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A new formulati_on of the radiation-reaction problem is proposed, which is simpler than alternatives which
have been used before. The new approach is based on the initial-value problem, uses approximations which
need be uniformly valid only in compact.regions of spacetime, and makes no time-asymmetric assumptions
(no a priori introduction of retarded potentials or outgoing-wave asymptotic conditions). It defines radiation
reaction to be the expected evolution of a source obtained by averaging over a statistical ensemble of initial
conditions. The ensemble is chosen to reflect one’s complete lack of information (in real systems) about the
initial data for the radiation field. The approach is applied to the simple case of a weak-field, slow-motion
source in general relativity, where it yields the usual expressions for radiation reaction when the gauge is
chosen properly. There is a discussion of gauge freedom, and another of the necessity of taking into account
reaction corrections to the particle-conservation equation. The analogy with the second law of
thermodynamics is very close, and suggests that the electromagnetic and thermodynamic arrows of time are
the same. Because the formulation is based on the usual initial-value problem, it has no spurious “runaway”

solutions.

I. WHAT IS RADIATION REACTION?"
A. Introduction

The need for an acceptable formulation for radi-
ation reaction in general relativity has been sharp-
ened recently by the identification of the effects of
radiation reaction on the orbit of the binary pulsar
PSR 1913+ 16.) The observations support the usu-
al quadrupole energy-loss formula? [Eq. (4) below],
but the theoretical underpinnings of that formula
and of a related expression for the reaction force?
[Eq. (8) below] are not entirely satisfactory.*
There has even been a report of calculations which
disagree with the quadrupole formula for high-
speed collisions.® I will describe here a statisti-
cal approach to the problem, which is mathemati-
cally and conceptually simpler than previous deri-
vations, and which also is closer to the nature of
the physical problem. In the simplest possible
limit—a low-velocity system dominated by non-
gravitational forces—the standard expressions
will be shown to give the statistically most likely
evolution of the system. As with the statistical
derivation of the second law of thermodynamics,
the present approach has the nice feature that it
makes no explicitly time-asymmetric assumptions:
neither retarded potentials nor time-asymmetric
asymptotic wave conditions are put in as a priori
assumptions. Since the present approach applies
as well to electromagnetic radiation reaction, it
provides a mathematical basis for the frequently
expressed belief® that the electromagnetic and
thermodynamic arrows of time are in fact the
same. '

It is useful to begin by defining radiation reac-
tion carefully. The interaction of a body with
radiation must produce some effect on it, but the
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term “radiation reaction” is usually applied only
to a formulation which meets the following three
requirements.

(i) It separates out the “self-field” of the body
(that field of which the body is actually the source)
from the total radiation field, and describes the
interaction of the body only with its self-field.

(ii) The equations of radiation reaction do not
contain the self-field explicitly at all: they in-
volve only the body’s own dynamical variables.
The field is then regarded only as an intermediary
between certain motions of the body and the re-
actions produced by them.

(iii) The expressions must be much simpler to
use than the original coupled equations between
the body and the field. This necessarily entails
approximation: one hopes to identify the most
important characteristics of the body’s motion
that produce reaction. One would like these ap-
proximations to be local, involving only the pres-
ent condition of the body and not its history in
the remote past, but this may not always be pos-
sible.

B. The standard expressions

In electromagnetism’ these requirements are
all met by the Abraham-Lorentz equation of mo-
tion (for a body of charge @ and small size)
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where the radiation-reaction term is the first on
the right-hand side (RHS). The energy loss to
radiation is the work done on the body by the re-
action force
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(2

whose average over time, denoted by (), for a
roughly periodic motion is the usual dipole for-
mula’

This is then the dipole approximation for electro-
magnetic radiation reaction. In weak-field gen-
eral relativity the analog of Eq. (3) is the quadru-
pole formula

(AE/dt) = - 3 (PR*Og, ) (4)
in which

£,=l—=351'0,,, (5)

I3%= fTooxkadsx’ (6)

and ®7 means the third time derivative of I.> The
analog of Eq. (1) was suggested rather recently.?
It is an addition to the usual Newtonian gravita-
tional potential of the term

B, act= 54, %, VHE, )
which produces a body force
ij'eact == pvjq)react == % xk(S)}Hz . (8)

This is consistent with (4) via the analog of (2)
(dE/dt)= < f v ,F;eac,d3x> . 9)

We will see later that this consistency bears clos-
er examination. It turns out that a very special
choice of gauge is required in the relativistic
problem in order that the nonrelativistic form of
Eq. (9) should give the correct energy loss. We
will also see that in some applications it may be
necessary to take into account a reactive correc-
tion to the particle-conservation law as a supple-
ment to Eq. (8).

