up to 2.5PN order [37], and in the case of
TaylorT4 we adopt two approaches to truncating the ex-
pansion in a consistent way [5,22]; the amplitude includes
spin contributions up to 2PN order [41].

The PN results are expansions in the frequency, x ¼
ðM�Þ2=3, where � is the orbital frequency of the binary
motion. When decomposing the GW signal in spherical
harmonics, � is related to the frequency ! of the (‘ ¼ 2,
m ¼ �2) modes by j!j ¼ 2�. As such, the PN wave-
forms are most accurate for small x, i.e., many orbits before
merger. As the binary approaches merger, the errors in the
PN approximation grow. The convergence properties of the
PN expansion are not fully understood, and it is not pos-
sible to provide clear error estimates. One way to gain
some insight into the PN errors is to compare results
from different PN approximants and at different PN orders,
and we will return to this idea later.
The only way to definitively quantify the PN errors is to

compare with fully general relativistic results. This can be
done over the (relatively small) number of GW cycles
for which we have both PN and NR waveforms.
PN-NR comparisons of phase and amplitude have been
performed over �10 orbits prior to merger [21,36,42–44].
Comparisons for the cases we consider here are given in
[22]. There we found that the TaylorT4 approximant has an
accumulated phase error of no more than 0.2 rad for non-
spinning cases, but the phase error grows to up to 2 rad for
equal-mass cases with large spin, in particular, the �< 0
cases. The behavior of the TaylorT1 phase appears to be
most consistent across the parameter space that we con-
sider, with an accumulated phase error of about 1 rad in all
cases, although in most cases a version of TaylorT4 is more
accurate. The PN amplitude (at the highest-known PN
order) has an error as high as 4% in the � ¼ 0:85 case,
and drops to around 2% in the � ¼ �0:85 case, while for
nonspinning configurations it is around 3%. (Note, how-
ever, that the uncertainty in the NR amplitude for all of
these cases is 1%.) The existence of this region of good
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agreement between PN and NR results is what allows us to
combine the two into hybrid waveforms.

We construct time-domain hybrid waveforms by first
decomposing the PN and NR waveforms into their ampli-
tude [APNðtÞ and ANRðtÞ] and phase [�PNðtÞ and �NRðtÞ].
We only consider clean cycles of the NR waveforms, i.e.,
we omit the waveform from the early part of the simula-
tion, which contains junk radiation from the initial data and
some egregious gauge artifacts. From the phase we can in
turn calculate the frequency, !ðtÞ ¼ @t�ðtÞ. We then
choose a matching frequency, !m, and determine the
time when both �PN and �NR reach that frequency, and
connect the two phase functions at that time. We indepen-
dently determine the time when the PN and NR amplitudes
agree, and connect the amplitudes at that time. In this
procedure we do not require that the transition between
the PN and NR phases and amplitudes is any more than
continuous. This procedure is performed on �4. In mis-

match calculations we first calculate ~�4 by making a fast

Fourier transform (FFT) of �4, and then produce ~h by
dividing by �!2.

Errors due to the hybridization process

There are currently several procedures to produce hybrid
waveforms that have been used in the literature, based
either on a matching in the time or Fourier domains
[1,2,5,38,39]. Each procedure will itself introduce artifacts
into the waveform, and we may be concerned that these
artifacts will be a large source of error. Here we will
compare hybrids produced using three different methods,
and show that in fact the mismatch error introduced by the
hybridization procedure is negligible.

We consider three equal-mass nonspinning hybrids. The
first is produced by the method that we have just described.
The second is produced using the method described in
[1,2], but applied to �4 instead of the wave strain h,
because we want to assess the errors due to the hybridiza-
tion process, without any contamination by errors that may
be introduced by a time-domain integration of�4 to h. Our
specific method is to choose a matching frequency, !m,
and to then locate the time in both the PN and NR wave-
forms when that frequency is reached. We then combine
the two waveforms over a 200M-long window, aligning the
waveforms such that the quantity

�� ¼
Z t1

t0

ð�4;NRðtÞ � aei���4;PNðtþ �tÞÞ2dt (3)

is minimized, where t0 and t1 are respectively 100M before
and after the time tm at which each waveform reaches
!m, a is a scale factor, �t and �� are time and phase
offsets, and the waveforms are initially aligned so that tm is
the same for both. The hybrid is constructed by making a
linear transition between �4;PN and �4;NR over the match-

ing window. For both hybrids, we choose a matching
frequency of M!m ¼ 0:07.

The third hybrid is constructed in the frequency domain,
using a variant of the method described in [5]. We produce
an FFT of the time-domain TaylorT4 approximant, and an
FFTof the numerical�4 data. The phase of the frequency-
domain PN and NR signals is then matched in the window
M! 2 ½0:0566; 0:113� and the continuous transition is
carried out at the matching frequency M!m ¼ 0:079.
The non-mass-optimized mismatch is shown in Fig. 1.

