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INTRODUCT ION

The purpose of these lectures is to review and explain what is known
about the stability of relativistic stars and black holes, with particular
emphasis on two instabilities which are due entirely to relativistic effects.
The first of these is the post-Newtonian pulsational instability discovered
independently by Chandrasekhar (1964) and Fowler (1964). This effectively
ruled out the then-popular supermassive star model for quasars, and it sets a
limit to the central density of white dwarfs. The second instability was
also discovered by Chandrasekhar (1970): the gravitational wave induced
instability. This sets an upper bound on the rotation rate of neutron stars,
which is near that of the millisecond pulsar PSR 1937+214, and which is
beginning to constrain the equation of state of neutron matter.

I will follow the notation of Misner, et al (1973) and of Schutz (1985):
the metric has signature +2; Greek indices run from 0 to 3, Latin from 1 to
3. I set c and G to 1 everywhere. For perfect fluids, my notation is: n is
the number density of conserved particles; p is the density of total mass-
energy; S is tbe specific entropy; and ¥ is the adiabatic index, defined by

olnn IS’
All these quantities are defined in the local rest frame of the fluid. In
these terms, the first law of thermodynamics (energy conservation) becomes

nTdS = dp - (p+p>dn/n. 1S9

SPHERICAL PULSATION OF SPHERICAL STARS

Hewtonian Stars

Although our subject 1s relativistic instability, it will help us to get a
general feeling for the way instability arises in Newtonian stars before
tackling the relativistic case. Not only is the Newtonian case simpler, but
also by comparing the Newtonian and relativistic versions of stability
criteria we will be able to see exactly which instabilities are attributable
to general relativity.
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The most convenient way to descri:tz -.. small-amplitude spherical

pulsation of a spherical star is in terzs= of .z displacement y of a thin
shell of the star from its equilibrium pz=s:tiz:. In terms of y the first-
order perturbation in the Euler and contini:=y =rz-ions can be written in tke

form (Ledoux & Walraven 1958)

o

where a subscripted ",t" denotes a partial Zsriv:-.ve with respect toc time and
where C is the operator

d ypd 4Gm(r)p
= ——[—= ——(r=2 - — 3
Gy dr[rz dr(r ¥) ] e 3
in which m(r) is the mass inside radius r. . is easy to see that C is

selfadjoint with respect to the L*? norm weighte: :v rZ® (i.e., integrating over
the volume of the star rather than the 1-z.:zensional radius), with the
boundary condition that y vanishes at r=0. It .5 more relevant to solving
Eq.(4) below that p~'C is selfadjoint in the den:.-y-weighted norm (Eisenfeld
1969).

The stability of the star could be studiec ::rectly by showing that all
solutions of Eq.(2) are bounded in time if ar: only if the operator C is
positive-definite (Laval, et al 1965). But for o.- later purposes it is useful
to introduce here +the normal mode problem. If we assume that the
perturbation y has harmonic time dependence, v -.x*) = yx(x*) exp{iwt), then
the dynamical equation (2) becomes the eigenvaluz :croblem:

Cly) = pw=y. 4)

This problem can essentially be put into I-urm-Liouville form for the
eigenvalue o* by a change to the variable y/r. Zeveral consequences follaow
immediately. (i) There is an ascending series of eigenvalues wn®, {n =
0,1,2,...}), which approaches infinity as n czzs. (i) The eigenfunction
assoclated with wn® has n nodes 1in the rzdial direction. (iii) The
eigenfunctions are complete, so that a star is z-zble if and only if all the
wn are real, i.e. if and only if all wn® are poz.tive. From property i) it
follows that the star is stable if and only if wo® is positive. (iv) This iz

turn will be true if and only if the integral
j x*C(x)r2dr > 0 (5>

for all x. Using the explicit form of C gives, af-er some algebra, the simple
stability criterion (Ledoux 1958)

d
c—i;[ (¥ - 4/3)pl <0 = stability. (6)
Thus, in the linear approximation (small amplitude perturbations), a star with
constant ¥ is stable if ¥y > 4/3. If ¥ is not constant, then the stability is
harder to decide. This is a sufficient condition for stability.

There is a simple way to understanc why 4/3 shguld be the critical value
of the adiabatic index. This 1s an crler-of-masnitude argument based con

binding energy (cf. Zel'dovich & Novikov 871). Thz total binding energy is

E=0+W,
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where U is the internal energy and ¥ the gravitational potential energy. For
a star or radius K, mass M, typical pressure p, and typical density p, these
are

U= apR3 and W = —bMZR—l,
where a and b are constants of order unity. Given that p is proporticnal to
p*, we have

E = kRS Y - bRl

where k is another constant. The star will be in equilibrium if its binding
energy is an extremum against variations of R with M fixed. This gives

JE Y- 4/3 M°

Srly =0 5 BT g

s0 that a star is bound <(hence stable) if Y exceeds 4/3 and unbound
(unstable) if Y is less than 4/3. The marginally stable case is Y = 4/3: if
such a star is perturbed, it will experience no net restoring force, so its
radius will simply increase or decrease linearly with time, at least until

nonlinear effects become important.
Relativistic stars

Spherical motions of a star do not radiate gravitational waves, so we
might guess that there is no qualitative difference between the evolution of a
perturbation in the relativistic case from that in the Newtonian one. This
expectation is basically correct, but it is also easy to see that we should
expect the Newtonian criterion of ¥ = 4/3 to be different in general
relativity. This is because the binding-energy argument presented above must
be different for relativistic stars, whose gravitational binding energy is
larger than that of their Newtonian counterparts (cf. Harrison, et al 1965).
In the first post-Newtonian approximation (that is, taking into account the
first relativistic corrections to Newtonian theory), the appropriate criterion
was found independently by Chandrasekhar (1964) and Fowler (1964):

stability &5 Yy > 4/3 + K, )

where K is a positive constant that depends on the equation of state and
which increases with M/R.

In itself, this represents a small correction to the stability criterion,
and it would not be remarkable except for the coincidence that Y approaches
4/3 as a fluid becomes more relativistic. (I call this a coincidence because
I can see no fundamental relation between the way 4/3 is singled out as
special in the binding-energy argument above and the fact that 4/3 is also
the relativistic limit of the adiabatic index.) One class of stars in which
¥ = 4/3 iz massive main-sequence stars, where radiation pressure is the
dominant support. As Chandrasekhar and Fowler both showed, stars with
masses approaching 10° Me have ¥ so close to 4/3 that the small correction K
makes them unstable. Thus, stars whose structure is essentially completely
Newtonian have their stability decided by effects of general relativity. This
happens because the Newtonian forces nearly cancel: the star is almost
marginally stable in Newtonian theory, and the issue is decided by tiny
relativistic corrections.

Another class of stars where ¥ = 4/3 is white dwarfs with large central
densities. Consider a sequence of white dwarfs with increasing central
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density. As the central density gets larger, the electrons providing the
pressure need to get more and more relativistic, and Y approaches 4/3. This
competes with another destabilizing effect: as central density increases, the
neutronization reaction in which a proton and an electron combine to form a
neutron and a neutrino becomes energetically favorable. This reaction removes
the pressure-providing electrons, so that the equation of state softens and y
drops below 4/3. For helium and carbon white dwarfs, general relativity
limits the central density; for iron white dwarfs, it is neutronization (cf,
Shapiro & Teukolsky 1983).

Ti . . iterion £ hite dwarfs and

There is an easy way to decide the overall stability of stellar models
that are members of a one-parameter family of models, such as one obtains by
taking "cold" matter <minimum entropy) for various central densities. This
method appears to have been devised by Zel'dovich and by Wheeler, and it is
described in Harrison, et al (1965). Figure (1) contains a plot of the mass
versus the radius of such stars, parametrized by their central density. The
curve should be regarded as schematic, since quantitative details will depend
upon the particular equation of state chosen. Suppose we follow the curve
from the low-mass, low-density objects at the left margin (rocks and planets)
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Fig. 1. A typical plot of radius versus mass for stars parametrized by their
central densities. The musical notation indicates which modes

(overtones of the fundamental) are stable (open circles) or unstable
(filled circles). Taken from Harrison, et al (1965).

until M reaches its first maximum. This is a place where nearby models bave
the same masses but different radii. This means that we could perturb tl}¢
star at the maximum by, say, increasing its radius, and it would remain 1B
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equilibrium: there would be no restoring force, and the star would be
neutrally stable. Since racks are stable and this is the first such neutrally
stable point on the curve, it is reasonable to expect that the star goes
unstable at this point. A more careful analysis bears this out and shows, in
fact, that if the curve is curling clockwise at an extremum, a mode is going
unstable, while if it is curling counterclockwise then an unstable mode is
returning to stability. The first maximum of M in Figure (1) is the
instability point of the white dwarfs. The slide to the minimum represents a
sequence of unstable models, and past the minimum we reach the stable neutron
stars. They become unstable (and therefore reach their maximum mass) at the
next maximum of M, and after that the continued spiralling of the curve
indicates that more and more modes are going unstable. This section of the
curve is especially sensitive ta the assumptions one makes about the largely
unknown properties of high-density matter.

The unstable region between white dwarfs and neutron stars means that
neutron stars have a minimum mass, a fact first appreciated by Oppenheimer &
Serber (1938). White dwarfs have no such minimum: they follow smoothly after
smaller objects, like planets. The turning point criterion bas been used for
axisymmetric perturbations of rotating stars by Hartle & Thorne (1969, and
extended by Ipser & Horowitz (1979); it has been generalized to many-
parameter families of models by Sorkin (1982).

