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ABSTRACT

Relativistic effects in the HIPPARCOS data affect
both the data analysis and the selection of pro-
gramme stars. Light-deflection by the Sun will be
measureable over a considerable fraction of the
celestial sphere, which suggests that a very
accurate test of general relativity is possible,
and even that direct measurement of the metric is
feasible. Selection of distant programme stars
enhances the possibility of detecting a black hole
by the anomalous deflection it produces in a star's
apparent position.
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1. INTRODUCTION

The gravitational deflection of light by the Sun
was the first prediction of general relativity to
be confirmed by a specially-designed observation,
and its discovery made Einstein a popular as well
as a scientific hero (Ref.l). The effect was in
those days only barely measureable: 1."75 for stars
near the limb of the Sun. The accuracy planned for
the HIPPARCOS satellite is three orders of magni-
tude better, and the deflection will therefore have
a systematic effect on the observations of stars
over a considerable fraction of the sky. More than
that, the wealth of accurate data the satellite
should produce can be used for a variety of purposes
from testing general relativity to searching for
black holes. Relativistic considerations should

be taken into account in two distinct areas, which
I will address separately: the design of the soft-
ware for data reduction, and the selection of pro-
gramme stars for the observing list.

2. RELATIVISTIC EFFECTS IN THE DATA

It is important to accept that any attempt to
‘correct' data for relativistic effects or to use
the data to test theoretical predictions depends on
a theoretical model of the relativistic effects,
and that model has to be chosen from the start. I
shall discuss three models -+ general relativity,
the 'parametrized post-Newtonian' framework, and a
general metric framework -- and comment on the
usefulness of adopting one or another of them. Much
of what I shall say in this section results from
very illuminating converstions with M. Cruise of

the Mullard Space Sciences Laboratory.

2.1 Predictions of general relativity

The full angle by which a light ray is deflected
on passing near a perfectly spherical Sun is

= 2. _ q»
§ = 4GMO/C r = 1".7505 Ro/r, (1)

where r is the impact parameter of its original
trajectory (Fig.l). A star observed near the limb

Figure 1. Full deflection defined by asymptotic-
ally straight incoming and outgoing
paths.

of the Sun suffers the full deflection, but light
observed at an angle of 90° from the Sun has under-
gone only half its deflection, and moreover has an
impact parameter r=l1 A.U., so that for it §=4.1
milliarcsec. The general expression (Refs.2-5)

for an observer located a distance d from the Sun,
and its value for d=1 A.U., are

§ = %My cor &= 4.07195 cot & milliarcsec, (2)

c2d 2 2

where o is the angle between the Sun ard the appar-
ent position of the star (Fig.2). The accuracy
with which o is known from ground-based observations
is of course sufficient to calculate §, so this
correction could be applied rapidly to stellar
positions, for example to check the self-consisten-
cy of the observations in a single scan.

The Sun is not spherical, of course, and its
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Figure 2. Partial deflection.

quadrupole moment and angular momentum can both in
principle affect the deflection. Using the Dicke-
Goldenberg (Ref.6) value for the quadrupole moment,
which is certainly an upper limgg, its effect at
the limb of the Sun is 1.5 x 10O that of th
spherical Sun. Moreover, it falls off as r~, so
it can be neglected everywhere. The angular mom-
entum of the Sun directly affects the deflection
through the 'dragging of inertial frames': circular
planetary orbits have slightly smaller periods in
the co-rotating sense than in the counter-rotating
sense, and a light ray is deflected less if it flies
past in the co-rotating sense than otherwise. If
the Sun has angular momentum JQ, then this effect
is (Ref.?)

2GJ

6] = 29 (1-cosa) ™!

d"c

in the notation of Eq.2. If the Sun rotates rough-
ly rigidly with its surface angg%ar velocity, then
this effect is only of order 10 =~ arcsec at the
limb. But it may be worthwhile incorporating a
test for it in the data analysis, first because it
is the only direct measure of J_we are likely to
get in the near future, and second because it may
be possible to dig deeper into the noise for this
effect: unlike parallax and the main light-bending
of the Sun, it produces an asymmetry of the star's
apparent position about the Sun.

Other frame-dragging effects, such as that due to
the movement of the Sun about the baycenter of the
solar system, are much smaller. The motion of the
spacecraft about the Earth induces two relativistic
precessional effects (Ref.4). One, an analogue of
the atomic Thomas precession, is of magnitude a few
microarcsec per orbit for a spacecraft in geosta-
tionary orbit. The other comes from the Earth's
dragging of inertial frames, and is two orders of
magnitude smaller. Both will be masked by other
external perturbations on the spacecraft.