We see that the maximum mismatch is about 0.025%
between the two time-domain hybrids, and 0.03% between
the time-domain and frequency-domain hybrids. Clearly,
the error due purely to the hybridization procedure is, like
the mismatch error of the numerical waveforms, negligible.
If we consider the indistinguishability criteria,

k�hk< 1, then these hybrids would be indistinguishable
for SNRs of � < 40.
We note, however, that the difference between hybrids

constructed with ostensibly the same numerical waveforms
and PN approximants may have larger differences than
those shown here. For example, if we compare either of
the hybrids we have just described, with hybrids con-
structed using the integrated wave strain, as in [1,2], then
the mismatch can be as high as 0.8%. This is due not to the
hybridization process, but to artifacts introduced in the
time-domain integration of �4 to h.

V. COMPARISON BETWEEN PN AND NR DURING
THE LATE INSPIRAL

Direct comparisons between the phase and amplitude of
PN approximants and NR waveforms have been made in
[21,36,42–46], and we refer the reader to [22] for PN-NR
comparisons of the binary configurations studied here. In
this section we reframe those comparisons in the context of
hybrid waveforms and mismatches.
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FIG. 1 (color online). Mismatch between equal-mass nonspin-
ning T4þ NR hybrids constructed using two different time-
domain methods (solid line), and between hybrids constructed
in the time domain (TD) and the frequency domain (FD). The
time-domain hybrids are produced with matching frequency
M!m ¼ 0:07, and the frequency-domain hybrid is matched at
M! ¼ 0:079.
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For several choices of binary configuration, we construct
a fiducial reference hybrid waveform by matching a 3.5PN
TaylorT1 waveform to the longest available NR simula-
tion. We then construct a set of ‘‘candidate’’ hybrid wave-
forms by sliding the matching region over the NR
waveform (such that progressively shorter NR segments
are employed in the hybrid construction). How well one
candidate hybrid waveform can be distinguished from the
reference waveform is given by the mismatch between the
‘‘reference’’ and the ‘‘candidate.’’

We study three cases, employing three different NR
simulations: an equal-mass, nonspinning simulation
performed using the SPEC code [47,48], and two of
the BAM simulations presented in [22], equal-mass simu-
lations with spins aligned and antialigned to the orbital
angular momentum (� ¼ �0:75). Note that in this section,
we choose a low-frequency cutoff of 10 Hz, the mis-
matches are not maximized over the binary mass, and
the hybrids are constructed using the procedure described
in [1,2].

Figure 2 shows the mismatch between the reference
hybrid waveform and the hybrid waveforms constructed
using different matching regions in the equal-mass, non-
spinning case.

The matching frequency of the reference waveform is
M!m;r ¼ 0:031–0:038. We will denote the matching fre-

quency of the candidate hybrid by !m. When !m;r ¼ !m,

then the two waveforms are identical, and the mismatch is
zero. As the matching frequency of the candidate wave-
form!m is increased, the mismatches grow. This gives us a
picture of the mismatch due to the disagreement of
TaylorT1 and full numerical results over the frequency
range M! 2 ½!m;r; !m�. For the maximum matching

frequency we choose, M!m ¼ 0:075, the maximum
mismatch is 3.5%.

Figures 3 and 4 show the mismatches between the
reference and candidate hybrid waveforms for the case of
equal-mass binaries with aligned and antialigned spins
� ¼ �0:75, respectively. The � ¼ �0:75 reference wave-
form was constructed with a matching frequency of
M!m;r ’ 0:038–0:044, and the � ¼ 0:75 waveform is

matched at M!m;r ’ 0:057–0:063.
We see from these results that the mismatch rises above

3% at lower matching frequencies than in the nonspinning
example. This is a reflection of the fact that the TaylorT1
approximant performs worse in the spinning cases.
These first results give us an indication of the mismatch

error associated with the disagreement between the
TaylorT1 approximant and NR results over the frequency
range for which NR results exist. They show that the
accumulation of mismatch error over that frequency range
due to PN errors is orders of magnitude larger than the
mismatch error due to errors in the numerical waveforms
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FIG. 2 (color online). Mismatch between the reference hybrid
waveform and the hybrid waveforms constructed using different
matching frequencies. The hybrid waveforms are constructed by
matching TaylorT1 PN waveforms with the Caltech-Cornell
equal-mass, nonspinning NR simulation. The PN-NR matching
frequency !m of the candidate hybrids is shown in legends.
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or to the hybridization process. These mismatches could
drop significantly if we were to minimize the mismatch
with respect to binary mass, but that would not alter the
qualitative observation that PN errors dominate the error in
our hybrid waveforms.

VI. WAVEFORM LENGTH REQUIREMENTS:
GENERAL PROCEDURE

In producing hybrid waveforms, we have seen that the
dominant error source is the error in the PN approximation.
We expect the PN waveforms to be increasingly accurate as
we move to lower frequencies (i.e., earlier in the inspiral),
and so the lower the frequency !m at which we can match
(i.e., the more NR cycles we can use) the better. Our goal
now is to determine the highest acceptable matching
frequency for a variety of accuracy criteria for the full
waveforms.