Star clusters

Clusters made of collisionless particles interacting gravitationally have
also been studied extensively, mainly as models for globular clusters and
elliptical galaxies in Newtonlan theory, and for quasars or quasar precursors
in general relativity. There is no room to review that work here, but the
reader is referred to Ipser (1969). The subject has been considerably
enlivened recently by the numerical calculations of Shapiro & Teukolsky
(1985a,b,c) showing how an unstable relativistic cluster can quickly form a
black hole containing a considerable fraction of its mass. These calculations
have been summarized in Shapiro & Teukolsky (1986).

NONSPHERICAL PULSATION OF SPHERICAL STARS
Y¥ewtonian stars

Things get a 1little more complicated when we consider nonspherical
perturbations of stars. A good reference for this subject is Unno, et al
(1679). Since the problem is a linear one and the unperturbed star is
spherically symmetric, we can analyze the perturbations into spherical

harmonics. Scalar functions, such as p, have perturbations expandable in the
usual way:

§p<r,0,8) = I 6p. (r) PP(coss) e, @)
im 1m 1

Vectors are expanded in vector spherical harmonics, one version of which is
as follaws:

r m img + m img
= + v
X(r,0,g> ‘im [xlm(r) P1 {cosB) e e xlm(r) (P1 e )
- m img
+ *v .
xlm(r) (Pl e )] Q)

Here the radial component of the displacement vector x(r) is expanded as a
Scalar (because that is how it behaves under rotations), and the tangential
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components are expanded in terms of the gradient of the spherical harmonic
of order (1,m) and of its dual gradient in the sphere,

*V=exV . (10)°

The gradient and dual gradient in the sphere produce linearly independent
vectors. Since the sphere is two-dimensional, they form a basis for vectors
tangent to the sphere, so Eq.(9) is perfectly general.

This representation of vector perturbations is useful because we will
now see that the dual-gradient parts of expressions can essentially be
ignored. The argument is one of parity. Consider a coordinate change g + -g,
Under such a change, and its associated change of basis es -+ —-e4, true scalars
and tensors do not change, but pseudovectors do change sign. Now the
spherical harmonics and their gradients are true scalars and vectors,
respectively, but the dual gradient is a pseudovector. The unperturbed star
is of course invariant under this change (not true for rotating stars), so the
differential equations for the perturbation will not mix the two classes of
perturbations. Since the pressure and gravitational field perturbations are
scalars, the pseudovector -- called the odd-parity part of the perturbation
-- does not elicit any restoring forces, so it is a neutral perturbation, one
with zero frequency. An example of an odd-parity perturbation is setting the
star into rotation: it simply continues to rotate. The odd-parity normal
modes are usually called toroidal modes.

The even-parity normal modes contain the interesting dynamical
information. For a relatively simple star (in a sense to be made clear
below), the eigenvalues fall into three classes, called f-, p-, and g-modes.
Their typical behavior as a function of 1 is illustrated in Figure 2, taken
from Cox (1980). (Because of the spherical symmetry, the eigenfrequencies do

not depend on m.) The p-modes form an ascending sequence of eigen-
frequencies, with w » ®. The g-modes form another infinite sequence, but
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Fig. 2. The qualitative behavior of the even-parity nonradial modes of a

typical spherical star. (From Cox 1980.)

with w 9 0 in the limit. The f-mode is a single mode in between, which
shares characteristics of both types. In general, a star may have both
stable g-modes (g*-modes) and unstable (g~) ones, but the f-mode and p-modeS
will always be stable. In the limit w - ®, the mode equation approaches 2
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Sturm-Liouville equation with w® as the eigenvalue, and in the opposite limit
of w » 0 it approaches a Sturm-Liouville equation with 1/w® as the eigenvalue;
this explains the asymptotic behavior of the two sequences.

The remarkable feature of +the nonradial pulsation problem is the
simplicity of its stability criterion (Lebovitz 1966):

nonradial stability &= dS/dr > 0. an

This 1is usually called the Schwarzschild criterion, although it was first
derived from a local argument based on convection and bouyancy by Lord
Kelvin, as related by Chandrasekhar (1939). For an accessible derivation see
Cox (1980), If the star is simple enough that dS/dr is of the same sign
everywhere, then the g-modes will be either all stable or all unstable. If
the star is more complicated (as when it has different zones of convection,
ionization, composition, etc.), then it may have both types of g-modes.
Physically, the g-modes are associated with convection; their eigenfunctions
are dominated by velocity rather than density perturbations. If one has
dS/dr = 0 throughout the star, then the g-modes will all have zero frequency;
this happens for a polytrope, for example, if one takes ¥ equal to 1 + 1/n.
The p—modes are associated with sound waves; as their order gets larger, they
become just local waves travelling at the speed of sound.

An important concept is the pattern speed of a mode, which is its phase
angular velocity. Since the perturbation is proportional to exp(img + iwt),
surfaces of constant phase at some fixed r and 8 will satisfy

wt + m¢g = const.
Differentiating this with respect to t gives
dg¢/dt = -w/m = Ve, (12)

where we 1s called the pattern speed of the mode. It is clear from Figure 2
that the frequency of p-modes typically increases with 1 less rapidly than
linearly, so that the smallest pattern speed associated with any p-mode
(obtained by dividing -w by 1) decreases towards zero as 1 increases.
Therefore, although the p-modes contribute arbitrarily high frequencies, one
can find p-modes with arbitrarily small pattern speed. This will be
important to us later when we discuss the gravitational-wave-induced
instability in rotating stars.

Relativisti

When we turn to relativistic stars, we should expect a qualitative
difference from the Newtonian theory because nonradial pulsations can emit
gravitational radiation. On the other hand, at least for nearly Newtonian
systems, we should also expect the quantitative effect of this to be small.
[f a mode has real frequency in the Newtonian star, then the energy carried
away by gravitational radiation should damp the mode slowly, and this should

appear as a small positive imaginary part of the eigenfrequency. So we
e¥pect stable relativistic stars to have complex eigenfrequencies with
iRetw)l » Im) > 0. This expectation bhas been verified by extensive

investigations, and it extends essentially unchanged even to highly
relativistic stars.

How does the imaginary part of the frequency actually arise in the
eigenvalue calculation? It does not come from any qualitative change in the
-ocal perturbation equations; rather, it comes form imposing an outgoing-wave
boundary condition on the eigenfunction. One demands that the energy flux at
:nfinity represent only waves emitted by the star. This is a time-asymmetric
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condition, and it therefore produces eigenfrequencies which are "biased" -- if
w is an eigenfrequency, then its complex conjugate w* is not. (In fact, this
w* is an eigenfrequency for a mode which satisfies an Incoming wave boundary
condition at infinity.) We shall meet the outgoing-wave boundary condition in
the next section and again in Eq.(39) below.

The first calculations of the f- and p-modes of relativistic stars was
performed numerically by Thorne (1968, 1969) using the analytic formalism
developed by Thorne & Campolattara (1967)>. For the 1=2 f-mode, he found that
the period was typically about a millisecond, and the damping time roughly
10® times as long, even for highly relativistic stars. The best calculations
of these modes to date have been by Lindblom & Detweiler (1983), using the
models that Arnett & Bowers (1977) calculated for a variety of recent
equations of state.

The g-modes present special problems for numerical calculations because
their very low frequencies and small density perturbations mean they give off
extremely small amounts of gravitational radiation. There are two problems
because of this: first, a numerical eigenfrequency calculation has to hunt for
a tiny imaginary part of the frequency, smaller than the numerical accuracy
of typical codes for p-modes; and second, since the wavelength of the waves
is very large, the outgoing-wave boundary condition must be imposed very far
from the star, where numerical errors can accumulate. Finn (1986) has
recently overcome these problems by doing an analytic approximation to the
near—zone gravitational wave field of the star and finding the appropriate
boundary conditions for numerical computations. He 1is preparing a further
paper with the results of realistic calculations.

Despite the complications of gravitational waves, it seems likely that
the Schwarzschild criterion governs the stability of nonradial pulsation in
general relativity as well as in Newtonian theory. The argument, basically
given by Thorne (1966), is that instability sets in through a zero-frequency
mode (established in general by Friedman & Schutz 1975, as we will discuss in
detail later in these lectures). But such a mode will not give off gravita-
tional radiation, so the local physics of convection will be essentially the
same as in Newtonian theory. Since in Newtonian theory the local criterion
for convection is all one needs for the stability of the star, one can
conjecture that this will be true as well 1in general relativity.
Chandrasekhar <(1965) has extended Lebovitz's Newtonian proofs to post-
Newtonian general relativity, and steps toward a rigorous fully relativistic
proof have been taken by Thorne (1966) and Islam (1970). But the conjecture
has not been fully established.

For completeness, let us recall the odd-parity toroidal modes of the
Newtonian case. The argument that they were zero frequency was purely a
symmetry one, so we may apply it 1in general relativity as well. The
difference is that the gravitational field is no longer a scalar As a tensor
it can have odd-parity parts as well. But these still do not couple radiation
to the star: the pressure and density perturbations are scalars, and velocity
perturbations simply cause the star to rotate steadily, without radiating.
There are odd-parity gravitational waves that propagate without disturbing
the star, and we will consider them in more detail when we study
perturbations of spherical black holes.

