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We prove by explicit computation that 6-point matrix elements of D4 R4 and D6 R4 in N = 8 supergravity
have non-vanishing single-soft scalar limits, and therefore these operators violate the continuous E7(7)

symmetry. The soft limits precisely match automorphism constraints. Together with previous results
for R4, this provides a direct proof that no E7(7)-invariant candidate counterterm exists below 7-loop
order. At 7-loops, we characterize the infinite tower of independent supersymmetric operators D4 R6,
R8, ϕ2 R8, . . . with n > 4 fields and prove that they all violate E7(7) symmetry. This means that the 4-
graviton amplitude determines whether or not the theory is finite at 7-loop order. We show that the
corresponding candidate counterterm D8 R4 has a non-linear supersymmetrization such that its single-
and double-soft scalar limits are compatible with E7(7) up to and including 6-points. At loop orders 7,8,9
we provide an exhaustive account of all independent candidate counterterms with up to 16,14,12 fields,
respectively, together with their potential single-soft scalar limits.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

N = 8 supergravity has maximal supersymmetry, and the clas-
sical theory has global continuous E7(7) symmetry which is spon-
taneously broken to SU(8). Explicit calculations have demonstrated
that the 4-graviton amplitude in N = 8 supergravity is finite up to
4-loop order [1]. Together with string- and superspace-based ob-
servations [2,3], this spurred a wave of renewed interest in the
question of whether the loop computations based on generalized
unitarity [4] could yield a UV finite result to all orders1 — or at
which loop order the first divergence might occur.

In gravity, logarithmic UV divergences in on-shell L-loop am-
plitudes are associated with local counterterm operators of mass
dimension δ = 2L + 2 composed of fields from the classical the-
ory. The counterterms must respect the non-anomalous symme-
tries of the theory. It was shown in [7–9] that below 7-loop order,
there are only 3 independent operators consistent with linearized
N = 8 supersymmetry and global SU(8) R-symmetry [10]. These

* Corresponding author.
E-mail address: mkiermai@princeton.edu (M. Kiermaier).

1 This question is well defined whether or not N = 8 supergravity is sensible as
a full quantum theory [5,6].
0370-2693/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.physletb.2010.09.069
are the 3-, 5- and 6-loop supersymmetric candidate counterterms
R4, D4 R4, and D6 R4.

The perturbative S-matrix of N = 8 supergravity should re-
spect E7(7) symmetry [11], so one must subject R4, D4 R4, and
D6 R4 to this test. A necessary condition for a counterterm to be
E7(7)-compatible, is that its matrix elements vanish in the ‘single-
soft limit’ pμ → 0 for each external scalar line [12–14]. The scalars
of N = 8 supergravity are the ‘pions’ of this soft-pion theorem
since they are the 70 Goldstone bosons of the spontaneously bro-
ken generators of E7(7) . It was recently proven [15] that the soft
scalar property fails for 6-point matrix elements of the operator
R4 (see also [16]). Thus E7(7) excludes R4 and explains the finite
3-loop result found in [1].

In the present Letter we show first that the 5- and 6-loop op-
erators D4 R4 and D6 R4 are incompatible with E7(7) symmetry be-
cause their 6-point matrix elements have non-vanishing single-soft
scalar limits. Previous string theory [17] and superspace [18] argu-
ments suggested this E7(7)-violation. Our results mean that no UV
divergences occur in N = 8 supergravity below the 7-loop level.

We then survey the candidate counterterms for loop orders
L = 7,8,9 using two new algorithmic methods: one program
counts monomials in the fields of N = 8 supergravity in represen-
tations of the superalgebra SU(2,2|8), the other applies Gröbner
basis methods to construct their explicit local matrix elements. Our
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analysis shows that at each loop level 7, 8, 9, there is an infinite
tower of independent n-point supersymmetric counterterms with
n � 4. At 7-loop order we find that none of the n-field operators
with n > 4 are E7(7)-compatible. This leaves D8 R4 as the only can-
didate counterterm at L = 7. We show that its matrix elements
are E7(7)-compatible at least up to 6-points. We observe that it
requires remarkable cancellations for E7(7) to be satisfied to all or-
ders for any L � 7 candidate counterterm.

