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Quasinormal modes of Reissner-Nordstrom black holes: Phase-integral approach

N. Andersson,* M. E. Aratjo,’ and B.F. Schutz?

Department of Physics and Astronomy, University of Wales College of Cardiff, Cardiff CF2 8YB, United Kingdom
(Received 3 February 1993)

This paper presents quasinormal-mode frequencies for Reissner-Nordstrom black holes calculated
using the phase-integral approximation. It is shown that the eigenfrequencies of the first modes (those
with small imaginary parts) are accurately determined by the so-called Bohr-Sommerfeld formula.
The formula generates frequencies with roughly the same accuracy as obtained in the Schwarzschild
case except when the charge is close to its limiting value. For higher modes a generalized formula,
recently derived by the present authors, is used. Numerical calculations show that, while it is
reasonably accurate for low charges, this formula cannot be trusted for high charges. An intrinsic
estimate of the error in the phase-integral calculations is also discussed.

PACS number(s): 97.60.Lf, 02.70.Rw, 04.30.Nk

I. INTRODUCTION

The quasinormal modes of a black hole are solutions
to the linearized perturbation equations that correspond
to purely outgoing waves at spatial infinity and at the
same time agree with the requirement that no waves
must escape from within the event horizon of the black
hole. The quasinormal modes are expected to domi-
nate the radiation emitted at late times, after, for ex-
ample, a gravitational collapse, see [1]. The spectrum
of quasinormal-mode frequencies is characteristic of the
black hole, i.e., depends only on the mass, angular mo-
mentum, and charge of the hole. Because of this, a detec-
tion of gravitational radiation originating in quasinormal-
mode ringing provides one of the best ways to identify a
black hole. See [2] for a discussion of the possible ex-
traction of the black hole parameters from a detected
gravitational wave signal.

The phase-integral method, recently reviewed by the
present authors [1], has been used in the analysis of the
quasinormal modes of Schwarzschild black holes. The
successful results suggest that we should use the method
to study other types of black holes, for which the per-
turbation equations can be reduced to an ordinary dif-
ferential equation with a complex effective potential [3].
This is the case for both Reissner-Nordstrom and Kerr
black holes. Despite the unphysical character of the
Reissner-Nordstrom solution, due to the unlikely exis-
tence of charged macroscopic bodies in our Universe, we
think it provides a useful step towards the much more
interesting case presented by the Kerr metric. The main
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reason is the existence of an internal Cauchy horizon,
which is a common characteristic of both metrics.

The phase-integral analysis of the Schwarzschild black
hole shows that for the low-lying modes, which are
slightly damped, the so-called Bohr-Sommerfeld (BS) for-
mula is a good analytic expression for the determination
of the corresponding eigenfrequencies [4, 5]. Indeed, the
BS formula has proved to be very accurate for the first
few modes, providing results in agreement with different
numerical techniques [6-8]. However, in the derivation
of the formula only two of the existing transition points
are considered. As the overtone index nm increases the
proximity of a third transition point to the ones already
considered leads to a loss of accuracy in the formula. In
order to obtain better results for highly damped modes
the effect of further transition points must be considered.
In an attempt to do this we, in a recent paper [9], de-
rived a “generalized” Bohr-Sommerfeld (GBS) formula
by considering three well-separated transition points in
the complex coordinate plane. Accurate phase-integral
formulas for the quasinormal-mode frequencies of the
Schwarzschild black hole have also been derived by An-
dersson and Linnzeus using uniform approximations [10].

The purpose of this paper is to use the phase-integral
method to analyze the quasinormal modes of a Reissner-
Nordstrom black hole. More specifically, we want to in-
vestigate if (and how) the presence of charge, and con-
sequently of the inner horizon, alters the applicability of
the BS and GBS formulas.

It should be remembered that the numerical techniques
[11, 12] that have been applied to this problem give re-
sults that are more accurate than we can hope to achieve
with our semianalytic approach. Nevertheless, it is easy
to justify the present investigation: Numerical methods
may not always be available because they require specific
properties of the perturbation equations, e.g., three-term
recurrence relations, etc. It is also clear that analytic
methods often give a better understanding of the actual
physics involved, whereas this kind of information may be
hard to extract from a numerical solution. Moreover, as
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we have pointed out in [1], the error analysis in the phase-
integral method needs further consideration. In order to
obtain a better notion of how errors enter and propagate
in the approximation we want to apply the method to
various problems, and compare the results with available
numerical ones.