A previous study showed that pure PN approximants of
nonspinning binaries (i.e., without any stitching to merger
and ringdown signals) are adequate for detection purposes
up to about 12M� [23]. Therefore our PNþ NR hybrids
have to be accurate only for total masses M * 10M�.
Above these masses the mismatch between PN inspiral
waveforms and full inspiral-merger-ringdown waveforms
deteriorates quickly [23,38,49].

The main difficulty in assessing the physical accuracy of
hybrids is that, since we cannot rigorously quantify error
bars in the PN waveforms, any error estimates we make on
our complete waveforms can be no better than an educated
guess. The best we can do is to make clear what assump-
tions have gone into our guess, and to what extent this
guess can be considered conservative or optimistic. We
will now describe the procedure we have used, and our
justifications for it.

Our approach is the following. We start by defining a
model waveform that we will regard for the purposes of
this study as the ‘‘true’’ physical waveform.

For nonspinning binaries we know that during the fre-
quency range in which PN and NR results overlap, the
TaylorT4 approximant captures the phase evolution with
high accuracy. We now assume that the TaylorT4 phase
continues to be physically correct to much lower frequen-
cies, and we construct a TaylorT4þ NR hybrid and treat
that as the true GW waveform from our system. In other
words, we treat this hybrid as if it were a numerical
waveform starting at M! ¼ 0:006, which corresponds to
20 Hz for a 10M� binary. Such a waveform covers �650
cycles before merger. We have no expectation of ever
producing such a waveform in a numerical simulation,
but for the purposes of this exercise we will treat our hybrid
as if it were the result of just such a simulation, and refer to
it as NRL.

Our goal is to assess the accuracy of PNþ NR hybrids
constructed using a reasonable choice of PN approximant.
Based on its phase accuracy near merger, we choose the

TaylorT1 approximant. We construct hybrids of TaylorT1
with NRL, and due to the great length of NRL we have the
freedom of matching at arbitrarily low frequencies.
We then calculate the mismatch between T1þ NRL and

the true NRL waveform, and use this to estimate the ability
of T1þ NRL to detect the true signal. This process is
repeated for a range of matching frequencies, which allows
us to determine the highest matching frequency at which
the T1þ NRL hybrid is sufficiently accurate for detection
of binaries above 10M�.
The one key assumption in this procedure is that the

TaylorT4 phase can be trusted to much lower frequencies
than those where it has currently been compared with full
numerical results. The first and most detailed study of
TaylorT4 was presented in [21], which included frequen-
cies down to M! � 0:035, so we know that TaylorT4 (at
least in the nonspinning case) is accurate down to that
frequency. But below that frequency we have no informa-
tion about its accuracy with respect to waveforms from full
general relativity. We expect that the difference between
the TaylorT4 and TaylorT1 phases provides a reasonable
estimate of the phase error in a typical approximant, but
there is no way to prove this. Ultimately one is reduced to a
statement of faith in the accuracy of PN methods.
Let us illustrate this point with two extreme views.
Instead of comparing TaylorT1 and TaylorT4 hybrids,

we could compare hybrids produced using different
effective-one-body (EOB) calculations. It has been
claimed that EOB methods, particularly after calibration
to numerical results, provide an extremely accurate model
of the full GW signal [7–15,50–54]. As with standard PN
approximants, EOB results can only be tested in the regime
where NR results exist. However, all PN and EOB results
make use of expressions for the GW flux and energy loss of
the binary, and it has been shown in [55] that EOB esti-
mates of these quantities agree with NR results far better
than any standard PN estimates. We might then expect, on
this evidence alone, that EOB results are far more accurate
than any standard PN approximant, and the appropriate
comparison would be between hybrids produced using
variants of the EOB method.
This view suggests that the comparison we are propos-

ing—between T1 and T4 hybrids—is overly pessimistic of
the potential physical fidelity of hybrid waveforms.
An alternative view is that EOB waveforms (whether the

final waveform phase, or the flux and energy-derivative
ingredients) have nonetheless only been compared with
full general relativity (GR) results close to merger, and
their accuracy at lower frequencies is unknown. One could
argue that we should be much more conservative, and
instead of comparing 3.5PN TaylorT1 and TaylorT4 hy-
brids, we should compare hybrids constructed using differ-
ent PN orders. Only by comparing, for example, 2.5PN and
3.5PN results, can we hope to estimate the error between
3.5PN results and those from full GR. As we will see in
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Sec. VII, this provides an extremely pessimistic view of the
accuracy of 3.5PN waveforms.

In the end, then, we consider our proposed T1-T4 com-
parison to be a reasonable compromise between these two
extreme views. But we hope this long preamble serves as a
caveat that all such comparisons are by no means fully
conclusive.

VII. NONSPINNING BINARIES

We will now investigate the length requirements for
simulations of nonspinning binaries. We start with the
equal-mass nonspinning case.

We first construct a hybrid between 3.5PN TaylorT4 and
our numerical waveform. We make the transition between
PN and NR at a matching frequency M!m ¼ 0:09.
Figure 5 shows the mismatch between this waveform and
a hybrid produced with a different matching frequency, and
suggests that for our purposes the resulting hybrid does not
depend strongly on the matching frequency !m, since we
are not concerned by mismatches that are below 0.5%.
Note that these results are a further reflection of the good
agreement of TaylorT4 with the numerical phase at these
frequencies; we see from Fig. 2 that the same would not be
true for T1þ NR hybrids.

