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Curvature estimates for surfaces with bounded mean

curvature

Theodora Bourni Giuseppe Tinaglia

Abstract

Estimates for the norm of the second fundamental form, |A|, play a crucial role in

studying the geometry of surfaces. In fact, when |A| is bounded the surface cannot bend

too sharply. In this paper we prove that for an embedded geodesic disk with bounded

L2 norm of |A|, |A| is bounded at interior points, provided that the W 1,p norm of its

mean curvature is sufficiently small, p > 2. In doing this we generalize some renowned

estimates on |A| for minimal surfaces.

1 Introduction.

In the study of the geometry of surfaces, estimates for the norm of the second fundamental
form, |A|, are particularly remarkable. In fact, when |A| is bounded the surface cannot bend
too sharply and thus such estimates provide a very satisfying description of its geometry.
When a surface Σ is minimal |A|2 = −2KΣ, KΣ being the Gaussian curvature, and such
estimates are then known as curvature estimates. There are many results in the literature
where curvature estimates for minimal surfaces are obtained assuming certain geometric
conditions, see for instance [2, 4, 5, 7, 8, 9, 10, 13] et al.. In [5], Colding and Minicozzi
prove that an embedded geodesic minimal disk with bounded L2 norm of |A|, bounded total

curvature, has curvature bounded in the interior.
The main result in this paper is the following estimate that generalizes the curvature

estimate in [5] to a broader class of surfaces.

Theorem 1.1 Given C1 and p ≥ 2, there exist C2 = C2(p, C1) ≥ 0 and εp = εp(C1) > 0
such that the following holds. Let Σ be a surface embedded in R

3 containing the origin with

InjΣ(0) ≥ s > 0, ∫

Bs

|A|2 ≤ C1

and either

i. ‖H‖∗W 2,2(Br0 )
≤ ε2, if p = 2, or

ii. ‖H‖∗W 1,p(Br0 )
≤ εp, if p > 2,

then

|A|2(0) ≤ C2s
−2.
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Here, for any x ∈ Σ, InjΣ(x) denotes the injectivity radius of Σ at x. For any s > 0, Bs

denotes the intrinsic ball of radius s centered at the origin and ‖H‖∗W 1,p(Bs)
(‖H‖∗W 2,2(Bs)

) de-

notes the scale invariant W 1,p (W 2,2 respectively) norm of the mean curvature, see Section 2.
We also show how the hypotheses are optimal and, in order to prove Theorem 1.1, we

generalize the renowned curvature estimate by Choi and Schoen [2] (cf. Theorem 2.1).

2 Choi-Schoen curvature estimate generalized

The Choi-Schoen curvature estimate [2] says that if the total curvature of an intrinsic minimal
disk is sufficiently small, then the curvature of the disk is bounded in the interior and it decays
like the inverse square of the distance of the point to the boundary. The goal of this section is
to generalize the Choi-Schoen curvature estimate. Such generalization, Theorem 2.1 below,
is the first step in the proof of Theorem 1.1.

Throughout this paper ‖H‖∗W 1,p(Bs)
and ‖H‖∗W 2,2(Bs)

will denote the scale invariant W 1,p

and W 2,2 respectively norm of the mean curvature, i.e.

‖H‖∗W 1,p(Bs)
:= sp−2

∫

Bs

|H|2 + s2p−2

∫

Bs

|∇H|p

and

‖H‖∗W 2,2(Bs) :=

∫

Bs

|H|2 + s2
∫

Bs

|∇H|2 + s4
∫

Bs

|∇2H|2.

Furthermore the letter c will denote an absolute constant. When different constants
appear in the course of a proof we will keep the same letter c unless the constant depends
on some different parameters.

Theorem 2.1 Given p ≥ 2, there exists ε0 = ε0(p) > 0 such that the following holds. Let

Σ be a surface immersed in R
3 containing the origin and Br0 ⊂ Σ, r0 > 0. If there exists

δ ∈ [0, 1] such that

∫

Br0

|A|2 ≤ δε0

and either

i. ‖H‖∗W 2,2(Br0 )
≤ δε0, if p = 2, or

ii. ‖H‖∗W 1,p(Br0 )
≤ (δε0)

p/2, if p > 2,

then for all 0 < σ ≤ r0 and y ∈ Br0−σ

σ2|A|2(y) ≤ δ.

For any s > 0, let Bs denote the extrinsic ball of radius s in R
n centered at the origin.