II. THE PERTURBATION EQUATIONS

The equations governing a small perturbation of a
Reissner-Nordstrom black hole can be reduced to a single
ordinary differential equation by separating out the de-
pendence on time and angles. Assuming that the time de-
pendence is exp(—iwt), and fixing the spherical-harmonic
index £, we obtain [3]

d?
dr?

where 7 = 1,2 and the tortoise coordinate 7, is defined

®) [ 2 )
Z; +{vu -V }

7 =0, (1)

J

dr A ~

R (2)
and

A =7? =2 +¢? (3)

(the simplifying notation A will be used below). The
outer and inner horizons of the Reissner-Nordstrom black
hole, 7, and r_, are then solutions to A = 0.

The superscripts + and — label the independent axial
and polar perturbations, respectively. The terminology
is due to the fact that the equations describing axial per-
turbations contain only quantities, or products of quan-
tities, which change sign under the transformation of the
angular coordinate ¢ to —¢, whereas in the equations
for polar perturbations all quantities are invariant under
this transformation. It is worth pointing out that the
expressions odd and even parity have often been used in
the literature instead of arial and polar, respectively.

The effective potentials Vji are given by

V]_(”) - AT, [[(( + 1)7, . /3]. + 45__:' , (4)
. ph T
) (=) i A
‘j - VJ +26 dr., [r3[(€71)(5+2)7‘+ﬁj]] .
(5)
where
Bra=3F[9+4( - 1) +2)e?]? (6)

and e is the charge of the black hole. We use units ¢ =
G = M =1, where M is the mass of the black hole. For
further details on the theory of perturbations of Reissner-
Nordstréom black holes we refer the reader to the book of
Chandrasekhar [3].

In the uncharged case, i.e., when e = 0 , the two po-
tentials VZ(H and VZ(A) reduce to the Zerilli [13] and
the Regge-Wheeler [14] potentials (describing gravita-
tional perturbations of a Schwarzschild black hole). re-
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spectively. The two potentials V1(+) and VI(A) both re-
duce to the effective potential that describes the evolu-
tion of a perturbation of the electromagnetic field in the
Schwarzschild space-time [3]. An important characteris-
tic of a charged environment is that a variation in the
electromagnetic field generates a small variation in the
gravitational field and vice versa. This means that when
the charge of the black hole is nonzero, an emitted elec-
tromagnetic wave will give rise to a gravitational wave
with the same frequency. Hence, a quasinormal mode of a
Reissner-Nordstrom black hole will in general correspond
to the emission of both electromagnetic and gravitational
radiation.

Chandrasekhar [15] has shown that the solutions Z](-+)

and Z](-ﬁ), corresponding to the different potentials (4)
and (5), can be obtained from each other. Hence, the
two equations contain the same information and give
rise to identical sets of quasinormal-mode frequencies.
One may, therefore, restrict an investigation to one of
the corresponding differential equations (1). However, a
comparison of approximate results, which should in the-
ory be equivalent, obtained from the formally different
equations for axial and polar perturbations provides an
intrinsic error estimate that may be useful. Moreover,
the investigation of Froman et al. [4] showed that the BS
formula was actually more accurate when applied to the
equation governing polar perturbations than when used
in the axial case. It seems as if these points have not
been fully appreciated in the previous investigations of
the problem. Therefore, we shall in this paper perform
calculations for both potentials.

III. PHASE-INTEGRAL FORMULAS

We have recently written a comprehensive review of
the phase-integral method as applied to a general inves-
tigation of black hole normal modes [1]. Hence, we will
restrict ourselves in this section to the presentation of
specific formulas that are relevant to an analysis of the
Reissner-Nordstrom problem.

Introducing a new dependent variable ¥ according to

78 = AzglH) (7)

the differential equation (1) can be written as a
Schrodinger-like differential equation

Ay L RO Zg (8)

) is explicitly given by

1 (dA)’
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In the phase-integral method the general solution to
(8) is given by a linear combination of the two functions

The analytic function Rﬁi
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faa(r) = aV2(r) exp [ﬂ / q(r)dr] , (10)

with the function ¢(r) given by an asymptotic series. The
first term in this expansion is a somewhat arbitrary func-
tion Q(r), and the contributions of the higher order ap-
proximations are expressed in terms of this function [1].
It is convenient to choose

Q*(r) = R —

A= .

in order to ensure that the approximation remains ac-
curate in the vicinity of the outer horizon r; where a
boundary condition has to be imposed.