We treat this waveform as if it were an extremely long
numerical waveform, and denote it NRL. This is our target
GW signal. It is around 4� 105M in duration, making
it 2 orders of magnitude longer than the longest current
equal-mass nonspinning waveform [21]. TaylorT1þ NRL

hybrids are then constructed with a range of matching
frequencies, and compared with NRL, as described in the
previous section.

Figure 6 shows the mismatch between NRL and T1þ
NRL hybrids for M!m ¼ 0:045; 0:05; 0:06; 0:07; 0:09.
Above the highest matching frequency of M!m ¼ 0:09

both hybrids are identical for all the matching frequencies
we have chosen. This means that for masses above about
150M�, the two waveforms will be almost identical within
the sensitivity range of the detector, and their mismatch
should approach zero. For this reason Fig. 6 considers
masses only up to 100M�, and indeed we see that the
mismatch has essentially dropped to zero by 100M�.
At lower masses, the difference between the two PN

approximants dominates, and the mismatch rapidly grows.
At yet lower masses, the PN approximants are being
sampled at lower frequencies, where their agreement is
better, and we expect the mismatch to fall. This behavior
can be seen for the matching frequency M!m ¼ 0:09,
where the peak mismatch is at about 13M�. For lower
matching frequencies, the peak mismatch is pushed to
lower masses, and for M!m 
 0:05 we do not see it in
the figure. We expect that the location of the mismatch
maximum is related to the mass at which M!m is at the
detector’s most sensitive frequencies. The detector’s peak
sensitivity is at around 200 Hz, and for example M! ¼
0:09 corresponds to that frequency for M ¼ 15:4M�,
which is consistent with Fig. 6.
As described in Sec. VI, the mismatch is optimized with

respect to the total mass of the binary. We cannot optimize
over the mass ratio, because we do not have access to
numerical waveforms with q close to unity. However, we
can make a crude estimate of the magnitude of the effect of
mass-ratio optimization. If we consider a 10M� binary,
then most of the hybrid in the detector’s sensitivity band is
from the PN contribution. We vary the mass ratio of a
TaylorT1 waveform until its phase agreement with
TaylorT4 is optimized, and then construct a TaylorT1þ
NRL hybrid using that mass ratio, and repeat the above
analysis withM!m ¼ 0:06. The optimal mass ratio is q ¼
0:999 85, and the change in the mismatch is indistinguish-
able on the scale of Fig. 6. This suggests that the mass
optimization by itself is sufficient to give an indication of
the full mismatch error of our hybrids.
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FIG. 5. Mismatch between T4þ NR hybrids constructed with
matching frequencies M!m ¼ 0:06 and M!m ¼ 0:09. We see
that the mismatch between T4 hybrids constructed at different
matching frequencies is below 0.12% over the entire mass range
that we consider.
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FIG. 6 (color online). Mismatches between T1þ NRL and
NRL hybrids, for matching frequencies M!m ¼ f0:045; 0:05;
0:06; 0:07; 0:09g.
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If we are willing to consider waveforms acceptable so
long as the waveform-error mismatch is below 3%, then we
see from Fig. 6 that theM!m ¼ 0:09 T1 hybrids are almost
good enough, and hybrids produced with any lower match-
ing frequency are acceptable. With this criterion, we need
waveforms that contain only five GW cycles before
merger, or about two orbits. (Note that the number of
GW cycles before the peak amplitude is more than simply
twice the number of orbits, because the approximate quad-
rupole relation ! ¼ 2� no longer holds.)

Being more realistic, and demanding that the mismatch
is below 1.5% (so that the remainder of our allowed 3%
mismatch is taken up by the template spacing), a matching
frequency of M!m ¼ 0:06 is more than acceptable. This
means that we need about 11 GW cycles before merger, or
about five orbits. If we are especially stringent and require
that the error mismatch be below 0.5%, then we must
match below M!m ¼ 0:05, and this requires 15 cycles
(seven orbits).

For the equal-mass nonspinning case, then, we see that
the NR-waveform length requirements for GW detection
are not very high: five orbits are sufficient, and seven orbits
are plenty.