Strongly damped modes

The above discussion of relativistic modes was motivated by the
Newtonian analogy, and all the numerical calculations performed so far have
looked only for relativistic modes that may be regarded as small
perturbations of Newtonian modes. But gravitational radiation has its ©OWR
dynamical freedom, and one might ask whether there are any modes associated
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with this that have no analogy in Newtonian theory. In fact, a family of
such modes was discovered by Dyson (1980) in a model problem. An even
simpler model problem analyzed recently by Kokkotas & Schutz (1986) will
show clearly how they arise. Figure 3 shows the physical system: one finite
string of length 2L and one semi-infinite string coupled to it by a massless
spring with spring constant k. The strings have the same tension T and wave

speed ¢. The finite string represents the star, while the semi-infinite
Fig. 3. A simple model system which has both weakly and strongly damped
modes.

string is the analogue of the gravitational wave field; the spring couples the
two as weakly (the Newtonian case) or strongly (the relativistic one) as we
like. The analysis is just elementary mechanics apart from the imposition of

an outgoing-wave boundary condition. Ve want to allow solutions for the
amplitude yt,x) of the semi-infinite string of the form f(ct-x) but to
exclude f(ct+x). Therefore we require ye + Ccyx = 0, or for a mode with

irequency w:

oy
ox - lwy.
The explicit appearance of the frequency in the boundary condition is what

makes the eigenvalues complex. Using this, it is not hard to show that the
elgenvalue equation is
-2z

z coshz = -K sinhz (2 + e 77, (13)

where z is the dimensionless frequency and K the ratio of the strength of the
spring to the tension in the strings:

z = jwl/c, K = kL/2T.
In the limit of weak coupling (K « 1), two families of eigenirequencies
emerge. The first has

8K=c

Re(w) = (2n+l)mc/2L, Im(w) = ?gr—ﬁl)z;:‘:{ (14

ind the second family has the same Re(w) but Im(w) = ac/L, where a solves
a = K exp(2a). (15)

The modes of the first sequence are clearly small perturbations of the
ddd-order modes of the finite string, and are analogous to the modes of the
Telativistic stars described above. [The even-order modes of the finite
itring have a node at the attachment point of the spring, so they do not
“ouple to the other string: their eigenfrequencies emerge unchanged from
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Eq.(13).] The other modes become more and more strongly damped (a 2+ @) ag
K » 0. The eigenfunctions of these families help us make sense of them. The
weakly damped family have their energy primarily in the finite string; it
gradually leaks through the spring and is radiated away. The strongly damped
modes, on the other hand, have larger amplitude in the semi-infinite string,
exciting the finite string only weakly. If we think in terms of the
initial-value problem, data that excite the finite string can be representeq
by the weakly-damped normal modes, but they then have no freedom left tg
represent any initial excitement of the semi-infinite string. This is the
reason for the existence of the strongly damped modes: any initial excitement
of the semi-infinite string will be radiated away very quickly, so these
modes have strong damping. This physical argument makes it seem plausible
to me that strongly damped modes should exist in relativistic stars as well,
but so far they have not been seen.

ouadrupol itational radiati

In the lectures by Damour in this volume, the reader will find an
extensive discussion of the "quadrupole formulas" that describe gravitational
radiation in the slow-motion 1limit. I will simply extract one result from
that discussion, namely that a nearly Newtonian system loses energy to
gravitational radiation at an average rate given by

dE 1
. 2,3 )
it = 5<§jk {jk >y (16>
where there is an implied sum on j and k, the superscripted "(3)" means three
time derivatives, and the reduced gquadrupole tensor 1;wx is defined by

1
1 00 3
= -z = . a7

{jk Ijk 36jk11’ Ijk JT xJ_xkd b 1

This gives us another method to calculate the normal modes of at least
nearly Newtonian stars: calculate the normal modes of a Newtonian star, find
its energy radiation from Eq.(16) applied to the eigenfunction, and estimate
the damping rate of the relativistic mode from the equation

Im(w) = % E _/E,
vt

where E is the energy of the mode. This method gives a good test of both
the validity of the quadrupcle formula and the accuracy of numerical p-mode
eigenfrequencies for weakly relativistic stars. It has been used by
Balbinski, et al <(1985) to show that the quadrupole formula works
surprisingly well even for highly relativistic stars, and to improve the
numerical methods used for fully relativistic stars.

NONSPHERICAL PERTURBATIONS OF SPHERICAL BLACK HOLES

The other spherical system that has received a lot of attention in
general relativity is the Schwarzschild black hole. Because Birkhoff's
theorem (cf. Misner, et al 1973) excludes any nontrivial spherical
perturbations of the hole, we need only study its nonradial stability. The
problem was first studied by Regge & Wheeler (1957), but at that time the
nature of the black hole was not understood (indeed, Wheeler didn't coin the
term "black hole" until a decade later), and they used an inappropriaté
boundary condition at the horizon. A definitive proof of the stability of the
Schwarzschild metric was finally given by Vishveshwara (1970). NeverthelesS:
the Schwarzschild perturbation problem continues to be interesting, partly
because normal mode oscillations of a black hole might be seen by

132



gravitational wave antennas, partly as a guide to the much more difficult
problem of perturbations of the Kerr metric <(the rotating black hole), and
artly because the normal mode problem has some peculiar and challenging
seatures (Chandrasekhar 1983).

lati ; bi

The interesting features of the problem are most easily illustrated by
studying the so-called odd-parity equation for gravitational waves. Unlike
the stellar case, the odd-parity perturbations of the Schwarzschild metric are
just as interesting as the even-parity ones. At first it was thought that
they obeyed a different equation from the even-parity "Zerilli" wave equation
(Zerilli 1970)>, but it has since been shown that the two equations can in
fact be transformed into one another <(Chandrasekhar 1975, Chandrasekhar &
Detweller 1975; see Chandrasekhar 1983). The equation has a form which is
similar to that of scattering problems in quantum mechanics (Regge & Wheeler

1957):

2 1+ 6K

2
N3 + — i —_ o e— - ———
y (w V) vy = 0, V=11 ) > =1

18>

where M is the mass of the hole and primes (') denote, not derivatives with
respect to r, but derivatives with respect to rx, defined by

r« = r + 2M In(r/2M-1),

which is an affine parameter on the outgoing null geodesics. The amplitude y
is a metric component, from a knowledge of which all the odd-parity metric
components can be calculated. Since rx is the fundamental variable, we must
ask what its limits are and what V looks like in these limits. As r -2 o, so
does rx, and V = 1{d+41)/rx®. As r -» 2M, we have rx » -© and V falling off
exponentially as exp(rx/2M). Between these two extremes, the potential is
smooth, reaching a maximum at some intermediate point, with no complicated

wiggles.

v(r, )
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Fig. 4. The qualitative shape of the potential V. The waves show the

appropriate boundary conditions for a normal mode.

If this were a standard scattering problem in quantum mechanics, then
there would be no difficulty. What makes this problem different are the
iormal-mode boundary conditions: in order to exclude any outside “forcing" of
“he hole's oscillations, we demand that the waves in y must be outgoing far

133



from the hole and ingoing across the horizon. That is, we are looking for
solutions of Eq.(18) which have waves moving away from the potential barrier
on both sides. Simple flux-conservation arguments of the type one makes for
the Schrodinger equation show that it is impossible to satisfy this conditiop
with a purely real frequency w, and it is not hard to extend them to show
that the imaginary part of w must be positive, so that all the modes are
damped away. (We still lack any completeness theorem for the normal modes,
however, so that this result cannot be used to infer the stability of the
hole.)

In fact, we can go further and use WKB-type arguments to see that the
real part of w® must be near the maximum of V. Suppose this were not the
case. If w® were larger than the barrier maximum, then a wave outgoing on
the right could only match to a wave with a substantial component
approaching the barrier from the left, in violation of our boundary condition,
If w* is too small, then the left-moving wave on the left of the barrier
would “"tunnel" through the Dbarrier as a 1linear combination of twg
exponentials, one growing and the other dying. Each of these would, in turn,
match across the right-hand edge of the barrier to a pair of waves, one
ingoing and the other outgoing. For the two ingoing waves to cancel (and
thus satisfy the boundary condition), they would have to have the same
amplitude; but if the tunneling has been strong, they cannot have the same
amplitude. Therefore, the tunnelling has to be essentially negligible: w® has
to be near the top of the potential barrier. [A more extended version of this
discussion may be found in Schutz (1984).]

Calculations of the normal modes

Numerical calculations bear out this simple argument. The first
extensive calculations were by Chandrasekhar & Detweiler (1975). They were
able to get the first few modes for each 1, but soon lost accuracy. They
found that for each 1 the modes formed a sequence in which the real part of
the frequency did not change very much, but the imaginary part increased
rapidly (reminiscent of the strongly damped modes of our model string
problem, abave).