We begin by proving certain results about manifolds that are not necessarily minimal. The
first result is a Generalized Mean Value Property (see for instance Proposition 1.16 in [3]).
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Lemma 2.2 (Generalized Mean Value Property) Let Σ be a k-dimensional manifold

immersed in R
n and containing the origin and let f be a non-negative C1 function on Σ then

d

dr

(
r−k

∫

Br∩Σ
f

)
=

d

dr

∫

Br∩Σ
f
|xN |2
|x|k+2

+ r−k−1

∫

Br∩Σ
x · (∇f + fH), (1)

where xN denotes the normal component of x, and for 0 < s < t

t−k

∫

Bt∩Σ
f − s−k

∫

Bs∩Σ
f =

∫

(Bt\Bs)∩Σ
f
|xN |2
|x|k+2

+

∫ t

s

r−k−1

∫

Br∩Σ
x · (∇f + fH). (2)

Proof. Using the formula ∫
divΣX = −

∫
X ·H

with the vector field X(x) = γ(|x|)f(x), where γ ∈ C1(R) is such that, for some r > 0,
γ(t) = 1 for t ≤ r/2, γ(t) = 0 for t ≥ r and γ′(t) ≤ 0, we get

d

dr

(
r−k

∫

Br∩Σ
φ

( |x|
r

)
f

)
= r−k d

dr

∫

Br∩Σ
f
|xN |2
|x|2 φ

( |x|
r

)
+r−k−1

∫

Br∩Σ
x·(∇f+fH)φ

(|x|
r

)

where φ : R → R is defined by φ(|x|/r) = γ(|x|) (cf. equation 18.1 in [11]). Then (1) follows
after letting φ in the above formula increase to the characteristic function of (−∞, 1) and
(2) follows by integrating (1) from s to t. �

Remark 2.3 The first term on the RHS of (1) and (2) in Lemma 1 are positive. For the

second term on the RHS of (2) we note that for any C1 function h on Σ, integration by parts

yields ∫ t

s

r−k−1

∫

Br∩Σ
h =

1

k

∫

Bt∩Σ
h

(
1

rks
− 1

tk

)

where rs = max{|x|, s}, and furthermore

x · ∇f = projTxM x · ∇f =
1

2
∇|x|2 · ∇f = −1

2
∇(r2 − |x|2) · ∇f.

Thus, integrating by parts, we get the following two estimates, as a corollary of Lemma 1,
which we will need later:

d

dr

(
r−k

∫

Br∩Σ
f

)
≥ r−k−1

∫

Br∩Σ
fx ·H +

1

2
r−k−1

∫

Br∩Σ
(r2 − |x|2)∆Σf (3)

and

t−k

∫

Bt∩Σ
f − s−k

∫

Bs∩Σ
f ≥ 1

k

∫

Bt∩Σ
fx ·H

(
1

rks
− 1

tk

)
+

1

k

∫

Bt∩Σ
x · ∇f

(
1

rks
− 1

tk

)
(4)

where rs = rs(x) = max{|x|, s}.
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Remark 2.4 In the case of a surface immersed in R
3 we can use Remark 2.3 to estimate

the ratios s−1
∫
Bs∩Σ f as follows: In inequality (4) of Remark 2.3 let n = 3, k = 2, t = 1.

After multiplying by s, since s, |x| ≤ rs we get the following:

s−1

∫

Bs∩Σ
f ≤

∫

B1∩Σ
f +

1

2

∫

B1∩Σ
f |H|+ 1

2

∫

B1∩Σ
|∇f |.

Using Lemma 2.2 we obtain the following Generalized Mean Value Inequality (for a proof
in the minimal case see for instance Corollary 1.17 in [3]).

Lemma 2.5 (Generalized Mean Value Inequality) Let Σ be a hyper-surface immersed

in R
n containing the origin and such that B1(0) ∩ ∂Σ = ∅. Let also f be a non-negative

function on Σ such that

∆Σf ≥ −λ1f − h (5)

for some λ1 ≥ 0 and a function h ∈ L1(Σ ∩ B1(0)) satisfying the following: There exist

constants c2, c3 and α ∈ [0, 1) such that

1

2
r−n

∫

Br∩Σ
(r2 − |x|2)h ≤ c2r

−α + c3, ∀r ∈ (0, 1].

Then

f(0) ≤ ω−1
n−1e

c1

∫

B1∩Σ
f + ω−1

n−1

(
c2

1− α
+ c3

)
ec1

where ωn−1 is the volume of the unit ball in R
n−1 and c1 = supΣ∩B1(0) |H|+ λ1

2
.

Proof. Define

g(t) = t−(n−1)

∫

Bt∩Σ
f

then using (3) and (5)

g′(t) ≥ −g(t)

(
λ1

2
t + sup

Σ∩B1(0)

|H|
)

− 1

2
t−n

∫

Bt∩Σ
(t2 − |x|2)h.

Hence, since t ≤ 1 and by the definition of c1, c2, c3

g′(t) + c1g(t) ≥ −c3 − c2t
−α =⇒ (g(t)ec1t)′ ≥ −c2e

c1t−α − c3e
c1.

After integrating from 0 to 1:

ωn−1f(0) = lim
t→0+

g(t) ≤ ec1g(1) +

∫ 1

0

ec1(c2t
−α + c3)dt ≤ ec1g(1) +

(
c2

1− α
+ c3

)
ec1 .