At this point we may ask what happens if we decide to be
much more conservative in estimating the PN error. We can
do this by repeating the exercise above, but instead using
TaylorT1 waveforms at only 2.5PN order. The results are
shown in Fig. 7. We see that the variation in the mismatch is
dramatic. Even if we choose a matching frequency of
M!m ¼ 0:04 (which corresponds to 23 GW cycles before
merger), the waveforms are not accurate enough for
searches, irrespective of template-bank spacing, for masses
below 15M�. Only if we match at M! ¼ 0:03 (40 cycles
before merger) are the waveforms usable, and to get close
to the more rigorous mismatch requirement of 1.5% for
all masses, we need M! ¼ 0:02, which corresponds to
80 GW cycles before merger. If one is to adopt the view
that this is a realistic estimate of the uncertainty in our

3.5PN approximants, then we must conclude that hybrids
constructed from even the longest numerical waveforms
currently published are only useful for searches down to
15–20 solar masses. It is the opinion of the authors, how-
ever, that this is a gross exaggeration of the error in 3.5PN
approximants.
We now consider higher mass ratios. The results in [22]

suggest that TaylorT4 is also a good model for the true
waveform for the mass ratios that we consider, q ¼
f1; 2; 3; 4g. We find that the maximum acceptable matching
frequency drops as the mass ratio increases, so that we
need longer numerical waveforms. Figure 8 shows the
results for q ¼ 4, which is the most extreme case. The
figure shows results with matching frequencies M!m ¼
f0:04; 0:045; 0:05; 0:06; 0:07g. Clearly matching frequen-
cies of M! ¼ 0:07 will not be sufficient even if we allow
mismatches up to 3%, but M!m ¼ 0:06 (15 cycles, or
about 7 orbits before merger) is borderline. A matching
frequency of M!m ¼ 0:05 (21 cycles, 10 orbits) ensures
mismatches no higher than 1.5%, and mismatches below
0.5% require a matching frequency of M! ¼ 0:04 (33
cycles, or about 15 orbits).
We see, then, that for higher mass ratios it is not sufficient

to produce waveforms of the same modest lengths as in the
equal-mass case. This is unfortunate, because higher-mass-
ratio simulations are far more computationally expensive.
This result also highlights a drawback of direct comparisons
between NR and PN results over a small number of cycles
before merger: in such comparisons, the performance of
TaylorT1 and TaylorT4 is roughly the same for q ¼ 1 and
q ¼ 4, and we might therefore conclude that the length
requirements for NR waveforms would be the same if we
want to produce sufficiently accurate TaylorT1þ NR hy-
brids in either case. But these results show otherwise; we
need more cycles for higher mass ratios.
The q ¼ 4 numerical waveform used for this study

covers 17 GW cycles before merger, and so would in
principle be usable for searches down to 10M�, although
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FIG. 7 (color online). Mismatches between T1þ NRL and
NRL hybrids, where the TaylorT1 approximant is evaluated at
only 2.5PN order.
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FIG. 8 (color online). Mismatches between T1þ NRL and
NRL hybrids for q ¼ 4, with matching frequencies M!m ¼
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a slightly longer waveform (for example including ten
clean inspiral cycles) would be preferable. It is clear,
however, that (1) producing acceptable q ¼ 4 waveforms
is certainly feasible with current codes, but (2) it is non-
trivial to estimate the length requirements for yet higher
mass ratios.

As a final point, note that for matching frequencies
aboveM!m ¼ 0:06, the mismatch is above 3% for binaries
at 10M�. This appears to be in contradiction with the
results in [23], where it was found that PN inspiral wave-
forms have a mismatch error below 3% for masses below
12M�. This illustrates that mismatches between hybrid
waveforms may be higher than those between pure PN
waveforms even at relatively low masses, because any
optimization in the alignment of the PN part of two hybrids
will introduce a dephasing in the NR part, and increase the
mismatch. As we have already discussed, this effect de-
creases for lower masses, but nonetheless means that two
10M� hybrids will usually have a higher mismatch that two
10M� PN waveforms. We will discuss this point in further
detail in future work.

VIII. EQUAL-MASS SPINNING BINARIES

We now tackle the cases with spin. The TaylorT4 ap-
proximant no longer accurately tracks the true phase in the
last cycles before merger, and it would be difficult to justify
its use in constructing an NRL hybrid as in the previous
section. (See Figs. 7 and 8 in [22].)

Without a promising approximant to use to produce a
stand-in for a true waveform, our next-best option is to
construct one. The nonspinning terms of TaylorT4 are
known up to 3.5PN order, but the spinning terms are known
only up to 2.5PN. Perhaps if we knew the 3PN and 3.5PN
contributions, the spinning TaylorT4 would be just as good
as the nonspinning version? Whether this is true or not, we
can certainly introduce 3PN and 3.5PN terms that improve
its agreement with numerical results. Our procedure is to
adjust the coefficients of such terms so as to minimize the
square-integral phase difference between the PN and NR
waveforms, as defined by [22]

��ðtNÞ ¼ 1ffiffiffiffiffiffiffiffiffi�tN
p

�Z t0

tN

ð�NRðtÞ ��PNðtÞÞ2dt
�
1=2

; (4)

where N is the number of cycles included in the compari-
son, and we chooseN ¼ 10, and the final time t0 is the time
that corresponds to the GW frequency at which we end our
comparison, which in these cases is M! ¼ 0:1. We find in
practice that the phase evolution is almost identical using
an approximant with either an optimized 3PN coefficient
only, or both 3PN and 3.5PN coefficients. This suggests
that our fitting procedure over 10 GW cycles is not very
sensitive to higher-order coefficients.