2. E7(7)-violation of D4 R4 and D6 R4

To investigate E7(7) we study the soft scalar limit of the 6-point
NMHV matrix elements 〈++−−ϕϕ̄〉D2k R4 . The external states are
two pairs of opposite helicity gravitons and two conjugate scalars.
These matrix elements contain local terms from nth order field
monomials in the non-linear SUSY completion of D2k R4 as well as
non-local pole diagrams in which one or more lines of the operator
are off-shell and communicate to tree vertices from the classical
Lagrangian. It is practically impossible to calculate these matrix
elements with either Feynman rules (because the non-linear su-
persymmetrizations of D2k R4 are unknown) or recursion relations
(because the matrix elements do not fall off under standard com-
plex deformations of their external momenta). Instead we use the
α′-expansion of the closed string tree amplitude to obtain the de-
sired matrix elements.

At tree level, the closed string effective action takes the form

Seff = SSG − 2α′3ζ(3)e−6φ R4 − ζ(5)α′5e−10φ D4 R4

+ 2

3
α′6ζ(3)2e−12φ D6 R4 − 1

2
α′7ζ(7)e−14φ D8 R4

+ · · · . (1)

All closed string amplitudes in this work are obtained via KLT [19]
from the open string amplitudes of [20]. The amplitudes confirm
the structure and coefficients of (1).

Couplings of the dilaton φ break the SU(8)-symmetry of the
supergravity theory to SU(4) × SU(4) when α′ > 0, and thus
the supersymmetric operators of Seff are not the desired SU(8)-
invariant operators. As explained in [15], an SU(8)-averaging
procedure extracts the SU(8) singlet contribution from the
string matrix elements. Specifically, the SU(8) average of the
〈++−−ϕϕ̄〉e−(2k+6)φ D2k R4 matrix elements from string theory is

〈++−−ϕϕ̄〉avg = 1

35

〈++−−ϕ1234ϕ5678〉

− 16

35

〈++−−ϕ123|5ϕ4|678〉

+ 18

35

〈++−−ϕ12|56ϕ34|78〉. (2)

The 3 terms on the right side correspond to the 3 inequivalent
ways to construct scalars from particles of the N = 4 gauge theory,
namely from gluons, gluinos, and N = 4 scalars. There are 35 dis-
tinct embeddings of SU(4) × SU(4) in SU(8). Averaging is sufficient
to give the matrix elements of the N = 8 field theory operator R4,
as done in [15], and we extend it here to D4 R4. For D6 R4 a further
correction is necessary and is discussed below.

Before proceeding, we note that the operators in the ac-
tion (1) are normalized such that their 4-point matrix elements
are 〈++−−〉 = g(s, t, u)[12]4〈34〉4 with

gR4 = 1, gD4 R4 = s2 + t2 + u2,

gD6 R4 = s3 + t3 + u3, gD8 R4 = (
s2 + t2 + u2

)2
. (3)
2.1. 5-loop counterterm D4 R4

At order α′ 5, the SU(8)-average (2) of the string theory am-
plitudes directly gives the matrix elements of the unique SU(8)-
invariant supersymmetrization of D4 R4. The result is a compli-
cated non-local expression, but its single-soft scalar limit is very
simple and local, viz.

lim
p6→0

〈++−−ϕϕ̄〉D4 R4 = −6

7
[12]4〈34〉4

∑
i< j

s2
i j . (4)

Since this limit is non-vanishing, the operator D4 R4 is incompati-
ble with continuous E7(7) symmetry.

2.2. 6-loop counterterm D6 R4

The single-soft scalar limit of the SU(8)-singlet part of the
closed string matrix element at order α′ 6, obtained by SU(8)-
averaging, is

lim
p6→0

〈++−−ϕϕ̄〉(e−12φ D6 R4)avg
= −33

35
[12]4〈34〉4

∑
i< j

s3
i j . (5)

It is important to realize that at order α′ 6, the 6-point NMHV
closed string amplitudes receive contributions from diagrams in-
volving one vertex from e−12φ D6 R4 (together with vertices from
the supergravity Lagrangian) and from pole diagrams with two 4-
point vertices of e−6φ R4 (which coincides with R4 at 4-points).
Since R4 is not present in N = 8 supergravity, its contributions
must be removed to extract the matrix elements of the supergrav-
ity operator D6 R4. The removal process must be supersymmetric.