�

In order to prove Theorem 2.1 we still need some information about |A|. It is well-known
that for a minimal hypersurface in R

n, |A| satisfies the following partial differential inequality,
Simons’ inequality [12],

∆|A|2 ≥ −2|A|4 + 2

(
1 +

2

n+ 1

)
|∇|A||2.
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In [6], Ecker and Huisken generalized Simons’ inequality to obtain the following estimate for
hypersurfaces in R

n:

∆|A|2 ≥ 2hij∇i∇jH − 2|A|4 + 2Hhijhikhjk + 2

(
1 +

2

n + 1

)
|∇|A||2 − c(n)|∇H|2.

When n = 2, 2Hhijhikhjk ≥ H2|A|2 and thus we obtain

∆|A|2 ≥ 2hij∇i∇jH − 2|A|4 − c|∇H|2. (6)

Using equation (6) and the previous results we now prove Theorem 2.1.

Proof of Theorem 2.1. Note first that we can assume that δ > 0, since else the theorem
is trivially true. We first prove case (i), i.e. when we assume that ‖H‖∗W 2,2(Br0 )

≤ δε0. Set

F = (r0− r)2|A|2 on Br0 , where r(x) = |x|, and let δ0 be the maximum value of F and x0 the
point where this maximum is attained. Assume, for a contradiction, that δ0 > δ and pick σ
so that

σ2|A|2(x0) =
δ

4
.

Then:

2σ ≤ r0 − r(x0) and
1

2
≤ r0 − r

r0 − r(x0)
≤ 3

2
, ∀x ∈ Bσ(x0)

and
(r0 − r(x0))

2 sup
Bσ(x0)

|A|2 ≤ 4F (x0) =⇒ sup
Bσ(x0)

|A|2 ≤ 4|A|2(x0) = σ−2δ.

Let Σ̃ = ηx0,
σ
4
(Br0) (where ηx,λ(y) = λ−1(y− x) that is a rescaling and a translation) and

let Ã, H̃ be the second fundamental form and the mean curvature of Σ̃. Then

sup
B4

|Ã|2 ≤ σ2

16
sup

Bσ(x0)

|A|2 ≤ δ

16
<

1

16
and |Ã|2(0) = δ

64
. (7)

Note that by Br we now denote the geodesic balls of radius r in Σ̃ centered at the origin. Let
Σ̃0 be the connected component of B1 ∩B2 containing the origin. Then, Σ̃0 has its boundary
contained in ∂B1. The proof of this is a standard argument that for completeness we have
added in the Appendix, see Lemma 5.1. Using the Gauss equation gives

sup
B4

|KΣ̃| = sup
B4

|H̃2 − |Ã|2|
2

≤ 1

2

(
sup
B4

H̃2 + sup
B4

|Ã|2
)

≤ 3

2
sup
B4

|Ã|2 ≤ 3

32

and thus, by the Bishop Volume Comparison Theorem, see for instance [1], this bound implies
that there exists a constant cb such that AreaB4 < cb. Finally,

Area Σ̃0 ≤ AreaB4 < cb. (8)

In what follows, we focus our analysis on Σ̃0. Abusing the notations, we omit the tildes
and set Σ = Σ̃0. Furthermore the letter c will denote an absolute constant and when different
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constants appear in the course of the proof we will keep the same letter c unless the constant
depends on some different parameters. We are going to show that we can apply Lemma 2.5,
with f = |A|2 and α = 1

2
to get an estimate for |A(0)| in terms of the total curvature and

‖H‖W 2,2(Σ).
The generalized Simons’ inequality, with |A| < 1 implies:

∆|A|2 ≥ −2|A|2 − c|∇H|2 − 2hij∇i∇jH.

Hence the inequality in the assumptions of Lemma 2.5 is satisfied with λ1 = 2 and h =
c|∇H|2 + 2hij∇i∇jH . Furthermore we have

sup
Σ

|H|+ λ1/2 ≤
√
2 sup

Σ
|A|+ 1 ≤

√
2 + 1.

We are now going to find c2 and c3 such that

1

2
r−3

∫

Br∩Σ
(r2 − |x|2)(c|∇H|2 + 2hij∇i∇jH) ≤ c2r

− 1
2 + c3, for any r ∈ (0, 1].

Integrating by parts we obtain

1

2
r−3

∫

Br∩Σ
(r2 − |x|2)2hij∇i∇jH = −r−3

∫

Br∩Σ
(r2 − |x|2)∇ihij∇jH

−r−3

∫

Br∩Σ
∇i(r

2 − |x|2)2hij∇jH.

(9)

Using Codazzi equations we can estimate the first term on the RHS of (9) as follows:

r−3

∫

Br∩Σ
(r2 − |x|2)∇ihij∇jH ≤r−3

∫

Br∩Σ
(r2 − |x|2)|∇H|2.