The planets also deflect light, and while that due
to the Earth is negligible, that due to Jupiter is
about 17 milliarcsec at its limb. Since Jupiter is
too bright to allow measurements right at the limb,
and since the single-observation accuracy will be
of the order of 10 milliarcsec, the effect may only
be observable in a few stars. Interestingly,
Jupiter's dragging-of-inertial-frames deflection is

only a factor of 4 smaller than the Sun's (Ref.7).

2.2 Parametrized post-Newtonian (PPN) framework

General relativity may not be the correct theory
of gravity, and in fact the 1960's and '70's saw
the inventicn of a large number of competing
theories, most of them predicting slightly differ-
ent corrections to Newtonian gravity (called their
'post-Newtonian' effects) in the solar system. In
order to systematize these theories and make a
sensible framework for comparing them with the few
observations one could anticipate making in the
solar system, Thorne and Will (Ref.8) devised the
PPN formalism. Beginning from rather general
theoretical assumptions, such as the equivalence
principle (which can of course alsoc be tested),
they showed that the predictions of most theories
for observable effects in the solar system involved
a few functions, such as the Newtonian potential,

U(x,t) =G fp(x',t) [x-x']_ld3x',

or a similar potential whose source was the mom-
entum density,

Vix,t) = G fp(f',c)v(f',t)lx—x'l_lde',

or terms essentially gquadratic in U, like the
gravitational field caused by the mass-equivalent
of the gravitational potential energy,

G fo(x',t)U(x',t)|x—x'[_ld3x'.
The different predictions of various theories arose
because these functions were multiplied by differ-
ent constants. The PPN formalism replaced these
constants by arbitrary parameters. Then on the
one hand each theory could be characterized by the
values of its parameters, and on the other hand
the observations could be taken as measurements of
the parameters, so one could then say whether a
given theory was close or not to the measured
point in the lO-dimensional PPN parameter space.

It turned out that light-deflection depended upon
only the potential U and therefore upon only one

parameter, called Y, and the general PPN version

of Eq.2 is

&

5 milliarcsec. (3)

§ = 2.03598 (1l+Y)cot:
General relativity has y=1, Brans-Dicke theory
(l+w) /(2+w) , where w is an arbitrary parameter of
the theory, w>» being the general-relativistic
limit. The effects of dragging of inertial
frames depend on a combination of other parameters.
The best observations to date have y=l to within
1% (Ref.B8), but it is likely that milliarcsec-
accurate positions for 10~ stars could substant-
ially improve this. I would therefore strongly
urge that the observable relativistic effects be
incorporated into the data analysis in their PPN-
parametric form. In order to do this consistently,
one must also determine whether there are any
other measureable PPN effects which happen to be
absent from general relativity.

2.3 Direct measurement of the metric

The PPN formalism was designed for a situation in
which many theories were chasing a small amount
of data. With the HIPPARCOS mission we will
suddenly have a vast amount of data, mostly about
the light-bending effect, and it seems to me that
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the PPN framework may be narrower than necessary
for such a situation., It should be possible to
use the data to meanmure some aspects of the metric
directly. This seems to me the least model-depen-
dent approach to the analysis of the data, because
it makes no assumptions about how the Sun generates
the metric, as the PPN formalism does. It Ls not
completely free of assumptions, of course, as I
will discuss below. First, however, I want tc ex-
plain the term 'metric’' and discuss coordinate
systems.

2.3.1 Metric and coordinates. The merric of a
space is Lts dintance measure, It is usually ex-
pressed in a generalized form of the Pythagorean
theorem, e.q, for Euclidean space in three dimen-
sions

2

dsz - dx'g v dy” o+ dz2

- drz + r2( d62 + sln20 d@z ),

(4)
the second form being appropriate to spherical
coordinates. For uapecial relativity there 1s a
metric which measures time as well:

dnz - —dtz + dx2 + dy2 + dzz. (5)

2)4
Integrated along the world line of a body, [ds®]
gives the proper time, {,e, the time measured by a
clock on the body., Eq.% also permits the measure-
ment ot 9lutancos in spacelike directions, for
which ds” ‘0. For a general spacetime with coordin-
ates {x™, u=0,1,2,3} the analogous expression 1s
) ¢
as? - v g o ax
o al

The functions (qqﬁ) of position x“ are the compon-
onty of the metric tensor, and because one can
change one's coordinates (as tn Eq.4) there is a
whole family of such sets ftor each spacetime. _I[f
it is possible to find coordinates 1n which ds
takes the simple form in Eq.% then we say that
apacotime {g flat. Otherwise Lt 18 curved.

