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CURVATURE ESTIMATES FOR SURFACES

WITH BOUNDED MEAN CURVATURE

THEODORA BOURNI AND GIUSEPPE TINAGLIA

Abstract. Estimates for the norm of the second fundamental form, |A|, play
a crucial role in studying the geometry of surfaces in R

3. In fact, when |A|
is bounded the surface cannot bend too sharply. In this paper we prove that
for an embedded geodesic disk with bounded L2 norm of |A|, |A| is bounded
at interior points, provided that the W 1,p norm of its mean curvature is suffi-
ciently small, p > 2. In doing this we generalize some renowned estimates on
|A| for minimal surfaces.

1. Introduction

In the study of the geometry of surfaces in R
3, estimates for the norm of the

second fundamental form, |A|, are particularly remarkable. In fact, when |A| is
bounded the surface cannot bend too sharply and thus such estimates provide
a very satisfying description of its local geometry. When a surface Σ is minimal
|A|2 = −2KΣ, KΣ being the Gaussian curvature, and such estimates are then known
as curvature estimates. There are many results in the literature where curvature
estimates for minimal surfaces are obtained assuming certain geometric conditions;
see for instance [3, 5, 6, 8, 9, 10, 11, 14] et al. In [6], Colding and Minicozzi prove
that an embedded geodesic minimal disk with bounded L2 norm of |A|, bounded
total curvature, has curvature bounded in the interior.

The main result in this paper is the following estimate that generalizes the cur-
vature estimate in [6] to a broader class of surfaces.

Theorem 1.1. Given C1 and p ≥ 2, there exist C2 = C2(p, C1) ≥ 0 and εp =
εp(C1) > 0 such that the following holds. Let Σ be a surface embedded in R

3

containing the origin with InjΣ(0) ≥ s > 0,∫
Bs

|A|2 ≤ C1

and either

(i) ‖H‖∗W 2,2(Bs)
≤ ε2, if p = 2 or

(ii) ‖H‖∗W 1,p(Bs)
≤ εp, if p > 2.

Then

|A|2(0) ≤ C2s
−2.
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5814 THEODORA BOURNI AND GIUSEPPE TINAGLIA

Here, for any x ∈ Σ, InjΣ(x) denotes the injectivity radius of Σ at x. For
any s > 0, Bs denotes the intrinsic ball of radius s centered at the origin and
‖H‖∗W 1,p(Bs)

(‖H‖∗W 2,2(Bs)
) denotes the scale invariant W 1,p (W 2,2, respectively)

norm of the mean curvature. See the beginning of Section 2 for a precise definition.
The structure of this paper, that is the proof of Theorem 1.1, is as follows: In

Section 2 we generalize the renowned curvature estimate by Choi and Schoen [3],
Theorem 2.1. We also show that the hypotheses of Theorem 1.1 are optimal,
Remark 2.6. In Section 3 we use this estimate to prove case (i) of Theorem 1.1
and also case (ii) of Theorem 1.1 but with the additional assumption that the L2

norm of the mean curvature is small, Theorem 3.2. Finally in Section 4, we show
some relation between the total curvature and the area of an intrinsic ball, which
allows us to remove this extra assumption and thus finish the proof of case (ii) of
Theorem 1.1, Remark 4.3. This relation also enables us to replace the bound on
the total curvature in Theorem 1.1 with an area bound, Corollary 4.4.

2. Choi-Schoen curvature estimate generalized

The Choi-Schoen curvature estimate [3] says that if the total curvature of an
intrinsic minimal disk is sufficiently small, then the curvature of the disk is bounded
in the interior and it decays like the inverse square of the distance of the point to
the boundary. The goal of this section is to generalize the Choi-Schoen curvature
estimate.

Throughout this paper ‖H‖∗W 1,p(Bs)
and ‖H‖∗W 2,2(Bs)

will denote the scale in-

variant W 1,p and W 2,2, respectively, norm of the mean curvature, i.e.

‖H‖∗W 1,p(Bs)
:= sp−2

∫
Bs

|H|p + s2p−2

∫
Bs

|∇H|p

and

‖H‖∗W 2,2(Bs)
:=

∫
Bs

|H|2 + s2
∫
Bs

|∇H|2 + s4
∫
Bs

|∇2H|2.

Furthermore the letter c will denote an absolute constant. When different constants
appear in the course of a proof we will keep the same letter c unless the constant
depends on some different parameters.

Theorem 2.1. Given p ≥ 2, there exists ε0 = ε0(p) > 0 such that the following
holds. Let Σ be a surface immersed in R

3 containing the origin and Br0 ⊂ Σ,
r0 > 0. If there exists δ ∈ [0, 1] such that∫

Br0

|A|2 ≤ δε0

and either

(i) ‖H‖∗W 2,2(Br0
) ≤ δε0, if p = 2 or

(ii) ‖H‖∗W 1,p(Br0
) ≤ (δε0)

p/2, if p > 2,

then for all 0 < σ ≤ r0 and y ∈ Br0−σ,

σ2|A|2(y) ≤ δ.