We first compute the R4–R4 pole contributions to the 6-
graviton NMHV matrix element 〈−−−+++〉 as follows. This am-
plitude has dimension 14. Factorization at the pole determines the
simple form

〈12〉4[45]4〈3|P126|6]4/P 2
126 + 8 permutations, (6)

up to a local polynomial. The 9 terms correspond to the 9 dis-
tinct 3-particle pole diagrams. The result (6) is then checked by
computation of the Feynman diagrams from the R4 vertex [21].
As the non-linear supersymmetrization of R4 may contribute ad-
ditional local terms, we also consider adding the most general
gauge-invariant and Bose-symmetric polynomial of dimension 14
that can contribute to 〈−−−+++〉, namely(〈12〉〈23〉〈31〉[45][56][64])2

P 2
123. (7)

To incorporate SUSY, we separately show that there is a basis
for SU(8)-invariant 6-particle NMHV superamplitudes (an alterna-
tive to the basis in [22]) consisting of 〈−−−+++〉 and 8 distinct
permutations of the states. In this basis we write a superamplitude
ansatz as the sum of the pole amplitude (6) plus a multiple of (7).
We then impose full S6 permutation symmetry on the ansatz. This
fixes the coefficient of the polynomial (7) to vanish and determines
the SUSY completion of the desired pole diagram uniquely!

Finally we project out the scalar-graviton matrix element from
this superamplitude and take its single-soft scalar limit to find

lim
p6→0

〈++−−ϕϕ̄〉(R4)2 = − 1

70
[12]4〈34〉4

∑
i< j

s3
i j . (8)

It is this contribution that we need to subtract from (5) to ob-
tain the single-soft scalar limits of the unique independent D6 R4

operator in N = 8 supergravity. Taking the relative normalization
[−2α′ 3ζ(3)]2/[ 2

3 α′ 6ζ(3)2] = 6 of operators in the string effective
action (1) into account, we obtain
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lim
p6→0

〈++−−ϕϕ̄〉D6 R4 = −30

35
[12]4〈34〉4

∑
i< j

s3
i j . (9)

This non-vanishing result shows that the operator D6 R4 is also
incompatible with continuous E7(7) symmetry.

R4, D4 R4 and D6 R4 are the only local supersymmetric and
SU(8)-symmetric operators for loop levels L � 6 [7–9]. Hence
N = 8 supergravity has no potential counterterms that satisfy the
continuous E7(7) symmetry for L � 6. We stress that string theory
is used as a tool to extract SU(8)-invariant matrix elements that
must agree with the matrix elements of the N = 8 supergravity
operators R4, D4 R4 and D6 R4 because each of these operators is
unique. No remnant of string-specific dynamics remains in the fi-
nal results.

2.3. Matching to automorphism analysis

The non-vanishing single-soft scalar limits found above have
their origin in local 6-point interactions of the schematic form
ϕ2 D2k R4 which appear in the non-linear completion of D2k R4. Let
us encode this completion as f (ϕ)D2k R4, with

f (ϕ) = 1 − a
[
ϕ1234ϕ5678 + 34 inequiv. perms

] + · · · . (10)

The “. . . ” indicate higher order terms. The constant a depends on
the operator; for example aR4 = 6

5 for R4 [15]. We can determine
a for D4 R4 by taking a further single-soft limit p5 → 0 on (4) and
comparing the resulting s, t, u-polynomial with the 4-point nor-
malization of (3). The result is aD4 R4 = 12

7 .
Ref. [17] used supersymmetry and duality considerations in d

dimensions to constrain the moduli dependent functions f (ϕ) of
the BPS operators R4, D4 R4 and D6 R4. Specifically, for R4 and
D4 R4 in 4 dimensions, they found that f (ϕ) should satisfy the
Laplace equation

(� + 42) f R4(ϕ) = 0, (� + 60) f D4 R4(ϕ) = 0. (11)

Here, � is the Laplacian on E7(7)/SU(8); in terms of the scalars
ϕabcd of N = 8 supergravity, its leading terms are

� =
[

∂

∂ϕ1234

∂

∂ϕ5678
+ 34 inequiv. perms

]
+ · · · . (12)

It is easy to see that the function (10) with the above values of a
precisely satisfy the Laplace equations (11). This is a consistency
check on our result for the single-soft scalar limits.