An approximate solution can be sought by replacing the potential V with
the simpler Frice potential Ve,

_ 1C1+1)/ra= r« > a
Ve =
0 r« < a
for some a. The solutions for this potential are obtainable in terms of

Bessel functions. Remarkably, there are only a finite number of modes for
each 1. This raises the question of whether the real potential V only has a
finite number of modes, as well. It also forces one to wonder about the
completeness problem: since only a finite number of eigenfunctions exist, they
cannot be a basis for arbitrary initial data. What is the evolution of the
data that cannot be expressed in terms of normal modes? The completeness
problem for radiating systems has not received the attention it deserves.
The first extensive investigation of which I am aware was in the Ph.D. thesis
of Dyson (1980), and it led to the discovery of the strongly damped modes.
Leaver (1986b) has recently studied the problem for the Schwarzschild metric.
showing in particular that there are non-normal-mode contributions that give
rise to a radiating, power-of-time falloff in the “tails" of gravitational wave
perturbations, eventually becoming the nonradiative decay tails discovered b){
Price (1972). It seems to me that this is one of the most important and
potentially fruitful areas for research in the black-hole normal mode probled-

Another approximation to the Schwarzschild potential has been explored
by Blome & Mashhoon <(1984) and Ferrari & Mashhoon (1984). Here another
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analytic form is substituted for the full potential V, permitting an analytic
solution. This one has a couple of parameters that can be adjusted so that it
is a good fit at the maximum, rather than having the correct behavior at
infinity, as does the Price potential. This method yields good approximations
for the lowest maodes, but it is hard to improve it to do better for higher-

order modes.

In another attempt at approximation, Schutz & Will (1985) introduced WKB
nethods to obtain the eigenfrequencies. This also gave good results only for
the lowest modes, but it has the advantage that it can be extended to higher
srders. Iyer & Will (1986) and Iyer (1986) have gone up to fifth order,
ziving vastly improved accuracy. The WKB approach also gives an analytic
formula for the behavior of the eigenfrequencies as 1 gets large:

Mo = ((1+%) + 1(n+%1/3372 + Q(1/1),

where n is the order of the mode. The real part of the frequency gives, for
zodes with 1=m, a pattern speed Mw, = 3~3/2, which is the orbital frequency
of a photon in the <(unstable) circular photon orbit around Schwarzschild
(Goebel 1972). The fact that, for n=0, the imaginary part of the frequency
approaches the limit .0962, had been noticed by Detweiler (1979), but not
shown analytically until this WKB work.

Great progress on the development of suitable numerical techniques for
this problem has recently been made by Leaver (1985, 1986a). He has given a
very detailed discussion of the spheroidal wave equation, of which Eq. (18)
is a special case, and he has adapted approximation methods developed in
atomic physics to this problem. Future work on this problem will surely take
this work as its starting point. Leaver's methods strongly suggest that
there will be an infinite number of normal modes for any 1, but they don't
quite prove it: this is still one of the most important unsolved problems in
this field.

STABILITY OF ROTATING STARS: GENERAL REMARKS

In the preceding sections I have reviewed a subject that is reasonably
well understood, and I was able only to highlight some important results.
¥hen we turn to the study of the perturbations and stability of rotating
stars, we find a very different story: despite considerable interest in the
vroblem, there are few general thearetical results; there have been no
sxtensive calculations of the modes of relativistic, rapidly rotating stars;
and even the Newtonian theory is poorly understood. Nevertheless, some
remarkable features of the problem have been discovered, including the fact
that the emission of gravitational radiation can actually destabilize a
rotating star; even more, all pertect-fluid rotating stars are unstable in
this way! It appears that these instabilities may play an important role in
the formation and Subsequent evolution of neutron stars, and so the main aim
of the remainder of these lectures will be to try to understand them.

; Before going on, it is well to ask why adding rotation to the star makes
“ie problem so much more difficult. Except in the limit of slow rotation,
“here the problem is not much harder than the spherical one (Newtonian
-ie0ry reviewed by Tassoul 1978; relativistic theory treated by a number of
éuthors, e, g.: Hartle 1967; Hartle & Thorne 1968, 1969; Hartle, et al, 1972;
wartle & Munn 1975; Chandrasekhar & Friedman 1972; Abramowicz & Wagoner
-978), there are two factors that make the normal mode problem harder in the
Totating star:
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(1) It is harder to compute results., When we lose spherical symmetry
the mode problem becomes an elliptic boundary value problem in t‘,;o'
dimensions, rather than an ordinary differential equation. This is not ap
insuperable problem with today’'s computers, but it has inhibited progress iy
the past. I suspect that the motivation to tackle the problem has beep
lacking until recently, but the possibility of gravitational wave observationg
in the near future may change that.

(i1) Even in the Newtonian case, the eigenfrequencies are not eigenvalues
of a selfadjoint operator. In fact, this is true of the spherical problem ag
well, but there we are able to solve the problem in terms of a selfadjoint
operator whose eigenvalues are w?. But w itself 1is the eigenvalue of the
square root of this operator, which is not necessarily selfadjoint. It is
easy to see why: in order to allow for the possibility of the star being
unstable, it must be possible to have complex eigenfrequencies w; but a
selfadjoint operator has real eigenvalues, so we cannot expect w to be the
eigenvalue of such an operator. This argument is as true for the rotating
star as for the nonrotating cne. But there is no lucky way around it in the
rotating case. For example, in terms of the Lagrangian displacement vector
field yx, the dynamical equation for the perturbations of a Newtonian perfec:
fluid star has the general form (Lynden-Bell & Ostriker 1967)

px‘ tt + B(X,t) + Cly) = 0, (¢8°))

where B and C are operators. The operator B involves Coriolis-type terms,
and is present for nonaxisymmetric modes only when the background star is
rotating. In the absence of rotation, when B = 0, then there is an associated
eigenvalue problem for o#® which is selfadjoint, as we bhave seen. The
axisymmetric normal mode problem is also selfadjoint. But in the rotating
case, the eigenvalue problem for nonaxisymmetric modes is genuinely quadratic,
and there is no associated simple selfadjoint problem. Because the nonaxi-
symmetric problem is so different from the axisymmetric one, and because it
has unique astrophysical implications, I will concentrate on it in what
follows. The axisymmetric problem resembles in many ways the spherical one.
In the spherical problem, we are lucky. For the nonaxisymmetric modes or
rotating stars, our luck runs out.

The formal structure of the Newtonian problem is, nevertheless, very
regular and interesting. The operator of which o is the eigenvalue is, of
course, essentially the time-evolution operator. This turns out (Schutz
1980a) to be symmetric with respect to a non-positive-definite inner product
{in fact the symplectic inner product of Eq.(44) belowl]. Such operators have
been studied by Bognar (1974), and extensively in a series of papers by
Barston (1967a,b; 1968; 1971a,b; 1972; 1974; 1977). The structure and some
aspects of the stability of rotating stars in Newtonian theory have been
developed in the monograph by Tassoul (1978). See also Schutz (1983, 1984)
for recent reviews of this subject in more mathematical depth than we shail
go into here.

Despite a considerable amount of work on the problem, the outstanding
problem for Newtonian stars is still unsolved: to give a necessar’ and
sufficient criterion for the absence of complex eigenfrequencies in the
spectrum of the operator, one which can be used without actually solving for
the eigenvalues. In the spherical case, this criterion is simply the
positive-definiteness of C. Here, positive-definiteness of C is sufficient b\{t
not necessary for stability, and as we shall see it is never satisfied.
Therefore, we are still in the position of having to compute all the normal
modes of a star to see if it is stable. For this reason, although we kno¥
the way some instabilities behave in stars, it is still possible that there
are others we do not suspect. Indeed, new classes of instabilities have
recently been found (Balbinski 1985, Papaloizou & Pringle 1984).
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In some respects, the relativistic problem is easier: the destabilizing
influence of gravitational radiation makes it possible to show that positive-
definiteness of the relativistic counterpart of C is in fact necessary and
sufficient for stability. Here, the fact that C is not positive means that all
stars are formally unstable. But because the growth rate of the instability
depends on the efficiency with which gravitational waves can carry energy
away, the importance of this instability depends strongly on how relativistic
<he star is. Moreover, the instabilities of Newtonian stars should still be
oresent as well in the relativistic case. Again, therefore, to answer the
:nhysical questions we have to compute normal modes.

Many of these difficulties have been addressed outside the context of
astrophysics, especially in meteorology and oceanography. Useful references
are Drazin & Reid (1981), Greenspan (1968), and Holm, et al (1985).

THE MACLAURIN SPHEROIDS

I shall begin our study of rotating stability by describing the modes
and instabilities of the simplest self-gravitating rotating system in
Yewtonian theory, the Maclaurin spheroid. This is not just because it is well
to begin simply; it is also because these models are still the only sequence
of models that has received extensive study. What intuition we have about
rotational instabilities in astrophysics, we have to a large extent developed
in the Maclaurin spheroids.

The Maclaurin spheroids are axisymmetric models of uniform density p
and uniform angular velocity Q. When the equilibrium equations are solved in
¥ewtonian gravity, one finds that the surface is a perfect ellipsoid. These
models are obviogusly a crude approximation to realistic stars, but the
instabilities we see in them also seem to be present in compressible models.
For reviews of their structure and some aspects of their stability, see
Lyttleton <(1953) and Chandrasekhar (1969). Their perturbations were first
studied by Bryan (1889), who obtained a complete analytic solution to the
problem: the mode equation separates in ellipsoidal harmonics, and the
eigenfrequency equation is a polynomial. Unfortunately, the prablem was by
and large too difficult to compute by hand, and so many features of the
solutions of the eigenfrequency equation remained undiscovered until the work
of Comins (197%a,b).