In order to demonstrate Theorem 2.1, we begin by proving certain results about
manifolds that are not necessarily minimal. In particular we prove a Generalized
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CURVATURE ESTIMATES 5815

Mean Value Property, Lemma 2.2 and a Generalized Mean Value Inequality, Lemma
2.5. See Proposition 1.16 and Corollary 1.17 in [4] for a proof of these results in
the minimal case.

For any s > 0, let Bs denote the extrinsic ball of radius s in R
n centered at the

origin.

Lemma 2.2 (Generalized Mean Value Property). Let Σ be a k-dimensional man-
ifold immersed in R

n and containing the origin and let f be a non-negative C1

function on Σ. Then

(1)
d

dr

(
r−k

∫
Br∩Σ

f

)
=

d

dr

∫
Br∩Σ

f
|xN |2
|x|k+2

+ r−k−1

∫
Br∩Σ

x · (∇f + fH),

where xN denotes the normal component of x, and for 0 < s < t,

t−k

∫
Bt∩Σ

f − s−k

∫
Bs∩Σ

f =

∫
(Bt\Bs)∩Σ

f
|xN |2
|x|k+2

+

∫ t

s

r−k−1

∫
Br∩Σ

x · (∇f + fH).

(2)

Proof. Using the formula ∫
divΣ X = −

∫
X ·H

with the vector field X(x) = γ(|x|)f(x)x, where γ ∈ C1(R) is such that, for some
r > 0, γ(t) = 1 for t ≤ r/2, γ(t) = 0 for t ≥ r and γ′(t) ≤ 0, we get

d

dr

(
r−k

∫
Br∩Σ

φ

(
|x|
r

)
f

)
= r−k d

dr

∫
Br∩Σ

f
|xN |2
|x|2 φ

(
|x|
r

)
+ r−k−1

∫
Br∩Σ

x · (∇f + fH)φ

(
|x|
r

)
,

where φ : R → R is defined by φ(|x|/r) = γ(|x|) (cf. equation 18.1 in [12]). Then (1)
follows after letting φ in the above formula increase to the characteristic function
of (−∞, 1) and (2) follows by integrating (1) from s to t. �

Remark 2.3. The leading terms on the RHS of both (1) and (2) in Lemma 2.2 are
positive. For the second term on the RHS of (2) we note that for any C1 function
h on Σ, integration by parts yields∫ t

s

r−k−1

∫
Br∩Σ

h =
1

k

∫
Bt∩Σ

h

(
1

rks
− 1

tk

)
,

where rs = max{|x|, s}, and furthermore

x · ∇f = projTxΣ x · ∇f =
1

2
∇|x|2 · ∇f = −1

2
∇(r2 − |x|2) · ∇f.

Thus, integrating by parts, we get the following two estimates, as a corollary of
Lemma 2.2, which we will need later:

(3)
d

dr

(
r−k

∫
Br∩Σ

f

)
≥ r−k−1

∫
Br∩Σ

fx ·H +
1

2
r−k−1

∫
Br∩Σ

(r2 − |x|2)ΔΣf
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and
(4)

t−k

∫
Bt∩Σ

f−s−k

∫
Bs∩Σ

f ≥ 1

k

∫
Bt∩Σ

fx·H
(

1

rks
− 1

tk

)
+
1

k

∫
Bt∩Σ

x·∇f

(
1

rks
− 1

tk

)
,

where rs = rs(x) = max{|x|, s}.

Remark 2.4. In the case of a surface immersed in R
3 we can use Remark 2.3 to

estimate the ratios s−1
∫
Bs∩Σ

f as follows: In inequality (4) of Remark 2.3 let n = 3,

k = 2, t = 1. After multiplying by s, since s, |x| ≤ rs we get the following:

s−1

∫
Bs∩Σ

f ≤
∫
B1∩Σ

f +
1

2

∫
B1∩Σ

f |H|+ 1

2

∫
B1∩Σ

|∇f |.

Using Lemma 2.2 we obtain the following Generalized Mean Value Inequality.

Lemma 2.5 (Generalized Mean Value Inequality). Let Σ be a hyper-surface im-
mersed in R

n containing the origin and such that B1(0) ∩ ∂Σ = ∅. Also let f be a
non-negative function on Σ such that

(5) ΔΣf ≥ −λ1f − h

for some λ1 ≥ 0 and a function h ∈ L1(Σ ∩ B1(0)) satisfying the following: There
exist constants c2, c3 and α ∈ [0, 1) such that

1

2
r−n

∫
Br∩Σ

(r2 − |x|2)h ≤ c2r
−α + c3, ∀r ∈ (0, 1].

Then

f(0) ≤ ω−1
n−1e

c1

∫
B1∩Σ

f + ω−1
n−1

(
c2

1− α
+ c3

)
ec1 ,

where ωn−1 is the volume of the unit ball in R
n−1 and c1 = supΣ∩B1(0) |H|+ λ1

2 .

Proof. Define

g(t) = t−(n−1)

∫
Bt∩Σ

f.

Then using (3) and (5),

g′(t) ≥ −g(t)

(
λ1

2
t+ sup

Σ∩B1(0)

|H|
)

− 1

2
t−n

∫
Bt∩Σ

(t2 − |x|2)h.

Hence, since t ≤ 1 and by the definition of c1, c2, c3,

g′(t) + c1g(t) ≥ −c3 − c2t
−α =⇒ (g(t)ec1t)′ ≥ −c2e

c1t−α − c3e
c1 .