However, the minimization process is sensitive to the
initial guess for the coefficients, and it is possible that other
choices are possible with similar results. The particular

coefficients that we use are given in Table I. We note that
the 3PN coefficients depend roughly monotonically on the
spin of the black holes, but we will not attempt to infer any
significance on the particular values that we obtain. It is
important to bear in mind also that these coefficients are
chosen to achieve the best agreement over only ten GW
cycles, and those cycles are near merger, where the PN
approximation is close to breaking down. The ‘‘correct’’
3PN and 3.5PN coefficients, when they are derived analyti-
cally, will be such that they will be expected to lead to a GW
phase that is physically correct at low, not high, frequencies.
The coefficients that we are using may have the reverse
properties, and lead to a poor estimate of the phase at low
frequencies—and in fact our ad hoc coefficients may ad-
versely distort the phase function during the early inspiral.
If anything, this will lead us to conclude that our waveforms
should be much longer than they really need to be, and so
our results will still provide an upper bound on the neces-
sary waveform length. And this is our goal.
This point is illustrated in Fig. 9, which shows the

accumulated phase disagreement between the optimized
3.5PN TaylorT4 approximant, and our three standard

TABLE I. Empirically calculated 3PN and 3.5PN coefficients
that produce a TaylorT4 approximant that agrees well with the
NR phase over the last ten cycles up to M! ¼ 0:1.

� 3PN 3.5PN

�0:85 989.4 16.26

�0:75 775.3 21.11

�0:50 259.2 23.99

�0:25 39.73 �1:22

0 0.868 �0:111

0.25 �128:9 0.320

0.50 �204:6 1.070

0.75 �298:5 38.97

0.85 �268:6 �1:009
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FIG. 9 (color online). Phase disagreement between the opti-
mized 3.5PN TaylorT4 approximant, and three other approxim-
ants: TaylorT1, T4, and T4truncated, for the � ¼ 0:5 case. The time
t ¼ 0 corresponds to the frequency M! ¼ 0:06, where the
phases are lined up.
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approximants, TaylorT1, TaylorT4, and TaylorT4truncated
for the � ¼ 0:5 case. The results in [22] show that T4
agrees best with the NR data over the ten cycles of com-
parison, T1 is the next best, and T4truncated performs worst.
But if we look now at Fig. 9, which shows the phase
disagreement during all of the early inspiral up to M! ¼
0:06, we get a different impression. Now the T4truncated
approximant performs best, while T4 is next best, and T1
is the worst. This confirms our suspicion that the relative
performance of different approximants during the last or-
bits of the binary may be quite different to their perform-
ance during the earlier inspiral—but it also tells us that if
we compare the hybrids produced by the optimized 3.5PN
T4 approximant with TaylorT1 hybrids, then this will give
us the most conservative estimate of the length require-
ments of our waveforms. This is because it is the phase
disagreement that dominates the mismatch, and Fig. 9
suggests that the T1–T43:5PN mismatches will be the worst.

Wewill focus on two cases, � ¼ �0:5 and � ¼ 0:5. The
mismatch plots for these cases are shown in Fig. 10. The
most notable aspect of these two plots is the dramatic
difference in the mismatches as a function of matching
frequency between the two cases. For the anti-hangup case
� ¼ �0:5, a matching frequency of about M!m ¼ 0:055
appears to be sufficient to achieve mismatches below 1.5%.

This corresponds to about ten cycles before merger, and is
comparable to what we saw in the nonspinning case. For
the hangup case � ¼ 0:5, on the other hand, a matching
frequency of between 0.04 and 0.05 is necessary. A match-
ing frequency of M!m ¼ 0:04 corresponds to 28 cycles
before merger, or 13 orbits. Some of this difference is due
to the effect of spin on the rate of inspiral: from a given
frequency, there will be more cycles before merger in the
hangup case than in the anti-hangup case. Since the hangup
case requires matching at a lower frequency, this adds yet
more cycles to our estimate—and sowe end up with almost
a factor of 3 difference in the number of NR cycles that are
required.
To test the robustness of our results, we have also

calculated the best-fit modifications to the 3PN and
3.5PN by optimizing over a smaller number of NR cycles.
There is a large variation in the parameters as the number
of included NR cycles is changed, but we have found that
the change in the overall mismatch results is at a level that
would not be distinguishable in the figures.
Table II summarizes the number of cycles required

before merger for the different cases, for different levels
of mismatch requirement. Spins up to only j�j ¼ 0:5 are
used, because in higher-spin cases the deviation of the
known T4 approximant from the NR phase is so large
that the required 3PN and 3.5PN coefficients appear to
distort the overall phase evolution too severely. We can
infer from this table, however, that for �<�0:5, simula-
tions that include 20 GW cycles before merger (ten orbits)
should allow the construction of T1 hybrids that are within
the 3% mismatch accuracy requirement, but for high
�> 0:5 many more cycles may be required.
The table also indicates, assuming that we will allow a

maximum error mismatch up to 3%, the minimum mass
that can be searched for using hybrids constructed from the
numerical waveforms presented here. These numbers are
provided as a snapshot of what can be done with the wave-
forms that exist as of the writing of this paper. In most cases10 1005020 3015 70
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FIG. 10 (color online). Mismatches between T1 and T4 hy-
brids for the cases � ¼ �0:5 (upper panel) and � ¼ 0:5 (lower
panel).

