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Robinson—-Trautman Equations and
Chandrasekhar’s Special Perturbation
of the Schwarzschild Metric
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A perturbation wave solution of the Robinson-Trautman equations is
proved to be a perturbation of the Schwarzschild black hole which de-
scribes an outgoing axial gravitational wave and corresponds to a spe-
cial case of Chandrasekhar’s algebraically special perturbation of the
Schwarzschild metric.

Gravitational perturbations of the Schwarzschild black hole have been
studied for more than twenty years [1]. Recently much research has fo-
cused on the equations given by Regge and Wheeler [2] and by Zerilli [3],
and in particular on the quasi-normal mode solutions of these equations
[4-7]. The nature of the potential in the equations describing the pertur-
bation makes it difficult to obtain exact analytical solutions, so that most
work has employed numerical methods of one kind or another [4-7]. The
only exact analytical perturbation solution known was found by Chan-
drasekhar [8], and Leaver [5] pointed out that it seemed to be part of a
sequence of quasi-normal modes. It has, uniquely among the quasi-normal
modes, a purely imaginary frequency.

Recent numerical computations [7,9], however, have not given a quasi-
normal mode with exactly the purely imaginary frequency that corre-
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sponds to the Chandrasekhar solution. This raises many questions about
the nature of the solution: Is it really a mode? What is special about
its frequency? Chandrasekhar found the solution by demanding that the
Starobinsky constant vanish; are there other ways of finding it?

In this paper we show that Chandrasekhar’s special solution is simply
the linear approximation to the Robinson-Trautman (RT) solution [10]
where that solution limits to the Schwarzschild solution. It describes a
purely outgoing axial wave.

The Robinson—Trautman metric [11] (with signature —2)

ds? = 2Hdu? + 2dudr — r2P~%d( dC, )]

where u is an outgoing null coordinate, satisfies the field equations

AA(In P) 4+ 12m(In P) ,, = 0 (2)
and 9
2H = A(ln P) - 2r(In P) s — =, (3)
where
A = 4P%.9.8;. (4)

In contrast to Ref. 11, we take

(= exp(iqﬁ)cotg— ,
(5)

(= exp(—iqﬁ)cotg .

When )
P=P0='2'(1+Cf), (6)

we get
2m

9H =2Hy=1- —,
"

the RT metric (1) becomes the Schwarzschild metric.

We wish to study the RT equation as perturbations about the Schwarz-
schild metric. If we introduce the Newman-Penrose operators 3 and 3 {12],
operating on a function 7 of ¢ and ¢ with spin weight s, we have

On = 2P} 8, (P¢n), 8n = 2Py T*9:(Py *n), (7
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for which B B
90(In Py) = 09(In Py) = 1. (8)
If 7 has s = 0, then we find
oy =83y = 4P023<6C-77. (9)

Supposing the Robinson-Trautman function P can be written in the per-
turbation form

P = Poexp{e(u,(,{) } = (1 +(C)expe (10)
with
lef <1,
the RT equation, eq. (2), can be rewritten as
5050€ + 283¢ + 12me ,, = 0 (10)
in the linear approximation. The solution of eq. (11) is
€ =Y mexp (-——15'%7—1 u) . (12)

It is straightforward to show that
e=I(I+D[I{I+1)-2]. (13)

The coefficient —(x/12m) is just the characteristic frequency of the Chan-
drasekhar solution [8]. Here it is obtained in a rather natural way.
The second RT equation, eq. (3), gives

2H:1—2—m+/\(>‘+2r—-1>6, (14)
r 6m
where
A=(-1(1+2). (15)
Apart from ¥, = —mr~3, the only nonvanishing Weyl scalar is
U, = —T%@I,m[(/\+2)r—6m]exp{—-)‘—(%m?)u} , (16)
where
u=1-—r. (17)
and where
O1m =A1_2Yim + B exp(iqﬁ)cot% oYim, (18)

with A;, B two normalising constants.
Equation (18) means that the solution obtained above describes an
outgoing axial gravitational wave, which coincides with a special case in

Ref. 8.
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