After integrating from 0 to 1,

ωn−1f(0)= lim
t→0+

g(t)≤ec1g(1)+

∫ 1

0

ec1(c2t
−α + c3)dt≤ec1g(1) +

(
c2

1− α
+ c3

)
ec1 .

�

In order to prove Theorem 2.1 we still need some information about |A|. It is
well known that for a minimal hypersurface in R

n, |A| satisfies the following partial
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differential inequality, Simons’ inequality [13]:

Δ|A|2 ≥ −2|A|4 + 2

(
1 +

2

n+ 1

)
|∇|A||2.

In [7], Ecker and Huisken generalized Simons’ inequality to obtain the following
estimate for hypersurfaces in R

n:

Δ|A|2 ≥ 2hij∇i∇jH − 2|A|4 + 2Hhijhikhjk + 2

(
1 +

2

n+ 1

)
|∇|A||2 − c(n)|∇H|2,

where the hij ’s are the coefficients of the second fundamental form A. When n = 3,
2Hhijhikhjk ≥ H2|A|2 and thus we obtain

(6) Δ|A|2 ≥ 2hij∇i∇jH − 2|A|4 − c|∇H|2.
Using equation (6) and the previous results we now prove Theorem 2.1.

Proof of Theorem 2.1. Note first that we can assume that δ > 0, since otherwise
the theorem is trivially true. We first prove case (i), i.e. when we assume that
‖H‖∗W 2,2(Br0

) ≤ δε0. Set F = (r0 − r)2|A|2 on Br0 , where r(x) = |x|, and let δ0
be the maximum value of F and x0 the point where this maximum is attained.
Assume, for a contradiction, that δ0 > δ and pick σ so that

σ2|A|2(x0) =
δ

4
.

Then

2σ ≤ r0 − r(x0) and
1

2
≤ r0 − r

r0 − r(x0)
≤ 3

2
, ∀x ∈ Bσ(x0)

and

(r0 − r(x0))
2 sup
Bσ(x0)

|A|2 ≤ 4F (x0) =⇒ sup
Bσ(x0)

|A|2 ≤ 4|A|2(x0) = σ−2δ.

Let Σ̃ = ηx0,
σ
4
(Br0) (where ηx,λ(y) = λ−1(y − x), that is, a rescaling and a

translation) and let Ã, H̃ be the second fundamental form and the mean curvature

of Σ̃. Then

(7) sup
B4⊂˜Σ

|Ã|2 ≤ σ2

16
sup

Bσ(x0)⊂Σ

|A|2 ≤ δ

16
<

1

16
and |Ã|2(0) = δ

64
.

Note that by Br we now denote the geodesic balls of radius r in Σ̃ centered at the

origin. Let Σ̃0 be the connected component of B1∩B4 containing the origin. Then,

Σ̃0 has its boundary contained in ∂B1. The proof of this is a standard argument
that for completeness we have added in the Appendix; see Lemma 5.1. Using the
Gauss equation gives

sup
B4

|K
˜Σ| = sup

B4

|H̃2 − |Ã|2|
2

≤ 1

2

(
sup
B4

H̃2 + sup
B4

|Ã|2
)

≤ 3

2
sup
B4

|Ã|2 ≤ 3

32
,

and thus, by the Bishop Volume Comparison Theorem (see for instance [1]), this
bound implies that there exists a constant cb such that AreaB4 < cb. Note that
this area bound depends only on the upper bound for the absolute value of the
Gaussian curvature and the radius of the intrinsic ball. Finally,

(8) Area Σ̃0 ≤ AreaB4 < cb.
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5818 THEODORA BOURNI AND GIUSEPPE TINAGLIA

In what follows, we focus our analysis on Σ̃0. With an abuse of notation, we

omit the tildes and set Σ = Σ̃0. Furthermore the letter c will denote an absolute
constant and when different constants appear in the course of the proof we will
keep the same letter c unless the constant depends on some different parameters.
We are going to show that we can apply Lemma 2.5, with f = |A|2 and α = 1

2 to
get an estimate for |A(0)| in terms of the total curvature and ‖H‖W 2,2(Σ).

The generalized Simons’ inequality, with |A| < 1 implies

Δ|A|2 ≥ −2|A|2 − c|∇H|2 + 2hij∇i∇jH.

Hence the inequality in the assumptions of Lemma 2.5 is satisfied with λ1 = 2 and
h = c|∇H|2 − 2hij∇i∇jH. Furthermore we have

sup
Σ

|H|+ λ1/2 ≤
√
2 sup

Σ
|A|+ 1 ≤

√
2 + 1.

We are now going to find c2 and c3 such that

1

2
r−3

∫
Br∩Σ

(r2 − |x|2)(c|∇H|2 − 2hij∇i∇jH) ≤ c2r
− 1

2 + c3, for any r ∈ (0, 1].

Integrating by parts we obtain

−1

2
r−3

∫
Br∩Σ

(r2 − |x|2)2hij∇i∇jH =r−3

∫
Br∩Σ

(r2 − |x|2)∇ihij∇jH

+ r−3

∫
Br∩Σ

∇i(r
2 − |x|2)2hij∇jH.