We estimate the second term on the RHS of (9), using the fact that supΣ |A| <
√
δ/4, as

follows:

r−3

∫

Br∩Σ
∇i(r

2 − |x|2)2hij∇jH ≤ r−3

∫

Br∩Σ
2|x||A||∇H| ≤ 2r−2

∫

Br∩Σ
|A||∇H|

≤
√
δr−2

∫

Br∩Σ
|∇H| ≤

√
δr−3/2Area (Σ ∩ Br(x))

1/2

(
1

r

∫

Br(x)∩Σ
|∇H|2

)1/2

Since supΣ |H| ≤
√
2, the monotonicity inequality implies that there exists an absolute

constant c such that
r−2Area (Σ ∩Br) ≤ cAreaΣ ≤ ccb.

Thus

1

2
r−3

∫

Br∩Σ
(r2 − |x|2)(c|∇H|2 + 2hij∇i∇jH) ≤

c

(
r−1

∫

Br∩Σ
|∇H|2 + cb

√
δr−

1
2

(
r−1

∫

Br∩Σ
|∇H|2

)1/2)
.

(10)
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Using Remark 2.4, with f = |∇H|2 we have

r−1

∫

Br∩Σ
|∇H|2 ≤ 2

∫

B1∩Σ
|∇H|2 + 1

2

∫

B1∩Σ
|∇|∇H|2| ≤ c

(∫

B1∩Σ
|∇H|2 +

∫

B1∩Σ
|∇2H|2

)
.

Therefore we have shown that for any r ∈ (0, 1]

1

2
r−3

∫

Br∩Σ
(r2 − |x|2)(c|∇H|2 + 2hij∇i∇jH) ≤ c

(
‖H‖W 2,2(Σ) + cbr

− 1
2

√
δ‖H‖

1
2

W 2,2(Σ)

)
.

Applying Lemma 2.5 we obtain

π|A(0)|2 ≤ e
√
2+1

(∫

B1∩Σ
|A|2 + 2c

(
cb
√
δ‖H‖

1
2

W 2,2(Σ) + ‖H‖W 2,2(Σ)

))

≤ e
√
2+1(δε0 + 2cδ(cb

√
ε0 + ε0)) ≤ cδ

√
ε0

(11)

where c is an absolute constant. Thus, we can pick ε0 sufficiently small, so that |A(0)|2 < δ
64
,

which contradicts (7). This finishes the proof of case (i).
Note that in equation (11) we have used the following elementary inequality to estimate

‖H‖W 2,2(Σ). Abusing the notation, let us reintroduce the tildes to denote the surfaces and

quantities obtained after rescaling so that ‖H̃‖W 2,2(Σ̃0)
= ‖H‖W 2,2(Σ) and Σ̃ = ηx0,

σ
10
(Br0).

Then by the definition of the rescale invariant norms it follows that

‖H̃‖W 2,2(Σ̃0)
≤ ‖H̃‖W 2,2(Σ̃) = ‖H‖W 2,2(Br0 )

≤ δε0. (12)

We now prove case (ii), i.e. when we assume that ‖H‖∗W 1,p(Br0 )
≤ (δε0)

p/2. We note that

the same argument, as in case (i), carries through up to inequality (10). In this case, instead
of using Remark 2.4, we will bound the RHS of (10) using the area bound (8). In particular
we obtain

r−1

∫

Br∩Σ
|∇H|2 ≤ r−1Area(Σ ∩ Br(x))

1−2/p

(∫

Br∩Σ
|∇H|p

)2/p

≤ c1−2/pr1−4/p‖H‖∗W 1,p(Σ)
2/p ≤ c‖H‖∗W 1,p(Σ)

2/pr−2/p

where c is an absolute constant (independent of p) and the last inequality is true since r ≤ 1
and p > 2. Using this estimate in (10) we get

1

2
r−3

∫

Br∩Σ
(r2 − |x|2)(c|∇H|2 + 2hij∇i∇jH) ≤

c
(
‖H‖∗W 1,p(Σ)

2/pr−2/p +
√
δr−

1
2 r

1
2
− 2

p ‖H‖∗W 1,p(Σ)
1/p
)
≤

cr−2/p
(
‖H‖∗W 1,p(Σ)

2/p +
√
δ‖H‖∗W 1,p(Σ)

1/p
)
.

