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Correlations of considerable apparent significance have been reported between data taken by two
bar-type gravitational wave detectors and particle events recorded in the Mt. Blanc, Kamiokande,
and IMB particle detectors during a 2-h period near the explosion of Supernova 1987A. In particular,
the correlations among the gravitational wave detectors and the Mt. Blanc neutrinos were claimed
to have a chance probability of less than 107, If this low probability implies that the correlations
are a real physical effect, then new physics will be required to explain them. However, one of
the statistical tests used to establish these correlations is seriously flawed, and most others were
devised a posteriori and contain considerable freedom to make choices that affect the probability of
finding correlations. By a careful consideration of these free parameters, and by applying similar
analysis methods to simulated pseudorandom data sets, we show that the actual frequency with
which correlations similar to those in the Mt. Blanc data would occur in random data streams is
between 0.1% and 10%. Moreover, if the Mt. Blanc correlations were real, then one would expect
them in the other particle detectors. After inspecting the evidence, we also conclude that there are
no physically significant correlations of the Mt. Blanc—type between the gravitational wave detectors
and the Kamiokande and/or IMB particles. This makes it very likely that the Mt. Blanc correlations
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are due, not to any physical effect, but simply to chance.

PACS number(s): 04.80.Nn, 95.55.Vj, 95.85.5z, 97.60.Bw

I. INTRODUCTION

At about the time of the Supernova explosion SN
1987A there were, unfortunately, only two gravitational
wave detectors in operation [1]. These were of the least
sensitive type: room temperature bar detectors, one in
Maryland and the other in Rome. There were four
proton-decay experiments in operation that had the ca-
pability to detect particles from the Supernova, and three
of them — Kamiokande [2], IMB (3], and Baksan [4] —
registered a coincident burst. Unfortunately, only one
gravitational wave detector was recording data at that
time (Rome), and that was affected by seismic noise [1].
However, at the time of a somewhat earlier “neutrino”
burst in the Mont Blanc detector [5], which probably was
not associated with the Supernova, both gravitational
wave detectors were working satisfactorily.

Since gravitational waves emitted by the Supernova
and carrying any reasonable amount of energy would
be well below the sensitivity limits of these room-
temperature bar detectors, it was not expected that the
gravitational wave data would show any signals. The first
published analyses by the teams involved in the detection
and analysis of the data, to whom we shall refer as the
Rome-Turin-Maryland (RTM) Collaboration [6], found
(i) that with a delay of 1.4 s with respect to the five
neutrino events of the apparent burst, the Rome gravi-
tational wave data were at an appreciably higher level of
excitation than average (in particular, there was an un-
usual excitation of the Rome detector just before the first
Mont Blanc neutrino event [7], with a chance probability
of 3%), and (ii) there was a modest correlation between
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the Rome and Maryland gravitational wave detectors in
a 7-h period around the time of the Mont Blanc burst
[1] (with chance probability 3.5%). But they reported no
unusual coincidences between the two gravitational wave
detectors just at the time of the Mont Blanc burst. On
this evidence, there would be no reason to suppose that
gravitational waves from SN 1987A had been detected.

However, in subsequent analyses, RTM searched a
larger stretch of data for further events such as those
reported earlier [7], where a gravitational wave detector
is excited a fixed time before a particle is detected. This
has led to a series of papers [7-11] reporting that time-
delayed coincidences have occurred in various stretches of
data with apparently high significance (low chance proba-
bility). RTM have found numbers of delayed coincidences
between the gravitational wave detectors and the Mont
Blanc neutrino detector [7,8] and between the gravita-
tional wave detectors and the Kamiokande [9,10], Bak-
san [10], and IMB [11] particle detectors, respectively.
RTM assigned chance probabilities to various of these
coincidences in the range from 10~2 down to 1076. Our
main purpose in this paper is to reassess these claims by
RTM.

It seems clear that if the delayed coincidences are due
to a real physical effect, then new physics will be required
to explain them. Tens of coincident events are claimed
to have taken place over a 2-h period. If they are due to
neutrinos and gravitational waves from SN 1987A, the
energy involved would be huge, many thousands of solar
rest masses converted into gravitational wave energy for
each event [12]. Moreover, given the low efficiency of
neutrino detection, potentially thousands of events may
have been missed. If they are not gravitational waves
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and neutrinos, then some new particles and interactions
would be required.

One’s attitude towards the need for new physics de-
pends on (i) the significance of the observed correlations
and (ii) one’s assessment of the plausibility of the new
physics required [13]. In practice, the significance of un-
usual results is usually taken to be the a prior: probabil-
ity of obtaining the results under a null hypothesis (nor-
mally that the data are completely random). The signifi-
cance is particularly difficult to assess when, as here, the
correlations were unexpected and so were only found a
posteriori, after examination of at least part of the data
set, and even then only by unusual statistical methods.
RTM understand this and attempt to take account of the
a posteriori nature of the effect by using other stretches
of data as “control” sets in which to look for chance cor-
relations. Unfortunately, we shall show that their control
analysis is seriously compromised by the way the control
data were chosen and by the statistical dependence of
data they treat as independent. In fact, their principal
statistical test is so flawed by data dependencies that we
believe it is impossible to draw reliable conclusions from
it.

We therefore undertake as part of our analysis to pro-
vide a more reliable control set by generating large num-
bers of random data sets on a computer and using RTM’s
own methods to analyze them. We directly address the
question of how much freedom RTM had to find a pos-
teriort effects in their original analysis of the Rome-—
Maryland—Mont Blanc data, such as by varying the time-
delay and the thresholds of the gravitational wave detec-
tors until they found significant coincidences. (RTM do
in fact describe doing this.) Our approach cannot, of
course, do more than estimate the true chance probabil-
ity of the correlations, but it is a completely independent
analysis, and it gives a radically different answer from
the one RTM give.

Regardless of the significance of the Rome-Maryland—
Mont Blanc correlations, the acid test of whether they
point to a new physical effect is whether similar correla-
tions occurred between the gravitational wave detectors
and other particle detectors at the same time. RTM ana-
lyzed the data from the Kamiokande [9], Baksan [10], and
IMB [11] detectors and claimed that they do in fact sup-
port the reality of the effect: they find correlations which
they claim are very significant. Unfortunately, their anal-
yses are again compromised by their data-selection cri-
teria, by time-keeping problems in two of the detectors
involved, and most seriously by the fact that, as we shall
show, RTM do not find significant correlations when they
analyze the data in the same way as they analyzed the Mt.
Blanc data.

RTM themselves admit that, using these analysis tech-
niques, there are no significant correlations between grav-
itational waves and Baksan particles [10]. They find
modest correlations between gravitational wave data and
IMB and Kamiokande particle events using the same
analysis techniques, but we shall show that their analysis
is fatally compromised by various data-selection criteria
and by time-keeping problems. They find apparently sig-
nificant correlations in these three detectors only when
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they use new methods of analysis not applied to the Mt.
Blanc data. It is our conclusion that there is no evidence
of correlations of the Mt. Blanc type in the Kamiokande,
Baksan, or IMB data, and that therefore the RTM cor-
relations fail this crucial predictive test.

The data and analyses of RTM appear in a number
of places in the scientific literature, some of them not
widely available. We therefore shall try to make this pa-
per as self-contained as possible. We begin in Sec. II
with a review of the actual observations made by the two
gravitational wave detectors and two particle detectors
at the time of the Supernova. In Sec. III we then give a
summary of RTM’s main analysis techniques. We point
out that one of their unusual methods (which we call the
net-excitation method) is seriously flawed. In Sec. IV we
present our own analysis of simulations of the Mt. Blanc
and gravitational wave data streams, using mainly the
other RTM method (the threshold-coincidence method).
We find that the frequency distribution in random data
sets of the sorts of correlations that RTM find is very
much larger than RTM estimate. This allows us to
make a detailed reassessment in Sec. V of the coincidence
claims, including an attempt to correct for the large num-
ber of sometimes hidden degrees of freedom that have
been used by RTM to optimize the correlations. These
include the following: (1) a posteriori choices of, or free-
dom to choose, the time-delay; (2) a posteriori choices
of, or freedom to choose, the gravitational wave thresh-
old; (3) choice and variation of the duration of the data
set; (4) choice and variation of the starting time of the
data set; (5) statistical dependence of data sets caused by
including the original “eyeballed” data set in the larger
ones that were subjected to an analysis that was based on
inspection of the original set; (6) use of nonstandard and
seriously flawed statistical tests with poorly understood
statistics, when standard tests could have been used but
were not (or were not reported); and (7) the failure to
apply consistently the Mt. Blanc analysis methods to
data from Kamiokande and IMB. (Some of the details
of RTM’s analysis are deferred to the Appendix, with
additional criticism where appropriate.)

The effects of some of these degrees of freedom are
fairly easily quantified, while some are not so easily
quantified. However, none of them is negligible, and
all of them have the effect of making the coincidences
more likely to have arisen by chance than RTM have
claimed. Our reassessment for the gravitational-wave—
Mt. Blanc coincidences revises the coincidence probabil-
ity from ~ 107® (RTM’s estimate) to 1073-10~! (our
estimate). For gravitational-wave—Kamiokande coinci-
dences we revise from ~ 10~% (RTM’s estimate) to the
level of chance (our estimate). Finally, for gravitational-
wave—IMB coincidences we revise from ~ 10~3 (RTM’s
estimate) to ~ 107! (our estimate). We feel that these
correlations are therefore much more likely to have arisen
by chance than to be a pointer to new physics.

RTM themselves never actually claim that the corre-
lations are due to a real physical effect, and they have
not proposed a serious model to explain them. They also
remark in places that their probability estimates are only
tentative in some respects. Their papers contain full de-
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scriptions of the tests that they report, which makes our
reassessment possible. However, RTM themselves have
not published a more detailed assessment of their signif-
icance estimates, and we wish to fill that gap here.

We wish to make clear at this point that it is not the
goal of this paper to attempt to give a definitive set of
rules of how we believe gravitational wave data should be
analyzed, which is a paper in itself, and which one of the
authors will address in his thesis (CAD). However, we
could make the following general recommendations: all
analyses of a data set, whether or not they give the results
expected or desired by the analyzers, should be stated;
data sets should be carefully examined individually and
the results reported before they are combined; the anal-
ysis methods used should be standard where possible,
and that in any case the statistics of the analysis meth-
ods should be well understood or explained, and clear
enough to be questioned easily; a clear model should be
given and tested (at least, the null hypothesis should al-
ways be tested); once a new model has been postulated
on the basis of a given data set, any new data should be
analyzed in the same way as the original data were.

II. THE GRAVITATIONAL WAVE
AND NEUTRINO OBSERVATIONS

The observations of SN 1987A are well documented
[14], so we shall not review all of them here. However,
we shall review the observations of the particle and grav-
itational wave detectors in operation at the time of the
Supernova.

Note that we have had some difficulty with our nomen-
clature, not knowing whether events crossing the thresh-
old of a particle detector are neutrinos, some other par-
ticle, or random excitations in the detector (a normal
background count); and this will vary from one detector
to another. To call all the Mt. Blanc events neutrinos, for
instance, would be presumptuous; and since RTM have
still not provided a consistent model for the effect they
see, we shall, where appropriate, enclose the word neu-
trino in quotes. For the other three particle detectors,
we have generally used the word particle; though again,
this should not be taken to imply that, in all cases, real
particles have been detected, or that the particles are or
are not neutrinos.

A. Particle observations

There were four particle detectors in operation during
the relevant period: Mont Blanc (variously called UNO
or LSD) [5], Kamiokande (K II) [2], IMB [3], and Baksan
[4]. All four were in operation during the whole of 22-23
February 1937. The optical brightening of the Supernova
took place between about 2 h and 11 h UT on 23 Febru-
ary. Neutrinos would have been expected at any time
up to 24 before this, allowing time for the hydrodynamic
shock to reach the star’s surface and cause the optical
display.

At about 2 h 52 m 37 s UT, Mt. Blanc observed a burst
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of five “neutrino” events [5]. This burst had a probability
about 2 x 1073 of arising purely from the Poisson back-
ground during a period of 24 h immediately preceding
the observation of the optical Supernova event [5]. How-
ever, this observation cannot easily be reconciled with
those of the other detectors in operation since no signifi-
cant particle bursts coincident with the Mt. Blanc event
were observed in the other detectors. Therefore, the Mt.
Blanc burst is usually distrusted [14].