(9)

Using Codazzi equations we can estimate the first term on the RHS of (9) as follows:

r−3

∫
Br∩Σ

(r2 − |x|2)∇ihij∇jH ≤r−3

∫
Br∩Σ

(r2 − |x|2)|∇H|2.

We estimate the second term on the RHS of (9), using the fact that supΣ |A| <√
δ/4, as follows:

r−3

∫
Br∩Σ

∇i(r
2 − |x|2)2hij∇jH ≤ r−3

∫
Br∩Σ

2|x||A||∇H| ≤ 2r−2

∫
Br∩Σ

|A||∇H|

≤
√
δr−2

∫
Br∩Σ

|∇H| ≤
√
δr−3/2 Area (Σ ∩Br(x))

1/2

(
1

r

∫
Br(x)∩Σ

|∇H|2
)1/2

.

Since supΣ |H| ≤
√
2, the monotonicity inequality implies that there exists an

absolute constant c such that

r−2 Area (Σ ∩Br) ≤ cAreaΣ ≤ ccb.

Thus

1

2
r−3

∫
Br∩Σ

(r2 − |x|2)(c|∇H|2 − 2hij∇i∇jH)

≤ c

(
r−1

∫
Br∩Σ

|∇H|2 +
√
cb
√
δr−

1
2

(
r−1

∫
Br∩Σ

|∇H|2
)1/2 )

.

(10)

Using Remark 2.4, with f = |∇H|2 we have

r−1

∫
Br∩Σ

|∇H|2 ≤ 2

∫
Σ

|∇H|2 + 1

2

∫
Σ

|∇|∇H|2| ≤ c

(∫
Σ

|∇H|2 +
∫
Σ

|∇2H|2
)
.
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Therefore we have shown that for any r ∈ (0, 1]

1

2
r−3

∫
Br∩Σ

(r2 − |x|2)(c|∇H|2 − 2hij∇i∇jH)

≤ c
(
‖H‖W 2,2(Σ) +

√
cbr

− 1
2

√
δ‖H‖

1
2

W 2,2(Σ)

)
.

Here ‖H‖W 2,2(Σ), denotes the W 2,2 norm of H on Σ, i.e.,

‖H‖W 2,2(Σ) :=

∫
Σ

|H|2 +
∫
Σ

|∇H|2 +
∫
Σ

|∇2H|2.

Applying Lemma 2.5 we obtain

π|A(0)|2 ≤ e
√
2+1

(∫
B1∩Σ

|A|2 + 2c
(√

cb
√
δ‖H‖

1
2

W 2,2(Σ) + ‖H‖W 2,2(Σ)

))
≤ e

√
2+1(δε0 + 2cδ(

√
cb
√
ε0 + ε0)) ≤ cδ

√
ε0,

(11)

where c is an absolute constant. Thus, we can pick ε0 sufficiently small so that
|A(0)|2 < δ

64 , which contradicts (7). This finishes the proof of case (i).
Note that in equation (11) we have used the following elementary inequality to

estimate ‖H‖W 2,2(Σ). With an abuse of notation, let us reintroduce the tildes to
denote the surfaces and quantities obtained after rescaling so that ‖H‖W 2,2(Σ) =

‖H̃‖W 2,2(˜Σ0)
and Σ̃ = ηx0,

σ
4
(Br0). Then by the definition of the rescale invariant

norms it follows that

(12) ‖H̃‖W 2,2(˜Σ0)
≤ ‖H̃‖∗

W 2,2(˜Σ)
= ‖H‖∗W 2,2(Br0

) ≤ δε0.

We now prove case (ii), i.e., when we assume that ‖H‖∗W 1,p(Br0
) ≤ (δε0)

p/2. We

note that the same argument, as in case (i), carries through up to inequality (10).
In this case, instead of using Remark 2.4, we will bound the RHS of (10) using the
area bound (8). In particular we obtain

r−1

∫
Br∩Σ

|∇H|2 ≤ r−1Area(Σ ∩Br(x))
1−2/p

(∫
Br∩Σ

|∇H|p
)2/p

≤ c1−2/pr1−4/p‖H‖W 1,p(Σ)
2/p ≤ c‖H‖W 1,p(Σ)

2/pr−2/p,

where c is an absolute constant (independent of p) and the last inequality is true
since r ≤ 1 and p > 2. Here ‖H‖W 1,p(Σ) denotes the W 1,p norm of H in Σ, i.e.,

‖H‖W 1,p(Σ) :=

∫
Σ

|H|p +
∫
Σ

|∇H|p.

Using this estimate in (10) we get

1

2
r−3

∫
Br∩Σ

(r2 − |x|2)(c|∇H|2 − 2hij∇i∇jH)

≤ c
(
‖H‖W 1,p(Σ)

2/pr−2/p +
√
δr−

1
2 r

1
2−

2
p ‖H‖W 1,p(Σ)

1/p
)

≤ cr−2/p
(
‖H‖W 1,p(Σ)

2/p
+
√
δ‖H‖W 1,p(Σ)

1/p
)
.
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Applying Lemma 2.5 in this case with α = 2/p, we therefore obtain

π|A(0)|2 ≤ e
√
2+1

(∫
B1∩Σ

|A|2 + c
p

p− 2

(
‖H‖W 1,p(Σ)

2/p
+
√
δ‖H‖W 1,p(Σ)

1/p
))

≤ e
√
2+1

(
δε0 + c

p

p− 2
δ(
√
ε0 + ε0)

)
≤ cδ

√
ε0

(
1 +

p

p− 2

)
.

