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AbslracL The phase-integral method has proved lo be a powerful tool for studying the 
quasinonnal modes of black holes. A generalization of the WKB methods of quantum 
mechanics, its treatment of the complex coordinate plane brings a number of important 
simplifications and potentially powerful computational aids to bear on the problem of 
computing eigenfrequencies wilh large imaginary parts. It holds great promise of furlher 
applications to relaled problems, such as the quasinormal modes of relalivistic stars. 
Howwer, in some respects the method is incomplete, particularly in its assessment of 
m o r  bounds. This paper makes available to researchers in the field of relativity a 
simple and selfcontained introduction to the fundamental concepts of the phase-inlegral 
method, in which we also point oul areas that seem lo need further development. As 
an example of the use of lhe method, we derive the two-transition-point phase-inlegral 
formula for quasinormal modes of lhe Schwamhild black hole, which is an accurate 
asymptotic approximalion for the first modes. The present paper provides lhe foundation 
for related papers in which we use the method to develop accurate asymptotic expressions 
for highly damped modes. 

PACS numben: 0270, 0420, 0430, 9760L 

1. Introduction 

1.1. Background 

The quasinonnal modes of a radiating system in general relativity are solutions of 
the perturbation equations that satisfy the ‘causal’ boundary condition that the waves 
be outgoing at infinity. In addition, if the system is a black hole, one requires as 
well the causal condition that the waves be ingoing at the horizon. These conditions 
generally lead to a set of discrete complex eigenfrequencies {uj}, whose imaginary 
parts usually have the appropriate sign to provide the damping expected for such 
boundary conditions. However, it is of course possible that a particular mode could 
represent an instability, and then the eigenfrequency’s imaginary part will have the 
other sign. Rather unexpectedly, it has been found that these boundary conditions 
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lead to sequences of eigenfrequencies with ever-increasing imaginary parts, i.e. which 
damp faster and faster. This was discovered for black holes by Leaver [I]. For stars 
it was predicted and verified by Kokkofas and Schutz [2,3] and also by Kojima [4]. 
In general, we know rather little about the properties of the quasinormal modes of 
most systems; only the Schwarzschild case has been studied in much detail. 

For a review of the fundamental theory of black hole perturbations, including 
references to early work, see [SI. The quasinormal modes may be an important 
source of gravitational waves emitted in any dynamical process involving a black 
hole. Investigations of slightly perturbed black holes show that the quasinormal-mode 
oscillations will dominate the emitted radiation at late times [6]. For non-spherical 
gravitational collapse there are situations where the bulk of the radiation is emitted 
via the quasinormal modes [7,8]. With the new generation of gravitational-wave 
detectors that is being developed [9, lo], it is conceivable that this radiation will be 
detected. Because the quasinormal-mode frequencies are characteristic of the black 
hole and depend only on its mass, charge and angular momentum, an identification of 
these frequencies in a detected gravitational-wave spectrum would in principle enable 
the positive identification of a black hole and the determination of all its parameters. 
Hence, there is a need for reliable theoretical predictions and an increased knowledge 
of these processes. 

We know much less about the quasinormal modes of stars. For a review of stellar 
quasinormal-mode theory before the discovery of the very strongly damped modes, 
but including a discussion of the rather surprising result that coupling to gravitational 
radiation can induce instabilities, see Friedman [ll]. The quasinormal modes of 
stars will be equally observable by gravitational-wave detectors, but computational 
complexities have so far prevented a thorough theoretical study of their properties, 
even for non-rotating stars. 

The basic difficulty of calculating quasinormal-mode frequencies that have 
significant imaginary parts is well known. The main point is that it is dimcult to 
resolve numerically the two independent solutions of the differential equation near 
infinity, because for a damped wave the outgoing-wave solution grows exponentially 
while the ingoing one dies exponentially. For a black hole, this problem also occurs 
at the event horizon. A number of methods have been applied to the study of 
Schwarzschild quasinormal modes to get around this problem. The original discovery 
of the very strongly damped modes by Leaver [ 11 resulted from his solving the 
recurrence relation for a series solution of the wave equation by transforming the 
relation into a continued fraction. This discovery in turn stimulated a number of 
alternative approaches to try to find more transparent methods of finding modes, and 
to check haver's numerical results. Among these is the elegant treatment of Nollert 
and Schmidt [12] in which the quasinormal mode frequencies are defined as poles of 
the Green function for the Laplace-transformed wave equation. 