In a phase-integral analysis of the quasinormal-mode
problem the pattern of Stokes and anti-Stokes lines play
an important role. These are curves along which Qdr is
purely imaginary or real, respectively. From each tran-
sition point, a first order zero of @Q?(r), emanates three
curves of each type.

It is natural to assume that an analysis of the quasinor-
mal modes for Schwarzschild black holes will remain valid
for small values of the charge e. We have studied how the
pattern of Stokes and anti-Stokes lines changes [for each
of the potentials (4) and (5)] as the charge is increased.
This investigation suggests that the derivations of the BS
and the GBS formulas for the Schwarzschild case will re-
main valid in the Reissner-Nordstrom case (at least for
reasonably low charges). An illustration of this behavior
is provided by a comparison of Figs. 1 and 2 with Fig.
2 in [1] and Fig. 1 in [9], respectively. It can be clearly
seen that the general pattern of Stokes and anti-Stokes
lines are very similar. This is a characteristic feature for

FIG. 1. Complex r plane showing the pattern of Stokes
(dashed) and anti-Stokes (continuous) lines emerging from the
transition points ¢; under consideration for £ =2, n =0, e =
0.6, and (a) axial and (b) polar perturbations, respectively.
Note the threefold symmetry around each transition point,
e.g., from each of them emerges three Stokes and three anti-
Stokes lines. The cuts are represented by the zigzag lines and
r+ denotes the event horizon.
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FIG. 2. Complex r plane showing the pattern of Stokes
(dashed) and anti-Stokes (continuous) lines emerging from the
transition points t; under consideration for £ =2, n =4, e =
0.6, and (a) axial and (b) polar perturbations, respectively.
Note the threefold symmetry around each transition point,
e.g., from each of them emerges three Stokes and three anti-
Stokes lines. The cuts are represented by the zigzag lines and
r+ denotes the event horizon.

all values of the charge e up to a certain limit.

It should be pointed out that the Stokes and anti-
Stokes lines in our figures were determined using frequen-
cies obtained numerically by Andersson [12]. (The reader
interested in a larger number of tables than those printed
in the latter is referred to Ref. [16]. Copies of these tables
can be obtained from the author.) For cases where such
numerical values are not already available one may cal-
culate the frequencies using the phase-integral formula
that is believed to be appropriate (by comparing with
the Schwarzschild case). The pattern of Stokes and anti-
Stokes lines for the obtained values of w should remain
similar to that for which the formula was originally de-
rived if the result is to be trusted. It turns out that the
frequency need not be very accurate to make this kind of
analysis effective; the pattern of Stokes and anti-Stokes
lines hardly changes if the frequency is changed as much
as one part in, say, 107 2.

The Bohr-Sommerfeld formula is given by [1]

a1 = %fcq(r)dr = (n—i— %) 7. (12)

The contour C encircles the two transition points ¢; and
t2 (in such a way that Re 72 is positive), see Fig. 1. From
a comparison with the Schwarzschild case one would ex-
pect this formula to give reliable results for the first few
modes. On the other hand, the GBS formula is valid
for highly damped modes of axial perturbations of the
Schwarzschild black hole. It was derived by considering
three transition points [9], and can be written

1 3 .
Y21 = (n + —2—) T+ %ln [1 + exp (21732)] , (13)

with obvious notation. One would expect that this for-
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mula can be used with confidence also for axial pertur-
bations of the Reissner-Nordstréom black hole.

IV. NUMERICAL RESULTS

Quasinormal-mode frequencies for the Reissner-
Nordstrom black hole have been presented in other pa-

TABLE L
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pers. Using the numerical integration method that was
developed by Chandrasekhar and Detweiler [17] for the
Schwarzschild black hole, Gunter did calculations for the
fundamental mode and several different values of ¢ [18,
19]. The WKB method, originally devised by Schutz
and Will [20], was used by Kokkotas and Schutz [21].
They also did further calculations using the numerical

Phase-integral results for Reissner-Nordstrom black holes: A sample of quasinor-

mal-mode frequencies for wf: and £ = 2 calculated using the Bohr-Sommerfeld formula (12). The
optimal order of approximation and the estimated error are determined by the simple rule of thumb.
As an estimate of the actual error the absolute difference between the phase-integral and the nu-
merical results of Andersson [12] has been used. The first entry for each value of e corresponds to
axial perturbations, while the second is for polar perturbations.