Thus, we can pick ε0 sufficiently small, depending on p, so that |A(0)|2 < δ
64 ,

which contradicts (7). This finishes the proof of Theorem 2.1. Note that to estimate
‖H‖W 1,p(Σ) we have also used the same argument as in equation (12). �

Remark 2.6. The hypotheses needed to generalize the Choi-Schoen curvature esti-
mate are optimal. For some α ∈ (0, 1/2) and ε ∈ (0, 1), let

uε(x, y) = xy
logα(x2 + y2 + ε)

logα ε

over the disk centered at the origin of radius 1/2. Let {εi} ⊂ (0, 1) be a sequence
such that εi → 0. Then the graphs of the functions uεi provide a sequence of
surfaces Σεi for which

‖A‖L2(Σεi
) → 0 , ‖H‖W 1,2(Σεi

) → 0,

but

|AΣεi
|(0) → 1.

Note that this example shows that the hypotheses for Theorem 1.1 are also optimal.

3. Colding-Minicozzi curvature estimate generalized

In this section we prove Theorem 1.1 with the additional assumption that the
L2 norm of the mean curvature is small, Theorem 3.2. The idea of the proof is
essentially the one in [6] except that we need to keep track of the mean curvature
and use the more general results proved in Section 2.

Lemma 3.1. Given C and p ≥ 2, there exists ε1 = ε1(p, C) > 0 such that the
following holds. Let Σ be a surface embedded in R

3 containing the origin and such
that InjΣ(0) ≥ 9s. If∫

B9s

|A|2 ≤ C,

∫
B9s\Bs

|A|2 ≤ ε1,

∫
B9s

|H|2 ≤ ε1

and either

(i) ‖H‖∗W 2,2(B9s)
≤ ε1, if p = 2 or

(ii) ‖H‖∗W 1,p(B9s)
≤ ε

p/2
1 , if p > 2,

then

sup
Bs

|A|2 ≤ s−2.

Proof. In order to prove the lemma, we are going to show that if ε1 is sufficiently
small (depending on p and C), then∫

B2s

|A|2 ≤ ε0
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and either

(i) ‖H‖∗W 2,2(B2s)
≤ ε0, if p = 2 or

(ii) ‖H‖∗W 1,p(B2s)
≤ ε

p/2
0 , if p > 2,

where ε0 = ε0(p) is such that the conclusion of Theorem 2.1 holds. Consequently,
applying Theorem 2.1 proves the lemma.

Note first that either (i) or (ii) is automatically true by the hypotheses, as long
as ε1 ≤ ε0, and therefore we only need to show the estimate for

∫
B2s

|A|2.
By Theorem 2.1, for ε1 sufficiently small,

(13) sup
B8s\B2s

|A|2 ≤ C2
1ε1s

−2,

where C1 = 1√
ε0

is fixed and ε0 is as above.

Since InjΣ(0) ≥ 9s, using Gauss-Bonnet yields

Length(∂B2s)− 4πs = −
∫ 2s

0

∫
Bρ

KΣ,

and thus we have

Length(∂B2s) ≤ 4πs+ s

∫
B2s

(|A|2 + |H|2) ≤ (4π + C)s+ s

∫
B2s

|H|2.

Therefore

diam(B8s \ B2s) ≤ 6s+
4π + C + 1

2
s+ 6s ≤ (13 + 2π + C/2)s,

provided that ε1 ≤ 1. Let x, x′ ∈ B8s \ B2s and let γ = γ(t) be a path between
them parametrized by arclength so that γ ⊂ B8s \ B2s and

t0 = Length γ ≤ diam(B8s \ B2s).

Then, by letting n(x) denote the normal of Σ at the point x, we have

distS2(n(x′), n(x)) =

∫ t0

0

d

dt
distS2(n(γ(t)), n(x)) ≤

∫ t0

0

|∇ distS2(n(γ(t)), n(x))|

≤
∫ t0

0

|A(γ(t))| ≤ C1ε
1/2
1 (13 + 2π + C/2)

and thus

sup
x,x′∈B8s\B2s

distS2(n(x′), n(x)) ≤ C1ε
1/2
1 (13 + 2π + C/2).

By rotating R
3 so that n(p) = e3 for some p ∈ B8s \ B2s, we then get

(14) sup
B8s\B2s

|∇x3| ≤ C1ε
1/2
1 (13 + 2π + C/2),

since for x = (x1, x2, x3),

|∇x3| = | projTxΣ(Dx3)| = | projTxΣ(e3)| = |n(x)− e3| = |n(x)− n(p)|.
Given y ∈ ∂B2s, let γy be the outward normal geodesic from y to ∂B8s parame-

trized by arclength on [0, 6s]. Then (13) implies that for ε1 small enough,

|γy(6s)− γy(0)| > (5 +
1

2
)s
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(see also Lemma 5.1), which in turn implies that

|Π(γy(6s))−Π(γy(0))| > 5s,

where Π denotes the projection onto the (x1, x2) plane. This last implication follows
from (14), since

|x3(γy(6s))− x3(γy(0))| ≤
∫
γy|[0,6s]

|∇x3| ≤ 6sC1ε
1/2
1 (13 + 2π + C/2).