II. THE STATISTICAL DEFINITION OF RADIATION
REACTION

A. How to define the self-field

The first requirement of a radiation-reaction
formalism is the separation of the self-field from
the total field. The differential equations do not
define such a separation. The self-field must
satisfy an inhomogeneous equation [e.g., Eq. (12)
below], but such a solution is not unique: any
solution of the associated homogeneous equation
(a “free field”) can be added to it. In order to
define one particular solution as the self-field
one must add some other condition. The choice

preferred by Ehlers ef ql.* is that the solution
have no incoming radiation from 9, past null in-
finity.’ This is a mathematical way of requiring
the source to be “causally isolated.” Another
choice, more commonly used® because it is easier
to impose, is that the self-field solution have only
outgoing radiation far from the source. This a-
mounts to a definition of a “retarded” solution to
the nonlinear equations. It is not known whether
it is equivalent to the zero-incoming-radiation
condition. An alternative, initial-value approach
will be adopted here. The self-field is defined
only in a statistical sense, and the radiation-re-
action equations are those which give the expected
evolution of the source under random initial con-
ditions for the radiation field.

Because the universe appears to have a finite
age, all radiating systems we want to study have
an initial moment of formation. For an antenna
broadcasting radio waves this is the moment the
power is switched on; for the binary pulsar this
might be the time the pulsar itself was formed in
a supernova explosion, or it might be the original
formation of the binary system from the collapse
and fragmentation of a gas cloud. The system’s -
subsequent evolution is determined by the initial
data for both the field and the “matter” dynamical
variables. From theory or observations, we
may have a good idea about the matter variables
at the initial moment, but it is generally true that
we know nothing about the radiation field then.
What we are confronted with is an incompletely
posed initial-value problem. Rather than to as-
sume a particular kind of initial field, it seems
to me more reasonable to average over all pos-
sible free data for the field.

Consider again the same system when it is first
“discovered,” as when the binary pulsar was first
detected (by a method having nothing to do with
gravitational radiation).’® We again have infor-
mation about the system’s variables—the initial
positions and velocities of the stars—but not about
the initial gravitational wave field. Again, if we
want to predict its evolution we are forced to aver-
age over the initial data for the field.

In each case the averaging expresses the as-
sumption that the initial data for the radiation is
uncorrelated with the subsequent motion of the
system. This assumption may be questioned in
the second case, on the grounds that the initial
data should contain outgoing waves emitted earlier.
But these have no subsequent effect on the sys-
tem,!! so their omission causes no practical prob-
lem. In the first case the initial-value problem
for the moment of formation of the system does
not have these outgoing waves.

It must be stressed that this definition of the
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self-field as the average field will generally be
inequivalent to the definition which holds that it
is the zero-incoming radiation field, although
one would hope that the observable predictions of
the two approaches might be very close. The no-
incoming-radiation approach can justify its rele-
vance to real problems, in which there certainly
is incoming radiation from all sorts of sources,
only by assuming that this radiation is uncorre-
lated with the motion of the system of interest
and so will have no effect on its motion, on aver-
age. It seems preferable to make this assumption
explicit by defining radiation reaction to be the
average motion. This is particularly useful in
view of the difficulty of defining incoming radia-
tion in our universe at all. The usual definition
is that the initial data on 9~ should vanish. But
our universe does not have a 97: the big-bang
singularity intercepts every null geodesic at a
finite affine-parameter distance in the past.

The alternative definition of the self-field, which
demands only outgoing radiation, is equally open
to criticism. Apart from the unjustified assump-
tion that nature “prefers” outgoing to incoming
radiation, it also seems to assume that the source
somehow knows what part of the local field will
eventually show up as radiation far away. Now,
the nature of the radiation far away depends to
some extent on the asymptotic structure of space-
time, but the source must react to the radiation
it emits (more properly, to its self-field) essen-
tially immediately. It cannot wait to discover
whether the self-field actually reaches a distant
observer as radiation or has some other fate,
such as being swallowed by a nearby black hole.

This highlights a semantic problem that can be
the source of some difficulty when one first stud-
ies the subject: “radiation reaction” ought to be
called “self-field reaction” and has nothing direct-
ly to do with the radiation a distant observer might
detect. Global conservation laws ensure that the
energy lost by the source will turn up elsewhere,
but not necessarily as radiation. The local radia-
tion-reaction force exists independently of this
asymptotic conservation property, and it seems
preferable to derive it in a manner independent
of any asymptotic properties of spacetime.

B. The ensemble of initial data

The statistical approach makes no explicitly
time-asymmetric assumptions and imposes few
global conditions, but it does require the pres-
cription of a rule for averaging the initial data,
i.e., the assignment of a probability distribution
to the initial data. In turn, this depends on what
information is taken as given. We have already
addressed one aspect of this: we will not assume

the initial data to contain waves emitted earlier
by the system. This still leaves the choice of the
distribution function open. For linear problems
(including weak gravitational waves on a curved
background), one plausible restriction suffices:
any freely specifiable initial datum for the radiation
field and its negative should have equal probability.
This ensures that the meanfree initial data are zero
and that the mean evolution of this system solves the
initial-value problem for these zero data. This as-
sumption will not suffice for nonlinear problems,
in which the subsequent evolution of the two sets
of data will not necessarily cancel. In such a case
one will have to make some added constraint on
the data, such as a requirement that its averaged
effect on the background curvature is less than
some fixed limit. Note also that in the nonlinear
problem, the mean motion resulting from an en-
semble of initial data may not itself be a solution
of the equations for any particular data. In such
a case, the present approach must give rather
different results from those which impose specific
asymptotic conditions and identify radiation reac-
tion as a particular solution.