Applying Lemma 2.5 in this case with α = 2/p, we therefore obtain

7



π|A(0)|2 ≤ e
√
2+1

(∫

B1∩Σ
|A|2 + c

p

p− 2

(
‖H‖∗W 1,p(Σ)

2/p +
√
δ‖H‖∗W 1,p(Σ)

1/p
))

≤ e
√
2+1

(
δε0 + c

p

p− 2
δ(
√
ε0 + ε0)

)
≤ cδ

√
ε0

(
1 +

p

p− 2

)

Thus, we can pick ε0 sufficiently small, depending on p, so that |A(0)|2 < δ
64
, which

contradicts (7). This finishes the proof of Theorem 2.1. Note that to estimate ‖H‖∗W 1,p(Σ) we

have also used the same argument as in equation (12).
�

Remark 2.6 The hypotheses needed to generalize the Choi-Schoen curvature estimate are

optimal. For some α ∈ (0, 1/2) and ε ∈ (0, 1), let

uε(x, y) = xy
logα(x2 + y2 + ε)

logα ε

over the disk centered at the origin of radius 1/2. Let {εi} ⊂ (0, 1) be a sequence such that

εi → 0. Then the graphs of the functions uεi provide a sequence of surfaces Σεi for which

‖A‖L2(Σεi
) → 0 , ‖H‖W 1,2(Σεi

) → 0

but

|AΣεi
|(0) → 1.

Note that this example shows that the hypotheses for Theorem 1.1 are also optimal.

3 Colding-Minicozzi curvature estimate generalized

In this section we prove Theorem 1.1. The idea of the proof is essentially the one in [5] except
that we need to keep track of the mean curvature and use the more general results proved in
Section 2.

Lemma 3.1 Given C and p ≥ 2, there exists ε1 = ε1(p, C) > 0 such that the following holds.

Let Σ be a surface embedded in R
3 containing the origin and such that InjΣ(0) ≥ 9s. If

∫

B9s

|A|2 ≤ C,

∫

B9s\Bs

|A|2 ≤ ε1,

∫

B9s

|H|2 ≤ ε1

and either

i. ‖H‖∗W 2,2(B9s)
≤ ε1, if p = 2, or

ii. ‖H‖∗W 1,p(B9s)
≤ ε

p/2
1 , if p > 2,

then

sup
Bs

|A|2 ≤ s−2.

8



Proof. In order to prove the lemma, we are going to show that if ε1 is sufficiently small
(depending on p and C) then ∫

Bs

|A|2 ≤ ε0

and either

i. ‖H‖∗W 2,2(Bs)
≤ ε0, if p = 2, or

ii. ‖H‖∗W 1,p(B9s)
≤ ε

p/2
0 , if p > 2,

where ε0 = ε0(p) is such that the conclusion of Theorem 2.1 holds. Consequently, applying
Theorem 2.1 proves the lemma.

Note first that (i) or (ii) are automatically true by the hypotheses, as long as ε1 ≤ ε0 and
therefore we only need to show the estimate for

∫
Bs

|A|2.
By Theorem 2.1, for ε1 sufficiently small

sup
B8s\B2s

|A|2 ≤ C2
1ε1s

−2 (13)

where C1 =
1√
ε0

is fixed and ε0 is as above.

Since InjΣ(0) ≥ 9s, using Gauss-Bonnet yields

Length(∂B2s)− 4πs = −
∫ 2s

0

∫

Bρ

KΣ,

and thus we have

Length(∂B2s) ≤ 4πs+ s

∫

B2s

(|A|2 + |H|2) ≤ (4π + C)s+ s

∫

B2s

|H|2.

Therefore

diam(B8s \ B2s) ≤ 6s+
4π + C + 1

2
s+ 6s = (13 + 2π + C/2)s

provided that ε1 ≤ 1. Let x, x′ ∈ B8s \ B2s and let γ = γ(t) be a path between them
parametrized by arclength so that γ ⊂ B8s \ B2s and t0 = Length γ ≤ diam(B8s \ B2s). Then,
by letting n(x) denote the normal of Σ at the point x, we have

distS2(n(x′), n(x)) =

∫ t0

0

d

dt
distS2(n(γ(t)), n(x)) ≤

∫ t0

0

|∇ distS2(n(γ(t)), n(x))|

≤
∫ t0

0

|A(γ(t))| ≤ C1ε
1/2
1 (13 + 2π + C/2)

and thus
sup

x,x′∈B8s\B2s

distS2(n(x′), n(x)) ≤ C1ε
1/2
1 (13 + 2π + C/2).

By rotating R
3 so that n(p) = e3 for some p ∈ B8s \ B2s we then get

sup
B8s\B2s

|∇x3| ≤ C1ε
1/2
1 (13 + 2π + C/2) (14)

9



since for x = (x1, x2, x3)

|∇x3| = | projTxΣ(Dx3)| = | projTxΣ(e3)| = |n(x)− e3| = |n(x)− n(p)|.

Given y ∈ ∂B2s, let γy be the outward normal geodesic from y to ∂B8s parametrized by
arclength on [0, 6s]. Then, (13) implies that for ε1 small enough, |γy(6s)− γy(0)| > (5 + 1

2
)s

(see also Lemma 5.1) which in turn implies that

|Π(γy(6s))− Π(γy(0))| > 5s

where Π denotes the projection onto the (x1, x2) plane. This last implication follows from
(14), since

|x3(γy(6s))− x3(γy(0))| ≤
∫

γy |[0,6s]
|∇x3| ≤ 6sC1ε

1/2
1 (13 + 2π + C/2).