Let us denote by Cr the vertical cylinder of radius r, Cr := {x2
1+x2

2 = r2}. The
previous discussion implies that the intersection between C3s and the boundary of
the annulus B8s \B2s is empty. More precisely, ∂B2s is contained inside the cylinder
while ∂B8s is outside. From this observation it follows that C3s∩{B8s\B2s} consists
of a collection of closed curves. Since B8s \ B2s is locally graphical over {x3 = 0}
and the surface is embedded, each curve is a graph over ∂D3s, where Dr is the
disk of radius r centered at the origin in the {x3 = 0} plane. For each y ∈ ∂B2s

let ty be the minimum t > 2s such that γy(ty) ∈ C3s and let Γ be the curve in
C3s ∩ {B8s \ B2s} defined by

Γ := {γy(ty) | y ∈ ∂B2s}.
Since InjΣ(0) ≥ 9s, such Γ is a deformation retract of ∂B2s and thus it is the
boundary of a disk Δ containing B2s.

Using Gauss-Bonnet and Gauss equation,

2π −
∫
Γ

kg =

∫
Δ

KΣ =
1

2

∫
Δ

(H2 − |A|2)

and thus

(15)

∫
B2s

|A|2 ≤
∫
Δ

|A|2 ≤
∫
Δ

H2 + 2

∫
Γ

kg − 4π.

For Γ we have that

sup
Γ

|A| ≤ C1ε
1
2
1 s

−1 and sup
Γ

|∇x3| ≤ C1ε
1/2
1 (13 + 2π + C/2).

Thus applying a standard argument, that is, Lemma 5.2 in the Appendix with

ε = C1ε
1/2
1 (13 + 2π + C/2), we obtain that

Length(Γ) ≤ 6πs(1 + 2ε) and |kg| < (3s)−1(1 + cε),

where c is an absolute constant, and∫
Γ

kg − 2π ≤ Length(Γ) sup
Γ

|kg| − 2π ≤ 2π(1 + 2ε)(1 + cε)− 2π

≤ 6π(1 + c)ε = 6π(1 + c)C1ε
1/2
1 (13 + 2π + C/2).

(16)

Using
∫
Δ
H2 ≤ ε1, together with equations (15) and (16), if ε1 is sufficiently small

we obtain that ∫
B2s

|A|2 ≤ ε0

and applying the Choi-Schoen estimate generalized finishes the proof of the lemma.
�

Using Lemma 3.1 the proof of the following variation of Theorem 1.1 is rather
straightforward. Theorem 3.2 below is in fact Theorem 1.1 with the additional
assumption that the L2 norm of the mean curvature is small.
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Theorem 3.2. Given C1 and p ≥ 2, there exist C2 = C2(p, C1) ≥ 0 and εp =
εp(C1) > 0 such that the following holds. Let Σ be a surface embedded in R

3

containing the origin with InjΣ(0) ≥ s > 0,∫
Bs

|A|2 ≤ C1 ,

∫
Bs

|H|2 ≤ εp,

and either

(i) ‖H‖∗W 2,2(Br0
) ≤ ε2, if p = 2 or

(ii) ‖H‖∗W 1,p(Br0
) ≤ εp, if p > 2,

then

|A|2(0) ≤ C2s
−2.

Note that in case (i) of Theorem 3.2 the assumption
∫
Bs

|H|2 ≤ ε2 becomes

redundant. Thus with Theorem 3.2 we have proved case (i) of Theorem 1.1. In
order to prove case (ii) of Theorem 1.1, we need to remove the extra assumption
on the L2 norm of H. This will be done in the next section.

Proof of Theorem 3.2. Let ε1 = ε1(p, C1) be such that the conclusion of Lemma 3.1
holds with C = C1 and let N be the least integer greater than C1

ε1
. Without loss of

generality, let us assume ε1 < 1. We are going to show that if εp < ε
p/2
1 ≤ ε1, then

C2 can be taken to be 92N .
There exists 1 ≤ j ≤ N such that∫

B91−js\B9−js

|A|2 ≤ C1

N
≤ ε1.

Moreover ∫
B91−js

|H|2 ≤
∫
Bs

|H|2 ≤ εp < ε1

and, in case p = 2,

‖H‖∗W 2,2(B91−js)
≤ ‖H‖∗W 2,2(Bs)

≤ ε2 < ε1

or, in case p > 2,

‖H‖∗W 1,p(B91−js)
≤ ‖H‖∗W 1,p(Bs)

≤ εp < ε
p/2
1 .