Let us now consider the function f (ϕ) for D6 R4. As explained,
the quadratic order of R4 interferes with D6 R4 and it is therefore
natural that the corresponding Laplace equation in [17] contains
an inhomogeneous term that reflects the contribution from R4–R4.
Adding a general linear combination λR4 f R4 R4 + λD6 R4 f D6 R4 D6 R4

to the effective action constrains the moduli-dependent functions
to satisfy [17]

(� + 60) f D6 R4(ϕ) = − λ2
R4

λD6 R4

[
f R4(ϕ)

]2
. (13)

From (5) and (9), we can reconstruct the coefficient a in (10) of
the functions associated with the SU(8)-averaged string-theory op-
erator (e−12φ D6 R4)avg and with the supergravity operator D6 R4.
We find

a(e−12φ D6 R4)avg
= 66

35
, aD6 R4 = 60

35
. (14)

For (e−12φ D6 R4)avg, the couplings λ in (13) must take their string
theory values λR4 = −2α′ 3ζ(3) and λD6 R4 = 2

3 α′ 6ζ(3)2. The N = 8
operator D6 R4, on the other hand, must satisfy (13) with λR4 = 0
because the operator R4 does not appear in the action of N = 8
supergravity. Indeed, our results for f for both operators satisfy
the Laplace equation with the expected choice of λ’s.

3. Construction and counting of counterterms

We now discuss the techniques used to classify and construct
local supersymmetric operators, especially those needed for L � 7.
We are interested in SU(8)-invariant operators, which are candi-
date counterterms, and in operators transforming in the 70 of
SU(8). The latter are candidate operators for local single-soft scalar
limits (SSL’s) of the matrix elements of singlet counterterm op-
erators. First we use representation theory of the superalgebra
SU(2,2|8) to determine the spectrum and multiplicity of these op-
erators. The spectrum is classified by the number n of external
fields, the scale dimension, and the order k of the NkMHV type.
Then we construct matrix elements of several operators explicitly
using algorithms which incorporate Gröbner basis techniques.

3.1. Spectrum of local operators

Counterterms of N = 8 supergravity are supersymmetric, SU(8)-
invariant, Lorentz scalar local operators C integrated over space-
time. These local operators involve n-fold products of the funda-
mental fields and their derivatives. We restrict to diffeomorphism–
covariant combinations of the fields, such as the Riemann tensor R .
In enumerating all local operators of a given order n (up to co-
variance), the equations of motion set the Ricci tensor equal to
a combination of fields of quadratic order (and higher), which is
automatically included at order > n in the enumeration. The re-
maining 10 components of the on-shell Riemann tensor group
into fields with Lorentz spin (2,0) and (0,2). The collection of
all on-shell supergravity fields span a representation of the N = 8
super-Poincaré algebra as well as an ultrashort representation of
N = 8 superconformal symmetry (see [9] for a recent discussion).
Using the SU(2,2|8) Dynkin diagram

�
SU(2)L

–⊗–�–�–�–�–�–�–�︸ ︷︷ ︸
SU(8)

–⊗–�
SU(2)R

, (15)

the Dynkin labels of this lowest-weight representation read [0,0,

0001000,0,0], where the SU(8) labels [0001000] describe a 70 and
the SU(2)L × SU(2)R Lorentz spins indicate a scalar.

The graded symmetric tensor product of n copies of the above
multiplet provide all local operators with n fields. We are inter-
ested in supersymmetric operators: there is typically one such
operator C in each irrep of the tensor product. For long super-
multiplets it is the unique top component, obtained by acting with
SUSY generators Q 16 Q̃ 16 on the lowest-weight component C0. (In
superspace approaches, this is equivalent to the full superspace
measure

∫
d32θ .) For short or BPS supermultiplets fewer supersym-

metries are needed to get from C0 to the top component(s). Hence
it is sufficient to enumerate the lowest superconformal weights C0.
Its superconformal transformation properties determine the spin,
SU(8) representation as well as loop and NkMHV level.