Approximate analytic methods have also been applied to the problem; see for 
example Ferrari and Mashhoon [13] and references therein. The application of 
WKB-type methods in the complex coordinate plane was first suggested by Guinn 
er a[ [14], who obtained good agreement with Leaver for the first few modes but 
found significant differences when the damping increased. Slightly better agreement 
for highly damped modes was found by Faman er al I151 in the first application 
of the phase-integral method, which is a generalization of the WKB method. In a 
direct application of the formulae developed in this article the present authors [16] 
have obtained results in agreement with those of Leaver and Nollert and Schmidt. 
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Moreover, Nollert [17,18] applied asymptotic methods to the same recurrence 
relations used by haver, and found the asymptotic form of the eigenfrequencies for 
ve'y high index numbers (much larger than h a v e r  had examined). The full power of 
the phase-integral method has become apparent with Andersson and Lmnaeus' [I91 
verification of Nollert's asymptotic result [20]. 

The importance of the phase-integral method is its wide potential applicability. 
Methods that use recurrence relations may need relations of a particular form, and 
may not generalize to other systems of interest. The phase-integral method uses 
essentially only one feature of the problem: that there is an analytic wave equation 
which can be continued into the complex coordinate plane when the eigenfrequency 
is complex The method therefore offers results not only for black holes but for 
the treatment of the exterior solution to the wave equation for spherical and slowly- 
rotating stars. As an analytic method, it also offers the possibility of making the 
numerical results more intuitive. Moreover, as we note below, it provides a way 
around the numerical problems that occur near infinity: it shows one how to do the 
problem even by numerical integration, without running the risk of losing one of the 
independent solutions in the numerical noise [21]. 

1.2 Mathematical formulation 

For a Schwarzschild black hole, and for the exterior of a spherical star, the 
fundamental perturbation equations can be reduced to a single ordinary differential 
equation by separating out the dependence on time and angles. Assuming that 
the time dependence is exp[-i(u/M)t], and fixing the spherical-harmonic index e, 
we obtain a time-independent Schrodinger-like differential equation for a wave 
variable Q 

where Sf is related to the solution, QRw, to the Regge-Wheeler equation by 

U = -QRw. (2) 

From QRw all componens of the perturbed metric tensor can be reconstructed [5].  

hole, then R, takes the form 
If we scale the usual Schwarzschild coordinate P by the mass, M, of the black 

where the Regge-Wheeler potential & ( T )  [22] is given by 

Note that the function Rf is more complicated than the Regge-Wheeler potential 
because of the transformation of the dependent variable that has been applied to the 
usual Regge-Wheeler equation in order to put it into the standard Schrijdinger form 
with the Schwamchild coordinate P as the independent variable. (Relativists may be 
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more familiar with a different transformation in which r is changed to the ‘tortoise’ 
coordinate r,. We avoid that transformation here because it introduces logarithmic 
singularities.) Note also that R, contains the eigenfrequency, so when one iterates 
over a set of frequencies to find the right one, the function R, changes. Moreover, 
it may be worth pointing out that this means that the analysis described below will 
be equally applicable to problems where the potential V, is explicitly dependent on 
the frequency. This is the case for perturbations of Kerr black holes. 

One obtains the same complex frequencies from (4) as with the alternative 
potential derived by Zerilli [U], as is shown in [24] and [25]. In the present work we 
will only consider the potential given by (4) because it has a simpler functional form. 

It was shown by Regge and Wheeler [22] (see Chandrasekhar [SI) that the energy 
integral, together with the given boundary conditions, leads to damped quasinormal 
modes: there are no instabilities. Therefore, with our choice of time factor we must 
have Im m < 0. 