The spacetime of the solar system 1s not the most
goneral imaginable., If we can tgnore Jupiter and
the quadrupole moment of the Sun then we can ideal-
ize the metric as time-independent and spherically
symmatric about the center of the Sun at any one
momont. It should then sutffice to adopt the form

2 2 i
dg” = qootl)dt + :qOQ(r)dtd¢ + quﬁtr)dtdﬂ

2

;2 SR
+ qrr(x)lgr et A0 s sty de )

1
1
-

Eq.6 involves a specific ceoordinate system: t, 2,
and $ are chosen to show explicitly the time-inde-
pendence and spherical symmetry of the instantan-
sous situation. (Compare the last term in Eqg.o
with that in Eq.3.,) The coordinate r (s that used
in the PPN formalism, and it makes the metric tor
space (f=conat, dt=0 in Eq.v) as similar as
possible to that of flat gpace, Eq.d.

Of course, the center of the Sun moves in an orbit
around the barycenter of the solar system, and this
barycenter is the natural center for a spherical
coordinate system in flat space. But spacetime is
curved by the Sun and so is not spherically symmet-
ric about the barycenter: 1f observations were
possible from there, apparent positions of stars
would change with time because Of the deflection
caused by the Sun. This raises a question of prin-
ciple, namely how we are able to define the coor-

dinates of stars 1f they are not directly observ-
able from anywhere, which I address 1n the next
section., In practice, fcrtunateiy, %his is an
easy correction to make because the Sun moves
slowly enough so that frame-dragjsing effects are
nejligible, One can therefcre jet away with using
Eq.6 as the metric centered con the Sun, moving
slowly with i1t,

2.3.2 Cocrdinaze locat:ons 2f stars and astercids.
Although we have chosen cocrdinates anaiogcus to
those of flat spacetime, we zust not forget that
spacerime is curved: no oeasurements can detect

a flat spazg near the Sun, so any taik of an under-
lying flat space 1s a fiction, 3 cocrdinate-
dependent concept. Yet ocur language does use this
fiction, We speak of light deflecticon, as 1f we
are measuring the angle between the Zrue path of
light and the path it would take 1f 1t could go
straigqht, This 1S nonsense. The ‘'deflection’
angle 13 simply the difference between the apparent
position of the star seen from the Earth and that
seen from the Sun, after allowance for parallax
and aberraticn has been made. At any instant, the
celestial sphere 1s sphericaily symmetric as
observed from the Sun, and the 'deflection’ helps
us to determine these Sun-centered coordinates
{Eq.6) from measurements made elsewhere. 1In a
more strongly curved spacetime 1t would not even
be possible to separate deflection, aberration,

and parallax from one another uniguely: there
would be just one Jrand correcticn. See Ref.5,!

But what about the barycentric coordinates which
have been used until now? Obserwvations from the
barycenter itself are never undistorted by deflec-
tions, so what -an the celestial coordinates mean?
In fact, what one 1s really using 1s a coordinate
gsystem that reflects the spherical symmetry cof the
distant spacetime, say on the fringes of the solar
system, There space is .ideally. spherically
symmetric and the coordinates one uses ought to
become spherically symmetric far away. They can
do anything one likes 1n the middie of the solar
system., So the celestial coordinates are not
barycentric at all, they are simply asymptotically
spherical coordinates at large distances from the
Sun. If we used Sun-centered coordinates then the
apparent positions 2f the stars wou.d be a differ-
ent mix of true positions, parallax, aberration,
and deflection than .f we .sed barycentric coor-
dinates. Observations from the barycenter give the
least time-~dependent apparent positicns of ail
possible cbservation positions, so this point is
preferred. But :n fact we observe from a sateilite
far from the barycenter and we want <C construct
the asyptotically spherical ccordinates: the bary-
center 1s irrelevant to this.

FOr stars with parallaxes, relativity creates no
ambiguity 1n the distances we ultimately assign
them -- the coordinate distance r of a star is not
measureably Jdifferent from its proper distance
Jigpr 'dr from the barycenter. B8ut for astercids
this 1s not true, since the two will differ by
perhaps 1O km, which subtends an angle of the order
of lo milliarcsec at certain phases zf cbservation.

For these reasons, the data analysts should make a
clear choice of their coordinate system, and pub-
lish 1t. That in Eg.6 has already been used fc
other solar-system experimen*s, such as radar-
ranging and satellite-tracking.

2.3, Model-dependence. Apart from the assmptions
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of symmetry and time-independence already noted,
the use of Eq.6 involves the more fundamental
assumption that the motion of light is determined
exclusively by this thing called the metric. There
are strong constraints in this direction from terr-
estrial experiments {Refs4,8) and @ believe it
would be very difficult to build a so-called non-
metric theory with observable consequences for
Hipparcos that still fit the terrestrial experi-
ments.