Let us denote by Cr the vertical cylinder of radius r, Cr := {x2
1 + x2

2 = r2}. The previous
discussion implies that the intersection between C3s and the boundary of the annulus B8s\B2s

is empty. More precisely, ∂B2s is contained inside the cylinder while ∂B8s is outside. From
this observation it follows that C3s∩{B8s \B2s} consists of a collection of closed curves. Since
B8s \B2s is locally graphical over {x3 = 0} and the surface is embedded, each curve is a graph
over ∂D3s, where Dr is the disk of radius r centered at the origin in the {x3 = 0} plane. For
each y ∈ ∂B2s let ty be the minimum t > 2s such that γy(ty) ∈ C3s and let Γ be the curve in
C3s ∩ {B8s \ B2s} defined by

Γ := {γy(ty) | y ∈ ∂B2s}.
Since InjΣ(0) ≥ 9s, such Γ is a deformation retract of ∂B2s and thus it is the boundary of a
disk ∆ containing Bs.

Using Gauss-Bonnet and Gauss equation,
∫

Γ

kg − 2π =

∫

∆

KΣ =
1

2

∫

∆

(H2 − |A|2)

and thus ∫

Bs

|A|2 ≤
∫

∆

|A|2 ≤
∫

∆

H2 + 2

∫

Γ

kg − 4π. (15)

For Γ we have that

sup
Γ

|A| ≤ C1ε
1
2
1 s

−1 and sup
Γ

|∇x3| ≤ C1ε
1/2
1 (12 + 2π + C/2).

Thus applying a standard argument, that is Lemma 5.2 in the Appendix with ε = C1ε
1/2
1 (12+

2π + C/2), we obtain that

Length(Γ) ≤ 6πs(1 + 2ε) and |kg| < (3s)−1(1 + cε).

where c is an absolute constant, and
∫

Γ

kg − 2π ≤ Length(Γ) sup
Γ

|kg| − 2π ≤ 2π(1 + 2ε)(1 + cε)− 2π

≤ 6π(1 + c)ε = 6π(1 + c)C1ε
1/2
1 (12 + 2π + C/2).

(16)
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Using
∫
∆
H2 ≤ ε1, together with equations (15) and (16), if ε1 is sufficiently small we obtain

that ∫

Bs

|A|2 ≤ ε0

and applying the Choi-Schoen estimate generalized finishes the proof of the lemma.

�

Using Lemma 3.1 the proof of the following variation of the Theorem 1.1 is rather straight-
forward. Theorem 3.2 below is in fact Theorem 1.1 with the additional assumption that the
L2 norm of the mean curvature is small.

Theorem 3.2 Given C1 and p ≥ 2, there exist C2 = C2(p, C1) ≥ 0 and εp = εp(C1) > 0
such that the following holds. Let Σ be a surface embedded in R

3 containing the origin with

InjΣ(0) ≥ s > 0, ∫

Bs

|A|2 ≤ C1 ,

∫

Bs

|H|2 ≤ εp

and either

i. ‖H‖∗W 2,2(Br0 )
≤ ε2, if p = 2, or

ii. ‖H‖∗W 1,p(Br0 )
≤ εp, if p > 2,

then

|A|2(0) ≤ C2s
−2.

Proof. Let ε1 = ε1(p, C1) be such that the conclusion of Lemma 3.1 holds with C = C1 and
let N be the least integer greater than C1

ε1
. Without loss of generality, let us assume ε1 < 1.

We are going to show that if εp < ε
p/2
1 < ε1, then C2 can be taken to be 92N .

There exists 1 ≤ j ≤ N such that
∫

B
91−js

\B
9−j s

|A|2 ≤ C1

N
≤ ε1.

Moreover ∫

B
91−j s

|H|2 ≤
∫

Bs

|H|2 ≤ εp < ε1

and, in case p = 2,
‖H‖∗W 2,2(B

91−j s
) ≤ ‖H‖∗W 2,2(Bs)

≤ ε2 < ε1

or, in case p > 2,
‖H‖∗W 1,p(B

91−j s
) ≤ ‖H‖∗W 1,p(Bs) ≤ εp < ε

p/2
1 .

Thus, applying Lemma 3.1 to B9 s

9j
, we obtain

|A|2(0) ≤
( s

9j

)−2

≤ 92Ns−2.