These considerations have analogs in statistical

. mechanics, where the derivation of the second

law of thermodynamics has obvious analogies with
the statistical approach to radiation reaction. The
second problem, of constraining the initial data,
is solved by requiring a fixed total energy (and
angular momentum, for a rotating thermodynamic
system). The first problem, of deciding what
information is known and what is random, is usu-
ally answered by pleading complete ignorance of
the microscopic motions. This is perhaps a lit-
tle naive, since it could be argued that for a sys-
tem which has been isolated for some time we
also know (from experience with other systems)
that its entropy was lower in the past than it is
now. This implies a certain correlation among
the particles’ positions and velocities, a micro-
scopic correlation not evident in the macroscopic
state. I will return to this point in Sec. V below,
pointing out that ignoring these correlations is the
analog of ignoring the outgoing radiation generated
earlier by our system in the present problem. In
statistical mechanics, these correlations are prob-
ably truly ignorable, since they are presumably
wiped out quickly by collisions. In the radiation
problem the information is always present in the
outgoing radiation. This difference is one reason
for being somewhat cautious in drawing the ana-
logy between the two problems.

There is another important difference between
the two problems: Our one constraint on the ini-
tial data for the radiation field is not enough to
determine the probability of any initial data in the
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ensemble. This means that we have no knowledge
that the “average” behavior is in fact highly prob-
able. It might turn out to be the average of two
much more probable kinds of behavior. This is
almost certainly not the case, and is one of the
questions one would expect to resolve in a study
of the nonlinear problem. The situation in statis-
tical mechanics is more complete, since the im-
posed constraints determine the probability dis-
tribution of microstates more completely.

These differences do not obscure the striking
conceptual similarity between the two problems.
If the Universe has a thermodynamic “arrow of
time” evident in the increase of entropy, then it
also has an electromagnetic arrow evident in rad-
iation reaction and the presence of outgoing radia-
tion correlated with earlier motions of the source;
these arrows can be derived by analogous statisti-
cal arguments.

III. SOLUTION OF THE RANDOM INITIAL-VALUE
PROBLEM FOR WEAK FIELDS

A. The weak-field approximation

The definition of radiation reaction described
in the previous section can be applied to any sit-
uation, but there is one which is the most straight-
forward. This is one in which nongravitational
forces dominate the motion; gravitational effects,
both Newtonian and post-Newtonian, are small.
(There is reason to believe that our results will
apply even when the Newtonian gravitational field
dominates the dynamics,'? and we plan to consider
such situations in a later paper.) For now, the

- weak-field case suffices to illustrate the approach.

The lowest approximation is the linearized the-
ory,'? with the Lorentz or harmonic gauge condi-
tion:

guu=nuvﬂ+huvs Eu,,:huu—%nwh“a ’ (10)
R ,=0, (11)
» Or*Y=-164T* (O=-252+V?), (12)
T ,=0 (13)

with indices raised and lowered by 71,,=diag(-1,
1,1,1), the metric of flat spacetime. Commas
denote partial derivatives. These equations des-
cribe a system whose motion is nongravitational
[Eq. (13)]—such as a mass on a spring—and they
give the first-order gravitational field this system
generates [Eq. (12)]. Effects of this field on the

~ motion of the system appear in the equation of
motion at the next order, using the metric gener-
ated in (12):

T" ,==T*,T*-T%,T', (14)

with

ruav=%nu8(h8a.v+hﬁwa "'hav‘ﬁ)‘ (15)

In Eq. (15) one computes I'* ,, using the zero-
order solution from Eq. (12), and this plus the
zero-order T *Y determines the RHS of Eq. (14).
From the point of view of a Minkowskian ob-
server, the RHS of Eq. (14) appears to be a new
force acting on the matter, the self-interaction
force

F:elt’:—ruavTaV_rvavTua' (16)

These equations are merely the first of a re-
cursive sequence of approximations to Einstein’s
nonlinear equations, the convergence of which is
poorly understood. But we are not interested in
convergence here. All we require at this point
is that our calculations be an asymptotic approxi-
mation in the limit of small |4,,|. Of this there
seems to be little doubt, particularly as we re-
quire this approximation to be valid only in a
compact region of spacetime.!®

B. The initial-value problem

The initial data will be set on the initial hyper-
surface H of coordinate time #=0. The data for
Eq. (13) or (14) are data for the matter variables,
and are assumed arbitrary but fixed for the
rest of this calculation. The initial data for
Eq. (12) are %,,(0) and %,,,,(0), but these are con-
strained by the gauge condition, Eq. (11), and by
its time derivative, simplified by the use of Eq.
(12):

0 =E‘w,v0 =ﬁu0,00+ ;—lui' o = —D}TL“°+ szuo_i_ ’ﬁu i’ o
or
0=167T""+ VR*°+ "¢ . (17)

This is, of course, the usual initial-value con-
straint. Its form makes it natural to take (2%,
%Y ) as the free data on H and to solve Egs. (11)
and (17) for (B*°,2*° ;).