Thus, applying Lemma 3.1 to B9 s

9j
, we obtain

|A|2(0) ≤
( s

9j

)−2

≤ 92Ns−2. �

4. Total curvature and area

In this section we prove case (ii) of Theorem 1.1 by removing the extra assump-
tion on the L2 norm of H in Theorem 3.2. In order to do that we show that when
the total curvature is bounded, if the rescale invariant Lp norm of the mean curva-
ture is sufficiently small, p > 2, then it bounds the L2 norm of the mean curvature.
In addition, we then show that when the rescale invariant Lp norm of the mean
curvature is sufficiently small, p ≥ 2, a bound on the total curvature of an intrinsic
ball provides a bound for its area, and vice versa (see for instance [5] for this being
done in the minimal case). This relation enables us to replace the bound on the
total curvature in Theorem 1.1 with an area bound, Corollary 4.4.
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An easy computation using the Gauss-Bonnet Theorem (see for instance [5])
gives the following lemma.

Lemma 4.1. If Bs ⊂ Σ is such that InjΣ(0) ≥ s > 0, then

AreaBs − πs2 = −
∫ s

0

∫ t

0

∫
Bρ

KΣ.

Since −2KΣ = |A|2 − |H|2, the above lemma implies

(17) AreaBs ≤ πs2 +
1

2
s2

∫
Bs

|A|2 + 1

2
s2

∫
Bs

|H|2.

Furthermore

−
∫
Bs

KΣ
(s− r)2

2
= −

∫ s

0

∫ t

0

∫
Bρ

KΣ = AreaBs − πs2,

where the first equality follows by the coarea formula and integration by parts twice
(cf. Corollary 1.7 in [5]) and thus

s2

16

∫
B s

2

|A|2 ≤
∫
Bs

|A|2
2

(s− r)2

2
= AreaBs − πs2 +

∫
Bs

H2

2

(s− r)2

2

= AreaBs − πs2 +

∫ s

0

∫ t

0

∫
Bρ

H2

2
≤ AreaBs − πs2 +

s2

2

∫
Bs

H2.

(18)

Here for any x ∈ Bs, r = r(x) denotes the geodesic distance from the origin. Hence
(17) and (18) show that when

∫
Bs

H2 is bounded, a bound on the total curvature
provides a bound on the area and vice versa.

In the following lemma we show that if sp−2
∫
Bs

|H|p is sufficiently small for some
p > 2 and either we have a bound on the total curvature or a bound on the area,
then the L2 norm of H is also small.

Lemma 4.2. If Bs ⊂ Σ is such that InjΣ(0) ≥ s > 0 and
(
sp−2

∫
Bs

|H|p
)1/p

= ε,

then for ε small enough (depending on p),

(19) s2
∫
Bs

H2 ≤ ((1− cε)π)−2/pε2 AreaBs

and

(20)

∫
Bs

H2 ≤ ((1− cε)π)−2/p

(
2π +

∫
Bs

|A|2
)
ε2,

where c is a constant that depends only on p.

Remark 4.3. Equation (20) shows that if
∫
Bs

|A|2 is bounded, then if the Lp norm of

H is small, p > 2, so is the L2 norm ofH. This estimate, together with Theorem 3.2,
proves Theorem 1.1.
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Proof of Lemma 4.2. First notice that by the monotonicity formula (see [2] and
Theorem 17.6 and Remark 17.9 in [12]) we have that

AreaBs ≥ (1− cε)πs2,

provided that ε is small enough (depending on p) and where c is a constant that
depends only on p. Let q be such that 1/q + 2/p = 1. Then∫

Bs

H2 ≤
(∫

Bs

|H|p
)2/p

AreaBs
1/q ≤

(∫
Bs

Hp

)2/p

AreaBs

(
(1− cε)πs2

)−2/p

≤((1− cε)π)−2/pAreaBs

(
sp−2

∫
Bs

|H|p
)2/p

s
2(2−p)

p s−4/p,

which implies (19) of the lemma.
Estimating the area term in (19), using (17) we get

s2
∫
Bs

H2 ≤ ((1− cε)π)−2/pε2s2
(
π +

1

2

∫
Bs

|A|2 + 1

2

∫
Bs

|H|2
)
,

which for ε sufficiently small, ((1− cε)π)−2/pε2 < 1, implies (20) of the lemma. �

Using (19) of Lemma 4.2 to estimate the RHS of (17) and (18), respectively, we
have the following two estimates that show that when the rescale invariant Lp norm
of the mean curvature is sufficiently small, p > 2, a bound on the total curvature
of an intrinsic ball provides a bound for its area, and vice versa:

(21) AreaBs ≤
(
1− ((1− cε)π)−2/p ε

2

2

)−1 (
πs2 +

1

2
s2

∫
Bs

|A|2
)
,

provided that ((1− cε)π)−2/pε2/2 < 1, and

(22)
s2

16

∫
B s

2

|A|2 ≤
(
1 + ((1− cε)π)−2/p ε

2

2

)
AreaBs − πs2.

Finally, (22) implies that Theorem 1.1 still holds if instead of a bound on the total
curvature, we assume a bound on the area and thus we have the following corollary
of Theorem 1.1.

Corollary 4.4. Given C1 and p ≥ 2, there exist C2 = C2(p, C1) ≥ 0 and εp =
εp(C1) > 0 such that the following holds. Let Σ be a surface embedded in R

3

containing the origin with InjΣ(0) ≥ s > 0,

min{Area(Bs),

∫
Bs

|A|2} ≤ C1,

and either

(i) ‖H‖∗W 2,2(Br0
) ≤ ε2, if p = 2 or

(ii) ‖H‖∗W 1,p(Br0
) ≤ εp, if p > 2,

then

|A|2(0) ≤ C2s
−2.
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5. Appendix

In this Appendix we review some standard geometric facts about surfaces with
bounded second fundamental form that are needed in the paper.

