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A p e r t u r b a t i o n  wave so lu t ion  of the  R o b i n s o n - T r a u t m a n  equa t ions  is 
p roved  to be  a p e r t u r b a t i o n  of t he  Schwarzschi ld b lack hole which  de- 
scr ibes  a n  ou tgo ing  axia l  g rav i ta t iona l  wave a n d  cor responds  to a spe- 
cial case of  C h a n d r a s e k h a r ' s  a lgebraical ly  special  p e r t u r b a t i o n  of the  
Schwarzschild metric. 

Gravitational perturbations of the Schwarzschild black hole have been 
studied for more than twenty years [1]. Recently much research has fo- 
cused on the equations given by Regge and Wheeler [2] and by Zerilli [3], 
and in particular on the quasi-normal mode solutions of these equations 
[4-7]. The nature of the potential in the equations describing the pertur- 
bation makes it difficult to obtain exact analytical solutions, so that most 
work has employed numerical methods of one kind or another [4-7]. The 
only exact analytical perturbation solution known was found by Chan- 
drasekhar [8], and Leaver [5] pointed out that it seemed to be part of a 
sequence of quasi-normal modes. It has, uniquely among the quasi-normal 
modes, a purely imaginary frequency. 

Recent numerical computations [7,9], however, have not given a quasi- 
normal mode with exactly the purely imaginary frequency that corre- 
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sponds to the Chandrasekhar solution. This raises many questions about 
the nature of the solution: Is it really a mode? What  is special about 
its frequency? Chandrasekhar found the solution by demanding that  the 
Starobinsky constant vanish; are there other ways of finding it? 

In this paper we show that  Chandrasekhar's special solution is simply 
the linear approximation to the Robinson-Trautman (RT) solution [10] 
where that  solution limits to the Schwarzschild solution. It describes a 
purely outgoing axial wave. 

The aob inson-Trau tman  metric [11] (with signature - 2 )  

ds 2 = 2Hdu 2 + 2du dr - r2P-2d~ d~, (1) 

where u is an outgoing null coordinate, satisfies the field equations 

AA(ln P)  + 12m(ln P),u = 0 (2) 

and 

where 

2 m  
2H = A(ln P )  - 2r(ln P),~ - , (3) 

r 

A =_ 4P2.0r 

In contrast to Ref. 11, we take 

(4) 

= exp(ir  0 , 

= exp ( - i r  0 . 
(5) 

When 
1 (1 + (~), P =  Po=-~  

we get 
2 m  

2 H = 2 H 0 = l - - - ,  

(6) 

the RT metric (1) becomes the Schwarzschild metric. 
We wish to s tudy the RT equation as perturbations about the Schwarz- 

schild metric. If we introduce the Newman-Penrose operators ~ and ~ [12], 
operating on a function q of ~ and ~ with spin weight s, we have 

= 2Po -"oc(P ,7), = (7) 
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for which 
~0(ln P0) = ~ ( l n  Po) = 1. (8) 

If q has s = 0, then we find 

O~rl = ~Orl = 4P~ OcO(rl. (9) 

Supposing the Robinson-Trautman function P can be written in the per- 
turbation form 

P = Po exPI~(u, (, ( ) )  = 1(1 + ( ( )  exp e (10) 

with 
Id << 1, 

the RT equation, eq. (2), can be rewritten as 

~ c  + 2 ~ c  + 12inC. = 0 (10) 

in the linear approximation. The solution of eq. (11) is 

e = Yl,m exp -1-~-mm u . (12) 

It is straightforward to show that  

tr = l(l + 1) [l(l + 1) - 2]. (13) 

The coefficient -(t~/12m) is just the characteristic frequency of the Chan- 
drasekhar solution [8]. Here it is obtained in a rather natural way. 

The second RT equation, eq. (3), gives 

2 H = l  ) - 7  \ 6m - 1  e, (14) 

where 
= (l - 1) (1 + 2). (15) 

Apart from ~2 = - m r  -3, the only nonvanishing Weyl scalar is 

~4 = - m r  2A @Im[(A+2)r,  - - 6 m ] e x p (  

where 
" a - - - - l - - r ,  

and where 

+ 2) 1 
12m u , f  (16) 

(17) 

(18) 
o 

| = At-2Y/,m + Bz exp(ir 2 0Yl,.~, 

with At, Bt two normalising constants. 
Equation (18) means that  the solution obtained above describes an 

outgoing axial gravitational wave, which coincides with a special case in 
Ref. 8. 
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