Under our assumptions for linear problems,
the free data average to zero, which implies that
the average solution to (12) is the solution to (12)
which evolves from the data on H:

0= 167V TH0), (18)
zio'():O ’ (19)
R°,,=16avE(T¥ ), (20)

where V7 is the inverse Laplacian for solutions
well behaved at infinity. It is not hard to show that
these initial data satisfy the criteria of York!® for
the absence of gravitational radiation: The in-
trinsic geometry of the hypersurface t=0 is con-
formally flat and its extrinsic curvature has zero
transverse-tracefree part.

The general solution of Eq. (12) can be written

Ry, =R+ Rl (21)
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Here %, is a solution of the homogeneous equation

ORf,=0, (22)
and 7t%! is a retarded solution
are( it M 3
huv(x9t)=4 R a’y, (23)
clxs t)

where

i=xi-y!, R=(R'‘R)'/?, t,=t-R

ret

and the integral in (23) is over the past light cone
c(x,t) of the event (x%,#). Writing %,, this way
with no explicit mention of the advanced solution
involves no loss of generality, because the re-
tarded and advanced solutions differ from one
another by a homogeneous solution, which can be
absorbed by %%,. We have chosen the form (21)
because it enables us to solve the initial-value
problem explicitly.

In order to connect with the initial-value prob-
lem, we now take a crucial step. We are only
interested in #>0 in Eq. (23). We can, therefore,
again without loss of generality, cut off the inte-
gral in (23) at £=0. (See Fig. 1.) The resulting
7ot is still a solution of Eq. (12) for all ¢>0,
since we can accomplish the cutoff by multiplying
the retarded Green’s function G™%(x*, ¢,; y%,¢,) im-
plicit in Eq. (23) by a Heaviside step function
H(t,). This does not alter the fact that G™* is a
Green’s function for #,>0, the test for which in-
volves differentiating Gret with respect to x? and

t,, not ytor t,. The advantage that placing such a
cutoff on (23) gives us is that now
limRisH(x,£)=0. (24)
t—0 .
It follows that the initial data (18)-(20) are the
initial data for the homogeneous solution %%, and
this defines %,, completely. [Had we not cut off
the integral, the initial data for #¥, would have
included terms compensating %= x¢,0), in order
to make %,, have the correct values at £=0. But

=0

!

!

o

\ I
]

]

]

FIG, 1. The integral over the past light cone of event
P is cut off at £=0, so it is not the usual full retarded
integral. The cutoff for the light cone of @ occurs after
it passes through the source; in this case it is the usual
retarded integral.

7EsH( x%,0) cannot be computed directly from the
initial data. ]

It must be stressed that despite the appearance
of a retarded Green’s function no time-asymmetric
assumptions have been made. The solution to the
past of H would most conveniently be expressed
using an advanced Green’s function.

We can find %% (x%,¢) from the Kirchoff formu-

4 for the wave equation. This gives, for initial
data (18)-(20),

RE(x*,1)=0, | (25)

— 9 )
RE(x% t) = = 437 (£65s, (V2T ;0)dR], (28)

RE(x*, 1) = = 4tF (4, 0 (VETE) )AQ

o]
- 457 (£ ct, 52 (V 2T o)A 2], 27

where the integrals are over the sphere s(¢, x%) in
the initial hypersurface H of radius ¢ centered at
x*. These spheres are illustrated in Fig. 2. The
integrals are most easily evaluated'® by using the

spherical-harmonic representation of V=2:

- biG)
(v f)(X)———-—- fd y[(x,_y (x _vj)]uz

2li 1 m 9 ¢)fd y l+1Ylm(lp’ X)f( k) >

where i and x are the spherical coordinates as-
sociated with y* and where (7,,7.) are the (larger,
smaller) of |xix,;|'/2 and |y’y,;|'/2. When this ex-
pression is integrated over a sphere of radius ¢
centered at x=0, only the I=m =0 piece survives,
and one finds

f (V2f)dR= - de f(" (28)

§(£,0)

]
!