The later burst, however, at about 7 h 35 m UT
was certainly a real flux of neutrinos from the Super-
nova: the other three particle detectors in operation all
showed signals above the threshold levels about this time.
Kamiokande [2] detected 11 neutrinos at 7 h 35 m 35 s
UT (+60 s) within a time interval of 13 s, with energies
between 7.5 and 36 MeV. IMB [3] reported eight neutri-
nos at 7 h 35 m 41 s UT during an interval of 6 s, with
energies from 20 to 40 MeV. Baksan [4] detected five neu-
trinos at 7 h 36 m 11 s UT (42 s, —54 s) during a time
of 10 s, above an energy threshold of 12.0 MeV.

Mt. Blanc itself did not register an intrinsically signifi-
cant burst at this time, although it did record two events
at 7h 36 m 00.5 s UT and 7 h 36 m 18.9 s, discovered
in the off-line analysis [15]. This is not particularly wor-
rying: since Mt. Blanc is smaller than KII and IMB, one
would only have expected of the order of 1.5 neutrinos.

We have indicated above a very important point for
our analysis, namely, that two of the particle detectors
had serious uncertainties in the offset of the experiment’s
clock relative to Universal Time: Kamiokande [2] had an
absolute timing uncertainty, Atg, of +60 s; while the
absolute uncertainty Atp in the Baksan clock [4] lay in
the range —54 s < Atp < 2s. The absolute timing of the
other two detectors was more accurate, with Mt. Blanc
[5] accurate to £2 ms and IMB [3] to £50 ms. The
relative timing accuracy between particle events in any
given detector was extremely good: the only uncertainty
is the constant time shift between the detector clocks.

Given the fact that all three events were well above
threshold and that the timing uncertainty allows them
all to be coincident, there is little doubt that they are
Supernova neutrinos. However, the timing uncertainty
makes it difficult to assess the probabilities of any co-
incidences between these detectors and the gravitational
wave detectors. We shall return to this point in Secs. III
and V.

B. Gravitational wave detectors

The Rome and Maryland room temperature bar grav-
itational wave detectors operated satisfactorily at least
from 18 h 24 m 3 s of 21 Feb 1987 to 6 h 2 m 3 s of 23
Feb 1987, a period that includes the Mt. Blanc burst, but
excludes the time of the KII-IMB-Baksan events. Soon
after 6 h on 23 February, the Maryland detector experi-
enced electrical problems; and at 7 h 35 m UT, the time of
the KII-IMB-Baksan coincident burst, there were seismic
disturbances in Rome. RTM confine all their analyzes to
the period before 6 h 2 m 3 s on 23 February, when both
gravitational wave detectors were working.
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The Rome antenna has a mass of 2300 kg and a reso-
nant frequency of 858 Hz. The Maryland antenna has a
mass of 3100 kg and a resonant frequency of 1660 Hz.

The data sampling rate of the Rome detector was 1 Hz,
while that of the Maryland detector was 10 Hz. In order
to compare the two data sets, RTM averaged the Mary-
land data over 1 s intervals. This is three times longer
than the optimum averaging time for this antenna, so
the resulting data set has poorer than optimum signal-
to-noise ratio by a factor of /3.

Before 6 h, the gravitational wave detectors seem well
behaved. Events in both detectors followed fairly well
an exponential (thermal) distribution in energy, although
both detectors had some extra events at higher energies
[8]- RTM should, perhaps, have performed a more thor-
ough investigation of the data from the individual detec-
tors. The mean noise temperatures were approximately
28.6 K (Rome) and 29.8 K (Maryland).

The Maryland clock maintained an accuracy of £0.1 s
during this period. The Rome clock did have an er-
ror, but careful study of its behavior after the end of
the observation period led RTM to apply a correction of
(=0.7£0.1) s to obtain the true time.

III. SUMMARY OF THE MAIN RTM ANALYSIS
METHODS

Here we review the main methods of the RTM coinci-
dence analysis.

A. The main RTM analysis methods
1. The RTM “net excitation” method

The first method is to sum the values of the combined
gravitational wave streams at all “coincidence times,”
namely the arrival times of the neutrinos minus a fixed
chosen time-delay. While this method is unusual, it is
not necessarily implausible; however, its statistics are
obscure. RTM assess the statistics by examining the be-
havior of their data set under simple modifications of
the method, such as changing the time delay. We shall
see that there are serious difficulties with the manner in
which they do this.

Calling the energy excitations of the Rome and Mary-
land antennas Eg(t) and Eps(t), respectively, the princi-
pal statistic used by RTM in their first analysis method
is what we shall call the “net excitation” of the gravita-
tional wave detectors over this period:

C.d) = 3 D IBnlts + 9) s En(t +9), (1)

where ¢ is a chosen offset time, t; is the arrival time of
the ith neutrino, N, is the total number of neutrinos, and
“x” indicates either “+” or “X,” depending on whether
one is using the sum or product of the gravitational wave
signals. When the offset ¢ is negative we shall refer to it
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as a time delay (of the neutrinos relative to the gravita-
tional waves), and an advance when positive. The values
of t; + ¢ are rounded to the nearest gravitational wave
sampling time for the evaluation of E.

When adding the signals (x = +), one has to decide
how to weight the two detectors. (This does not apply
to the product algorithm, but most of RTM’s analyses,
including all their most improbable correlations [8-11]
use the sum algorithm only.) The decision of RTM [8]
is to normalize them by the mass of the detector, i.e., to
divide the energy of the Maryland antenna by the ratio
3100/2300 of the mass of the Maryland detector to that
of the Rome detector. This is somewhat arbitrary, since
it takes no account of the large difference in the resonant
frequencies of the two antennas, which implies that they
respond to completely different parts of the spectrum of
any gravitational wave event. Note that RTM also do
not make any correction for the different orientations of
the detectors.

RTM assess the significance of any result by compar-
ing C,.(¢) with some “background” values of the same
quantity, as determined by using different time delays in
the two gravitational wave streams:

N,
Colb1,82) = 3 D [Br(ti +61) * Bt + 5], (2)

=1

where §; and J, are separate time delays. We shall see
in a moment that this definition of a comparison back-
ground fatally flaws this method.

By changing the time delays, RTM calculate a large
number N, of these background values, between N, =
103 and N, = 10° in various investigations. They then
assign a ranking order to the various time delays ¢ by
defining

n(¢) = counts,, 5, [C. (31, 62) > Cu(8)], (3)

where “count;ange[ (condition)]” means that one counts
the number of times the condition is true for variables in
the given range. In this case, the smaller is the value of
n(¢), the more significant is the correlation for that time
delay. Since the range of §; and §, always includes ¢, the
minimum value of n(¢) is 1. The maximum is N.

On the assumption that the background values are all
independent, the probability of the correlation at a given
delay is then taken by RTM to be

p(¢) = n(4)/Ns. (4)

If the background values C,(d1, §2) were all independent
and had the same distribution as the values of C.(¢),
and if n(¢) > 1, then this would not be an unreasonable
way of estimating the probability. Unfortunately, none
of these three conditions holds in the RTM analysis. We
shall examine the independence of the background values
in Sec. IITA2. (We discuss the effect of small-number
statistics [n(¢) ~ 1] in Appendix A 1a, and we return to
the question of the distributions of C,(¢) and C, (81, 82)
in Appendix A2b.)

Notice that this method uses only the ranking order
of the values of the correlations, and does not attempt
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to use a frequency distribution in uniform steps of C,,
which would be more conventional. This means that two
values of ¢ may give values of C, that are very close, but
they could be far apart in n(¢).

2. Criticism of the net excitation method

The biggest problem with the net excitation method
is that the background values are not all independent.
This is easy to see if we count the number of data points
from which the background values are derived. RTM say
that they always take values of §; such that the back-
ground value is taken from the same period as the signal
C(¢) [8]. This is to avoid problems due to possible non-
stationarity of the noise. Now, in a 2-h stretch of data,
where RTM find their strongest correlations [8], there are
7200 1-s samples from each gravitational wave detector.
On the null hypothesis (no genuine correlation), there are
thus about 1.4 x 10% independent random numbers in the
original data. These numbers are combined in various
ways using Eq. (2) to form up to 10® background values.
There must, therefore, be hidden correlations among the
background values, at least when N, exceeds about 10%.
It would not be easy to characterize these correlations,
but it would be most unwise to assume, as RTM do, that
there are none of significance for this method. Any esti-
mate of probability from this method below a few times
10~* cannot, therefore, be reliable.

Indeed, we shall see that the results of this test, as
reported by RTM, show great variations in the appar-
ent probabilities for time delays separated by as little as
0.1 s, well below the physical resolution of the gravita-
tional wave experiments. This may well be due to the
untrustworthiness of Eq. (4) for the smallest apparent
probabilities.

3. Threshold coincidence method

The second RTM method is similar to the threshold-
crossing gravitational wave-neutrino method we sug-
gested at the beginning of this section, only it is applied
to the combined gravitational wave data stream rather
than to each one separately. RTM set a threshold on the
combined data stream

E*(t) = ER(t) * EM(t) (5)

(where again x is + or x), and identify gravitational wave
“ewents” as those which cross the threshold. (These are
not of course necessarily real gravitational waves: they
may be just thermal noise excitations.) A coincidence
occurs for a time offset ¢ with a neutrino that arrived
at time ¢ if the event occurs at the nearest gravitational
wave sampling time to t+¢. The statistics of this method
are much more straightforward, at least for a fixed thresh-
old.

For a data set lasting N; sampling intervals (of one
second), containing IV, neutrinos and Ngw gravitational
wave events randomly (uniformly) distributed, the ex-

pected number of coincidences is

_ N,Ngw
n= N, (6)

Given that arrival times are uniformly distributed, the
probability of obtaining n or more coincidences, given
the mean 7, is

palm = 3

This equation holds provided |¢| is much less than the
expected interval between coincidences; if |¢| is too large,
end effects will reduce the coincidence probability.

IV. MONTE CARLO SIMULATIONS
A. Computer model

The objective of our Monte Carlo computer simulation
was to assess the realistic probability that the correla-
tions found by RTM would arise by chance in completely
random data sets. With computer-generated data we
can experiment with changing thresholds, time delays,
and even methods of analysis to see what effect these
have on apparent correlations. We have generated large
numbers of pseudorandom data, analyzed them using the
RTM threshold-coincidence method, computed the ap-
parent probability of the strongest correlations by RTM’s
net-excitation method, and then compared this with the
actual relative frequency of occurrence of such correla-
tions among the pseudorandom data sets. We principally
simulate the analysis of the Mt. Blanc data, although our
results also illuminate the treatment of the Kamiokande
and IMB data.

B. Properties of the pseudorandom data

In each Monte Carlo run, two sets of artificial grav-
itational wave data were generated, one corresponding
to the energy excitation of the Maryland detector and
the other to that of the Rome detector. Each artificial
data set consisted of 7200 samples, equivalent to a 2-h
data stream sampled at 1 s intervals. The samples were
drawn from distributions which were exponential in the
temperature of the excitation, the Rome simulated data
with mean 28.6 K and the Maryland with mean 22.1 K
(its effective temperature after normalizing its mass to
that of the Rome antenna and averaging over 1 s inter-
vals for comparison with the 1 Hz Rome data [8]).

For the “neutrinos,” we assumed an exponential distri-
bution of the time delays between one neutrino and the
next, using the observed mean arrival interval in the Mt.
Blanc data [8]. (This is the distribution one expects, of
course, if the neutrinos arrive according to the standard
Poissonian “shot noise” model.)

To generate the random numbers we used the Numeri-
cal Recipes [16] uniform random number algorithm RAN1.
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FIG. 1. Distribution of the
pseudorandom number genera-
tor.
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The cycle length of this random number generator is said
to be infinite for all practical purposes [16]. We demon-
strate its distribution by generating and binning the first
4 x 10% numbers in Fig. 1.