More concretely, Dynkin labels translate to scalar local opera-
tors as follows (assume q � p)

[0, p,0000000,q,0] → D3p−q−nϕn+p−q Rq−p (singlet),

[0, p,0001000,q,0] → D3p−q−n+1ϕn+p−q Rq−p (70). (16)

Note that we display only prototypical terms, mixture with other
fields is implied: e.g. D4ϕ2 	 R R̄ . (Here we distinguish between
the chiral and anti-chiral components of the Riemann tensor.) To
get from C0 to the supersymmetric C in long multiplets, apply
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Table 1
Supersymmetric SU(8)-singlet L-loop counterterms and the SU(8) 70 operators which describe their potential single-soft scalar limits. When the singlet operator is in the

NkMHV classification, the single-soft scalar limit operator belongs to the N(k− 1
2 )MHV sector. For L < 7, there are no independent singlet operators with n > 4, but the

non-vanishing single-soft scalar limits arise from the non-linear completions of the 4-point operators D2k R4.
Q 16 Q̃ 16 	 D16. A lowest weight as in (16) then corresponds to
a NkMHV counterterm at L loops with

2k = n + p − q − 4, 2L =
{

14 + p + q − n (singlet),
15 + p + q − n (70).

(17)

Note that locality requires that the exponents in (16) are non-
negative numbers. In particular, 3p − q − n � 0 implies 2L � 6 +
2n − 4k using (17). This bound on the existence of local non-
BPS operators was conjectured in [8] and confirmed very recently
in [9].

As a simple illustration, consider (16) with n = 4 and p = q.
We find C0 = D2p−4ϕ4, and after application of D16 it be-
comes D2p+4 R2 R̄2; this is just the 4-point MHV local counterterm
D2p+4 R4. Locality of C0 requires p � 2, so the first available non-
BPS operator is D8 R4.

In practice, we use a C++ program to enumerate all local oper-
ators with 2L � 30 −n amounting to ∼ 4.8 · 1022 terms.2 These are
decomposed into irreps of SU(2,2|8) by iteratively removing the
lowest weights and their corresponding supermultiplets [23]. Spe-
cial attention needs to be paid to BPS and short supermultiplets
[24]. In total we obtained around 8.8 · 105 types of supermultiplets
along with their multiplicities.3 Finally we extract supermultiplets
with scalar SU(8) singlets and 70’s as top supersymmetry compo-
nents. The results at L � 9 are presented in Table 1.

Our analysis shows that there are unique 1
2 , 1

4 , 1
8 BPS countert-

erms R4, D4 R4 and D6 R4, in agreement with earlier results [7–9].
They correspond to the lowest weights

[0,0,0004000,0,0], [0,0,0200020,0,0], [0,0,2000002,0,0].
(18)

2 The computation took 3.5 hours on a desktop PC.
3 The decomposition took 42 hours.
In the previous section, we showed that their 6-point matrix el-
ements have non-vanishing single-soft limits originating from the
non-linear completion of the operators. The limits correspond to
local 70 BPS operators ϕR4, ϕD4 R4 and ϕD6 R4, which are descen-
dants of the 1

2 , 1
4 , 1

8 BPS superconformal primaries ϕ5 with SU(8)
Dynkin labels [0005000], [0201020], [2001002]. The relationship
between BPS operators are illustrated in Table 1.

3.2. Explicit matrix elements and superamplitudes

The matrix elements of potential counterterms such as D2k Rn

must be polynomials of degree δ = 2(k + n) in angle and square
brackets 〈i j〉, [kl] which satisfy several constraints. If ai and si
denote the number of angle |i〉 and square |i] spinors for each
particle i = 1,2, . . . ,n, then the total number of spinors is fixed
by the dimension of the operator to be

∑
i(ai + si) = 4(k + n). For

each particle i, of helicity hi , there is a helicity weight constraint
ai − si = −2hi . We need polynomials which are independent un-
der the constraints of momentum conservation and the Schouten
identity,

∑
j

〈i j〉[ jk] = 0, 〈i j〉〈kl〉 + 〈 jk〉〈il〉 + 〈ki〉〈 jl〉 = 0, (19)

and a similar Schouten identity for square brackets. These polyno-
mials must satisfy Bose and Fermi symmetries when they contain
identical particles. Finally, the polynomials must satisfy SUSY Ward
identities. This was ensured in [8] by packaging n-point matrix
elements into the manifestly SUSY- and SU(8)-invariant superam-
plitudes of [22].