\ i
]
1
1

Fig. 2. Spacetime forward of t=0 is divided into
three regions: (I) the outer region consists of events
spacelike separated from all events at =0 inside the
source; (III) the inner region is all events timelike
separated from all events at £=0 inside the source;
and (II) the middle region is everything between I and
III. The homogeneous field is simple at events like P
and @ but complicated at R.
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If f(y*) is of compact support, there are two
easy cases. The first is when the support of f
is entirely outside the sphere. Then 7, is just
|9*y,|*/? and Eq. (28) is independent of f. For
this case, Eqgs. (26) and (27) become

. 3
=4 fdsy?% with[y]= |y*y,['/2,

it=4 [asyTe) °°(y Tl 4y 42 —L——°'y(ly
Since the origin of x* was arbitrary, we can
generalize these to arbitrary position as

Wit n= sy Tur)

with ]x -9 l = [( x— yk)( Xp=— yk)]1/2 ’ (29)

— Too(9%) T, (%)
H( .k 4)= 3, L oo 3 0,
RE(x%t)=4 fd y Ix—yl+4t fd Y eyl (30)

These integrals are evaluated in the initial hyper-
surface and are consequently independent of ¢.
This gives the metric in the outer region of Fig.
2, at events which have not been able to communi-
cate with the source region since ¢#=0.

The second easy case is the metric in the in-
terior region, at events which are future time-
like separated from all points in the source at
t=0. In this case, the support of f in Eq. (28) is
entirely inside the sphere, so that », is just
|¥*x,|*/2=¢. Then Egs. (26) and (27) become

34 (31)
7t =4 fT‘

The last equality results simply from integrating
a divergence. So in this region, which is the prin-
cipal one of interest for the motion of the source,
the homogeneous solution vanishes identically.

(y®)d3y=0. (32)

C. Interpretation of the solution

The two limiting forms of &%, given by Eqs. (29)—
(32) have a sensible physical interpretation. Since
we have eliminated any dynamical freedom in 2%,
by our choice of initial conditions, the only inform-
ation it can be expected to carry is the Coulomb
field of the source. In the outer region where (29)
and (30) are valid, the retarded field is identically
zero (since the retarded integral is cut off at
t=0), so the information about the mass and mo-
mentum of the source must be contained in the
homogeneous solution. This is assured by the
initial-value constraints, whose solution (29) and
(30) may be expanded in powers of »'= | x| to
give

(o, t)= 4P, /r + O(r?), P,= f:r" dy (33)

ok, t)=4M /7 + 4t /v fT‘o,i(y")y,dav +0(r™),

M= f Ty . (34)

This is in a coordinate system whose origin is at
the center of mass of the initial data [i.e.,

J 1°(y*}pd®% =0]. The integral in the O(r*2) term
in (34) can be evaluated by parts to give

R (xc® ,t) 4M /v + 4tPx,/7* + O(r=9). (35)

The »* terms in (33) and (34) give the mass and
momentum of the source correctly, and the lin-
ear term in ¢ in (35) is exactly the right correction
at this order for the motion of the source. That
is, if P?#0 then at fixed x the Coulomb field far
away should change with time to reflect the chang-
ing distance to the source. This is automaucally

_ contained in (29) and (30).

But if we wait at fixed x for a long enough time,
then the retarded integral eventually begins to in-
clude some of the source. After a sufficiently long
time, we pass into the “interior” region of Fig. 2
in which (31) and (32) apply. In this region the re-
tarded integral “sees” the whole of the source, so
it can contain the information about the mass and
momentum of the source. The homogeneous field
is not needed, and obligingly vanishes.

It follows that, after one light-crossing time,
the field inside the source is purely the retarded
field, and from this will result all the radiation-
reaction effects. We have therefore recovered,
from unbiased initial data, the usual retarded
solution which other approaches put in by hand.
There has been no loss of time symmetry, how-
ever. At times earlier than £=0, the solution
inside the source would be governed by the ad-
vanced solution. This result is not as disturbing
as it might at first seem. We will consider it fur-
ther in the discussion in Sec. V

IV. RADIATION REACTION IN THE SLOW-MOTION
APPROXIMATION

A. The slow-motion approximation

For the first light-crossing time after £=0, the
solution inside the source is very complicated.
If we now specialize to a slowly changing source,
for which one light-crossing time is a very short
time, we can ignore it for now and concentrate on
the situation after the retarded solution is fully
developed. The problem is then to evaluate the
right-hand side of Eq. (14)
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T’“’.u= —ruavTav_ rvauTua (14)

when the metric is given by Eq. (23) integrated
over the past light cone c:

st =4 [ —&%—’l—{ﬁ—cﬁ

i

T (23)
Ri=x'-9t.