7 . . l

I shall restrict myself to the discussion of the nonaxisymmetric modes;
axisymmetric modes and stablility are easier to treat but (apparently) less
interesting. The modes which seem easiest to destabilize tor a given
spheroidal index 1 are those with 1 = m. Figure 5 <(next page) shows the
behavior of the pattern speed wo 0f the m = 2 and m = 5 modes, with various
significant points indicated.

First note the general shapes of the curves. The vertical axis is
normalized to Q, which goes to zero as e approaches zero. (Therefore, the
curves near the left margin go to infinity; this way of displaying frequencies
Is not the best for slow rotation.) For very slow rotation, the curve for any
fixed m is fairly symmetrical about the horizontal axis. This is because the
nonrotating star has a single eigenvalue w2, which gives equal values *lwl for
the forward- and backward-going modes. These two branches respond
differently to increasing rotation. The backward-going mode is dragged
forward by the rotation of the star, and eventually it is pulled so far that
1t goes forward in the inertial frame, although still backward relative to the
star (we/Q < D). Its forward-going counterpart also gets dragged faster
forward, but not as much as the rotation of the star, so wx/Q decreases.

—
(5]
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At some point the two modes join. This is the onset of instability: I
have not shown it in the diagram, but after this the modes have complex-
conjugate eigenfrequencies. This signature, that instability in Newtonian
theory sets in by the merging of two related eigenfrequencies, turns out to be
very general (Schutz 1980b), This instability is called the dynamica]
instability, and it typically grows on the dynamical time scale, one rotation
period.

Fig. 5. The pattern speeds of the m = 2 and m = 5 modes of the Maclaurin
spheroids as a function of the eccentricity e of the surface of the
unperturbed star; e increases monotonically with angular momentum.
Various important stability points are explained in the text. [From
Schutz (1983).]

I lar i bilit]

The addition of a small amount of viscosity or gravitational radiation
reaction to the problem can induce other instabilities, which are called
secular instabilities because their (long) time scale depends on the size of
the added effect (the coefficient of viscosity or the ratic GM/Rc®). The
viscous instability was first studied by Roberts & Stewartson (1963), who
showed that the instability sets in when a mode has zero frequency in the
frame rotating with the star. This means that its pattern speed will be the
same as ? in the inertial frame, so the signal for instability is that the
forward-going mode should drop below the horizontal line at we/Q = L
Clearly, the m = 2 instability occurs before the m = 5, and this is part of 2
general pattern: the viscous secular instability sets in first for m = 2, and
after that for each successive m 1in turn. Note that stars that are
dynamically stable still can be secularly unstable to viscosity.
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The gravitational-radiation-induced secular instability was discaovered
by Chandrasekhar (1970), and had been completely unexpected. In retrospect,
we will see that it has an easy explanation. It sets in when the backward-
going mode is dragged forward in the inertial frame, so the instability point
is where the bottom branch of a curve in Fig.h goes through ws = 0.
Chandrasekhar calculated where the m = 2 instability point was, and made the
reasonable assumption that it represented the onset of this secular
instability along the sequence. But Fig.5 shows a different story: the m = 5
mode goes unstable earlier. This 1s again part of a general pattern. The
m = 2 mode 1s actually the last to go unstable, while in any Maclaurin
sphemid there is some value of m such that all m larger than this are
unstable. Therefore every Maclaurin spherold is unstable. This is a special
case of the genmeric gravitational radiation instability of all rotating stars
discovered by Friedman & Schutz (1978b) and proved rigorously in general
relativity by Friedman (1978a).

The Maclaurin spheroids also provide us with the "escape route" from
this instability, that is, they tell us why it is not catastrophic for
rotation in ordinary stars. Comins (1979b) shows that the growth time for
the instability increases exponentially with m, so that even for very
relativistic stars the instability in the modes for m ? 10 or so grows too
slowly to matter. Moreover, he shows that the growth rate is very sensitive
to the compactness of the star, so that it is unimportant even for m = 2 in
main-sequence stars. And finally, Detweiler & Lindblom (1977) and Lindblom &
Detweiler (1977) showed that gravitational radiation and viscosity actually
compete, the one acting to stabilize where the other destabilizes. Since
viscosity 1is more effective on short length scales, it becomes relatively
stronger with increasing m. It is no surprise, therefore, that Comins was
also able to show that even a tiny viscosity would stabilize all m larger
than some minimum, for a star of given compactness. Thus, since real stars
have some viscasity, slowly rotating stars are stable even in principle.

The general picture painted by the Maclaurin spherolds seems to be
essentially unchanged for sequences of compressible stars. It 1is true that
there are likely to be other instabilities as well, but at least the anes we
see in the Maclaurin spheroids are also seen in calculations of compressible
stars and disks, and even collisionless systems like model galaxies. A rule
of thumb for calculating where some of these instabilities should set in
emerged from one of the earliest extensive studies of differentially rotating,
compressible stars, by Ostriker and colleagues <(Tassoul & Ostriker 1968,
Ostriker & Tassoul 1969, Ostriker & Badenheimer 1973). If we let T stand for
the rotational kinetic energy of the star and V for the absalute value of its
gravitational potential energy, then it is found that the dynamical
instability for m = 2 sets in when the ratio T/W is roughly 0.26. Since this
may be the earliest significant dynamical instability on a sequence, this
gives a rough idea of how far a sequence of rotating stars can reasonably be
pushed. The m = 2 secular instability to gravitational radiation sets in
when T/¥ is roughly 0.14. These criteria seem to be fairly robust, giving
predictions to perhaps 10% for a wide variety of systenms. But the T/V
criterion does not extend as a good predictor to the more interesting
gravitational radiation instabilities for m = 4 or 5. For these we either
r'xave to compute the normal modes or use the variational principle for zero-
izfcégency modes of Newtonian stars recently discovered by Ipser & Managan

585).

Vhen, then, does the gravitational radiation instability matter? Only a

Dode calculation seems to be able to tell us. I will return to this question
below, after we have understood more about how this instability operates.
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A RELATIVISTIC APPROACH TC STABILITY

Having learned from the Maclaurin spheroids a number of things which we
would like to understand better, we now turn to an analysis of stability ip
general relativity. In many ways the formalism of perturbation theory is
more natural in a 4-dimensional context, and it is certainly true that it ig
easier to find general stability criteria in general relativity than in
Newtonian gravity. We will return to the Newtonian case later. The approach
I will take follows Friedman & Schutz (1975, 1978c), and has been reviewed by
me in somewhat greater detail elsewhere (Schutz 1984).

Perfect fluids i 1 relativit

Ve will consider in detail only perfect fluid systems, although the main
results can be extended to any dissipationless physical theory. The fluid
has an equation of state of the form p = p(p,S), a stress—energy tensor

78

and dynamical equations

= (p+p)UaUB + pgaB, (20)

of
T = 0, 21
i B
av® = o, (22)
y O
v¥%s = o. (23)
y X

In fact, Eq.<21) and either of (22> or (23) imply the other. It is useful to
define the specific momentum associated with a fluid element,

PtP
vV = —U_. 24
o n o
In terms of the specific momentum, the vorticity conservation law has a very
simple expression. If the fluid is isentropic (uniform entropy’), then we have

£U(V0(V;3 VBVG) = 0. (25a)
Here £u is the Lie derivative with respect to the vector field U=. For an
introduction to the Lie derivative, see Carter's lectures in this volume or
Schutz (1980c). It can be taken to be the ordinary partial derivative of a
tensor's components if the coordinate system includes U* as on of its
coordinate basis vectors. If there is an entropy gradient in the fluid, then
this law is replaced by the slightly weaker versionm,

= b)
£,V S VBVH) 0, (25
where square brackets denote antisymmetrization. This is called Ertel’s
theorem <(Ertel 1942a,b), and its relativistic form was found by Friedman
(1978a).

Definiti ‘ ] . E ¢ soluti

Consider a smooth sequence of manifolds M(e), each a sloution of
Einstein's equations, the family parametrized by e. Let € = 0 denote 2
stationary solution, which we call the unperturbed manifold. The other
members of the sequence deviate more and more from the stationmary state, but
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the limit € - 0 is sufficiently differentiable in €, in a sense which we won't
need to define more precisely. Technically, this sequence is a trivial fiber
pundle (Schutz 1980c), with base space R' (coordinate ¢)> and fiber R*
(coordinates t,x,y,z). It is clear that in general there is no preferred or
natural map from one spacetime in the sequence to another, no natural way to
associate a point of a perturbed manifold with one of the unperturbed
5pa<;etime. Such associations are useful, however, so we imagine introducing a
family of maps such that f(¢) maps points of the ¢ = 0 manifold in a 1-1
fashion to points of M(e).

Ve can use these maps to define a perturbation (Schutz & Sorkin 1977).
Suppose there is a tensor field Q€e) on each manifold, also smooth in the
1imit € » O (for example, the metric tensor or the four-velocity). Then we
can drag Q(e) from any manifold M(e) back to € = 0, thereby defining a tensor
field Qe (e)* on the unperturbed manifold. As € varies, we therefore have a
family of tensor fields on M(0) which are the images under f of the family on
the sequence. Given a sufficiently smooth family, then it will be
approximated for small € by the expansion

Qf(e)* = Q(0) + ¢ SfQ + 0(62), 26>

where we define

dQr (e ) *
SfQ = T4 e=0 27
This is defined as the first-order perturbation in Q following f. It is a
tensor field on M(0). Clearly we could define second-order and higher

perturbations in terms of higher derivatives with respect to ¢ along f. But
without introducing f, it is impossible to define a perturbation as a tensor
field on M(0).