�

Note that in case (i) of Theorem 3.2 the assumption
∫
Bs

|H|2 ≤ ε2 becomes redundant.
Thus with Theorem 3.2 we have proved case (i) of Theorem 1.1. In order to prove case (ii)
of Theorem 1.1, we need to remove the extra assumption on the L2 norm of H . This will be
done in the next section.
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4 Bounded Lp norm of the mean curvature

In this section we show that when the rescale invariant Lp norm of the mean curvature is
sufficiently small, p ≥ 2, a bound on the total curvature of an intrinsic ball provides a bound
for its area, and viceversa (see for instance [4] for this being done in the minimal case). As
a consequence the Lp norm of the mean curvature when p > 2, bounds the L2 norm of the
mean curvature and this hypothesis can be removed from Theorem 3.2 proving Theorem 1.1.
We begin by showing the relation between total curvature and area in the p = 2 case.

An easy computation using Gauss-Bonnet Theorem (see for instance [4]) gives the follow-
ing lemma.

Lemma 4.1 If Bs ⊂ Σ is disjoint from the cut locus of 0, then

AreaBs − πs2 = −
∫ s

0

∫ t

0

∫

Bρ

KΣ.

Since −2KΣ = |A|2 − |H|2, the above lemma implies

AreaBs ≤ πs2 +
1

2
s2
∫

Bs

|A|2 + 1

2
s2
∫

Bs

|H|2. (17)

Furthermore

−
∫

Bs

KΣ
(s− r)2

2
= −

∫ s

0

∫ t

0

∫

Bρ

KΣ = AreaBs − πs2

where the first inequality follows by the coarea formula and integration by parts twice (cf.
Corollary 1.7 in [4]) and thus

s2

16

∫

B s
2

|A|2 ≤
∫

Bs

|A|2
2

(s− r)2

2
= AreaBs − πs2 +

∫

Bs

H2

2

(s− r)2

2

= AreaBs − πs2 +

∫ s

0

∫ t

0

∫

Bρ

H2

2
≤ AreaBs − πs2 +

s2

2

∫

Bs

H2.

(18)

Hence (17) and (18) show that when
∫
Bs

H2 is bounded, a bound on the total curvature
provides a bound on the area and viceversa.

In what follows we show that if sp−2
∫
Bs

|H|p is sufficiently small for some p > 2 and either

we have a bound on the total curvature or a bound on the area, then the L2 norm of H is
also small.

To see this let ε be such that
(
sp−2

∫
Bs

|H|p
)1/p

≤ ε. First notice that by the monotonicity

formula (see Theorem 17.6 and Remark 17.9 in [11]) we have that

AreaBs ≥ (1− cε)πs2

where c is a constant that depends only on p.

12



Let q be such that 1/q + 2/p = 1 then:

∫

Bs

H2 ≤
(∫

Bs

|H|p
)2/p

AreaBs
1/q ≤

(∫

Bs

Hp

)2/p

AreaBs

(
(1− cε)πs2

)−2/p

≤((1− cε)π)−2/pAreaBs

(
sp−2

∫

Bs

|H|p
)2/p

s
2(2−p)

p s−4/p.

Hence
s2

2

∫

Bs

H2 ≤ ((1− cε)π)−2/pε2AreaBs (19)

and using this estimate in (17) we obtain

AreaBs ≤ (1− ((1− cε)π)−2/pε2)−1

(
πs2 +

1

2
s2
∫

Bs

|A|2
)

(20)

provided that ((1 − cε)π)−2/pε2 < 1. If ε is sufficiently small, say ((1 − cε)π)−2/pε2 < 1
2
,

replacing the area term in (19) with equation (20) we obtain

∫

Bs

H2 ≤ 2((1− cε)π)−2/p

(
2π +

∫

Bs

|A|2
)
ε2. (21)

In sum, estimate (21) shows that if
∫
Bs

|A|2 is bounded, then if the Lp norm of H , when

p > 2, is small, so is the L2 norm of H . This estimate, together with Theorem 3.2 proves
Theorem 1.1.

Finally, using estimate (20) in (18), we have

s2

16

∫

B s
2

|A|2 ≤ (1 + ((1− cε)π)−2/pε2) AreaBs − πs2.

This implies that Theorem 1.1 still holds if instead of a bound on the total curvature, we
assume a bound on the area and thus we have the following corollary of Theorem 1.1:

Corollary 4.2 Given C1 and p ≥ 2, there exist C2 = C2(p, C1) ≥ 0 and εp = εp(C1) > 0
such that the following holds. Let Σ be a surface embedded in R

3 containing the origin with

InjΣ(0) ≥ s > 0,

min{Area(Bs),

∫

Bs

|A|2} ≤ C1

and either

i. ‖H‖∗W 2,2(Br0 )
≤ ε2, if p = 2, or

ii. ‖H‖∗W 1,p(Br0 )
≤ εp, if p > 2,

then

|A|2(0) ≤ C2s
−2.
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5 Appendix

In this Appendix we review some standard geometric facts about surfaces with bounded
second fundamental form that are needed in the paper.