The slow-motion approximation consists of ap- v
proximating the integrand in (23) by a Taylor ex-
pansion back to the light cone from time ¢:

Tuv(v" tret)z Tuv(y‘! ¢ _R)

(=R)"[ 0"
RS [at,,T.w(y‘, t)]t' (36)

n=0
This is the same method as one uses in electro-
magnetism,'® and it is very close to that used to
derive the radiation-reaction formulas of linear-
ized gravity by Misner, Thorne, and Wheeler.,!®
Accordingly, there is no need here to go through
the tedious algebra. What we aim to do is to dis-
cuss features that have received little attention
previously. It should be noted, however, that the
integrals in (23) are considerably simplified by the
use of the zero-order equation satisfied by T,

e =0, (13)

The results may be expressed in terms of the
quadrupole tensor defined earlier,

= f Ty )y 9,d’ - ®)

Among the useful identities Eq. (13) leads to are

92
8—t211k= 2 fT,kd3y

and

9 00,33,,
-é-z J‘T dy—O.

The expansion (36) must be taken out as far as
n=>5 to get radiation-reaction terms. It is helpful
to order the terms in each expression, using a
typical velocity v as an order parameter. For a
low-velocity system we have Ty,=0(1), T,,=0(v),
T,;=0@?), and 8/8t=0(v). The expansions for
the metric elements, written with orders from 1
to v° separated by parentheses, are

hoo=2(4)J +0+ ((1)J+ 2L}
~5 L+ ({ &7+ LY
+ (=3 BT - 3 LY + 0%, (37a)
hoy=0+4 (K, +0+ 23K,
-33K, +§ GK, + 0(), (37b)

Ryp=2 ()05 +0+ (4 ) Lyp =2 (L3O + <1>J5n)

- 2((3)Ilk'— %(3)1:5!k)

[¢))
+ (2 (I)ij + 1‘2 (3)J51k (I)L:Guz)
1
+(-3 <2)L - (E;JGM + é%Lfﬁu) + 0_(1)6) s

(37c)

with the definitions
I, = fy}ykToo(y')day >

(n)J= f| x=9 I "Too(y‘)dsy ’

|x -y =[G =y, = y,)]

1/2
(n)KI = flx-yl"Toj(y{)day ’

wln= [15=9"T, (5.

(Recall that bracketed numbers in superscripts
indicate time derivatives.)

B. Radiation reaction from the self-field

The effect of the self-field on the energy of the
source may be deduced from Eq. (14) with p=0:

Tov,v - __roavTau - r‘vayToa . (38)

This equation includes all the effects on the energy
of the source that are first order in the weak-field
approximation. Some mere‘ly transfer energy from
one part of the source to another. These can be
eliminated by integrating (38) over the whole
source at a fixed time ¢. Using Eq. (15) for the
Christoffel symbols, integrating freely by parts,
and using (13) gives us

dE _ f 00
- )T o d®x

- % f (R0 T + L 1, T®)dx . (39)

The effects that remain are transfers of energy
between the source and the external gravitational
field. Not all these transfers show up as radia-
tion, i.e., as permanent losses from the source.
Some may only be stored inductively in the grav-
itational field, ready to be transferred back to
the source later. The easiest way to distinguish
between these is to assume that the zero-order '
T,,, and hence &,,, are periodic in time. Then
any inductive storage of energy in the field will
also be periodic, so that the average of dE/dt over
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one period will equal the irrevocable energy loss
of the system. Under the assumption of periodicity
the average of the second integral on the rhs of

Eq. (39) vanishes, and we have

(dE/dfy = -4 < f ha,,'oT"“‘d3x> , (40)

where angular brackets denote a time average
over one period of a periodic zero-order motion.
This expression is what is usually called the ra-
diation-reaction energy loss, but no discussion of
the actual radiation is needed to evaluate it. It is
a simple matter to evaluate (40), and one finds that
all terms in the expansions (37) below O(v°) can-
cel, with the result (4):

(dE/dt) = =5, D+* + 0(1") . (41)

One might object to the above discussion of
“inductive” versus “irrevocable” energy trans-
fers on the grounds that there is no unique separa-
tion of energy between the field and the source,
that any such split is gauge dependent. Indeed, the
local expressions (38) and (39) are gauge depen-
dent, but not surprisingly the average result (40)
is independent of gauge. That is, a change to

hag=hap = u,8 = &5,a (42)

for any ¢, makes no change in (41). This is easy
to deduce from Eq. (40), using the zero-order con-
servation law (13).

While (41) gives the average energy-loss rate
of the source, it does not give enough information
to enable one to calculate the detailed motion of
the source. This information comes from the
spatial components of Eq. (14):

T¥,,==T%, % = T%,T*. (43)

As with Eq. (38), this includes all the self-inter-
action effects, not simply those associated with
the long-term energy loss. But it does no good to
integrate over space and time here, since we
want the detailed, local corrections to the equa-
tion of motion, These will inevitably be gauge in-
dependent, so we shall pay some attention below
to the choice of a convenient gauge. For the mo-
ment, we remain in the Lorentz gauge.