Since f is arbitrary, we could do the same with another 1-1 family of
maps h(e). Then there will be a different definition of a first-order
perturbation, 6nQ. To see how this differs, let us consider a smooth family
of maps m(e;\), such that m<{e;0) = f(e) and m(e;1) = h(e). This family gives
us a smooth transition from one map to the other. Now, if we hold € fixed,
say at e, then in the manifold M<(e:) the map m(e:;\) traces out a one-
parameter family of points as \ varies; i.e., it defines a curve in M{(e:). Let
us denote the tangent vector to this curve as y™(e:;»). Since all the maps
reduce to the identity as € -+ O, x> goes to zero in that limit: it is a first-
order quantity in €. It therefore has an approximation in M(0) in the spirit
of Eq.(26) given by

XN =€ x“1<x> +0é . (28)

queover, if the maps f and h are not too far apart for some e, then x™(ev;)\)
will be well approximated by €1x=1(0). This will always be true for
§gfficiently small €1, since the maps f and h approach each other in this
limit. Therefore, keeping only the lowest order terms, it is not hard to show
that the first-order perturbations are related by

s =

pQ = 6,Q + £X1(0)Q<0). 29
This change of the perturbation under a change of the map is called a gauge
1transforzzzatl'z:m. The gauge transformations of linearized theory (Misner, et al
1973, Schutz 1985) can be viewed in this framework.
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Iwo preferred perturbations: Eulerian and Lagrangian

Although perturbation theory should be covariant under changes of gauge,
some choices are singled out by either computational or physical
considerations. Normally, tensor fields on M(e) will be described in terms of
some family of coordinate systems {x=(e)} that is also smooth as ¢ 2+ 0. I
shall define the Eulerian map as the one which connects points that are at
the same coordinate positions in the different manifolds. It is conventional
to represent the perturbation with respect to this map simply by 6, with no
subscript. Thus we have the component equations

€ Sgas(x“) = " e - 8y Mo,

8ap B
€ 6‘p<x“) & p(x“,e) - p(x“.O),

etc. In the Newtonian theory, "Eulerian" has a somewhat different meaning,
although in practice the difference is not usually important. Since Newtonian
theory has a fixed Euclidean metric and a universal time, there exist
isometries between the different manifolds. Choosing an isometry defines the
Eulerian map. In practice one always chooses coordinates on the family M(e)
such that the isometry preserves the coordinates, in which case the
relativistic and Newtonian definitions of Eulerian coincide. But in general
relativity there is generally no isometry, so our definition is the only one
possible.

The existence of a fluid in the manifolds allows us ta define another
map, called the Lagrangian map, which connects the "same" fluid elements in
different manifolds. This 1is physically reasonable only in certain
circumstances, namely where the sequence can be thought of as a deformation
of a single system. More precisely, since the motion of the fluid preserves
entropy, particle numbers, and vorticity (or Ertel's constant), then we shall
require that the Lagrangian map also preserve these quantities. (That this
usually defines the map almost uniquely was shown by Friedman & Schutz
1978a.) It is customary to denote the Lagrangian perturbation by a. The
vector field x relating § to & by Eq.(29) is called the Lagrangian
displacement vector field, because it can be interpreted as representing the
first-order change in the position of a fluid element relative to the Eulerian
map:

a=6+ 4. (30

The defining conditions for Lagrangian perturbations are therefore

- a %, _ - -
asS = 0, amU’"g) = 0, and A(V[aS VBV“) 0, (31)

where g is the absolute value of the determinant of the metric components.

p bati of Ei in's Equati

Using these definitions, Friedman & Schutz (1975, 1978c) were able to
show that the first-order perturbed Einstein equations have an important
symmetry property. The Eulerian perturbation of the field equations can be
written

-¥% aff ¥ o¥AT _Bpo LA
= - (32)
g 6(GgH) % € e, V(va)sgm + G 88, . 3
U SOX 27 S Ra(xgv)ﬁ - Rﬁ(xgo')cx o Raﬁgw - ngaﬁ)
R R(gmgﬁv + gwgﬁ)‘ - 80(;38)\0)_ 33)
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Sere round brackets denote symmetrization on a pair of indices. It is easy
.. cee that the temsor G=®*¢ has the symmetries

Gaﬁm - G(aﬁ)()\v) - G)\o'aB’ chﬁ)\ = 0. (34)

Similarly, the Lagrangian perturbation of the stress-energy tensor

sensity 1S

g Ea g% = w"‘m"AgN, (35)
88,y 68)\0' * V)\Xo' +vax‘
waﬁ)\o - %(p+p)UaUBU)‘UV + Vep(gaﬁgw _ gaAgB(r _ gavgﬁ)\)

- wypg™® + vB @+ . (36)

this tensor has the same symmetries as G=®*¢, Eq.(34), but not the traceless
property.

The result of these symmetries (which reflect the fundamental fact that
the combined hydrodynamical and Einstein equations can be derived from a
variatiopal principle, provided the Lagrangian conditions in Eq.QGi) are
respected by the variations -- see Schutz & Sorkin 1977) is that we have the
iollowing identity for any 6gas, x™, 88«m, ¥, regardless of whether they
satisfy the field equations or not:

16x)’zaA(VBTaB) + agaﬁsm"‘ﬁ— en1™)

_ af 0B of o -
= 16nxaA(VB'I ) ¥ BB GT - BT ) ¥ VaR , (37)
where R* is bilinear in 6g«s and 6g«s.

stabili i teri

Now we shall see how to use Eq.(37) to derive a stability critericn. We
suppose that h«e and y= are the eigenfunctions of a normal mode solution of
the first-order perturbed field equations, with complex frequency w, so that
the time-dependent solutionc are

k k

y = yFahHelot, 685 (ti X = hog(x yel®t,

)(m(t,xk

Ve define the tilde-perturbation in terms of this eigenfunction:

S k., _ o a k o -iwt k. _ k. ., —lwt
X (L, x) =y x)iI*e . Sgaﬁ(t,x ) [haB(x Y1* e .

Here * denotes the complex conjugate. Notice that x= and ¥ are not
complex conjugates of each other, since w is not real. When substituted into
Eq.(37), the time-dependences of these functions cancel and the complex-
conjugate relationships of the eigenfunctions combine with the symmetry of
the equation to give the following:

0lh - wUB) - C 4+ VkRk = 0, (38)

where A, iB, and C are real (i.e., by virtue of the symmetry in Eq.(37), they
are Hermitian forms).

Now suppose we integrate Eq.(38) over a spacelike hypersurface which is
asymptotically null outgoing, so that it intersects future null infinity. Then

143



Friedman & Schutz (1975, 1978c) have shown that the integral over the sphere
at infinity becomes, with an outgoing-wave boundary conditionm,

§Rknde = -4iw!Bondi news functionlz. (39)

Because the r.h.s. of this equation is pure imaginary if o is real, we
immediately have from Eqs.(38) and (39) that « can be real only if it ;g
~ zero. But now imagine a sequence of unperturbed stellar models, such as a
relativistic version of the Maclaurin spheroids. If a particular made ig
stable somewhere along the sequence, then it can go unstable only by going
through a real value of w. By our result here, this can only be =zerc.
Instability in modes sets 1in only through zero Ifrequency. Moreover, if
somewhere along a sequence the form C is positive-definite for all possible
eigenfunctions (has, ¥, then instability occurs at the first point along the
sequence where C becomes semi-definite. (It is easy to see that this ig
necessary by substituting w = 0 into Eq.(38). To show that it is sutficient
requires more work.)

This would be a very powerful stability criterion for perfect <£fluig
configurations, except for one unfortunate fact: it turns out that C is not
positive definite for any star, because the term -WV=®*[Ag«sl®™Agxs in C
contains derivatives with respect to ¢ quadratically, and these are negative-
definite. One can always choose the trial function and the azimuthal
eigenvalue m in such a way that this term dominates all others. Therefore
the simple idea of a sequence going unstable at some point does not hold.
One can still show, however, that the indefiniteness of C does imply the
existence of unstable modes (Friedman 1978a). These are the gravitational-
wave-excited modes we encountered in the Maclaurin spheroids. The generality
of our treatment shows that they are a feature of all compressible stars as

well.

There are two remarks on the general problem which [ wish to make. One
is that the proof of instability offerred here is mode-based. It would be
more satisfying and perhaps illuminating if we had one which did not rely sc
heavily on modes. The second is that the only thing we needed to make the
proof work was the symmetry property of W=#>*, and that followed from the
fact that the theory has an action principle. Many other systems therefore
have the same basic stability theorem, that instablility sets in through a
zero frequency mode: see for example Carter & Quintana (1972) for a
discussion of elastic media in general relativity.

A SIMPLE APPROACH TO THE RADIATION INSTABILITY

Now that we have seen that the radiation-excited instability of the
Maclaurin spheroids is in fact a general feature of relativistic systems, we
should expect to be able to find some very general and fundamental way oOf
understanding it even in a Newtonian context. The conserved quantities of
the Newtonian problem prove to be the key to such an understanding.