In [8], Mathematica was used to construct the required inde-
pendent polynomials. More efficient algorithms are needed for the
higher dimension counterterms studied in this Letter. The con-
straints (19) define an ideal in a polynomial ring, and the Gröbner
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basis method [25,26] is well suited to choose a basis in the ideal
and generate independent sets of polynomials in the quotient ring.

Given a (conventional) monomial ordering in the ring, a Gröb-
ner basis is a subset of the ideal such that the leading term of any
element of the ideal is divisible by a leading term of an element of
the subset. Buchberger’s algorithm generates the unique reduced
Gröbner basis in which no monomial in a polynomial of this basis
is divisible by a leading term of the other polynomials in the basis.
For the ideal generated by (19), the reduced Gröbner basis is quite
simple. By the theory of Gröbner bases, the monomials of degree
δ (and specific helicity weights) that are not divisible by any lead-
ing term of the reduced Gröbner basis are a vector space basis of
the quotient ring. This division test concerns only monomials and
is computationally fast. (See Ch. 2, Sec. 7 and Prop. 5.3.1 of [25].)

We used the implementation of the Buchberger’s algorithm in
the algebraic software system Macaulay2 [27] to generate inde-
pendent polynomials which satisfy dimension and helicity weight
requirements and the constraints (19). These polynomials were
then processed by computer programs similar to those used in [8]
which imposed Bose symmetries. Among the resulting polynomials
we select the ones that are independent under the conditions (19).

We have applied the Gröbner basis method to local countert-
erms with n � 6. The results are in perfect agreement with the
multiplicities found from the enumeration of SU(2,2|8) supercon-
formal primary operators. In addition to an enumeration of inde-
pendent operators, the explicit matrix elements allow us to test
single-soft scalar limits. We discuss our L = 7,8,9 results below.

4. 7-loop counterterms: D8 R4 and beyond

4.1. E7(7)-compatibility of D8 R4 at 6-points

The 6-point closed-string tree amplitude at order α′ 7 only re-
ceives contributions from diagrams with one insertion of e−14φ ×
D8 R4. No lower-dimension operators in the closed string effective
action (1) contribute. For the SU(8)-averaged single-soft scalar lim-
its of e−14φ D8 R4 we obtain

lim
p6→0

〈++−−ϕϕ̄〉(e−14φ D8 R4)avg

= −2[12]4〈34〉4
[

3

4

∑
i< j

s4
i j + 1

16

(∑
i< j

s2
i j

)2]
. (20)

However, we cannot conclude from this result that the operator
D8 R4 violates E7(7): contrary to the lower-loop cases we have
studied, D8 R4 is not unique. In fact, as we show later in this
section, there is an infinite tower of supersymmetric operators of
mass dimension 16. It is relevant for the 6-point matrix elements
that there are two independent supersymmetrizations of D4 R6. To
any non-linear supersymmetrization of D8 R4 we can add an ar-
bitrary linear combination of these 6-point operators and obtain
another valid supersymmetrization of D8 R4. The SU(8)-averaged
string amplitude picks out one particular such linear combination
whose soft-limits (20) happen to be non-vanishing.

We construct the matrix elements of D4 R6 explicitly with
Gröbner basis techniques and find that they have non-vanishing
SSL’s; specifically we find that the SSL’s of the 6-point matrix ele-
ments of the operators D4 R6 span the 2-parameter space

lim
p6→0

〈++−−ϕϕ̄〉D4 R6

= [12]4〈34〉4
[

c1

∑
s4

i j + c2

(∑
s2

i j

)2]
. (21)
i< j i< j
It follows from (20) and (21) that we can choose a suitable lin-
ear combination of the two D4 R6 operators to make the SSL of
the 6-point matrix elements of the resulting non-linear supersym-
metrization of D8 R4 vanish: thus there exists a supersymmetrization
of D8 R4 that satisfies

lim
p6→0

〈++−−ϕϕ̄〉D8 R4 = 0. (22)

Since this particular D8 R4 satisfies the single-soft scalar theo-
rems up to 6 points, it is important to also analyze the double-
soft limit constraints of [13] that probe the structure of the
coset E7(7)/SU(8). We numerically verified that various non-trivial
double-soft limits [16] of the 6-point matrix elements of D8 R4 be-
have precisely as required for E7(7)-invariance. Therefore the ma-
trix elements of D8 R4 are compatible with continuous E7(7) up to
6 points.