C. Method of analysis of the pseudorandom data
1. Adoption of the threshold-coincidence method

To analyze the simulated data one needs to choose from
the large variety of statistical tests which RTM employ.
Since the main thrust of this paper is to examine the Mt.
Blanc-gravitational wave coincidences, we shall perform
an RTM-style analysis of two artificial gravitational wave
data streams and one artificial neutrino stream.

We perform an RTM-style threshold-coincidence anal-
ysis on each random set. This allows us to assess the
influence of the freedom to choose the best threshold on
the chance of finding a strong correlation. In view of the
dubious value of the net-excitation measure of correla-
tions, it would be inappropriate to subject each random
set to such an analysis. Indeed, the computer time that
would be required for such an analysis would be huge,
since millions of random numbers would be required for
the analysis of each data set. (Once a given set is gener-
ated, one needs to generate from it all the background
values.) Instead, only for any data sets in which we
found significant threshold-correlations do we also per-
form a net-excitation analysis. We will see that this still
sheds considerable light on the question of how unusual
are the correlations whose claimed (apparent) probability
is 107S.

For each Monte Carlo data set, we have two choices to
make, the threshold and the time delay. We shall discuss
each of these choices in turn.

2. Selection of a threshold

In choosing the threshold T', we are guided by what
RTM say about their choice [8]. They select 7' = 150 K
for the summation statistic in the net-excitation method
because it gives the best correlation. They indicate that
they searched thresholds from 100 K to 200 K in steps
of 10 K. In our simulations, therefore, we search through
the same set of thresholds. This is a minimal set: we can
be confident they searched all of these. If in fact they
searched a larger number than they displayed in Fig. 16
of Ref. [8], then the “true” probability of a correlation
would be larger.

3. Choosing a time delay

Although it is clear that RTM searched some range of
time delays before settling on their preferred one of 1.1 s,
the central problem for us is to decide how wide that
range should be when we analyze our simulated data.
Note that, despite our reservations about the wisdom
of varying time delays in steps of only 0.1 s when the
gravitational wave data have a time resolution of 1 s,
we must follow RTM in this if we are to simulate their
methods faithfully.

In analyzing the Mt. Blanc data, RTM changed their
“best” delay from 1.4 s [7] to 1.2 s [8] and then to 1.1 s
[8], depending which was the optimum delay for the data
under consideration and the analysis method in question,
so some a postertort adjustments were made. RTM thus
indicated their willingness to optimize the time delay,
within a not-well-defined range, on receipt of more data
and the use of other analysis methods. (In the case of
the net excitation in Ref. [8], this optimization changes
the “probability” from 1074, at delay 1.4 s, to 1076, at
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1.1 s: a large change in “probability” for an apparently
insignificant change in delay.) However, RTM never went
far from their first value of 1.4 s, which they found by
inspection from the raw Rome and Mt. Blanc data at
about the time of the 5 v burst. RTM also tell us that
they would never have adjusted the delay by more than
about 0.5 s—1 s [17], although of course this comment was
made after publishing the results.

The crucial question for us is the following. Given that
the initial eyeballing of the data had provided the mo-
tivation to search time delays, if it then happened that,
after receipt of the Maryland data and a full analysis
of both gravitational wave data sets, RTM had discov-
ered a much stronger correlation at a very different de-
lay, would they have ignored it? Would they have been
bound by their original choice of 1.4 &+ (say) 0.5 s when
the phenomenon, by hypothesis, occurs over a period of
2 h in both data sets, and when their original choice was
made simply by crude eyeball inspection of 50 s of one
of the data sets? We believe that, had a much better de-
lay been found, RTM should have rejected their original
choice completely.

Moreover, RTM did in fact search a wide range of time
delays after receiving the Maryland data. Using the net
excitation method, they looked at delays from —3.2 s to
+0.8 s, which was not necessary for the calculation of the
strength of the correlation at —1.4 s, which they had pos-
tulated. It was this search that led to their later adoption
of a delay of 1.1 s. Also, using the threshold coincidence
method, RTM searched from —50 s to +50 s, for a fixed
threshold, and found no correlations stronger than those
around 1.2 s. This is not surprising since the threshold
was optimized for the chosen delay of 1.2 s. If, in either
of these searches, they had found any correlations which
were stronger yet, RTM would surely have been obliged
to take them seriously.

We conclude, therefore, that we should search our sim-
ulated data sets over a wide range of delays. This view is
reinforced by an examination of RTM’s initial selection

200

of a 1.4 s delay.

(a) On the initial selection of the 1.4 s time delay.

RTM initially inspected a small stretch of data contain-
ing the 5 Mt. Blanc neutrinos (see our Fig. 2; only the
neutrinos and the Rome data were used), and they chose
a delay for which the gravitational waves are “in most
cases appreciably higher than the average background”
[7]. Since this criterion is just an “eyeball” implementa-
tion of their own net excitation method [Eq. (2)] adapted
for one detector instead of two, we shall now use this
method to attempt to quantify the effect of their inspec-
tion process.

The first RTM time-delay estimate involved only the
Rome data, so in Fig. 3 we plot the statistic

1 &
C@) =3 Z Eg(t; + ¢), (8)

which is the single-detector version of C, of Eq. (1). Our
figure contains two plots: (a) uses all six neutrinos that
are shown in Fig. 2; (b) uses only the five neutrinos of
the Mt. Blanc burst. In both cases, the best time delays
are between 1.3 s and 1.8 s, but there is no preference
among them. This agrees with the RTM choice. But
other delays offer hope of some effect: near 5.5 s and
7.5 s there are peaks above 50 K. Note that each peak
is about 1 s wide, which agrees with the time resolution
of the gravitational wave data. When RTM broadened
the analysis from the Rome-Mt. Blanc to the Rome-
Maryland—-Mt. Blanc data, they changed the delay from
1.4 s to 1.2 s after a similar eyeball inspection of a short
stretch of the data [7,8]. Accordingly, we next look at the
effect on the delay when we include the Maryland data.
Thus, we next look at the full net-excitation statistic C;
[Eq. 1] applied to all the data of Fig. 2. Our results are
shown in Fig. 4. Here, the picture is very different: there
is little to choose between time delays near 1.5 s and
those near 5.5 s and 8.5 s. In fact, if one uses only the 5

Marytand

W(K)
S
o

T

FIG. 2. First indications of the Mt. Blanc
correlations. RTM originally had only the
Mt. Blanc neutrinos and the Rome data from
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which to select a delay of 1.4 s. The Mary-
land data were obtained later, and appear in
the analyses in Ref. [1]. (Reproduced from
Ref. [8] with permission.)
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“burst neutrinos,” the best time delay is 5.5 s.

One could argue, therefore, that based on RTM’s own
selection criterion, they could have changed the delay
time from 1.4 s to 5.5 s on receipt of the Maryland data.
In fact, to us it seems natural to try to match the “double
neutrino” event (arrival times 40.6 s and 41.0 s) with the
highest Rome peak at 35.3 s, leading to a delay of about
5.5 s, which as we have seen is as good as or better than
the delay they originally chose.

This is not, of course, to argue in favor of the reality
of correlations at other delays. Our point here is to show
that the range of time delays that were open to RTM was
considerable. Had, by accident of the noise in the grav-
itational wave detectors, the time delay at 5.5 s proved
a bit more significant, RTM would presumably have had
no problem justifying its adoption. The physical model
that they offered as a possible justification for the 1.4 s
delay, that a small neutrino mass delays them relative to
the gravitational waves, is untenable on other grounds

C(¢) FOR 6 NEUTRINOS (ROME ONLY)

(see our Sec. I), and in any case it could surely have been
stretched to justify a 5.5 s delay. Other ad hoc models,
perhaps invoking unknown particles that excite the grav-
itational wave detectors, could easily have been devised
to justify either advances or delays of small or moderate
size.

We believe, therefore, not only that much larger values
of |¢| could have been defended, but, indeed, that they
should have been thoroughly examined by RTM once a
time-delay model was adopted for analysis. As we have
seen, RTM did indeed perform such an examination.

(b) Our choice of delay. Consequently, we must regard
the delay between gravitational waves and neutrinos as
a free parameter like the threshold, and we choose the
most favorable delay (within a predetermined range) for
a given set of random data.

We fix the range of available time delays by staying
with the RTM model [7] of ascribing the delay to the
effect of a neutrino mass, m,. The time delay between

T T T
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FIG. 3. Searching for good time delays us-
ing the net-excitation method applied to the
data set of Fig. 2, using Rome data only. (a)
contains all six neutrinos seen in Fig. 2, while
(b) omits the isolated neutrino event near 2
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a gravitational wave traveling at the speed of light and
such a neutrino with energy E, after traveling a distance

d is
m,c? 2d
o= (2E)' 2 .

We need only fix an upper bound on the allowed mass
and adopt a value for the typical energy of the neutrinos.
By changing RTM’s value of 10 eV for the maximum neu-
trino mass [7] to a still reasonable 20 eV, and by relaxing
the RTM energy estimate of 10 MeV to the actual mea-
sured average energy of the five Mt. Blanc burst events
(8.4 MeV), we broaden RTM’s allowed range of (0, 2.7) s
to (0, 15.3) s. Hence we have run our main Monte Carlo
experiment with the choice of delays

0.0s <40t <149s, (10)

C,(#) FOR 6 NEUTRINOS (ROME & MARYLAND)

in steps of 0.1 s.

For this parameter we feel we may have been conserva-
tive, i.e., that we could have defended wider ranges and
hence obtained even larger corrected probabilities for the
correlations. One could argue that negative delays (neu-
trinos preceding gravitational wave events) should have
been considered, since the new physics required to ex-
plain any correlations might well involve a new elemen-
tary particle that excites the gravitational wave anten-
nas, and this might have traveled more slowly than the
neutrinos. By the same argument, the time delay be-
tween neutrinos and the new particle could have been
very much greater than the limits from the mass of the
neutrino, since the new particle’s mass could be very
much larger. Without an a priori model for the physics of
these correlations, it is hard to argue for any restriction
on the time delay. Instead, a more practical reason for
our accepting the relatively narrow range of 15 s is that
RTM would probably not have looked for time delays at
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FIG. 4. Searching for good time delays
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2 using the net-excitation method applied to

the data set of Fig. 2, using both Rome and
Maryland data. (a) contains all six neutrinos
seen in Fig. 2, while (b) omits the isolated
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all had not the peaks in the gravitational wave stream
been fairly near the neutrinos in Fig. 2.

We shall argue, shortly, that if one adopts a differ-
ent range, the probability just scales in proportion. For
example, (1) (conservative scenario) if one feels that de-
lays in the range (—60 s, +60 s) are suitable, and that
this range could reasonably have been searched, then the
“true” probability will be larger by about a factor of 8
than the one we derive in Eq. (12) below, and (2) (RTM
scenario) if one feels that RTM’s original eyeball estimate
was binding, £0.5 s, and that during subsequent analy-
sis no other delay could have been considered, then the
true probability will be smaller by a factor of about 15
than the one we derive. This illustrates how hard it is
to estimate realistic probabilities when data have been
analyzed by a posteriori criteria.

Note that in Sec. VA1 we attempt to calculate the a
priori probability of the correlations in the 2-h data set,
in a way which is independent of one’s guess as to the
available choice of time delay. We do this by removing
those 50 s of data which RTM inspected to choose their
delay of 1.4 s, and testing the predictive power of this
delay on the rest of the two hours of data. We find the
results are similar to those in our simulations that use a
range of delays of 15 s.

4. Owur algorithm

Having decided on the ranges of our free parameters,
we proceeded as follows. Each simulated data set con-
sisted of two gravitational wave streams and one neu-
trino stream generated as described in Sec. IVB. For
each threshold, we searched through the whole range of
time delays to find which one gave the best correlation as
measured by the threshold-coincidence analysis method,
and then we calculated the apparent probability of this
correlation using Eq. (7). We performed the same anal-
ysis for each allowed threshold, and selected from all the
one which gave the smallest apparent probability. We
repeated this for each Monte Carlo data set (150 sets in
our first run, 10* in our second) to see how often appar-
ent probabilities smaller than any particular value occur.
This allows us to correct the apparent probabilities for
RTM’s freedom to choose thresholds and time delays, a
freedom they did not systematically quantify. We assume
that the relative frequency of any apparent probability in
our simulation is the true probability that that sort of
correlation will arise by chance in a given random set.