n e Re w Im w Optimal Estimated Actual
order error bound error

0 0.30 0.46986525 -0.09582592 7 1.4 x107¢ 5.4 %1077
0.46986477 -0.09582610 5 9.1x107" 3.6 x10°7
0.60 0.5120117 -0.0980201 7 6.2 x 107° 3.6 x107°
0.51201107 -0.09801677 7 2.7 %1077 21 %1077
0.90 0.6193978 -0.0975919 5 1.7 x 107° 9.0 x 107
0.61939782 -0.09758338 7 9.3x 1077 5.5 % 1077
0.99 0.692745 -0.088634 7 1.9 x 107° 1.1x107°
0.69275213 -0.08864263 7 6.9 x 1077 4.4 x107 7
1 0.30 0.4494287 -0.2929916 5 5.0 x 1075 3.2x107°
0.44943008 -0.29299418 5 2.4 x107° 6.5 x 1077
0.60 0.493748 -0.298907 7 1.8 x 107° 1.0 x 107°
0.49375709 -0.29891065 7 48 %1077 3.6 x 1077
0.90 0.606589 -0.295596 5 8.6 x 107" 3.9 x107°
0.6066245 -0.2956092 7 2.3x107° 1.4 x10°°
0.99 0.678611 -0.267543 5 1.2 x10°" 6.2 x 107°
0.6786583 -0.2675039 7 1.4 x107° 1.0 x 107°
2 0.30 0.4150791 -0.5048038 5 1.3x107° 5.8 x 107°
0.4150797 -0.5048101 5 6.7 x 1076 1.2 x 107°
0.60 0.462970 -0.512629 5 5.7 x107° 3.8 x 107°
0.46293407 -0.51261456 7 9.9 x 1077 6.7 x 1077
0.90 0.58434 -0.50128 3 3.2x107* 1.8 x 107*
0.5842145 -0.5011578 7 5.0 x 1075 3.0 x 107°
0.99 0.65120 -0.45118 3 4.5 x 1071 2.5 x 1071
0.6509526 -0.4511785 7 2.2x10°° 1.9 x 107
3 0.30 0.377420 -0.733780 5 3.1 x107° 1.0 x10°°
0.3774175 -0.7337936 5 1.9 x 107° 3.6 x10°°
0.60 0.42863 -0.74159 5 1.6 x 107* 1.0 x107*
0.4285909 -0.7414895 7 23 x107° 1.3 x107°
0.90 0.55712 -0.71654 3 1.0x 1073 4.9 %107
0.5570577 -0.7160636 5 1.3 x 107" 7.3x107°
0.99 0.61121 -0.64364 3 1.4x10°° 5.9 % 1071
0.6108070 -0.6432101 7 2.2 x10°° 3.6 x 107°
4 0.30 0.344185 -0.975302 5 6.4 x 10°° 1.8 x 107°
0.344175 -0.975329 5 5.1 x107° 1.1 x107°
0.60 0.39728 -0.98197 3 3.7 x107* 34 x10*
0.3976162 -0.9819481 7 5.5 x 107° 2.5 x 107°
0.90 0.5301 -0.9377 1 2.8 x 1073 1.6 x 1073
0.529337 -0.939085 7 1.8 x 107° 1.1 x 107°
0.99 0.56081 -0.8489 3 4.5 x 1073 1.5 x 1073
0.5608431 -0.8474286 7 8.0 x 107° 9.6 x 107°




49 QUASINORMAL MODES OF REISSNER-NORDSTROM BLACK . ..

technique applied by Gunter. Approximate analytic for-
mulas for the frequencies were obtained by Ferrari and
Mashhoon [22], by employing an exact relation between
the quasinormal modes and bound states of the inverted
black-hole potential. Finally, Leaver used recurrence re-
lations together with his continued fraction method to
determine very accurate results [11]. The accuracy of
Leaver’s results has been discussed elsewhere by one of
the present authors [12].

We have done calculations using the two formulas (12)
and (13) for £ = 2. Calculations were performed in the

TABLE II.
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first five orders of approximation (labeled by odd num-
bers 1 to 9) for each mode. A sample of results for the
BS formula are given in Tables I and II. The GBS results
are in Table III.