We would like to alert the reader to an alternative construc-
tion of the full n-point superamplitudes for the matrix elements of
n-point 7-loop counterterms. Once the counting of the operator’s
multiplicity has been established by other means (as described
above), it is easy to write down a corresponding set of superampli-
tudes. For the two 6-point superamplitudes of D4 R6, for example,
one can choose the basis

A D4 R6 = δ(Q̃ )δ(Q )
[
(ϕ1,ϕ2)(ϕ3,ϕ4)(ϕ5,ϕ6) + perms

]
,

A D4 R6 ′ = δ(Q̃ )δ(Q )
[
(ϕ1,ϕ2,ϕ3,ϕ4,ϕ5,ϕ6) + perms

]
. (23)

Here Q , Q̃ are the usual supercharges that act on the Grassmann
η-variables of the superamplitude as differentiation and multipli-
cation, respectively, and thus

δ(Q ) =
8∏

a=1

∑
i< j

[i j] ∂2

∂ηia∂η ja
, δ(Q̃ ) =

8∏
a=1

∑
i< j

〈i j〉ηiaη ja. (24)

The sums in (23) run over all inequivalent permutations of the
external state labels i of the ϕi , and the ϕ-products are defined as

(ϕi,ϕ j) ≡ ∏4
t=1ηiat η jbt × εa1a2a3a4b1b2b3b4 ,

(ϕi,ϕ j,ϕk,ϕl,ϕm,ϕn) ≡
4∏

t=1

ηiat η jbt ηkct ηldt ηmet ηnft

× εa1a2b1b2b3b4c1c2εc3c4d1d2d3d4e1e2εe3e4 f1 f2 f3 f4a3a4 . (25)

Of course, the choice of contractions is not unique, and only
through the previously established multiplicity count do we know
that it is sufficient to consider the two contractions given in (23).
A similar construction can be carried out for the three 8-point
N2MHV superamplitudes of R8. Again, one can immediately pro-
pose three superamplitudes that span the space of R8 countert-
erms, for example by considering three order-8 contractions in-
volving the ϕ-products (25) and their 8-scalar generalizations.

4.2. The infinite tower of 7-loop counterterms

We now examine the multiplicity of potential 7-loop n-point
counterterms [8]

D8 R4, D4 R6, R8, ϕ2 R8, ϕ4 R8, . . . . (26)

7-loop operators correspond to long multiplets, and are thus su-
persymmetric descendants of local operators composed from only
scalars with no derivatives. This follows from setting L = 7 in (16)
and (17). SU(8)-singlet operators C only exist for even n at L = 7,
and we write them schematically as
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C 	 Q 16 Q̃ 16ϕ2q. (27)

The lowest weight ϕ2q must be in an SU(8)-singlet combination,
and every such singlet gives rise to a long supermultiplet. Hence
there is one 7-loop n-point counterterm for each singlet in the de-
composition of the symmetric tensor product of n = 2q 70’s. With
increasing q there is a (swiftly) increasing number of singlets, as
illustrated by the explicit multiplicities up to n = 16 in Table 1.
Consequently, there is an infinite ‘tower’ of independent 7-loop
operators that are potential counterterms. Operators corresponding
to their SSL are also listed in Table 1. Their construction is simi-
lar, and their multiplicities is the number of 70’s in a product of
(2q − 1) 70’s.

4.3. E7(7) violation of higher-point 7-loop operators

Consider the leading n-point matrix elements of a local coun-
terterm C . If non-vanishing, the SSL produces a local (n−1)-matrix
element, which can be generated by an (n − 1)-point local oper-
ator dC in the 70. Locality of C ensures that the SSL operation
C → dC commutes with the SUSY generators Q and Q̃ . For a
long-multiplet (L � 7) counterterm C = Q 16 Q̃ 16C0 we can there-
fore write

dC = Q 16 Q̃ 16 dC0. (28)

E7(7) requires that the SSL vanishes. Now there are two ways to
obtain dC = 0: either the single-soft limit of C0 vanishes (dC0 =
0), or dC0 is annihilated by Q 16 Q̃ 16. At the seven-loop level,
C0 = ϕ2q consists of only scalars with no derivatives, and conse-
quently dC0 �= 0. C0 is also not annihilated by Q 16 Q̃ 16 because
dC0 = ϕ2q−1 in a 70 satisfies a shortening condition only for
n = 2q � 4 [24]. Therefore, all 7-loop linearized counterterms with
n > 4 have non-vanishing single-soft scalar limits and thus violate
E7(7) . (This was also observed in [28]; see [29] for discussion of
non-perturbative aspects.) These operators may, however, play an
important role as dependent terms in the non-linear completion of
the D8 R4 operator, as we demonstrated above at the 6-point level.