D. Results

We performed two simulation runs, the first using 150
data sets and the second with 10%. We made minor
changes between the two, primarily in the range of time-
delays we accepted. Because one of the difficulties of
understanding the significance of any statistical analysis
is knowing what analyses have been performed and not
reported (subsection V. A 2 b below), we report both of
our analyses here separately. We have not performed any
others.

2653
1. First simulation run

In our first run, we permitted the delay to vary from
—60 s to 460 s in steps of 0.1 s. Although this range is
larger than we have argued for, it is clear that, since each
data point in the simulated time series is independent,
the coincidences found for different delays will be uncor-
related if the delays differ by more than 1 s. Therefore the
probability of obtaining a given number of. coincidences
will simply scale linearly with the number of choices of
delay. Searching 150 data sets over a range of 120 s is
equivalent to searching 1200 data sets over a range of
15 s, which is the range we adopted for our second run.
The first run therefore contains 12% as many indepen-
dent trials as the second one. We regard one trial that
uses a 15 s range of time delays and the range of thresh-
old values described earlier as roughly equivalent to one
RTM experiment.

We would therefore expect to find only correlations
that have true probabilities of the order of 10~2 in our
first simulation. In fact, we found one data set that had
correlations that had an apparent “probability” that was
even smaller than that of the RTM correlations.

In each of the 150 random data sets we summed the
two gravitational wave streams and searched above the
selected threshold for coincidences with neutrinos at the
appropriate delay. The least probable correlation oc-
curred in data set 55: at threshold 110 K and at delay
28.0 s, we found 22 gravitational-wave—neutrino coinci-
dences. In Fig. 5 we present these results in the same
way as is done in Fig. 14 of Ref. [8].

For this data set, there were 86 simulated neutrinos
within the two hours, and at threshold T' = 110 K there
were 512 “gravitational wave events,” giving an expected
number of coincidences 7 = 6.116, by Eq. (6). The
Poisson probability of obtaining 22 coincidences here is
[from Eq. (7)]

Plowest = Pa=6.116(22) = 5.3 x 1077,
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FIG. 5. Histogram of number of threshold-coincidences
against delay time for data set 55 of the first simulation run.
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n/N AS A FUNCTION OF DELAY ¢
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FIG. 6. Result of the net-excitation analysis of simulation
set 55 (a) compared to the RTM analysis of the real neutrino
and gravitational wave data (b). [(b) reproduced from Ref. (8]
with permission.]
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This is a more significant peak than that found by RTM,
using RTM’s method of calculating the probability, al-
though we found it in the equivalent of only 1200 exper-
iments.

We then submitted this data set to a net-excitation
analysis, using the summation method and using the
“best” time delay of 28.0 s. A plot of our results in
the style of Fig. 11 of Ref. [8] appears in our Fig. 6(a).
In Fig. 6(b), we reproduce the original RTM figure it-
self. There is a remarkable similarity between the two.
The actual value obtained for C (28.0) was 72.2 K, easily
larger than any of the 10® background values with which
it was compared to generate Fig. 6(a). We are confi-
dent that we could have made the trough in this figure
even lower, had we generated more comparison values.
We conclude that in roughly 1200 experiments, we have
found correlations as strong as than those RTM found
in the real data. Note that this was the first time we
had performed a net-excitation analysis, and the only
time for these data sets. It is conceivable that there were
other datasets in this experiment with net-excitation cor-
relations this strong, and that the threshold-coincidence
method is an inefficient way of finding them.
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FIG. 7. Delay histogram for data set 327 of the second
simulation (a) compared to the RTM histogram of the real
data (b). [(b) reproduced from Ref. [8] with permission.]
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n/N AS A FUNCTION OF DELAY ¢
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FIG. 8. Net-excitation analysis of set 327. Although the
threshold-correlation method gives as strong a correlation
here as for set 55, the net excitation analysis does not show
nearly as dramatic a dip as in Fig. 6.
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However, it is not possible to draw reliable conclusions
on the basis of one unusual data set, so we returned to
the computer and did a longer simulation run.

2. Second simulation run

At the outset of this run we decided that the narrower
range of time delays of 0.0 to 14.9 s would be more appro-
priate for simulating the RTM procedure. We performed
10* simulations in order to improve our statistics. We
still found only one data set which was less probable than
the real data, using the threshold-coincidence method,
but we found several with only slightly larger probability.
These have enabled us to form a reliable estimate of the
frequency of occurrence of these low-apparent-probability
data sets.

a. The most improbable simulated data set. The most
improbable data set in our second run was number 327,
which had a peak of nine coincidences at delay 7.6 s at a
threshold 170 K. The histogram of coincidences against
time delays is in Fig. 7(a), plotted with the corresponding
one for the RTM data (b). There were only 77 neutrinos
in the 2 h of simulated data, and 83 gravitational wave
events above this threshold. The number of expected
coincidences is . = 0.888 [Eq. (6)]. From Eq. (7), the
peak of 9 has a probability of 4.5 x 10~7, less than that
of RTM’s correlation.

When we applied the net-excitation analysis to this
data set, the result was quite different from that for our
earlier data set: the dip in Fig. 8 is by no means as
dramatic as it was for the RTM data, or for our own
Fig. 6(a). Although there are an unusual number of co-
incidences in this data set, the average excitation of the
gravitational wave detectors was not extraordinarily high
at the (delayed) time of neutrino arrivals. This illustrates
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FIG. 9. Relative frequency distribution of
the values of the parameter ¢ in our second
simulation run. This parameter is used by
RTM as their probability estimate. If this
: were the true probability, this figure would
be a straight line through the origin.
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LOGARITHMIC PLOT OF DISTRIBUTION OF OCCURRENCES OF g
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E FIG. 10. Logarithm of the previous figure,
showing a nearly exponential distribution.
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simply the fact that the two analysis methods measure
different, albeit related, properties of a data set, and so
simple probability estimates based on one or another of
these statistics will not necessarily agree.

b. The relative frequency of occurrence of such corre-
lations. Given the pseudorandom neutrino and gravita-
tional wave data sets, each threshold T on the gravita-
tional wave data stream determines an expected number
of coincidences 7 (7). Choosing a delay ¢ then fixes the
actual number of coincidences n(T, ¢). We seek the low-
est apparent Poisson probability over all thresholds and
delays, which we call g:

P, ¢)1}, (1)

q= min min
thresholds T | time—delays

where pp(n) is given by Eq. (7). The frequency distri-
bution of values of ¢ in the 10% data sets gives us our

DISTRIBUTION OF OCCURRENCES OF q (SMALL q VALUES)

15

realistic probability distribution. One would expect this
to be proportional to g, if the RTM raw probabilities were
realistic, so that smallest values of ¢ occurred the least
frequently. As Fig. 9 shows, the actual distribution of ¢
is just the opposite: the freedom to adjust parameters
makes small values of ¢ very much more probable than
large ones.

The analytic form of this distribution is not known,
but Fig. 10 shows that for most of the range of ¢ the
curve is fairly close to being exponential.

Our interest is in the smallest values of g, whose his-
togram is plotted in Fig. 11. Within the statistical fluc-
tuations, the distribution is fairly flat, which is what we
would expect if the behavior as ¢ — 0 is a regular extrap-
olation to zero of the low-q trend in Fig. 10, and does not
become singular as ¢ — 0.

We can use this figure to estimate the realistic chance
probability of the threshold coincidence correlations in
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. Hlﬂ Hﬂﬂ

J FIG. 11. Frequency distribution of ¢ for
small q, allowing an estimate of the distribu-
tion of unlikely correlations. If the distribu-
tion in the previous figure is fit by a straight
line for small ¢, then its slope in this fig-
ure would be nearly horizontal because of the
greatly enlarged scale for q.
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the RTM data as follows. The first 20 bins in Fig. 11
contain 21 data sets. This suggests that the realistic
probability is that any one bin will contain one data set in
each 10 trials. Since the width of each bin is Aq = 1078,
the true probability that a data set will give ¢ less than
107¢ (i.e., will fall in the first bin) is

p(g<107%) ~107% (12)

Thus, a more realistic estimate of the a priori proba-
bility that the 2 h of data which RTM analyze will show
the sort of threshold coincidence correlation they find is
10~%. This estimate does not, of course, allow for other
effects, such as the selection of the data set and the a
posteriori nature of the analysis method. In the next
section we take these less easily quantified effects into
account. We shall also show that it is possible to find
evidence within the RTM threshold-coincidence analysis
itself that our simulation probabilities are closer to the
true probabilities than RTM’s own estimates.

V. REASSESSMENT OF RTM CORRELATIONS

‘We shall now make a full reassessment of the probabil-
ities of the correlations RTM have found, in the light
of our Monte Carlo simulations. We shall study the
results of five papers, all of which reported coincident
events: two [7,8] found coincidences between the gravita-
tional wave detectors and the Mt. Blanc neutrino detec-
tor (see Sec. V A); two [9,10] found coincidences between
the gravitational wave detectors and the Kamiokande
particle detector (see Sec. VB); and one [11] found co-
incidences between gravitational waves and IMB (see
Sec. VC). (Another paper [1] found correlations between
the two gravitational wave detectors themselves, but the
probabilities found were not so unusual, so we review it
briefly in the Appendix A 2.)

We shall deal in this section with the main analysis
methods which RTM use; though in the interests of com-
pleteness, we have included many of the details of the var-
ious analysis papers in the Appendix at the end of the
paper. We shall first reassess the Mt. Blanc neutrino-
gravitational wave coincidences; then we shall reexam-
ine the Kamiokande— and IMB—gravitational-wave coin-
cidences.

A. Reassessment of Mt. Blanc—gravitational wave
coincidences

The RTM calculations of probability [8] are seriously
affected by certain a posteriori choices they have made.
Using our simulations in Sec. IV, we have already as-
sessed the effects of some of these choices—delay time and
thresholds—on the results of their threshold-coincidence
analysis, coming to the conclusion that the correlations
they find have an a priori probability of about 10~% in
any single random data set. We have also shown that
probabilities derived from the net-excitation method are
not reliable below values of a few times 10~%.
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In this section, we firstly examine the behavior of
RTM'’s data set without the 50 s of data which they used
to choose their first time delay of 1.4 s, and we attempt
to use this data set to test the predictive power of their
choice. This gives an estimate of the probability of the
RTM correlations which is independent of one’s guess as
to how much freedom RTM had to adjust their delay
parameter.

We then consider other significant a posteriori choices
that RTM made that made it easier for them to ob-
tain correlations. We shall see that some are quantifi-
able, while the effects of others can only be guessed at.
The overall effect of these considerations is further to
increase the likelihood of RTM’s discovering the correla-
tions which they find.

1. Contamination of 2-h data by including the
“eyeballed” set

An important issue is the fact that RTM included in
their full data sets the original 50 s stretch of data that
contained the 5 v burst that originally suggested to them
that they should search for a time-delay of about 1.4 s.
RTM are aware that this biases their probabilities and
at one point attempt to show that this has a negligible
effect on the final result. We will explain below why their
argument is wrong. We will then show how removal of the
50 s of data can be used to control for RTM’s ability to
choose the time delay, by assessing the predictive power
of a 1.4 s delay chosen from those 50 s of data, used for
the whole data set excluding those 50 s.

(a) Effect of contamination. It is straightforward to es-
timate the effect of this contamination on the threshold-
coincidence method that RTM apply to the Mt. Blanc
data. In the 2-h stretch they analyze, they find 13 coin-
cidences at the adopted threshold. Against an expected
value of 2.29, Eq. (7) gives a chance probability of about
106, If we exclude the first neutrino of the Mt. Blanc
burst, which is clearly in coincidence with gravitational
waves in summation above the threshold of 150 K (and
is the only one), then the number of coincidences at this
threshold falls to 12. This gives a chance probability of
about 5 x 1078, This is before corrections for the arbi-
trariness of the threshold, time delay, etc. The contami-
nation thus makes their threshold-coincidence probabili-
ties a full factor of 5 too small.