The equations for a perturbation of a rotating Newtonian perfect fluid,
when written in their Lagrangian form (Lynden-Bell & Ostriker 1967), follow
from a variational principle. From the action we can derive, via Noether's
theorem, two interesting conserved quantities: the canonical energy Ec (the
value of the Hamiltonian) and the canonical angular momentum Je. Both are
conserved if the unperturbed star is stationary and axisymmetric. Both are
quadratic in the Lagrangian displacement vector x*. (The fact that they are
quadratic might suggest that they are the second-order changes in the energy
and angular momentum of the system. In fact, however, they are only part oI
these changes. We will examine this in more detail in the next section.)
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i ties f ve fields

These conserved quantities bave such useful properties that it is
worthwhile studying them in some detail. Let us consider any dynamical
system for a field x* whose equations follow from the unconstrained
variations of a Lagrangian of the form

. i J i iy 2 i 3
L-VzX.tAij(x ,t)+”x,tBiJ(x) szcij(x). 40)

where Ass and Cis are selfadjoint operators, Bis is antiselfadjoint, and all
are independent of time t and azimuthal angle g. These properties will hold
for the perturbations af essentially any conservative, stationary, and
axisymmetric system. If the field is a tensor rather than a vector, similar
properties will still obtain if we interpret i and j as multi-indices.

The field equations that follow are
J J
+
3% e P By
The conserved energy is (for possibly complex solutions, such as normal
modes)

- J
0= A G, (41)

S SRR i ,,3y743
= »* x
Ec séjﬁxi’tA s et odndx, 42)
while the conserved angular momentum is
Je = -Re fx’{ ’[Aij GO + o8 Bij o 1dx. (43)

Both of these are closely related to and derivable from a simpler conserved
quadratic form, which [ shall call the symplectic form: given any two
independent fields x* and y*, we define

gal (Jd i 3 i .3 i ] 3
= * - g%
Vix, p f{yi[A S F BB 0T - xTIAT () + e B (p)Nd f;u,)

Notice that the terms in square brackets in this equation are the canonical
momenta conjugate to x* and y*, respectively, so that this is Jjust the
antisymmetric product of the cancnical coordinates and momenta. It obviously
has a close relation to the Poisson bracket, and so we should not be
surprised if it is alsc related to the conservation laws. (This relationship
is discussed 1in more detail in Schutz 1980c.) In fact, if both yx* and y*
satisfy the dynamical equation, then their symplectic product is conserved.
Moreover, if x* satisfies the dynamical equation, then so do its derivatives
x*.. and yx*4, and the associated conserved quantities are none other than Ec
and Je:

e = % Wiy .,x), Je =~ WX 0 (45)

Now we come to the fundamental result we have been building up to.
Since a normal mode solution is proportional to exp(img+iwt), the derivatives
in Eq.(45) are trivial, and we immediately find that for any normal modes,

mEe = -wle. (46)

This has a number of consequences: (i) If w is complex, then the fact that m,
Ec and Jc are real means that Ec = Je = 0. (ii) If w is real, then
consequence (i) and a continuity assumption imply that a mode is marginally
stable if and only if V(y*,x) = 0. This is an intrinsic characterization of
marginal stability, and is as close as we have come to a stability criterion
tor rotating Newtonian stars. But since it is mode-based, it is not very
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useiful, This criterion for marginal stability is arrived at by very different
methods in Schutz (1980b).  (iii) For nonaxisymmetric modes, where m = 0, we
bave a relation that illustrates the importance of the pattern speed:

Ec = wole. an

This is a general property of linear waves, be they stellar perturbations or
gravitational waves.

Mechanisn for tl tational wave instabili

This equation will be the basis of our understanding of the way the
gravitational wave instability develops along a sequence of stellar models.
If we remind ourselves that Je is at least part of the second-order change in
the angular momentum of the star, then it will perhaps not be hard to believe
that the sign of Jc will be determined by the relative rotation rates of -he
star and the wave's pattern: if the mode goes faster than the star thes it
has positive angular momentum, and conversely if it is slower then it has
negative angular momentum. <(This is not exactly true, but becomes more ang
more accurate as m gets larger. Rigorous bounds on the range of pattern
speeds in which Je can change sign are given in Friedman & Schutz 1978b.)
On the other hand, the relative sign of Ec and Jc is determined by the sign
0f we, the mode's pattern speed in the inertial frame. If we denote the
star's angular velocity by Q > 0 (in differentially rotating stars., this
should be taken to be the mean of the angular velocity over the mode's
eigenfunction), we have the following table of signs:

Je Ec
W > % >0 + +
Q> wp 2> 0 - -
Q>0 we - +

The crucial entry is the one where Ec is negative: If a mode rotates
forwards in the inertial frame and backwards relative ta the star, then its
canonical energy will be negative. This is exactly the region of instability
of the gravitational wave excited modes of the Maclaurin spheroids, as in
Fig.5. Vhy does this signal an instability of a mode when it is coupled to
radiation, but not necessarily when it obeys simply the Newtonian equations?
The answer is that since the Newtonian equations preserve Ec, its sign is not
automatically an indication of stability: it is necessary that the symplectic
form change sign, not the energy. But if the Newtonian system is coupled to
another system in such a way that Ec must decrease with time, then if Ec is
already negative its absolute value will increase, and the coupling will make
the mode unstable. This is excactly what happens when the mode is coupled to
gravitational radiation. Gravitational waves also obey equations like 41)
and (47), and far from the star their physical energy iIs their Ec. So
conservation of total Ec and an outgoing-wave boundary condition ensure that
the Newtonian Ec will decrease.

Gravitational wave instabill . nstabili

Readers familiar with hydrodynamical instabilities may recognize this
instability mechanism, for this is just a version of the two-streanm
instability. Energy arguments like these were first used by Sturrock (1962)
to explain the two-stream instability; the only difference was that there the
linear momentum of the mode replaces the angular momentum in our argument.
One finds that the unstable modes have pattern speeds intermediate between
the speeds of the two fluids. In our case, the two "fluids" are the star and
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the nonrotating inertial vacuum outside it; when modes exist which rotate at
an angular velacity intermediate between the two, the instability is present.
snotber related instability is the Kelvin-Helmholtz instability, which is the -
mechanism by which the wind raises the waves on the ocean. This is often
discussed in a nonlinear context, but its initial linear development is that
of a two-stream instability, with the unstable modes again being intermediate
in speed between the two fluids. The ocean waves travel at a fixed speed.
As lohg as the wind moves faster than this, the ocean waves will be unstable

and grow .

This analogy can help us to understand at least one reason why all
rotating stars are unstable. The waves in a rotating star will, in the short-
wavelength limit, move at the speed of sound relative to the fluid of the
star. If the star rotates “supersonically,” so that in some region even the
backward-going sound waves will go forward in the inertial frame, then it
will be unstable. But all compressible perfect fluid stellar models have a
speed of sound that goes to zero at the surface, so any star will be unstable
if the surface has any finite angular velocity. Another way of seeing that we
should expect this instability in all rotating stars is the observation we
made in our discussion of the p-modes of nonrotating stars, that there are p-
nodes of arbitrarily small pattern speeds for sufficiently large m. If a star
rotates slowly, then the p-modes will have the same pattern speeds relative
to the star, and so these very slowly moving ones will go unstable.

‘ s be i bili

Qur explanation for this instability used only one property of
gravitational radiation, that it causes Ec to decrease. Therefore it can be
excited by any mechanism that does the same, and in particular by any
cocherent form of radiation. Magnetic fields in stars will enit
electromagnetic radiation when the star is perturbed, but one can show that
the energy radiated in electromagnetic waves is always smaller then that in
gravitational waves, essentially because the magnetic field energy is always
less than (usually much 1less than) the gravitational potential energy.
Therefore this does not seem to be an important mechanism except where
gravitational radiation is absent, as in the 1=1 (dipole) modes of the star.
This has not received any attention, to my knowledge. But a mechanism that
might indeed be important is acoustic radiation. Imagine a collapsing stellar
core surrounded by an envelope that is collapsing on a much longer time-
scale. Then nonaxisymmetric perturbations of the core will "stir" the
envelope and this will extract energy from the modes of the core. As long as
the core rotates rapidly compared to the envelope (a condition likely to be
easy to satisfy in a rotating collapse), then the energy argument will
parallel the one for gravitational radiation. 1 have made a crude estimate of
the size of this effect, and it may dominate the one due to gravitational
radiation near the onset of instability (Schutz 1983).

The instability d s

Finally, we may ask about viscasity. In the Maclaurin spheroids, it does
not have at all the same effect as gravitational radiation. Do our energy
arguments help us here? Friedman & Schutz (1978b) have discussed this at
some length, but the essence of the result is that viscosity dissipates energy
Zeasured in the rest frame of the star rather than in the inertial frame. It
fas no systematic effect on Ec, but rather on its analogue in the rotating
irame. We shall see why in the next section. This fact can be used to
devise as systematic a description of the viscosity secular instability as we
have given of the one due to gravitational radiation.
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THE PERTURBED ENERGY OF A ROTATING SYSTEN

In the previous section we used the conserved canonical energy to builq
stability criteria for Newtonian stars, while cautioning that it is not the
whole of the second-order change in the energy of a rotating star. Indeed,
our remark at the end about the effect of viscosity would not make sense if
the canonical energy in the inertial frame were the total energy, since surely
viscosity dissipates energy. But if Ec is not the total energy, what is the
missing piece? And if Ec and the total emergy are both conserved, then sg
must be their difference, so is there yet another conserved quantity in the
problem that we have overlooked until now? In this section I shall address
these questions directly. The best way to start is with the simplest systenm
that exhibits these features: the energy of a particle in a perturbed, nearly
circular orbit in a central force.