The purpose of this paper is to discuss the application of the phase-integral 
method to the quasinormal-mode problem. In the phase-integral method, developed 
in a book [26] and several papers by Frbman and Froman, a local solution to (1) 
is given by a symmetric phase-integral approximation. ’Ib the lowest order this 
approximation is equivalent to the first-order WB approximation. ’Bken to higher 
orders [27,28] the phase-integral approximation has, in general, the same formal 
accuracy as the WKB approximation of higher orders. It is easier to establish error 
bounds in the phase-integral method, although we shall see that these bounds still 
leave something to be desired. Moreover, the Wronskian of any two exact linearly 
independent solutions to (1) must be constant. This property is preserved in the 
phase-integral approximation, but not for the higher-order WKEI solutions. This 
constancy of the Wronskian at any order of approximation allows for a systematic 
use of higher orders in continuing an approximate solution in the complex coordinate 
plane. However, the notation used has changed through the years, thus obscuring the 
reading of many of the original papers. Therefore, we will review the phase-integral 
method in this paper. All the formulae and ideas relevant to a phase-integral analysis 
of the quasinonnal-mode problem will be discussed. 

For a discussion of the much wider context in which the method finds applications, 
and for further references, we suggest a recent article 1291. The use of F-matrices 
(see below) to solve connection problems is extensively discussed in [30]. Naturally 
there are alternatives to the method devised by Froman and Froman. A nice review of 
semiclassical methods was written by Berry and Mount [31]. An extensive description 
of the history of phaseintegral methods can be found in Heading’s book [32]. 
Although these references are 20 and 30 years old, respectively, they are still worth 
reading. For a comprehensive textbook description of the WKB approximation we 
refer the reader to 133,341. 

2. The phase-integral method 

2.1. Fundamental concepts 
In the phase-integral method the approximate solution to (1) is continued into the 
complex y-coordinate plane. Consequently all functions of r considered hereafter are 
complex-valued analytic functions. 
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The most general transformation of the dependent and independent variables 
that preselves the reduced form of (1) is given in terms of an arbitraly function q, a 
redefined wave variable 4, and a new independent variable w. We define [26] 

U(?) = q - ' I z ( F ) + ( r )  (5) 

and 

4.1 = q(€)  d€ ' (6) 

Equation (1) transforms to the convenient form 

where 

should be thought of as a functional €141. We note in passing that, by using an exact 
relation obtained by Dammert [35], 

where m is an arbitrary real number (+ 0), one can write the definition of e in 
various different and useful ways. 

Let us now assume that the function q(r)  is somehow chosen to be an exact 
solution to (8) with E = 0 in some region of the complex r-plane. Then the two 
functions 

(10) +iw(v)  4 d r )  = e  

are linearly independent exact solutions to (7). The general solution to (1) is then 
given by the linear combination 

Q(r )  = a1 t =Z f d r )  (11) 

f l ( r )  = q-* / z ( r )  e'"(') f2(r) = 9-1/2( r)e-Wr) . (12) 

where 

Of course, if the function R,(r) has a complicated functional form it is generalty 
not possible to find an exact solution to e = 0. However, it may be possible to find 
an approximation to q(r) in such a way that I E ~  is small compared to unity. Then 
(12) still gives approximate solutions to the differential equation (1). This will be our 
approach below. 

The usual WKB approximation is obtained by setting q2 x R,. Provided that the 
second term on the right-hand side of (8) is sufficiently small, this approximation is 
accurate. This requirement corresponds, roughly speaking, to saying that R,(r) is a 
slowly varying function of the complex coordinate r-see for example [33]. 
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2 2. The phase-integral approximation 

As pointed out by Froman and Froman (see [29] for references) it is possible to get 
close to an exact solution of c = 0 by refining the function q( r)  from a first guess 
Q ( r )  through a series of approximations. In the ( 2 N  + 1)th order of approximation 
the function q( r )  is given by 

N 

d r )  FJ Q(r)  Y Z ,  
n=U 

with Yo = 1. If we let E,, = e [Q] ,  then the first Y2, are 

where C is detined by 

5 = j V Q ( t ) d < .  (15) 

If the value of E,, is small (compared to unity) in the region of the coordinate plane 
under consideration, the approximation (13) is locally very accurate. The expressions 
for Yz, are obtained by demanding that c [ q ]  must attain a minimum value at each 
order of approximation. Alternatively, YZn can be obtained from the well known WKB 
recurrence relations [27]. It is customary to describe the higher-order phase-integral 
approximations in terms of odd orders to retain the correspondence with the WKB 
approximation. 