2.3.4 Parametrization of the metric. 1If we are to
widen our model beyond the PPN metric to the gen-
eral metric in Eq.6, then we have to decide what

we can measure. One possible choice is simply to
expand the unknown metric terms in power series in
x:

g (0 = art +Br+ceprteEr e

and 80 on. (Terms that grow with r2 might indicate
a non-zero cosmological constant.) The coefficients
A, B, ... would then be fit to the data, although
only certain combinations can be determined from
light-deflection data. If general relativity is
right then few of them will be nonzero to the accur-
acy of the observations. Existing experiments of
course already constrain the coefficients. One

side benefit of this approach to the data analysis
has been suggested by M, Cruise: it might provide

a test for some kinds of systematic errors in the
measurements, for example if thermal effects caused
a systematic error correlated with the position of
the Sun. In this view an anomalous coefficient in
Eq.7 would be cause for concern about the data, not
about general relativity!

3. SELECTION OF TARGET STARS

Obviously, knowledge of repeated accurate positions
of stars has many non-astrometric uses. There are
several relativistic effects which one might con-
sider looking for in the data, transient effects
on a star's apparent position or magnitude or even
multiplicity caused by gravitational lensing or
deflection due to compact objects such as black
holes or neutron stars in the neighborhood of the
star or in the intervening interstellar space. I
shall discuss only one, transient deflections
caused by chance passage of a black hole near the
line of sight to a programme star, but better
calculations are needed of this and of other
possible effects.

3.1 Random black-hole deflections

In Fig.3 I have drawn the geometry for deflection
of a light ray by a black hole directly on the line
of sight to a star. The hole is a distance dl from
us, the star d1+d2, The light is deflected by an
angle §, given by Eq.l in terms of the impact par-
ameter r, and the star's apparent position is there-
by deflected by an angle f. Using a=r/d 6 8=r/d ,
and the geometrical relation a+8=§, one ‘an easihy
show that 8/8=d,/(d;+dy). So if the hole doesn't
pass too near the star , the observed change in
position B will be of the same order as the deflec-
tion 8. I shall therefore make estimates based on
the assumption that B=8, i.e. that we will observe
a change in the star's position if the hole comes
near enough to the line of sight to deflect light
by an angle greater than the single-cobservation
accuracy of 10 milliarcses, This means that each
hole of mass M has a 'deflection cross-section' of

dq

o)

Figure 3. Simplified geometry for a black-hole
deflection of a stellar position. The
star is S, the hole is H, the observer
is O, and the star's apparent position
is S*'. (See Ref.9 .)

radius (see Eq.l)

r = lO13 M/M_ cm.
c ©
The deflection will not be noticed unless it
changes during the lifetime of the satellite. Its
timescale for change is simply the time of passage
of the deflection disc across the line of sight,
rc/v, where v is the hole's speed:
T = 12 (E ) v?_l days,
©
where vy is the hole's speed in units of 100 km/s.
Therefore 1f the hole is a halo object with v,%3,
then we may expect to be able to detect holes with
masses of the order of 10 MO'
How many detections might we reasonably expect?
If holes of mass 10 M, M_ make up a galactic halo
of uniform density equal to 10'2f374 3 <m=3 (which
for p,,4=l corresponds to 3 x 1otd ﬁe within 15 kpc
of the Galactic center), then there are roughly
1.5 x 10 J24MLO'L holes per cubic kpc. This is
surely an upper limit. Out to a distance R3 Kpc,
their deflection disks cover a fraction f of the
sky, roughly

R -9
£f1vS5 x 10 R3M10,24.
If the halo extents to R_=5@ and if there are 100
extragalactic programme Stars {(including, say,
Magellanic Cloud stars and bright unresoived ob-
jects in other galaxies) then the chance that any
one observation would show a deflection is of the
order of 2 x 1072, Of course, it is observable
if it occurs in the first, say, 50 cbservations,
so the chance of such a detection rises to 107°.
This is small but not negligible, given the great
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importance that the discovery of a black hole would
have. Once found in this fashion, it could be
looked for by other telescopes, since it may be
accreting matter and emitting a characteristic
spectrum of radiation.

The deflection by a black hole would leave a char-
acteristic signature in the residuals of a star's
fit to its best position, shown in Fig.4 for a
hole passing below the line of sight to a star: the
star executes a small loop as the hole passes.

The message to the data analysts: don't throw

away your residuals!

(2

Heé—

Figure 4. As a black hole passes beneath the line
of sight to the star, the star appears
to travel on a loop, keeping away from
the hole.
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