Lemma 5.1. Let Σ be a surface in R
3, p, q ∈ Σ and let γ : [0, λ] → Σ be a geodesic,

parametrized by arclength, such that γ(0) = p and γ(λ) = q. If for some α ≥ 0,

sup
t∈[0,λ]

|A(γ(t))| ≤ α

λ
,

then |q − p| ≥ λ(1− α).

Proof. Let k denote the curvature of γ in R
3. Then, since γ is a geodesic, for any

t ∈ [0, λ],

|k(t)| ≤ |A(γ(t))| ≤ α

λ
.

Since ∣∣∣∣ ddt 〈γ′(t), γ′(0)〉
∣∣∣∣ ≤ |k|,

we have for all t0 ∈ [0, λ],

〈γ′(t0), γ
′(0)〉 − 1 =

∫ t0

0

d

dt
〈γ′(t), γ′(0)〉

=⇒ 〈γ′(t0), γ
′(0)〉 ≥ 1−

∫ t0

0

∣∣∣∣ ddt 〈γ′(t), γ′(0)〉
∣∣∣∣

≥ 1−
∫ t0

0

|k(γ(t))| ≥ 1− α
t0
λ

≥ (1− α).

Also

〈γ(λ), γ′(0)〉 − 〈γ(0), γ′(0)〉 =
∫ λ

0

d

dt
〈γ(t), γ′(0)〉

=⇒ 〈q − p, γ′(0)〉 = 〈γ(λ)γ(0), γ′(0)〉 ≥ λ(1− α).

This implies that |q − p| ≥ λ(1− α). �
Lemma 5.2. There exist c > 0 and ε > 0 such that the following holds. Let Σ be a
surface in R

3 that is graphical over some domain in the {x3 = 0} plane containing
∂Ds, for some s > 0, and let Γ be Σ ∩ Cs. If for a certain 0 ≤ ε ≤ ε,

(23) sup
Γ

|A| ≤ εs−1 and sup
Γ

|∇x3| ≤ ε,

then
LengthΓ ≤ 2πs(1 + 2ε) and |kg| < s−1(1 + cε).

Proof. Let us consider the following parameterization for Γ:

Γ = r(t) := {(s cos(t/s), s sin(t/s), x3(t)) | t ∈ [0, 2πs)}.
Because of the second estimate in (23),

|ṙ · e3|
|ṙ| ≤ projTrM (e3) ≤ ε,

and since ṙ(t) = (− sin(t/s), cos(t/s), ẋ3(t)), we get

(24)
|ẋ3|√

1 + |ẋ3|2
≤ ε =⇒ |ẋ3|2 ≤ ε2

1− ε2
=⇒ |ẋ3| ≤ 2ε
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for ε <
√
3/2. Thus for L = LengthΓ we have the following:

2πs ≤ L :=

∫ 2πs

0

√
1 + |ẋ3|2 ≤ 2πs(1 + 2ε).

Moreover
r̈(t) = (−s−1 cos(t/s),−s−1 sin(t/s), ẍ3(t))

and the curvature vector k = (k1, k2, k3) is given by the formula

k = r̈
1

1 + ẋ2
3

+ ṙ
ẋ3ẍ3

(1 + ẋ2
3)

2
.

Let n = (n1, n2, n3) be the unit normal of Σ. Then by the second estimate in
(23) we have that

max{|n1|, |n2|} ≤ ε , n3 > 1− ε.

Then

(25) (1− ε)|k3| ≤ |n3k3| ≤ |n · k|+ |(n1, n2, 0) · k| ≤ |A(r)|+ ε|(k1, k2, 0)|.
Note that

(26) k3 =
ẍ3

1 + ẋ2
3

+
ẍ3ẋ

2
3

(1 + ẋ2
3)

2
=⇒ |k3| ≥

1

2
|ẍ3|

because of (24) and for ε sufficiently small ((1 + ε2)−2 ≥ 1/2).

Let α = 1
1+ẋ2

3(t)
and β = ẋ3(t)ẍ3(t)

(1+ẋ2
3(t))

2 :

(27) (k1, k2, 0) = (−α

s
cos(t/s)− β sin(t/s),−α

s
sin(t/s) + β cos(t/s), 0)

and

|(k1, k2, 0)| ≤
(
α2

s2
+ β2

)1/2

≤
(
s−2 + 4ε2ẍ2

3

)1/2 ≤ s−1 + 2ε|ẍ3|.

Therefore using equations (23), (25), (26) and (27) we have that

1− ε

2
|ẍ3| ≤ 2εs−1 + 2ε2|ẍ3| =⇒ |ẍ3| ≤ 16εs−1

for ε sufficiently small (ε < 1/4).
Therefore there exists an absolute constant c such that for the geodesic curvature

we have

|kg| ≤ |�k| ≤ |r̈|+ cε2s−1|ṙ| ≤
√
s−2(1 + cε2) + cε2s−1

√
1 + cε2 ≤ s−1(1 + cε)

if ε is sufficiently small. �
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