We can always choose constants in such a way that the linear combination (11) 
coincides with a desired exact solution to (1) at a certain point T,,. An important 
question is how far the approximation can be extended away from this point without 
becoming inaccurate. A measure of the accumulated error made in continuing a 
phase-integral solution from the point T,, to T along a path h is given by [26] 

This clearly is a measure of how small E is in the domain of the approxima- 
tion. One expects ~ ( T , T , , )  to be small if A runs well away from all zeros and 
poles of QZ(r) ,  and R(T) is slowly varying in the sense described above. How- 
ever, our own calculations suggest that this measure generally overestimates the size 
of the errors, and we feel that more sensitive error bounds need to be found. 



Phase-integral method and black hole normal modes 741 

23. lieatment of the solution in the complex plane 

2.3.1. Continuation formulae. An exact solution of (7) may be represented by 

where al and a2 are expected to be slowly varying if E is small. We wish to transform 
the second-order ordinary differential equation (7) into a coupled system of first-order 
ordinary differential equations for the coefficients a , .  We need to impose a further 
restriction on the a;  in order to make them well defined, and we choose the standard 
constraint 

4 =  ~ ~ ( w ) e ' ~ +  a,(w)e-'" (17) 

(18) 
64 - = ia,( w)eIw - ia2( w)e-Iw dw 

which is what the derivative of (17) would be if the a ,  were constant. Substituting 
into (7) gives 

1. 
dw - 2 dw 2 
This system of differential equations can be rewritten as 1261 

(19) ic[al + a2exp(-2iw)l - da1 - - 3 = --Ic[a,+ a ,exp(~iw)l.  1 

. .  

In the region where the two terms in (17) are of the same order of magnitude (i.e. 
leiW[ = 0(1)), it follows from (20) that both a l  and a2 are approximately constant. 
On the other hand, in a region where one of the terms in (17) is much Iarger 
than the other, the coefficient of the dominant term remains approximately constant 
whereas~the coefficient of the subdominant term can change substantially. Therefore, 
in general, different linear combinations of fl and f2 have to be used to approximate 
the solution T to (1) in different regions of the complex plane. 

There exist some guides as to where it is possible to continue a solution without 
its character changing radically. It helps to write the solution of the system (19) 
formally as 

where w,, G w(r,,), and F is a two-by-two matrix. From (19) it follows that 

This requirement makes the inversion of (21) trivial. Moreover, the elements of the 
matrix F (sometimes refered to as Stokes constants) were obtained as convergent 
series by Froman and Froman [26]. They obtained estimates of those series based 
on the assumptions that v and ru (w and wu) can he connected by a path A in the 
complex r-plane (w-plane) along which leiw(P)I increases monotonically from v,, to ?- 

and p(r,?-,,) is small. These estimates can be written 

~Fl l (r , r , , )  - 11 < [eP - 11 

q ( w )  = F;j(w,w,)aj(wo) (21) 

det F( P, T,,) = 1. (22) 

l ~ ~ ~ ( v , r ~ ) /  < [e' - 11 le-Zitu(ro)l 

 IF^^(^, ro)l < f [e* - 11 leaw(r)I (23) 

IFdr, 7") - 11 6 +P t [e" - 1 - P I  le 2ilw(r)-4ro)l l  . 
In effect, F-matrices allow one to continue a given solution to (1) in the complex 

coordinate plane. In the following section we present and discuss some of the 
F-matrices that connect points in a region of the complex plane where only one 
transition point is present. 
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2.3.2. Damition points: Stoks and anti-Stakes lines. Central to our treatment of the 
differential equation (1) in the complex coordinate plane is the identification of the 
transition points and the so-called Stokes and anti-Stokes linest. 