In the tables are listed the result for each mode in the
optimal order of approzimation. This, in a sense vague,
concept is here defined by the rule of thumb that we
have used elsewhere [9]. That is, we consider the numer-
ical results obtained for each mode and increasing order
of approximation as an asymptotic series. Theoretically,
the terms in this series, i.e., the contributions of consec-

Phase-integral results for Reissner-Nordstrom black holes: A sample of quasinor-

mal-mode frequencies for 1,2)._,i and £ = 2 calculated using the Bohr-Sommerfeld formula (12). The
optimal order of approximation and the estimated error are determined by the simple rule of thumb.
As an estimate of the actual error the absolute difference between the phase-integral and the nu-
merical results of Andersson [12] has been used. The first entry for each value of e corresponds to
axial perturbations, while the second is for polar perturbations. For axial perturbations and high
charges the BS formula cannot be used. These values are denoted by an asterisk.

n e Re w Im w Optimal Estimated Actual
order error bound error

0 0.30 0.37594 -0.08936 3 3.5 x107* 2.9 x107*
0.376180 -0.089182 5 3.2x107° 3.5 x10°°
0.60 0.38600 -0.08992 3 2.8 x 1074 2.4x107%
0.3862153 -0.0898217 7 3.7x107° 8.3 x107¢
0.90 0.41339 -0.08803 3 5.4 x 1074 3.6 x107¢
0.41353 -0.08824 5 1.6 x 107* 1.0 x 107*
0.99 0.4288 -0.0834 3 1.7 x 1073 1.0 x 1072
0.429271 -0.084176 5 1.9 x 1074 9.4 x 1075
1 0.30 0.3479 -0.2749 3 2.2x1073 1.5 x 1073
0.349377 -0.274637 5 9.9 x 1075 3.2x10°°
0.60 0.3590 -0.2763 3 1.8 x 1073 1.2 x1073
0.360247 -0.276200 5 1.1 x 1074 9.2 x107°
0.90 0.39034 -0.27022 1 2.7x1073 2.4 x107*
0.39067 -0.27010 5 4.0 x 1074 2.3x107%
0.99 0.3971 -0.2563 1 1.1x 1072 6.5 x 1073
0.40341 -0.25742 3 4.7 x 107* 42x107*
2 0.30 0.3039 -0.4865 1 8.4x 1073 7.2x1073
0.30335 -0.47913 3 2.6 x 1074 5.2 x10*
0.60 0.3162 -0.4872 1 7.7x 1073 6.3 x 1073
0.31511 -0.48071 3 44 x107* 79x107*
0.90* 0.3484 -0.4653 3 7.8 x107% 1.2 x 1073
0.99* 0.35312 -0.44350 3 9.1x10* 7.9 x107*
3 0.30 0.2542 -0.7214 1 1.1 x 1072 1.5 x 1072
0.2537 -0.7050 3 3.3x107* 1.4 x1073
0.60 0.2672 -0.7206 1 1.1 x 1072 1.4 x 10~2
0.2661 -0.7052 3 6.2 x 1074 2.0x 1073
0.90* 0.2979 -0.6746 3 1.0 x 1073 2.7x1073
0.99* 0.2880 -0.6515 3 2.3x1073 1.7 x 1072
4 0.30 0.206 -0.975 3 5.8 x 1073 2.7 x 1072
0.2107 -0.9446 3 1.3x 1073 3.6 x 1073
0.60 0.218 -0.973 3 5.1 x 1073 2.5 x 1072
0.2233 -0.9426 3 1.8 x 1073 5.2 x 1073
0.90" 0.2459 -0.8946 3 2.9 %1073 59x 1073
0.99* 0.225 -0.882 3 3.0x 1073 3.5 x 1072
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Phase-integral results for Reissner-Nordstrom black holes: A sample of quasinor-

mal-mode frequencies for ¥, and £ = 2 calculated using the generalized Bohr-Sommerfeld formula
(13). The optimal order of approximation and the estimated error are determined by the simple
rule of thumb. As an estimate of the actual error the absolute difference between the phase-integral
and the numerical results of Andersson [12] has been used.

n e Re w Im w Optimal Estimated Actual
order error bound error
4 0.30 0.2074 -0.9468 3 6.4 x 1073 2.9 x 1073
0.50 0.2139 -0.9476 3 6.1 x 107° 2.8 x107°
0.60 0.2195 -0.9468 3 6.2 x 1073 3.0 x 1073
0.65 0.2220 -0.9462 3 9.4 x 1073
0.70 0.241 -0.947 i 2.3 %107 ° 1.1 x 107
5 0.30 0.1684 -1.1961 3 41 %1073 2.8 x107°
0.50 0.1736 -1.1970 3 3.9 x 1073 2.8 x 1077
0.60 0.1776 -1.1961 3 3.0 x 1073 39x107°
0.65 0.178 -1.196 3 1.3 x 1072
0.70 0.168 -1.197 3 3.1 %1072 2.2 x107°
6 0.30 0.1302 -1.4483 3 3.5 x 1077
0.50 0.1318 -1.4501 3 3.3 x107°
0.60 0.1309 -1.4508 3 1.5 %1077
0.65 0.162 -1.446 1 4.0 x 107°
0.70 0.156 -1.445 1 7.3 <1072
7 0.30 0.0868 -1.7031 5 3.1 x107°
0.50 0.0651 -1.7106 3 5.9 x 107"
0.60 0.073 -1.777 3 1.9 » 1072
0.65 0.108 -1.782 3 1.9 x 107°
0.70 0.1364 -1.7814 3 9.7 x 107"