The contamination is much greater in the net-
excitation method. Consider the statistic Zivz"l E(t;+¢)
in Eq. (1) which seems to give such an unusually large
value. The five neutrinos originally eyeballed in Fig. 2,
with the delay deliberately chosen so that the Rome grav-
itational waves so delayed with respect to the neutrinos
are appreciably higher than the average background, will
each add about (82.4—28.6 =) 55 K extra to this sum (see
Fig. 3) at delays of both 1.4 s and 1.1 s. This artificially
increases the sum by about 275 K and so, when divided
by 96 for the number of neutrinos detected in the 2 h un-
der analysis, this contributes about 3 K to C4(1.1) and
C4(1.4) [see Eq. (2)]. This would considerably alter the
ranking order of C'(1.1). Figure 12 of Ref. [8] shows that
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if the value of C(1.1) were 3 K less, there would be about
20 “background” values greater than C(1.1), while there
were none before. That is, without the eyeballed data,
the RTM estimate of the probability of the correlations
in the rest of the 2-h data would be raised to 2 x 1075.
This factor of 20 still leaves the probability below the
range of reliability of the net-excitation method.

(b) Contamination correction as a way of controlling
for the time-delay freedom. Excluding the “five-neutrino
burst” is in fact another way of compensating for the
freedom to choose the time delay in the correlation anal-
yses. If we allow only the original RTM eyeballed time
delay of 1.4 s and exclude that data set from the subse-
quent analysis, we would obtain an unbiased result that
tests the ability of the original set to predict correlations
in the extended data set. For the net-excitation method,
this would remove the principal degree of freedom. How-
ever, all we have been able to do is perform that test for
the revised delay of 1.1 s, where we found the probabil-
ity went up by a factor of 20. We should really apply
this correction to the original time delay of 1.4 s, but the
RTM papers do not provide enough information for us
to be able to do this. However, we can be certain that
the proper correction would raise the probability even
further, since in the full data set a delay of 1.1 s gave a
better correlation than did 1.4 s; while in the data that
one removes (containing the 5 v burst), the 1.4 s time
delay was better (see Sec. IV C3).

The threshold-coincidence method is, of course, also
contaminated by this, and we have seen that this cor-
rection is a factor of 5. This is a correction only for the
freedom to choose time delays, not for the threshold free-
dom. Since in our simulations (which are not affected by
this contamination because we do not look at the first
50 s to get a time delay and then reuse this stretch of
data in estimating the probability that the full set shows
a correlation) we took a correction factor of 15 for time
delays (a 15 s span rather than RTM’s 1 s), the factor of
5 takes the corrected RTM probability most of the way
toward our simulation estimate. Moreover, the remarks
in the last paragraph about using the original time delay
of 1.4 s apply here too. This will raise the correction still
closer to (if not beyond) our factor of 15. We find, there-
fore, that the contamination effect can be used to control
for the time-delay freedom, and when one does so one
finds consistency with the probabilities of 10~* produced
by our stmulations.

(c) Problems with the RTM contamination correction.
RTM realized that the contamination of the 2-h data
by the eyeballed data was a problem, and they attempt
to show that it does not really change things by cal-
culating the net-excitation ranking statistic (comparison
of C,(1.1) with random “background” values) with and
without the five neutrinos of the Mt. Blanc burst. They
find no significant change (Fig. 5 of Ref. [8]). However,
the comparison is flawed because they used only N = 103
background values to calculate the “probability” of the
correlation, both with and without the 5~ burst. Such
a calculation can (according to our argument on the in-
dependence of the background values) indeed distinguish
between data sets that have a chance probability greater
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than about 10~3, but unfortunately RTM adduce this
calculation as evidence that a data set with a probability
of 107® is uncontaminated. Even if their method were
reliable, they would have had to have used at least 108
background points to have drawn any conclusions.

RTM tell us [17] that they have, in response to our
criticism, subsequently performed such an analysis with
108 points and find that their net-excitation probability
goes up by a factor of 5 when the original neutrinos are
excluded. While this takes them some of the way toward
the 10~% level that we feel the correlations really warrant,
they still have not compensated for changing from 1.4 s
to 1.1 s, and they are, in any case, using a method whose
probabilities are unreliable at this level.

2. Further corrections to the probability
of the Mt. Blanc correlations

We have shown from our simulations that the cor-
relations in the Mt. Blanc data occur with probability
~ 10~%. We have confirmed this by removing the data
from which the 1.4 s delay was chosen, and testing the
predictive power of this delay on the rest of the data.
We start this section, therefore, with the estimate that,
for the given Rome-Maryland—-Mt. Blanc data set, the
probability that RTM would have found the correlations
they did find is about 10~4.

(a) Selection of the data set to analyze. Through our
simulations and our attempts to correct for time delay
and threshold freedom in the RTM analyses, we have ar-
rived at the conclusion that the given Rome-Maryland-
Mt. Blanc data set contains correlations with a real prob-
ability of about 10~%. While larger than the RTM claim
of 1078, this is still potentially significant. However, we
now have to turn to a number of corrections that have to
do with other a posteriori choices made by RTM.

The first is that RTM see their correlations only in
a particular 2-h stretch of data, which was not selected
because of any property of the 50 s eyeballed data set.
Indeed, RTM looked for correlations in other, earlier data
sets and found none at the same time delay of about 1.2 s.
Also, they examine longer and shorter data sets and find
that the effect becomes much weaker for periods less than
about 50 min and greater than about 150 min (Fig. 9 of
Ref. [8]). Indeed, they seem to regard this as evidence
for the reality of their correlations, since if they were
associated with the Supernova, then one would expect
them to be transient.

However, when assessing the significance of correla-
tions, one must be careful to start from the null hypoth-
esis, that the correlations arise by chance. Then it is
clear that one’s ability to choose the data set in which
one finds correlations is another free parameter, like the
time delay itself. Since one has no a priori idea of the
length of the period during which these correlated neu-
trinos and gravitational waves (or new particles) should
have been emitted by the Supernova, it is fair to expect
that if correlations as strong as the ones RTM found had
appeared instead in, say, a longer or shorter stretch of
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data, RTM would have treated them just as seriously.

In fact there are two variable parameters here: the
length of the data set and its starting time. RTM make
a natural a priori choice in selecting a data set which
includes the Mont Blanc 5 v burst, but it need not have
been 2 h long and it need not have been centered on the
burst. It would have also been natural to have looked
for phenomena either immediately preceding the puta-
tive collapse event or immediately following it; indeed,
on physical grounds it seems rather unlikely that any
correlated phenomena would have occurred both before
and after the collapse, since the physical conditions are
so different on either side.

The length of the data set is even more important.
RTM analyze a 2-h data set, but again give no physical
reason for having made this choice a priori. The reason
for this choice seems to come from Fig. 9 of Ref. [8],
where, for a fixed delay of 1.2 s (given by eyeballing),
RTM compare C,(¢) and C,(d1,9d2) for different values
of the length of the data set, and show that the best corre-
lations for the net-excitation algorithm occur for lengths
between about 100 and 130 min, with the “probability”
of the correlation increasing fairly sharply by about 1 or
2 orders of magnitude outside a window from about 70 to
150 min. RTM apparently used this information to select
the data set they analyzed. In fact, RTM stress that the
2-h length of data is not optimal: 135 min is better. But
it is clear that even so they have made a considerable op-
timization by choosing a value near the “best” one, when
they could have chosen a length of anything from, say, a
few minutes to 36 h.

We .have not attempted to simulate this freedom to
choose the data set in our Monte Carlo analysis; it would
have been computationally very expensive. We also do
not know from the published papers how many data sets
RTM actually looked at. In the absence of simulations,
the following argument gives us some idea of the size of
the effect.

We would like to know how many essentially indepen-
dent data sets RTM could have analyzed. Let each data
set contain the Mt. Blanc burst, and let us take a mini-
mum reasonable data set length L to be 8-10 min. If we
enlarge the set by a factor of 2, the larger set will have
statistics reasonably independent of those of the smaller
included in it. Each such doubling of the length pro-
duces a new “independent” set, until L reaches 36 h, the
total of the data apparently available to RTM initially.
This requires eight doublings, giving nine sets. For the
shorter sets there are actually two independent sets, one
ending with the Mt. Blanc burst and the other beginning
with it. Doubling these “post—Mt. Blanc” sets until the
Maryland detector goes off line because of its electrical
problems adds 5 more sets, giving 14 in all.

We shall therefore take a factor of 10 to be a reasonable
lower limit on the correction we need to make for this se-
lection effect. This raises our estimate of the probability
that RTM’s analysis methods would have found correla-
tions in entirely random data to about 1073. Next we
turn to the problem that their analysis methods were
themselves invented a posteriori.

(b) “Trial and error” analysis. Every textbook intro-

duction to statistical analysis emphasizes the problem
that, the more often one analyses a given set of random
data in different ways, the more likely it is that one will
uncover a correlation of apparent significance. In our sim-
ulations in Sec. IV we have accordingly reported all the
trials we did. Unfortunately, it is impossible from RTM’s
papers to learn whether they performed other analyses of
the data that they do not report. We have indicated at
several places in this paper our guess that they may (or
even should) have done so.

For example, the most natural kind of analysis to have
done with two gravitational wave streams and the Mt.
Blanc data is a triple-coincidence analysis, where one
identifies gravitational wave events by setting a threshold
separately on these two data streams. The threshold need
not be arbitrary: a reasonable one is a level where one
expects only a few coincidences over the selected data
set if the data are random (a low “false alarm rate”).
RTM do not report such an analysis. Instead they report
a double-coincidence analysis in which the gravitational
wave data are added together before being thresholded,
and they search many thresholds. They also introduce a
nonstandard method, the net-excitation method. How-
ever, as we shall see, RTM do report having done such a
triple-coincidence analysis for the Kamiokande data and
gravitational wave detectors.

Having used certain methods for the Mt. Blanc data,
they then do not stay exclusively with them for the KII
data. The net-excitation analysis is done but not exam-
ined in detail. The threshold-coincidence method is not
reported, but the results of the tripl-coincidence method
are. And the length of the data set is changed. The pa-
pers do not tell us if RTM performed, say, the threshold-
coincidence analysis of the KII data over the original time
span and did not report it because the results were not
very significant.

One cannot argue that these tests are all roughly equiv-
alent, so that if a correlation shows up in one it will show
up in all: this is not necessarily the case. For exam-
ple, our Monte Carlo simulations produced two “good”
correlations as measured by the threshold-coincidence
method, but one of them gave a good correlation using
the net-excitation method and the other did not. Here,
the choice of the analysis technique used makes a dif-
ference of a factor of 103 in the “probability” obtained.
These methods all measure different things (though some
methods are partly dependent on each other in ways
which are not clear). So the significance of a reported
correlation is diminished if other tests were applied that
gave null or insignificant results, simply because the other
tests could have given correlations (even if they did not).

Another worrying aspect of this is that there are oc-
casions where it appears that a secondary analysis was
designed after a primary analysis, and may therefore
have been guided by the results. An example of this,
which we have already seen, occurs in the design of the
net-excitation method in Ref. [8]. When calculating the
“background” neutrino—gravitational excitation to com-
pare with the measured value given by Eq. (1) RTM
make an unexpected choice: they use Eq. (2) in which
the gravitational wave data streams are taken at differ-
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ent times, rather than simply shifting both gravitational
wave data streams by the same amounts.

While this would not be unreasonable as an a pri-
ori choice (provided they had used enough data to en-
sure independence of the background values), the prob-
lem is that RTM by this time appear already to have
performed the Maryland-Rome correlation analysis [1],
which showed that the two gravitational wave detectors
had an unusually high number of coincidences, at zero rel-
ative time delay, during the period under analysis. RTM
should have known that by calculating the background as
they have, they have obtained a marginally lower value
for the apparent probability than if they had kept the
two gravitational wave data streams tied together.

These points illustrate the difficulties that a posterior:
tnvention of data analysis methods can create. We find
these effects impossible to quantify, but inevitably they
raise the probability of finding correlations.

3. Overall assessment of the probability

We now assemble our various corrections to arrive at
an estimate of the chance that RTM would have found
correlations of the level of significance that they have
reported in entirely random data.

In the Introduction to Sec. V A we have put the chance
probability of finding RTM-style correlations in a given
random data set at about 10~™%. In Sec. VA2 we have
raised this to 1072 because of their freedom to choose the
data set. We cannot quantify the correction for what we
have called “trial and error analysis,” but it could be sig-
nificant. One could conceivably get even another factor
of 100 from this, since we actually found a variation of a
factor of 1000 between different RTM analysis methods
applied to the same simulated data set (see Sec. IVD 2).