Orbiti ole: | ]

Consider a particle in a central potential V(r) in an orbit with angular
momentum J. Its energy is

E=*% mI"2 + J2/2mr2 + V(r), (48)

which is a nonlinear function of r. The solution which is stationary in r is
the circular orbit, which we will take to be the unperturbed state. For this
we have

QEI

- - - (

r 0 and 31 J=const 0. 49)
In other words, a stationary solution is an extremum ot the energy provided
the angular momentum is held constant. Now suppose that the orbit is
perturbed, but remains in the same plane for simplicity. The first-order
change in the energy is

JE oE OE
= T 6r + IC =<7 &8J. (50)
SE >t 6t or §r + 37 §J (50
But the first two terms vanish because of Eq.(49), and it is easy to see that
the third term is just

6E = Q@ 67, 51D

where Q is the angular velocity of the unperturbed orbit. Physically, it is
clear why there bhas to be a term of this type: part of the unperturbed
energy is kinetic, and it is possible toc change the kinetic energy to first
order by changing the component of the velocity along the unperturbed
velocity. Notice that this change is conserved: we expect energy to be
conserved at all orders, and at this order this follows from angular-momentum
conservation,

The second-order change in the energy is simplest if we set the first-
order change 6J to zerao:

y, 2 > )
SZE = Q 62J + % m\6i‘)d + B LV ) + 3J“/mr4] Sri7 (529

The first term is the second-order analogue of Eq.(5l), allowing for a
second-order change in J. The remaining terms are the Hamiltonian of the
radial oscillation that the particle's first-order perturbed motion undergoes.
Vhen V(r) is the Kepler potential, then evaluating the coefficient of «6r)®
gives an oscillation frequency exactly equal to @: the perturbed orbit is (ot
course) closed. In general this frequency is called the epicyclic frequency.
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So here we see that even in the simplest example, the total energy at
second order is not the Hamiltonian of the second-crder motion. There i
another piece, related to the second-order change in the angular momentum.
poth pleces are separately conserved if the motion obeys the original

dynamical equations.

The second-order energy of a rotating fluid

The energy of a fluid, perturbed about a stationary, differentially
rotating state, has a strong analogy with Eqs.(51) and (52), but there are
important differences that arise because the system is a continuum. To first
order the change is (Schutz & Sorkin 1977)

E = § (nTas + poaj + g Ppacng™id’x, (53)
where j is the specific angular momentum of the fluid, p is the injection
energy Dper particle (u = %vZ + h + V, where h is the enthalpy’), and A& is the
ysual Lagrangian change. Each of these terms has a ready interpretation: the
first is the energy change if we add heat; the second is the kinetic energy
change, as in the particle analogy above; and the third is the energy added if
we add particles. It is significant that the kinetic energy term invalves the
specific angular momentum, because it is possible to show that this term is
conserved by virtue of the vorticity-conservation law of the perfect fluid
(Schutz 1984,. It is obvious that the evolution equations for a periect fluid
also preserve each of the other two terms separately as well, so the analogy
with Eq.(51) is very good.

If we set the first-order changes AS, aj, and of the vorticity to zero,
then we have what we have earlier defined to be a Lagrangian perturbation of
the fluid, and &E vanishes. Then the second-order change in E turns out to
be (Friedman & Schutz 1978a, Schutz 1984)

6% = S[“TAzs + 99621 + g_%pAz(nngdsx tE. (54)

The first group of terms is just the analogue at second order of Eq.<«53), and
the remaining term is the canonical energy, the Hamiltonian of the first-
order perturbation equations. This is very closely analogous to kq.(52). The
difference between Ec and 6%E is indeed a separately conserved quantity,
provided the perfect-fluid dynamical equations are satistfied.

None of this is absolutely necessary for computing the gravitational
wave instability, but it does illuminate the viscosity instability. Viscosity
dees not conserve vorticity, so the second term in Eq.(54) is not constant.
The total 62E must decrease, but it can (and does) sometimes happen that the
vorticity term decreases faster, allowing Ec to increase. A  further
investigation of the second-order changes in J reveals that the canonical
energy in the rotating frame of the star monotonically decreases under the
action of viscosity, and that this happens when a forward-going mode starts
going backwards in the rotating frame. (It is possible to speak of a single
rotating frame here, because we must exclude the possibility that the
unperturbed star is ditfferentially rotating. 1In the presence of viscosity,
only a rigidly rotating star can be stationary.)

MAXIMUM ROTATION RATE OF NEUTRON STARS
The most immediate consequence of the gravitational radiation
instability is that no star can rotate faster than whatever rate would render

1t unstable on a sufficiently short timescale. This limit is set by the
largest value of m for which a mode grows on an interesting timescale (such
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as the age of the universe), since the larger values of m are unstable in the
more slowly rotating stars but have the longer growth times. Unfortunately,
this is a difficult calculation to make, since it involves knowing the normajl
modes of the star, their growth rates when coupled to gravitational radiation,
and the size of the damping effect of viscosity. For main sequence stars ang
white dwarfs, the gravitational radiation timescales are too long to be of
interest. But for neutron stars it seems that even modes as high as m = 4
or 5 may be important. Friedman (1983) estimated the likely effect of
viscosity in neutron stars and concluded that the m = 4 mode would set the
limit on rotation, since the m = 5 mode would be damped by viscosity. He
used the Maclaurin spheroids to estimate the various timescales. Based on
these estimates, Friedman coneluded that the existence of the millisecand
pulsar PSR 1937+214 with a rotation rate of some 642 Hz might already rule
out the stiffer equations of state if the star has a baryon mass of 1.4 Me.

Realistic models of rotating neutron stars, using the same equations of
state as Arnett & Bowers (1977) used, have recently been calculated by
Friedman, et al (1984). They concluded again that the stiffest equations of
state were on the verge of being ruled out if the millisecond pulsar is a
1.4 Mo star. Conversely, if the millisecond pulsar's rotation rate is limited
by this instability, then the equation of state must be fairly stiff.

In a very recent paper, Lindblom (1986) has taken a new look at the
relative importance of gravitational radiation and viscosity in realistic
stars rather than in the Maclaurin spheroids, and concluded that Friedman
(1983) may bave overestimated the effect of viscasity, and that consequently
the rotation limit may in fact be set by the m = 5 mode. This significantly
lowers the critical rotation rate and rules out the two stiffest equations of
state used by Arnett & Bowers (1977), again provided that the millisecond
pulsar has a baryon mass of 1.4 Me. Figure 6 shows the result of his
calculations for various assumed kinematic viscosities v, in units of cm=s—'.
But these results must also be treated with some caution, because the stellar
models which he used were nonrotating, and rotation may make some changes in
one's estimates of the critical quantities. Ve need full calculations of the
normal modes of realistic rotating relativistic stars to answer these
questions, and we don't have any yet. This is probably the most important
untouched problem in this subject today. Not only would it help us to
constrain equations of state, but such calculations would be a useful testbed
for comparison with the results of full nonlinear three-dimensional
hydrodynamics codes in general relativity, which will certainly need such
comparison problems to ensure that their results are reliable.
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Fig. 6. Critical rotation periods of neutron stars with various kinematic
viscosities (v) and various equations of state (dots) for the m = 4 and
5 modes. The millisecond pulsar (dashed line) appears to rule out the
stiffest equations of state. (From Lindblom 1986.)



STABILITY OF THE KERR BLACK HOLE

Just as the stability of rotating stars is much harder to analyze than
that of nonrotating ones, so is the stability of Kerr more difficult than that
of Schwarzschild. There is an unpublished calculation by Whiting (1985) that
is reliably said to establish that all the normal modes of Kerr are stable,
put I bhave not seen it. However, because there is some uncertainty even for
Schwarzschild about whether the modes are complete (or even finite in number
for any 1), the stability of the modes of Kerr does not establish the
stability of the metric itself. This reinforces the importance of studying
the completeness problem for radiating systems.

The fullest discussion of this problem in the literature 1is by
Chandrasekhar (1983). The analysis of Leaver (1986a,b) has made a
substantial advance, and gives hope of further important progress soon. I
have elsewhere given a brief introduction to the mode problem from a point of
view analogous to that which I took earlier in this article for Schwarzschild
(Schutz 1984). There is no space here for a full discussion of this
interesting and complex problem, but I should not leave it without drawing
attention to its relation to the rotating star problem. The possibility of
instability in Kerr comes from the negative-energy nonaxisymmetric modes of
wave fields that must exist because of the ergosphere. (The axisymmetric
modes of Kerr are known to be stable: Friedman & Schutz 1973.) VWhen a star
has an ergosphere (Schutz & Comins 1978), these modes do result in an
instability, for the same reason as in the star: as they lose energy to
infinity, their already negative energy must get more negative, hence larger
in absolute value (Friedman 1978b, Comins & Schutz 1978). But the boundary
conditions for the Kerr problem are different: the ingoing waves at the
horizon have, for these negative-energy modes, an outward energy flux, which
in all calculated modes seems to more than compensate for the energy radiated
to infinity, and allows the mode amplitude to decrease. The question is, does
this happen for every wave disturbance of Kerr? Nobody yet knows, but all
the evidence is that it does.
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