We may argue, with Misner et al.,? that the
radiation- reaction terms in (43) are those whose
sign depends upon whether retarded or advanced

potentials are used in the calculation of expansions
such as (37). It is not hard to see that these are
the terms of odd order in v, in ky, and ky,, and of
even order in v in iy;. These give a reaction force
which is of order v%

Floo=T" <‘§'xk ik _ %f yk(S)Tkiday

+ %‘f 3’{(3)Tkkd3y>
+2T% (WEi, — 35¢, 1) + O(") . (44)

Though these terms deserve the name “radiation-
reaction force,” they are by no means the whole of
the self-interaction terms, and lower-order terms
can certainly have observable effects on the sys-
tem. Any observational interpretations must be
careful to consider all the terms in (43). But the
reaction terms are special because they tell us in
detail how the irrevocable energy loss actually
shows up in the source. For this reason they are
studied separately and even, sometimes naively,
used without including the rest of (43).

C. The standard gauge

Our reaction force, Eq. (44), is rather cumber-
some, so we shall now use our gauge freedom to
leave the Lorentz gauge for a quasi-Newtonian
gauge in which the expressions simplify, Perhaps
the simplest criterion for choosing a gauge is to
try to eliminate the lowest-order radiation-reac-
tion terms in the metric expansion (37). Since
these appear at O(v°) in kg, and k; and at O (v*) in
o, while the reaction force itself is O(v°), this
seems a reasonable hope. A little experimentation
reveals that the following is the most general vect-
or field that generates a gauge transformation (42)
which eliminates the O(v®) terms in kg, and h;: -

£0= _%(2)111 +f(x) , t (45a)
E=—x,CH +g,0), (45b)

where f(x) is an arbitrary function independent of
time and g,(f) an arbitrary vector independent of
position. This gauge transformation does not
eliminate the O(v?) terms in hy,. In fact, it com-
plicates them. In this new gauge the reaction force
simplifies to

J
Fhao =T [__é_xk(mpk_ _g_fyk(s)Tu(yz)day +_§_fy1(3)Tzl (yk)d3y + (Z)g,-(t)] . (46)
I

In this gauge, reaction terms couple only to 7%,
By choosing

g:(=¢ kaT”‘(y’)dsy—% fy‘T’,(y”)dsy (47)

we can eliminate these cumbersome terms and
arrive at the standard expression

Floe = (=2x, FHTO, (48)
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The gauge choice (45), (47) will be called the
standard veaction gauge.

D. A Newtonian problem?

The standard gauge has one other advantage be-
sides the simplicity of (48). It enables one to pre-
tend that the problem is a Newtonian one, that the
only relativistic effect is to produce the force (48).
Not only is the force derivable from the potential,
Eq. (7), but it is consistent with the energy-loss
formula (4) via the nonrelativistic expression for
the work done by a force, Eq. (9). This is in fact
a remarkable feature, not shared by most gauges.
For example, an expression nearly as simple as
(48) can be obtained from the standard-gauge ex-
pression (48) by a gauge change generated by the
vector field
J

bo=-30, £=-%A01, (49)
which gives
Fr‘eact == 'i' (xk(s)l'ik - %xi (S)I',)TOO . (50)

This again couples only to T° and is derivable
from a potential. But for this expression, the
mean Newtonian work done, ( f Fleew d®x), does
not equal the energy-loss rate. This gauge re-
stores the O(v®) terms in ,, and &;; and may
therefore be suspect, but this does not explain
how the Newtonian intuition in this problem fails.

To understand this we must look at the fully
relativistic analog of the v,F‘ expression for the
energy balance. Consider a perfect fluid whose
stress-energy tensor is

T = (p+p)U*U" + pg"”.

Then the following is an identity:

. +
T = [U,TJ"YV+p—n‘D (nU) ,+nTS ,U"+3(p +p)gaﬂ,uU°‘UBU"+pU°‘g"BgaB’v] /(—UO), (51)

where p, p,n, T, and S are, respectively, energy density, pressure, conserved number density, tempera-
ture, and specific entropy. The first term in (51) is the analog of v, F/. The second term reminds us that
the particle-conservation law is also affected to first order in %,,, so that locally a Newtonian observer
would reckon that the self-field causes creation of particles, (xU") ,#0. We will return to this in a mo-
ment, but note here that this never contributes to the averaged energy change at the lowest reaction ord-
er. The third term is the energy change for nonadiabatic flows, but since entropy is a scalar it is con-
served regardless of %,, and therefore contributes nothing to the energy loss. The final terms are geo-
metrical effects which seem to have no ready interpretation. The division by (-U,) is simply a red-shift
factor. It is in the final terms that the compensating contribution arises which allows the energy-loss rate
for (50) to equal that for (48). The final two terms cancel each other when averaged in the standard gauge.
It is this “accident” which permits one to use Newtonian language and intuition in that gauge.