We therefore conclude that, because of the considerable
freedom that RTM had (and frequently exercised) in look-
ing for correlations, the a priori chance probability of the
correlations that they did find between the gravitational
wave data and the Mt. Blanc neutrinos lies somewhere
between 0.001 and 0.1.

B. Reassessment of KII-gravitational-wave
coincidences

We turn now to the RTM coincidences between the
Kamiokande detector and Mt. Blanc and the gravita-
tional wave detectors. Of course if the correlations be-
tween the Mt. Blanc detector and the two gravitational
wave antennas are due, even in part, to real neutrinos or
other particles emanating from an astrophysical source,
then similar correlations should be present in the data
of other particle detectors, even though they did not ex-
hibit obvious bursts of activity at this time, as did Mt.
Blanc. RTM recognize that the correlations between the
Mt. Blanc neutrino data and the gravitational wave data
may have arisen by chance, so they rightly regard the
acid test of the correlations to be their predictive power:
do the particle data from Kamiokande show the same
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correlations with the same time delay? One would ex-
pect that the same methods of analysis as were previ-
ously used should yield correlations at a similar level of
significance.

Unfortunately, RTM do not make a clean test of the
predictions of the Mt. Blanc analysis; they do not simply
apply the same analysis methods to the Kamiokande data
as they used for the Mt. Blanc data. However, RTM do
indeed claim to find correlations, with probabilities that
lie between 10~ and 10~%, depending on the tests RTM
apply. We shall reassess each of their methods in turn,
but first we consider corrections that apply to all of them.

1. General corrections to the probabilities that RTM
assign to KII

(a) Clock correction. As we mentioned before, the
Kamiokande clock had an absolute timing uncertainty
(difference from Universal Time) of 1 min, although rel-
ative timings were very accurate. This could be rectified
to a certain extent by demanding that the Kamiokande
neutrino burst at 7 h 35 m was coincident with the burst
in the IMB detector, whose clock was accurate. RTM
try to find a clock shift that will bring the two bursts
of neutrinos detected at 7 h 35 m 41 s (+5 ms) and 7
h 35 m 35 s (£ 60 s) UT in IMB and Kamiokande, re-
spectively, into coincidence. But what does one mean by
coincidence? Since the length of the Kamiokande burst
(2] was 13 s and the length of the IMB burst [3] was
6 s, we have, unfortunately, a great deal of freedom in
choosing when the two bursts should coincide. RTM use
the criterion that the first neutrino of each burst should
coincide, with a two second uncertainty; and hence that
a reasonable range for the clock offset ¢, is the interval
(5.7, 9.7) s. But they might have been equally justified
in supposing that the centers of the two bursts should
coincide, with an uncertainty of, perhaps, three seconds.
This would have given RTM another 6-s window to search
for coincidences.

(b) Length of the data set. One of the most puzzling
aspects of the RTM analysis of the KII data is that they
do not stay with the 2-hour data set, but again give them-
selves freedom to choose its length: the one hour of data
from 2 h to 3 h UT. There is no a priori reason for this,
(all the particle data for the days 22 and 23 February
1987 were supplied by the Kamiokande group [9]) and no
explanation is given, so we can only conclude that they
have done it because it gives better results in the KII
analysis. Indeed, in the one analysis where RTM repeat
their analysis for the full 2 h, the search for triple coin-
cidences, their probability goes up by one or two orders
of magnitude when they revert to the period they anal-
ysed in Ref. [8]. We can therefore expect that similar
corrections of 1 or 2 orders of magnitude will apply to all
probabilities quoted in the paper.

(c) Change of analysis methods. RTM use analysis
methods for the Kamiokande—gravitational wave coinci-
dences that are different from those that they used for the
Mt. Blanc—gravitational wave coincidences. In fact they
use several analysis methods. They do include the same
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net-excitation test, but for reasons that they do not ex-
plain, they do not give a detailed study of the probability
of this correlation along the lines of their Mt. Blanc study.
They also do not present a threshold-coincidence analy-
sis of the Kamiokande—gravitational-wave data along the
lines of the threshold analysis of the Mt. Blanc data, i.e.,
by putting a threshold on the summation or product data
sets and looking for coincidences with the Kamiokande
particles. This would seem to have been the most nat-
ural thing to have done. Instead they present a triple
threshold-coincidence analysis.

Again, in the absence of any explanation, we must as-
sume that RTM have done this to improve the results
of their analysis. We shall try to correct for this where
appropriate, and where possible, we shall use RTM’s orig-
inal analysis methods on the data they present.

2. KII-gravitational wave coincidences independent
of Mt. Blanc

(a) Net-ezxcitation analysis. RTM performed the
same net-excitation analysis on the Kamiokande—Rome—
Maryland data as they had previously on the Mt. Blanc-
Rome-Maryland data. However, RTM do not carry
this through to a probability estimate. This is strange
because, as we have said, such an analysis, indepen-
dent of the Mt. Blanc data, is absolutely crucial in de-
ciding whether this correlation effect is present in the
Kamiokande independent of Mt. Blanc. Fortunately,
RTM publish enough data [9] to allow us to do the ap-
propriate analysis here.

In Fig. 1 of Ref. [9], each value of C(¢) is compared
with only 10% background values, and we see that at
the chosen clock offset ¢, = 7.7 s there is actually one
background value which is larger than C;. By RTM’s
method, Eq. (4) the probability of this correlation is
about 2 x 10~3. However, as we have seen, they should
not put too much weight on the probability of a single
point, when neighboring points separated by 0.1 s give
different probabilities. In fact all the other points within
a window +0.5 s of 7.7 s have associated probabilities of
102 or more, with several at 2 or 3x10~2 and one at
1071, The value at exactly 7.7 s cannot be physically
significant, and a probability of about 2 x 1072 would be
more representative.

RTM do correct for the number of available choices
of the clock time. Because they took 41 values of the
clock time in the 4-s window about their chosen delay,
separated by 0.1 s, they then multiplied all their derived
probabilities by 41 to correct for this. Applied to their
figure of 2 x 1073, this gives a probability of about 0.08.
We must not apply the same correction to our best esti-
mate of the probability, since we accept only four inde-
pendent values of the delay. Multiplying our first prob-
ability, 0.02, by the number of choices, four, also gives
0.08. This is a reasonable estimate of the significance
of the Mt. Blanc-type correlations that exist in the 1-h
set of KII data selected by RTM. If in addition we allow
for a further “washing out” of the correlations if we take
the full 2-h set (which could give up to a factor of 10

or so as outlined above), and if we include another six
independent choices of clock setting, we see that there
is no evidence whatsoever for physically significant Mt.
Blanc-type correlations in the Kamiokande data.

We would be justified in stopping here and looking
no further at coincidences between the Kamiokande data
and either the gravitational wave data or that from Mt.
Blanc. The Mt. Blanc correlations fail the “acid test” for
their physical reality by being absent from the KII data.
However, for the sake of completeness we shall continue
briefly to review the other RTM analyses of the KII data.

(b) KII-Maryland—Rome triple coincidences. Instead
of doing the same sort of threshold-coincidence analy-
sis that they did for the Mt. Blanc—gravitational-wave
data, RTM instead perform a straight triple-coincidence
analysis, looking for threshold crossings in both the grav-
itational wave data streams at times given by Kamioka
particle times (with the appropriate delay). Indeed, this
is the sort of analysis that we wish they had performed on
the Mt. Blanc data in the first place. However, the fact
that they did something different for Mt. Blanc makes it
hard to offer this analysis as evidence that the Mt. Blanc
correlations appear in Kamiokande.

RTM find a peak of 15 triple coincidences at a thresh-
old of 40 K, for which they made an erroneous estimate
of the probability, 8.2 x 1078, by using the mean rate
of events appropriate to a different data set (see Ref. [9]
or our Appendix). The data are also oversampled in the
manner of their analysis of the Mt. Blanc—gravitational-
wave data (see Appendix Ala). One way to attempt
to correct for the oversampling is by averaging the num-
ber of triple coincidences in a window £0.5 s about the
maximum. Using the “peak” of Fig. 3 in Ref. [9], we
arrive at a “typical” 11 triple coincidences. If we use
the correct expected number of 4.8 from the data set in
question, then these have a Poisson probability of only
0.01 [see Eq. (7)]. If we then correct for the freedom
to shift the clock correction, for the introduction of this
analysis method which was not used before, and for the
narrowing of the data set to 1 h (a correction of up to
one order of magnitude), we see here as well that the cor-
relations become completely insignificant. The claimed
triple coincidences at other thresholds can be dealt with
similarly.

3. Gravitational wave coincidences with KII
and Mt. Blanc combined

In the Appendix, we criticize the fact that when the
KII and Mt. Blanc data sets are combined and then ana-
lyzed in the manner in which the Mt. Blanc data set was,
it is almost impossible to judge what is the independent
contribution of KII to the resulting correlations. If the
KII set does not exhibit the correlations independently,
and we have just seen that it does not, then it cannot be
expected to enhance the Mt. Blanc correlations.

We only wish to make one further remark about this:
given the considerably greater sensitivity of Kamiokande
to neutrinos than Mt. Blanc has, it is odd that RTM do
not weight the KII neutrinos more heavily than the Mt.
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Blanc neutrinos in the combined data set. If RTM were
to weight the KII particles more strongly, then their lack
of correlations would, of course, depress the significance
of the correlations RTM find in the combined data sets.

For all these reasons, we do not feel that the analyses
of the combined data sets contribute significantly to the
probability estimates we have been making.

4. Conclusion: Kamiokande as a test
of the Mt. Blanc correlations

We find no evidence that Kamiokande particles were
correlated with the gravitational wave detectors in the
way that Mt. Blanc neutrinos were. This is, as we have
said, the acid test of the Mt. Blanc effect: if the corre-
lation is not also present in the data of other neutrino
detectors, then it is hard to believe that it is real. De-
spite the claims in the RTM papers about the existence
of correlations in the KII data, the freedom they have to
adjust parameters is enough to explain the weak correla-
tions they find, on the null hypothesis that the KII data
are random with respect to the gravitational wave data.
The RTM analysis of the KII data therefore provides the
falsification of their hypothesis that the Mt. Blanc corre-
lations are due to a real physical effect.

C. Reassessment of gravitational wave—-IMB
correlations

The paper on the IMB correlations [11] appears to have
been written as an attempt to unify the derivation of the
earlier correlations as well as to find new ones in the IMB
data. In fact, this paper presents the Mt. Blanc, KII, and
IMB correlations as a coherent whole, adopting a single
(but new) dataset length of 11 h for each, and using a
similar delay, 1.2 s. Although these choices have been
made a posteriori, it is still a welcome attempt to ensure
comparability.

Using these new parameters, the significance assigned
by RTM to the Mt. Blanc correlations is reduced by a
factor of 30. The significance of the KII correlations is
hardly changed for the following reason: in Ref. [9], the
delay examined is 1.1 s and the clock correction for the
KII detector is estimated to be +7.7 s, where the effect
is strongest. However, in the new analysis [11], although
they adopt a 1.2 s delay, they change the KII clock cor-
rection to +7.8 s, thus canceling the detrimental effect
of changing to the new 1.2 s delay. RTM say the effect
of this small difference in the clock correction is “neg-
ligible,” and they do not even point out their previous
use of 7.7 s, referring to it simply as another clock cor-
rection they could have used. However, the effect is far
from negligible: we have seen, as can be read from Fig. 1
of Ref. [9], that this ad hoc 0.1 s adjustment makes a
difference of a factor of about 10 in the strength of the
correlation. We note also that RTM justify the new clock
correction of 7.8 s because it matches the middle of the
first five KII neutrino times with the middle of the first
three IMB neutrino times. This vindicates our correction
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in Sec. VB1 for the fact that RTM could have chosen
methods of setting the clock correction other than the
one they used.

Fortunately, the IMB clock is known to have been set
correctly at the time of the experiment. However, in find-
ing the correlation between the gravitational wave detec-
tors and the IMB particle detector, RTM make three
significant choices, all of which are a posteriori and for
which no justification is offered.