utively higher orders, should become smaller and smaller
until, at a certain order, they start to increase. The es-
timated error bound in the phase-integral calculation is
given by the smallest contribution to the series, and the
optimal order precedes that giving rise to the smallest
contribution. As an example this means that, although
we performed calculations in the ninth order of approx-
imation, this order can never be optimal. If the ninth
order contribution is the smallest in the series the sev-
enth order will be considered as optimal, and the error
should supposedly be smaller than the ninth order con-
tribution. It turns out, cf. the tables, that this rule of
thumb is extremely useful. Whenever the phase-integral
formula used is appropriate the rule of thumb gives a
good estimate of the actual error. In fact, in the few cases
where the rule of thumb does not pick out the most ac-
curate result (as compared to reliable numerical results)
the chosen order of approximation has an error of the
same order of magnitude as the most accurate one. Of
course, the smallness of this error estimate is not directly
related to the accuracy of the phase-integral result, see
the discussion in [9]. Nevertheless, an increase in the es-
timated error together with a decreasing optimal order is
a useful indication that the formula used may be losing
its validity.

In Tables T and II the phase-integral results are com-
pared with the numerical results of Andersson [12]. These

numerical results are considered as reliable, especially
since they agree very well with those of Leaver [11].
Hence, we quote as the “actual error” the absolute dif-
ference between the phase-integral results and these nu-
merical results.

From our tables it is clear that the BS formula
gives very accurate results for the two potentials Vli.
As already mentioned above, these potentials describe
the evolution of an electromagnetic test field in the
Schwarzschild background in the uncharged case. The
estimated error provided by the rule of thumb is in good
agreement with (often slightly larger than) the actual er-
ror for all the results in Table I. Unfortunately, the situa-
tion is not as favourable for the potentials V=, i.e., those
corresponding to gravitational perturbations in the un-
charged case. As expected from the investigation of the
Schwarzschild black hole, see [4,9], the BS formula is rea-
sonably accurate for the first three modes, but cannot be
trusted for higher overtones.

Interestingly, the BS formula is more accurate when
applied to the potential for polar perturbations than
when it is used together with the potential describing the
axial perturbations, see also [4]. The explanation for this
is probably that a third transition point (the one consid-
ered in the derivation of the GBS formula) becomes im-
portant for high modes of the axial perturbations. This
is not the case for the polar perturbations, see Fig. 2(b).



Although the GBS formula generates results accurate
to a few parts in 1073 for low charges, it is not reliable
for e > 0.6, see Table III. The reason for this is that the
pattern of Stokes and anti-Stokes lines for higher charges
does not remain similar to that used in the derivation of
the GBS formula.

V. CONCLUSIONS

We have used two different phase-integral formulas
to determine the quasinormal-mode frequencies of a
Reissner-Nordstrom black hole. The first of the formu-
las, the so-called Bohr-Sommerfeld formula, provides re-
sults in perfect agreement with other investigations of
the lowest-lying modes and all but extreme values of the
charge. An error estimate obtained from a simple rule of
thumb is proved to be surprisingly reliable, providing a
useful measure of the error in each phase-integral result.
On the other hand, a generalized formula that gave good
results for higher overtones in the Schwarzschild case can
only be used with confidence for black holes with mod-

49 QUASINORMAL MODES OF REISSNER-NORDSTROM BLACK .. . 2709

erate charges.

Finally, it should be remembered that an astrophys-
ical black hole is not really expected to have a signif-
icant charge. Nevertheless, it seems probable (or even
likely) that an analysis that gives accurate results for the
Reissner-Nordstrom black hole may also prove useful in
the Kerr case, the reason being that a common charac-
teristic of the two black-hole solutions is the existence of
an inner horizon. From this analogy it seems probable
that the Bohr-Sommerfeld formula will, in some sense,
be useful also for Kerr black holes.
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