E. Nonconservation of particles

The fact that the particle-conservation law is affected by reaction terms is important. When the system
of interest consists of disjoint bodies whose internal structure is unimportant—the binary pulsar, for ex-
ample—then this extra effect is ignorable. But if one is interested in the local effects inside a body —for
instance, reaction effects inside a pulsating star—then the equations

T

— Fi
v F(react)

(52)

do not form a determinate system by themselves. In the case of a perfect fluid, they must be supplemented
by an equation of state and any two of the following three equations:

T()u’ v— I:(()react) ’
uss,,=0,
(nUu), v= M(react) ’

where, in the standard radiation-reaction gauge,

( [N 0 (
-Fgeact): T00(31_.0 (?)J-— %(Z)L'Al) +T ‘ai(—%(g))l‘lx)

ij(_@ 1@ 1w 1@
+TH (=" +5@L;—5oL0,,+ 105 @6 —

and

1 ® @
M(react) Zn(at + vlai)(eo (4)J— %(Z)Ltl) .

(53)
(54)
(55)

( (
%8¢(%;K;_ %%(%Ki) . (56)

(57)
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The third equation of (53)-(55) follows from the
other two and (52) by using (51).

V. DISCUSSION AND SUMMARY

The main conclusions of this paper may be sum-
marized as follows.

(i) To derive radiation-reaction formulas, it is
not necessary to make explicitly time-asymmetric’
assumptions about the radiation field, such as
purely outgoing radiation or zero incoming radia-
tion. Indeed, the use of such assumptions has cer-
tain drawbacks.

(ii) It is possible instead to derive the standard
results from a statistical approach in which ra-
diation reaction emerges as the most likely evolu-
tion from an ensemble of initial conditions. This
has the added advantage of allowing the problem
to be posed as a local one, involving only a com-
pact region of spacetime. Weak-field and slow-
motion approximations, therefore, should be well
behaved and uniform in the region of interest.

(iii) The standard radiation-reaction formalism
permits one to treat the problem as a nonrelativ-
istic one, in which one pretends that the radiation-
reaction force is just another Newtonian force.
This is permissible only in a very specially chosen
gauge, and even here one should not ignore the
modification in the mass-conservation equation
caused by the radiation-reaction terms.

Perhaps the most uncomfortable feature of the
present approach is that the solution for earlier
times involves advanced potentials, a necessary
consequence of the time-symmetric initial condi-
tions. In one respect this is a positive advantage,
as described below. But the fact that the solution
for £<0 is clearly wrong warrants discussion.

In at least one case, there is no reason for con-
cern: if {=0 is the moment of formation of the
system then (as discussed in Sec. II A) the simple
equations we are using do ndt apply for {<0 any-
way. But if /=0 is the moment the system is
first observed, then there is an apparent problem.
But this same -problem is present in the statistical
version of the second law of thermodynamics and
it has the same resolution. If a certain isolated
thermodynamic system is observed at £{=0 to have
low entropy, then the prediction is that it will
probably have higher entropy for >0, and—be-
cause the ensemble of initial conditions is time-
symmetric!’—that the entropy was also higher for
t<0. We know that for most systems this retro-
diction is likely to be wrong. Even if we have no
knowledge of the history of the given system, we
would conclude that its entropy was probably even
lower in the past than now. The reason is that
we have much experience with other systems and
know that most systems had lower entropy in the

past. (The origin of this global entropy famine
must be traceable to the expansion of the universe,
but this is irrelevant to the present discussion.)
The initial conditions used to derive the second
law do not take this other knowledge into account;
to do so would require putting in correlations
among the velocities and positions of particles so
as to decrease the entropy at earlier times.!®
Given that these correlations have been omitted
from the initial ensemble, why do we believe the
future prediction of the calculation? The answer
is that we do not expect these correlations to mat-
ter. If in some circumstance they should matter,
then the second law would not apply.

The analogy with the statistical radiation-reac-
tion formula is very close. In order to get the
correct behavior for t<0—by “correct” we mean
the evolution by retarded potentials that we expect
of our system by analogy with all other observed
systems—we would need to include correlations
in our initial data. These would put just the right
amount of outgoing radiation onto the initial hyper-
surface. But we can omit this radiation and still
believe the future prediction, since the radiation
leaves the system. Our only reservation is when
there is backscatter of radiation, and even here it -
would be very surprising if the backscattered
radiation was sufficiently well correlated with the
system’s future motion to make much difference.

The time symmetry of the problem has one dis-
tinct advantage: there are no runaway solutions.
The reaction force derived in Sec. IV C would,
if used from ¢=0 onward, require initial data not
just for T, but also for several time derivatives
of T,,. These extra, physically unnecessary data
would allow some runaway solutions, just as in
electromagnetism.!® But recall that the reaction
force in Sec. IV does not apply from ¢=0. It is
valid only after one light-crossing time. As ¢
goes to zero, the retarded solution and conse-
quently the reaction terms also go to zero, be-
cause of the cutoff of the retarded integral at £=0,
This is an inevitable consequence of the time-sym-
metric radiation data. At ¢{=0, then, there is no
radiation reaction amd no need for initial data for
the higher time derivatives of 7,,. It follows that
there will be no runaway solutions to the radia-
tion-reaction problem when formulated in the
present way.
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