Although in their earlier papers, they first emphasize
that a 1.1 s delay is optimal [8], and they then refer to
it exclusively as the optimal delay for the phenomenon,
[9,10] the delay is changed back to 1.2 s here without
explanation. RTM do not state the probability of the
correlation at 1.1 s, and nor is it given in any graph. It
is hard to know how these changes affect their claimed
probabilities; but we have seen, e.g., in Fig. 6, that chang-
ing the delay around a correlation can make a difference
of a factor of about 10 in the probability of the correla-
tion.

We must also consider RTM'’s decision to change the
length of the dataset again, this time to 13 hours, still
centred on 2 h 45 m. This, they say, is based on their
previous analyses of 2 h for Mt. Blanc and 1 h for
Kamiokande. Certainly, this is a good compromise be-
tween the periods analyzed previously, and will not affect
those earlier correlations too dramatically. But in fair-
ness, RTM could quite easily have chosen a period of 1
h or 2 h instead, as they have used these before. In fact,
they could have used any period of this order, as this is
what they did when they chose to analyze 1 h of KII data
instead of 2 h.

Finally, we must account for RTM’s decision to apply
an energy selection criterion to the particles detected dur-
ing the experiment (see Appendix). They acknowledge
that this choice affects the probability, but they make no
attempt to justify it or to calculate the extent to which
the probability is affected. Within the null hypothesis,
of course, and particularly when these particles (high en-
ergy muons) could not possibly have been responsible
for the effect observed in Mt. Blanc, which contained no
muons [11], this choice has no basis. It is impossible for
us to quantify the effect of this choice, since RTM do not
give any results for the whole IMB particle population.

In summary, we must correct RTM’s a posteriori cal-
culation that the probability of the IMB correlations is
1073 for their adjustment of the delay; for the choice
of particle sample; and for the choice of the period of
analysis. We think that a factor of 100 for such choices
would not be unreasonable, giving a probability for the
correlations of as much as ~ 1071,

VI. CONCLUSIONS

We have found that the Mt. Blanc neutrino data and
the Rome and Maryland gravitational wave data streams
show a weak correlation during the period of 2 h con-
taining the Mt. Blanc “neutrino burst.” The correlation
is of such a nature that it would have been found once
in similar a posteriori analyses of between 10 and 1000
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random data sets. In addition, we believe that the parti-
cle data from Kamiokande and IMB show no compelling
evidence of the same correlation with the gravitational
wave data, while RTM accept that there are no similar
correlations between gravitational waves and the Baksan
detector. This leads us to the conclusion that the correla-
tions found by RTM are most likely a chance fluctuation
in the data.

In reaching these conclusions we have had to try to
compensate for a host of choices and other biases in
the original RTM analyses. These include: a posteri-
ori choices of the time delay, of the threshold, and of
the duration and starting time of the data set; statistical
dependence of data sets caused by including the original
eyeballed data set in the larger ones that were subjected
to an analysis that was based on inspection of the original
set; use of nonstandard and seriously flawed statistical
tests with poorly understood statistics, when standard
tests could have been used but were not (or were not
reported); and the failure to apply consistently the Mt.
Blanc analysis methods to data from Kamiokande and
IMB. In assessing the effects of some of these choices we
have been guided by our own numerical simulations of
the RTM methods applied to random data sets.

The result is that we believe that the correlations,
while present, are very much more likely to arise in ran-
dom sets than RTM estimated. Since the Kamiokande,
IMB and Baksan data do not show the same correlations,
any physical model for these effects would not only need
new particles and interactions; it would also have to ex-
plain how the Mt. Blanc detector could have responded
while the larger Kamiokande detector did not. We feel
that the correlations present in the data are sufficiently
weak that they do not provide serious evidence for such
new physics.
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APPENDIX A: REVIEW OF THE RTM
ANALYSES

1. The gravitational-wave—Mt. Blanc coincidences

The first RTM analysis [7] dealt only with Rome and
Mont Blanc data; the Maryland data were brought in
later. On inspecting the raw gravitational wave and neu-
trino data near the time of the Mt. Blanc burst (see Fig.
2, which is reproduced from Fig. 2 of their paper [8]),
RTM saw that a delay of 1.4 s between the two data
streams would place the neutrinos in the Mt. Blanc event
at times when the Rome signal is appreciably higher than
the average background [7]. Although this was unex-
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pected, the time delay was at least consistent with a
massive neutrino model with an acceptably small mass
for the neutrinos. The probability that the unusually
high signal preceding the first neutrino should have oc-
curred within a time interval of 3 s was 0.03, not very
significant in view of the large gravitational wave energy
that would be required to explain it.

However, it motivated a much more involved analy-
sis [8] in which the two sets of gravitational wave data
are collated and examined for coincidences (see Sec. A 2).
The time under consideration in this analysis is the full
18 hour period, from 12 h 22 February to 6 h 23 Febru-
ary. During this period, the Mt. Blanc detector counted
775 events, five of which were in the neutrino burst at
2 h 52 m 37 s. The remainder represent a fairly normal
background counting rate.

In searching for coincidences between the two gravi-
tational wave data streams and a neutrino stream, one
might try the fairly standard approach of applying a
threshold criterion to the gravitational wave streams,
searching for coincidences among the three streams only
when both gravitational wave detectors are above thresh-
old. This would treat each data stream with equal
weight; and moreover, if the data were random, each
stream would be expected to produce events (neutrinos
or gravitational wave threshold crossings) with a Poisson
distribution of arrival intervals. The statistics of such a
search would be easy to analyze.

RTM do not report having performed such an analy-
sis on the Mt. Blanc data (although they did use this
method later for analyzing the Kamiokande data—see
Appendix A 3). Rather, their approach is first to com-
bine the two gravitational wave data streams into a single
one by either adding or multiplying them together, and
then to use two different analysis methods, one of them a
threshold criterion, to compare the combined stream with
the Mt. Blanc neutrino data stream. We shall describe
each of the two methods and their results separately.

a. Results of the net-excitation method

RTM first examine the full 18 hours of data, calculat-
ing both C«(—1.2's) and C(—1.2 s) for 2-h stretches of
data, moved along in %-h steps. Each value is compared
with 10% background values. They find the best correla-
tion around 2 h 45 m UT on 23 February (Fig. 5, Ref.
[8]), where n = 1 for N, = 103. (For this value of N,
and 80 neutrinos, there are about 5000 independent data
values used for generating the 1000 background values,
so the background data are probably independent in this
case.) Then Eq. (4) would assign this a probability of
1073,

Importantly, this figure does not change by much if
the 5 v burst is excluded from the neutrino data set:
there are correlations at a 1073 level with a time delay
of 1.2 s even without the neutrino data that led to the
suggestion of the delay. However, it is also significant
that RTM use a delay of 1.2 s here rather than the 1.4 s
used previously. It appears that they adjusted ¢ to get
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a better correlation.

To address the question of the best time delay directly,
RTM next fix their attention on the 2-h window about
2 h 45 m, and for the summation statistic C;(¢) they
vary the delay time ¢, for each value comparing it with
N = 10° to 10° background values. The tested values
of ¢ are separated by steps of only 0.1 s, far below the
gravitational wave sampling time of 1 s. The delays of
1.0, 1.1, and 1.2 s all have very low probabilities from Eq.
(4), smaller than 1075. Importantly, the probability at
1.4 s is only about 107%, and within 0.5 s of the lowest
point there are probabilities as high as 1072. [We have
reproduced the RTM figure in our Fig. 6(b) above, where
we compared it to the results of one of our simulations.]

Given that the gravitational wave signals are sampled
at 1 s intervals, differences between time delays as small
as 0.1 s cannot have physical significance. The fact that
the RTM probability changes by a factor larger than 10
when ¢ changes by 0.1 s gives us a measure of the con-
fidence we can have in these probabilities. We can think
of two possible causes of these large fluctuations.

First, the fluctuations may be simple small-number
statistics: with typical ranking numbers of 10° or so,
a given small change in C, might lead to a relatively
small change in n of, say, 103. But when we deal with
points with ranking numbers near 1, a similar change in
C, would lead to a much larger relative change in n, say 2
or 3 or 10, leading to a much larger relative change in the
inferred p = n/Np. Thus, values of p substantially greater
than 1/N, are relatively stable against small changes in
C, while the smallest values of p are fairly unstable. This
is why we asserted in Sec. III A1 that Eq. (4) could be
unreliable if n is small.

The second possible cause of the fluctuations may be
the nonindependence of the background values. We dis-
trust values of p near or below 10~ %, while the most sig-
nificant correlations have values of p near 107%. It may
well be that for these points the correlations among the
background values ensure that there are tens of back-
ground values between any two real values of C,, leading
to spuriously large variations in p from one time delay to
the next.

Given these problems, it would be more prudent to in-
fer a probability from this method (if the method is to
be used at all) by taking some sort of average over delays
that span a 1-s interval. If the entire interval consistently
gives ranking numbers less than, say, 100 for N, = 10°,
then there may well be grounds for asserting that a cor-
relation exists that has a probability of about 1073,

However, RTM do not do this: they consistently quote
the lowest probability associated with any value of ¢,
even when very nearby time delays have considerably
higher values of p. This leads them to postulate prob-
abilities as low as 107%. If a more prudent average were
applied to the RTM data, the inferred probabilities would
be in the range 1072 to 1074,

When we discussed other problems with the RTM anal-
ysis in Sec. V, we saw that further consideration of the
free choices that RTM had in their analysis (such as the
delay time ¢) increases the probability of their finding
such correlations in a random data set even further.
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b. Threshold-coincidence method results

By adopting a delay of 1.2 s and a threshold on the
summation data stream E (t) of 150 K, RTM find a sub-
stantial correlation. The number of gravitational wave
events at this threshold is Ngw = 172. As before, there
are N, = 96 neutrinos and Ny = 7200 sampling intervals
(2 h), so the expected number of coincidences is 2 = 2.29.
The actual number observed was 13 [see Fig. 7(b)], much
larger than the other values up to +50 s away, and with
a chance probability [Eq. (7)] of about 1076,

However, this figure does not take into account the fact
that RTM (as they state) searched for coincidences at a
variety of thresholds, and chose 150 K only because it
gave the best correlation. This clearly affects any real-
istic assessment of the chance probability of this corre-
lation, and provides one of the principal motivations for
our Monte Carlo study.

2. The Rome—Maryland—gravitational-wave
coincidences

Although there were no improbable coincidences be-
tween the two gravitational wave detectors at the time
of the Mt. Blanc event, the correlation with neutrinos
over a long period of time makes it important to see if
the two gravitational wave detectors were correlated with
each other over this time. We give a brief summary of
the RTM analysis [1].

a. Threshold-coincidence method

RTM use data covering the 36-h period from February
21,18 h 24 m 33 s to February 23,6 h 2 m 3 s UT 1987,
which includes the Mont Blanc burst. During this period
both detectors had good thermal distributions of noise.
After rescaling the Maryland data by the mass ratio of
the detectors (as described in Sec. IITA 1), RTM set a
threshold and count the number of times that both de-
tectors are above the threshold simultaneously. The ex-
pected number can be calculated easily from the observed
exponential distributions, and by calculating threshold-
crossings with various delays one can test whether the
data are behaving as expected.

b. Threshold-coincidence method results

RTM divide the period under consideration into two
smaller periods. Period 1, of about 7 h (2.5 x 10% s) from
February 22, 23 h 5 m 23 s, to February 23, 6 h 2 m 3
s, includes the Mt. Blanc burst. period 2 is an earlier
and longer period of 10° s, from February 21, 18 h 24 m
33 s to February 22, 22 h 7 m 52 s, which seems to have
been analyzed as a control for the analysis of period 1.
RTM do not explain why they have chosen to place the
division between the two periods at about 23 h 5 m 23 s.

During period 1 there was an excessive number of co-
incidences above a threshold of 100 K: 41 coincidences,
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which is 2.4 standard deviations from the mean. Al-
though this threshold is arbitrary, RTM give an argument
that the number is still large when accumulated over 26
values of the threshold from 25 K to 150 K, and that the
correlation seen has a chance probability of 3.5%.