Lemma 5.1 Let Σ be a surface embedded in R
3, p, q ∈ Σ and γ : [0, λ] → Σ a geodesic,

parametrized by arclength, such that γ(0) = p and γ(λ) = q. If for some α ≥ 0,

sup
t∈[0,λ]

|A(γ(t))| ≤ α

λ

then |q − p| ≥ λ(1− α).

Proof. Let k denote the curvature of γ in R
3. Then, since γ is a geodesic, for any t ∈ [0, λ]

|k(t)| ≤ |A(γ(t))| ≤ α

λ
.

Since ∣∣∣∣
d

dt
〈γ′(t), γ′(0)〉

∣∣∣∣ ≤ |k|

we have for all t0 ∈ [0, λ]

〈γ′(t0), γ
′(0)〉 − 1 =

∫ t0

0

d

dt
〈γ′(t), γ′(0)〉 =⇒

〈γ′(t0), γ
′(0)〉 ≥ 1−

∫ t0

0

∣∣∣∣
d

dt
〈γ′(t), γ′(0)〉

∣∣∣∣ ≥ 1−
∫ t0

0

|k(γ(t))| ≥ 1− α
t0
λ

≥ (1− α).

Also

〈γ(λ), γ′(0)〉 − 〈γ(0), γ′(0)〉 =
∫ λ

0

d

dt
〈γ(t), γ′(0)〉 =⇒

〈q − p, γ′(0)〉 = 〈γ(λ)− γ(0), γ′(0)〉 ≥ λ(1− α).

This implies that |q − p| ≥ λ(1− α).

�

Lemma 5.2 There exist c > 0 and ε > 0 such that the following holds. Let Σ be a surface

in R
3 that is graphical over some domain in the {x3 = 0} plane containing ∂Ds, for some

s > 0, and let Γ be Σ ∩ Cs. If for a certain 0 ≤ ε ≤ ε,

sup
Γ

|A| ≤ εs−1 and sup
Γ

|∇x3| ≤ ε (22)

then

Length Γ ≤ 2πs(1 + 2ε) and |kg| < s−1(1 + cε).
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Proof. Let us consider the following parameterization for Γ,

Γ = r(t) := {(s cos(t/s), s sin(t/s), x3(t)) | t ∈ [0, 2πs)}

Because of the second estimate in (22)

|ṙ · e3|
|ṙ| ≤ projTrM(e3) ≤ ε

and since ṙ(t) = (− sin(t/s), cos(t/s), ẋ3(t)) we get

|ẋ3|√
1 + |ẋ3|2

≤ ε =⇒ |ẋ3|2 ≤
ε2

1− ε2
=⇒ |ẋ3| ≤ 2ε (23)

for ε <
√
3/2. Thus for L = Length Γ we have the following:

2πs ≤ L :=

∫ 2πs

0

√
1 + |ẋ3|2 ≤ 2πs(1 + 2ε).

Moreover
r̈(t) = (−s−1 cos(t/s),−s−1 sin(t/s), ẍ3(t))

and the curvature vector k = (k1, k2, k3) is given by the formula

k = r̈
1

1 + ẋ2
3

+ ṙ
ẋ3ẍ3

(1 + ẋ2
3)

2
.

Let n = (n1, n2, n3) be the unit normal of Σ, then by the second estimate in (22) we have
that

max{|n1|, |n2|} ≤ ε , n3 > 1− ε.

Then
(1− ε)|k3| ≤ |n3k3| ≤ |n · k|+ |(n1, n2, 0) · k| ≤ |A(r)|+ ε|(k1, k2, 0)|. (24)

Note that

k3 =
ẍ3

1 + ẋ2
3

+
ẍ3ẋ

2
3

(1 + ẋ2
3)

2
=⇒ |k3| ≥

1

2
|ẍ3| (25)

because of (23) and for ε sufficiently small ((1 + ε2)−2 ≥ 1/2).

Let α = 1
1+ẋ2

3(t)
and β = ẋ3(t)ẍ3(t)

(1+ẋ2
3(t))

2

(k1, k2, 0) = (−α

s
cos(t/s)− β sin(t/s),−α

s
sin(t/s) + β cos(t/s), 0) (26)

and

|(k1, k2, 0)| ≤
(
α2

s2
+ β2

)1/2

≤
(
s−2 + 4ε2ẍ2

3

)1/2 ≤ s−1 + 2ε|ẍ3|.

Therefore using equations (22), (24), (25) and (26) we have that

1− ε

2
|ẍ3| ≤ 2εs−1 + 2ε2|ẍ3| =⇒ |ẍ3| ≤ 16εs−1

15



for ε sufficiently small (ε < 1/4).
Therefore there exists an absolute constant c such that for the geodesic curvature we have

|kg| ≤ |~k| ≤ |r̈|+ cε2s−1|ṙ| ≤
√

s−2(1 + cε2) + cε2s−1
√
1 + cε2 ≤ s−1(1 + cε)

if ε is sufficiently small.

�
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