TABLE II. Summary of mismatch calculations. The second,
third, and fourth columns give the minimum number of numeri-
cal GW cycles before merger that ensure mismatches below 3%,
1.5%, and 0.5% for all masses above 10M�. The last column
indicates the lowest mass for which the numerical waveforms
studied here could be used for searches, assuming that the
mismatch error can be as high as 3%.

Configuration M< 3% M< 1:5% M< 0:5% Mmin=M�
� ¼ �0:5 8.0 10.0 19.0 10

� ¼ �0:25 10.0 15.0 20.0 10

� ¼ 0 7.0 9.5 15.0 10

� ¼ 0:25 13.0 18.0 26.0 10

� ¼ 0:5 20.0 26.0 36.0 15

q ¼ 2 8.5 11.5 25.0 10

q ¼ 3 11.0 15.5 25.0 10

q ¼ 4 15.0 21.0 33.0 10
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we can produce hybrids that are acceptable for searches
down to 10M�, but for some spinning cases we can use our
hybrids to search down to only 15M�. We hope that the
results in this paper ultimately indicate upper bounds on the
required length of numerical waveforms for GW detec-
tions. It should be clear from Table II that an improvement
in PN approximants (due, for example, to the calculation of
higher-order spin terms) would have a significant effect on
the NR-waveform length requirements. If the accuracy of
spinning approximants were improved to the level of their
equal-mass nonspinning counterparts, then numerical
waveforms covering only 5–7 orbits before merger would
be sufficient for GW searches.

On the other hand, we also see that the length require-
ments vary significantly between binary configurations,
and that more NR cycles are required as we approach the
extremes of our parameter choices. We cannot determine
from these results what the length requirements would be
for q > 4 nonspinning waveforms, or even for highly
spinning waveforms with q > 1. In this sense, the ‘‘worst’’
cases remain to be studied.

IX. PARAMETER ESTIMATION

Our focus so far has been on GW detection, and a full
parameter-estimation study is beyond the scope of this
paper; indeed such a study would require a complete
waveform family, and would be more appropriately per-
formed using phenomenological or EOB models.
However, we can make some observations about parameter
estimation.

As discussed in Sec. II, if for our T1 and T4 hybrids we
have k�hk< 1, then the two waveforms are indistinguish-
able. This means that the accuracy of the estimation of the
intrinsic parameters of the binary is determined by the SNR
of the signal, and not by any error in the waveforms. In
other words, if the waveforms are indistinguishable at the
SNR of a given measurement, then the maximum parame-
ter information can be extracted from that measurement,
and is not limited by the accuracy of the waveforms.

It is reasonable to expect SNRs as high as 30 in
Advanced detectors, and for waveforms to be indistin-
guishable at that SNR, the mismatch error must be below
0.05% (see again the discussion in Sec. II). It is clear even
in the best case (equal-mass nonspinning) that our hybrids
meet this criteria only for binary masses higher than 20M�.
To achieve such a low mismatch down to 10M� would
require numerical waveforms far longer than any that have
yet been produced. We have also seen that the mismatch in
the hybrids due to artifacts from the hybridization process
alone are at 0.03%, and so producing hybrids that are
indistinguishable for parameter estimation up to an SNR
of 30 is a challenge irrespective of the problems of PN
errors and waveform length.

However, even though the hybrids we have presented
may not be indistinguishable at the potential SNRs of

Advanced detectors, they can still be used to estimate the
parameters of a binary, and the question remains what the
accuracy of the parameter estimation can in principle be,
and whether this accuracy is sufficient for GW astronomy
applications in the near future.
To give an indication of what these errors might be, we

can calculate the mass bias from our mismatch calcula-
tions—by which we mean the error in our estimate of the
binary’s mass, if we were to assume that it was given by the
model waveform that exhibits the lowest mismatch with the
true waveform. For the least accurate case we have consid-
ered here, � ¼ 0:5, with a hybrid matching frequency of
M!m ¼ 0:05, the worst mass bias is 0.54% for M ¼
22M�. The results for masses up to 100M� are shown in
Fig. 11. We note for comparison that the results in Ref. [23]
suggest that the PNwaveforms that can be used for searches
for binaries with M< 10M� have relatively high mass
biases, around 20% forM ¼ 10M�. In addition, the results
in Ref. [49] suggest that the mass bias from using 3.5PN
TaylorT1 inspiral templates to detect phenomenological
waveforms is around 10%. These results of course also
suggest that hybrids that are accurate enough for parameter
estimation are also needed for binaries below 10M�.
We emphasize that the true bias in the mass, when

optimizing over all of the intrinsic and extrinsic parame-
ters, may differ from that indicated in Fig. 11. While these
results suggest that mass estimation errors will be very
small with these waveforms, we defer a detailed analysis
of parameter-estimation errors to future work.