5. SSL structure: 7-, 8- and 9-loops

We now show that all our findings on E7(7)-(in)compatibility
of operators have a natural explanation in terms of the multiplici-
ties of SSL operators in the 70 that is displayed in Table 1.4 Let us
first revisit the case of D4 R4 and D6 R4. At the 5- and 6-loop level,
there are no potential 3-point or 4-point SSL operators available.
Therefore the matrix elements of D4 R4 and D6 R4 must have van-
ishing soft limits at 4- and 5-points, and this is indeed the case.
There exists, however, one potential 5-point SSL operator at L = 5
and L = 6. Generically, one expects the soft-limits of the 6-point
matrix elements of D4 R4 and D6 R4 to be proportional to this op-
erator with some non-vanishing coefficient. This is precisely what
happens.

At 7 loops with n > 4 points, the number nS of SSL operators
D16ϕn−1 is always at least as large as the number nC of potential
counterterms D16ϕn . Generically, one therefore expects the soft
limits of the potential counterterms to span an nC -dimensional
subspace in the nS -dimensional space of SSL operators. It would
follow that all potential counterterms with n > 4 violate E7(7) .
Indeed, this is what we explicitly proved above for the 7-loop
case.

4 Throughout this section we are only concerned with the lowest-point non-
vanishing SSL’s of an operator. If an operator has non-vanishing SSL’s at n-point,
its higher-point matrix elements will generically have non-local SSL’s, which are not
classified by our analysis.
By the same logic, it is not at all surprising that there is a
non-linear supersymmetrization of D8 R4 that preserves E7(7) at
the 6-point level. The number of 5-point SSL operators precisely
matches the number of D4 R6 operators. Therefore, the 6-point soft
limit of D8 R4 can be made to vanish after adding an appropriate
combination of the two D4 R6 operators, just as we found above.
For the 8-point soft limits of D8 R4, however, there are 4 SSL op-
erators available; more than the 3 potential 8-point counterterms
R8. If the 8-point soft limits of D8 R4 take a generic value in the
4-dimensional space of SSL operators, no linear combination of
R8 operators can be chosen to give an E7(7)-preserving supersym-
metrization of D8 R4; a remarkable cancellation is thus required for
D8 R4 to be compatible with E7(7) .

As Table 1 illustrates, E7(7) becomes more and more constrain-
ing as we increase the number of points and loops. For example,
the 14-point soft limits of D10 R4 have to lie in a specific 153-
dimensional subspace of the 1033-dimensional space of SSL op-
erators in order for D10 R4 to satisfy E7(7) after an appropriate
addition of independent 14-point operators. It follows that E7(7) is
a very constraining symmetry even for L = 7 and beyond. Although
there is an infinite tower of independent counterterms at each of
loop L � 7, we cannot expect any of these operators to preserve
E7(7) ‘accidentally’. There may, however, be a very good reason for
the cancellations of terms that is needed for E7(7)-invariant oper-
ators to exist for L � 7; namely, when there is a construction of a
manifestly E7(7)-invariant supersymmetric operator [30,31]. At the
7-loop level, for example, we can only expect the 8-point single-
soft limits of D8 R4 to vanish after an appropriate addition of R8,
if the manifestly E7(7)-invariant superspace integral that was pro-
posed as a candidate counterterm in [30] is indeed non-vanishing.

One new feature that emerges at L = 8,9 is the existence
of n > 4 operators that have vanishing soft-limits at the lin-
earized level. This holds for the MHV operators D8 R5, D10 R5 and
2 × D8 R6 as well as for at least 7 of the 12 × D8 R6 NMHV op-
erators. The latter follows from the multiplicity 5 of 5-point SSL
operators at 9 loops. E7(7)-invariance beyond the linearized level,
however, is a highly non-trivial constraint on all of these opera-
tors.
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