For period 2, there is no significant correlation between
the two antennas: 114, only three more than would be
expected (the interval is four times as long as period 1).
RTM regard this as evidence that the detectors are be-
having normally during period 2, and hence, it is implied,
during period 1. (They do not, however, assess the prob-
ability that one would come so close to the expected value
for this period.)

Given that the gravitational wave detectors show an
unusually high rate of coincidence for the period that in-
cludes the Mt. Blanc correlations described earlier, it is
important to ask whether the gravitational wave corre-
lations can by themselves account for the gravitational
wave-neutrino threshold coincidences during the same
period. In other words, if neutrinos arrive randomly but
the gravitational wave detectors are correlated (for what-
ever reason, even by chance), do we expect the number of
neutrino—gravitational wave coincidences that are seen?

The answer is clearly no. The number of coinci-
dences between the gravitational wave detectors above
80 K (giving a summation energy of 160 K) is less than
20 (two standard deviations) more than would be ex-
pected by chance in the 7-h period 1. During the 2
h of the neutrino—gravitational wave coincidence analy-
sis, this would probably give only five gravitational wave
events, and the chances of their being in coincidence with
a random neutrino is very small. They could explain
less than 0.1 of the observed 13 neutrino—gravitational
wave coincidences at a summation threshold of 150 K.
It seems, therefore, that the neutrino-gravitational wave
threshold coincidences occur primarily when one gravi-
tational wave detector is well below the excitation level
of the other, and are probably not associated with the
coincidences tested here.

It is not clear whether the net excitation correlation of
gravitational waves and Mt. Blanc neutrinos is affected
by the gravitational wave—gravitational wave correlation.
It is possible that the small excess of gravitational wave
coincidences at most thresholds and at zero delay will
raise the value of C(¢) compared to the background, be-
cause the “signal” gravitational wave values are taken at
the same time, whereas the background values are taken
at different times. This may marginally increase C(¢)
and hence decrease n.

3. The gravitational wave—KII-Mt. Blanc
coincidences

a. Net-exzcitation analysis of Kamiokande data

RTM first apply the net-excitation analysis method
to the Kamiokande—gravitational-wave coincidence prob-
lem. For both the summation and product statistics, the
best correlation occurs at a time delay of ¢ = 6.6 s, which
they take to be composed of a clock-offset adjustment
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¢ = 7.7 s and an intrinsic time-delay of —1.1 s, consis-
tent with the Mt. Blanc—gravitational- wave time delay.
They give a rough estimate of the chance probability of
this correlation of about 1073.

b. Net-excitation analysis of merged particle data sets

RTM next do something new. They merge the set of
105 Kamiokande particles in this 1 h stretch with the
set of 48 Mt. Blanc neutrinos during the same period, to
give 153 particles in all. They apply the net-excitation
method to this set, obtaining C, (¢) see [Eq. (1)], with
results similar to those for the Mt. Blanc data alone.
Using Eq. (2) to generate a background, they get n = 3
for N = 2 x 10%, so their probability estimate for this
correlation would be about 1.5 x 1078, Of course, the
Mont Blanc neutrinos will have contributed to this, so it
cannot be an independent statistic.

RTM attempt to remove this dependence on the Mt.
Blanc analysis by shifting the KII signals by large random
times, thereby giving a control set, where the KII signals
are certainly not expected to be correlated with the Mt.
Blanc neutrinos or the gravitational wave signals. They
recalculate C (¢) and n for Ny = 2x 108, and obtain n =
23,942, a higher value than that of the “correlated” data
set, indicating a weaker correlation, which can only have
come about from the Mt. Blanc neutrinos. They take
the ratio of these n values, viz. 3/23,942 = 1.25 x 1074,
to be the experimental probability that the Kamiokande
data’s contribution to the correlation is purely chance.
They then correct this for the fact that they have chosen
the best value of ¢, from the 41 values they would have
allowed themselves (steps of 0.1 s in the 4-s window for
¢.) by multiplying this probability by 41, arriving at a
value of 5 x 1073, similar to the previous net-excitation
probability.

It is not clear why taking the ratio of these two num-
bers should produce the probability of Kamiokande’s
“additional contribution,” if any, to the Mt. Blanc—
gravitational wave coincidences, and RTM make no at-
tempt to prove this. In any case, the probability they
arrive at is not very significant; but even here we must
raise the same doubts as before that using steps of 0.1 s
for time delays is unphysical when the data are sampled
at 1 s intervals. RTM attempt to compensate for this
correction by allowing for 41 independent choices for the
time delay, but it is not clear to us that this compensa-
tion is correct. We have argued above that they should
instead average the probability values within a 1-s win-
dow, and this could give a much larger correction, since
their method starts from the unphysically small value of
C; at the best time delay.

c. Triple-coincidence analysis

RTM examine thresholds of 30, 40, 50, and 60 K for
gravitational wave events, on each detector. They do
not explain why they choose these thresholds, which are
much smaller than half of the threshold of 150 K that
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they adopted for the summation statistic in the Mt. Blanc
analysis. Indeed, the triple coincidences become much
less significant for the higher thresholds.

The expected number of triple coincidences, given a
uniform distribution of arrival times, is

N,NuyN,
n= (A1)
similar to Eq. (6), with IV, the number of particle events;
Nps and Ng the number of Maryland and Rome gravi-
tational wave events, respectively; and T the length, in
seconds, of the data set (here 3600). For the threshold of
40 K, this works out to be 4.8; for a threshold of 60 K it
is 0.97. The actual analysis gives, for ¢. = 7.7 s, 15 coin-
cidences at 40 K and 5 at 60 K. The “raw” probabilities
of these are, respectively, 1.5 x 10™% and 3.2 x 1073, using
Eq. (7) (RTM quote only the former, the smaller of the
two). RTM would compensate for the freedom to choose
a time shift by multiplying each by 41, thereby pro-
ducing numbers comparable with the earlier tests of the
Kamiokande data. RTM go further than this. They cal-
culate a Poisson probability for the number of observed
coincidences, but for the expected number 7 they use the
expected number taken from an earlier period of time.
RTM seem to think that it is better to take the mean
from the earlier data, since there is no suggestion that it
contains real events, and they heavily emphasize the re-
sulting smaller probability. But this is clearly not right:
the Poisson probability formula [Eq. (7)] only gives the
probability of a given number of coincidences in a data
set as against the expected number of events in the data
under discussion, and using a mean from another data
set will give an incorrect result. In fact, during the hour
under consideration the number of Kamiokande particle
events was some 25% higher than the hourly particle rate
during the comparison earlier period. Therefore, RTM’s
contention that for the earlier comparison period, “the
statistical properties of the data are very similar to those
of the period of analysis” [9], is, in this sense at least, se-
riously incorrect. Furthermore, for the case of the 40 K
threshold, using the wrong expected number (3.7) leads
to a probability estimate of 8.2 x 107°, as compared to
1.5 x 10~* for the actual mean number (4.8).
RTM thus quote probabilities about a factor of 20
smaller than the correct ones. However, they clearly have
some doubts about this calculation.

d. Merged triple coincidence analysis

Finally, choosing the offset ¢. = 7.7 s, RTM again
put the Mt. Blanc and Kamiokande particles together
and search for triple coincidences between all the par-
ticles and the two gravitational wave detectors. When
setting a threshold of 40 K, and comparing the numbers
of triple coincidences in the 2 h to 3 h UT window of 23
February with the respective average numbers of triple
coincidences taken from the period 12 h to 24 h of 22
February, RTM estimate the Poisson probability of the
triple coincidences found to be 2.7 x 1078, again using

a mean taken from an earlier data set. At other choices
of threshold they estimate the triple-coincidence proba-
bility to be between around 107 to 10~7. This is again
clearly dependent on the earlier Mt. Blanc—gravitational
wave coincidences, though no attempt is made this time
to correct for this. It also suffers from the fact that the
number of Kamiokande particles is higher in the hour
under analysis than in the comparison hours earlier. We
do not see any way of using this analysis to estimate
the independent contribution of the KII particles to the
probability of the correlation.

e. Summary

Displaying some caution regarding these analyses,
RTM prefer to adopt their earlier value of around a few
times 10™* [9] as their estimate of the significance of the
independent support that the Kamiokande data give to
the coincidences already found between the Mt. Blanc
detector and the gravitational wave antennas. We have
reassessed this claim in Sec. V B.

f. Note added after submission

After submission of this paper, it was pointed out to
us that Ref. [10] does give a clue as to what would hap-
pen if one performed a threshold-coincidence analysis of
the Kamiokande—gravitational wave data, for the original
period used, viz. 1 h 45 m to 3 h 45 m UT. From Table II
of Ref. [10], there appear to be only four coincidences of
Kamiokande particles with gravitational wave data above
a summation threshold of 150 K. This compares with an
expected number of 5.0, obtained from: Eq. (6), from
doubling N, = 105 from the 1-h period given in Table
III of Ref. [10], and from Ngw = 172, given in Eq.(12)
of Ref. [8]. If this were true, there would certainly be no
correlation of the Mt. Blanc threshold coincidence type
in the Kamiokande data, at above the chance level.

This is only what one can infer from the data presented
in Refs. [9,10], which are slightly (but for these purposes,
not seriously) incomplete. It would be helpful for RTM
to publish the actual threshold coincidence analysis of
the Kamiokande—gravitational wave data if they have not
done so already.

4. The gravitational wave—-IMB—-Mt. Blanc
coincidences

On receiving the IMB particle data, RTM analyzed
them together with the gravitational wave data and
the Mt. Blanc and Kamiokande particle data [11]. For
brevity, we shall concentrate here on the simple coinci-
dences between the IMB particle signals and the grav-
itational wave data, since only these could provide an
independent confirmation of the apparent Mt. Blanc—
gravitational wave correlations.
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a. Net-excitation analysis of IMB data

RTM apply the same analysis technique, the net-
excitation method, to the IMB signals. This time they
choose to analyze only the lé-h period of data from 2 h
0 m to 3 h 30 m of February 23. RTM choose here to
apply an energy selection criterion to the particle data.
They define a quantity E(IMB), the visible energy per
event given by multiplying the number of photoelectrons
detected during the event by 1 MeV; 1 MeV being, very
roughly, the energy deposited in the detector by one pho-
toelectron [11]. RTM then choose to analyze only those
signals whose visible energies fall in the range

3 GeV < E(IMB) < 6 GeV (A2)
based on their inspection of Fig. 12 (which is Fig. 5 in
Ref. [11]). The peak in Fig. 12 is due to single muons that
cross the entire apparatus. This choice is very curious for
the following reasons.

(1) RTM have not previously made such a selection
of particle detector data based on particle energies, al-
though for the Kamiokande data RTM adopted the same
threshold that is used by the Kamiokande group in their
own analysis [11].

(2) The choice seems to suggest that the muons are
responsible for the correlation, while RTM have not yet
offered a consistent particle-based model for any of the
correlations; the choice is therefore completely ad hoc.

(3) The principle that new data from IMB should be
subjected to the same analysis as that which found corre-
lations in the Mt. Blanc data is somewhat compromised.

(4) If the particles in Fig. 12 really do comprise two
separate populations, and if one were particularly inter-
ested, a priori, in the peak population, the natural energy
interval to examine would be that where the “peak” pop-
ulation departs from the underlying curve, i.e., between
3 GeV and about 8.5 GeV. RTM set their cutoffs where
the peak departs from the underlying curve at the lower
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FIG. 12. The energy distribution of the IMB particles dur-
ing the period in question. RT'M choose to consider only those
between 3 GeV and 6 GeV. (Reproduced from Ref. [11] with
permission.)

limit (3 GeV) and where the overall number drops back
down to the level at the 3 GeV limit (6 GeV). RTM thus
exclude those particles between 6 GeV and 8.5 GeV, even
though they belong to the same population which RTM
claim they are selecting. This criterion has no scientific
basis, even were it correct to separate the two popula-
tions.

(5)The Mt. Blanc data, where the effect was first seen,
and where the effect is still claimed to be strongest, con-
tain no muons [11].

For the selected particles, and adopting a delay 1.2 s,
RTM find a correlation whose probability of 9 x 10™% is
assessed in the usual way for the net-excitation method.
The figure for the correlation at a delay of 1.1 s is not
given. For an advance of 1.8 s, RTM find a correlation
of claimed probability of 1073. We have reassessed this
analysis in Sec. V C.
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