X. CONCLUSIONS

In constructing hybrid PNþ NR black-hole-binary
waveforms there are three evident sources of error: the
error in the numerical waveforms, the error in the PN
waveforms, and the error introduced in the hybridization
process. The error measure relevant for GW detection is
the mismatch error, and in the context of current GW
searches this error is required to be less than 3%.
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FIG. 11. Bias in mass estimation for the � ¼ 0:5 case, based
on a comparison of T1 and T4 hybrids.
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We know from previous work [22,29] that the mismatch
error in the numerical waveforms is within this require-
ment by several orders of magnitude. We have shown in
this paper that the mismatch error due to the hybridization
process is also very low, at �0:03%. The mismatch error
due to the PN contribution to the hybrids, however, can be
much larger, and dominates the error budget in all hybrids
that can be produced with current PN and NR results.

Motivated by these observations, we have attempted to
address the question of how many NR cycles (i.e., how few
PN cycles) must be used in a hybrid in order for the hybrid
to be sufficiently accurate for GW detection purposes. Our
approach, which we justify in detail in Sec. VI, is to
construct TaylorT4þ NR hybrids, and to treat these as
the true GW signal (NRL), and then to calculate the mis-
match between these and hybrids of TaylorT1þ NRL. The
mismatch is optimized with respect to the total mass of the
binary, which we argue in Sec. VII is close to the mismatch
resulting from a calculation of the fitting factor, which is
the relevant quantity for GW detection. This allows us to
make the most conclusive statements possible with
currently available numerical simulations.

In the equal-mass nonspinning case, we find that very
few NR cycles are necessary; five cycles (two orbits) are
sufficient to be within the 3% mismatch requirement.
Phase comparisons between PN and NR results suggest
that the relative accuracy between TaylorT1 and TaylorT4
does not change significantly as the mass ratio is increased
to q ¼ 4 [22], so we might expect that the length require-
ments are roughly the same for larger mass ratios. On the
contrary, we find that the length requirements increase with
the mass ratio, and for q ¼ 4 15 cycles (seven orbits) are
necessary. We conclude that (1) we cannot infer NR-
waveform length requirements directly from PN-NR phase
comparisons, and (2) at higher mass ratios q > 4 we will
require yet longer NR waveforms, but more extensive
studies will be required to determine how many.

Because of the greater PN errors for spinning binaries,
more cycles are generally needed than in the nonspinning
case. Our results are summarized in Table II. We have
considered only equal-mass spinning cases, but we can
conclude from these results that for unequal-mass spinning
binaries, more NR cycles will be needed than in any of the
cases we have considered here.

A conservative summary of our results would be that in
the cases we have considered, simulations of ten orbits
before merger should be sufficient to produce hybrids that
are accurate enough for GW detection purposes. The re-
sulting hybrids will be indistinguishable for SNRs in
Advanced detectors of less than 30 for masses above
20–30M�. The important caveat to our results is that they
apply only to the ‘‘cheapest’’ cases. Nonspinning binaries
with q > 4 and unequal-mass spinning binaries will re-
quire more NR cycles, and we have not considered any
cases with precessing spins.

These conclusions depend strongly on the current state
of the art. The advent of more accurate PN results (for
example higher-order spin contributions) could reduce
these length requirements, as might a more robust quanti-
fication of the errors in PN methods. We have also not
considered EOB results, for which the errors may be far
lower, with a corresponding drop in the NR-waveform
length requirements.
In addition to being relevant to the construction of

hybrids for analytic waveform models, our results also
have direct bearing on two current efforts in the NR, data
analysis and analytical modeling communities.
In the second stage of the NINJA project [16] hybrid

waveforms are being injected into detector noise to test
search pipelines. The hybrids are constructed with matching
frequencies in the range we have considered, but in most
cases the matching will be around M! ¼ 0:07. In general,
our results suggest that these hybrids will have a mismatch
error of greater than 3% for masses lower than 20–30M�.
The complementary NR-AR project [16] represents a

community-wide effort to produce a large number of NR
waveforms to calibrate analytic models. The nominal re-
quirement for these waveforms is that they include 20 GW
cycles (ten orbits) before merger. From the point of view of
constructing hybrid waveforms for GW detection with
typical PN approximants, our results suggest that these
waveforms will be long enough along the branches of the
parameter space that we have considered, but possibly not
for high-mass-ratio cases, some unequal-mass spinning
cases, and perhaps also cases with precession.
We have presented a general method to assess NR-

waveform length requirements, but our study only begins
to address this question. Further work is needed to develop
an easy-to-implement and robust method to estimate these
requirements for configurations that have not yet been
simulated in NR codes; work in this area is already under-
way [56]. It would be useful to make estimates of wave-
form length requirements for the construction of analytic
models, both phenomenological and EOB; to extend this
study to possible future detectors, like LISA [57] and the
Einstein Telescope [58]; and, finally, much more work is
required to understand the length requirements for parame-
ter estimation, and to balance the needs of GW astronomy
with the computational cost of numerical simulations.
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U. Sperhake, Classical Quantum Gravity 25, 105006
(2008).

[36] M. Hannam, S. Husa, U. Sperhake, B. Brügmann, and
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