The transition points are zeros of the function Q2( r). In a standard WKB analysis 
(where Q2 = Rt),  these points are usually called the 'tuming points' of the classical 
solution (especially when they are situated on the real coordinate axis). At a transition 
point, the phase-integral approximation (13) break down. In fact, in the first-order 
approximation q( T )  vanishes at the transition point and thus the transformation (5) 
becomes singular. Hence, the form (12) is not a good representation of the exact 
solution locally. Furthermore, since the error function e[Q]  has a pole at such a 
point, the higher-order expressions for q(r) will be singular (and the expansion (13) 
clearly divergent). Therefore the phase-integral approximation must not be used in 
the vicinity of such points. 

It is important to understand that transition points are usually simple first-order 
zeros of the function Q2(r) ,  i.e. that the function Q(r)  has a branch cut emanating 
from the transition point. This is well known in the WKB approximation, where 
Q2 = R, is a simple analytic function. It then follows that in a small neighbourhood 
of such a transition point the function R,(r) can be approximated by ql(r - rO) for 
a complex constant q1 and (1) is approximately the Airy differential equation. The 
equation Im[q,(r - r u ) ] ' / 2 d ( r  - ra) = 0 defines curves emanating from a transition 
point T". Solutions to this have a three-fold rotational symmetry about rO: if one 
solution has the form T(  A )  = r0 + CA for some complex constant c and a real 
parameter A, then there will also be solutions for ce2'i/3 and ce-2ni/3. Therefore 
Ihree such lines emanate, painvie separated by an angle of 2n/3 from the transition 
point; see figure 1. On these lies, which are called the anti-Stokes lines, the two 
approximate solutions (12) to our differential equation are of the same order of 
magnitude. The anti-Stokes lines separate different regions of exponential dominancy, 
i.e. they are boundaries of regions in the complex coordinate plane where one of our 
approximate solutions (12) is dominant and the other subdominant. Likewise, three 
so-called Stokes lines, defined by Re[q,(r - ~ ~ ) ] ' / ~ d (  P - rU) = 0, emanate from each 
transition point. On these lines leiW] attains either a maximum or a minimum. 

Figure 1. (U) Pattcm of Stokes (broken) and anti-Stokes (full) lines in the region close 
to a single well separated zero of Q*(r).  Cuts are represented by the zigzagged lines. 
The labels min on the Stokes separatrices denote maxima and minima of 
the function Iexp(iw)l respectively. (b )  Contour of integration used to cvaluale w on 
the Riemann suliace. It is immalerial whether we circumvent the transition point in the 
positive or negative sense. 

may and 

t A derailed description of the calculation of Stokes and anti-Stokes lines has been given by ~raGj0 et 
ai PSI. 
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In the phase-integral method the transition points do not in general coincide 
with the zeros of R,. In the phase-integral context Stokes (resp. anti-Stokes) lines 
are defined as cuwes along which dw, or equivalently Qdr, is pure& imaginary (resp. 
real). In other words, Stokes (resp. anti-Stokes) lines are the integral curves of the 
autonomous system of differential equations Re( Q dr)  = 0 (resp. Im( Q d r )  = 0). 
The zeros of QZ(r)  (the transition points) are the fixed points of the system. At 
almost all points of the complex plane, one can find a unique Stokes and anti- 
Stokes line passing through that point, since the autonomous system of equations 
defining them needs only the starting point as initial data. Since a transition point 
has only discrete Stokes and anti-Stokes lines emerging from it, most such lines in 
the neighbourhood of the point avoid it. 

Although the zeros of Q2(r) and of R,(r )  generally do not coincide, in most 
cases one would expect them to be ‘close’. That is, the distance between the zeros 
is such that they both lie inside the region where the phase-integral approximation 
deteriorates. In this case, there is an annulus surrounding both zeros within which 
solutions of the phase-integral equations resemble Airy functions. 

Strictly speaking, the terms Stokes and anti-Stokes lines should be used to refer 
only to curves emanating from a transition point. In order to make a distinction, 
we will refer to the six lines emanating from a transition point as Stokes and anti- 
Stokes separafrices. A comparison with the theory of autonomous systems makes 
this nomenclature sensible. Furthermore, as mentioned above, the anti-Stokes lines 
emanating from a transition point separate different regions where one of the 
solutions (12) is exponentially dominant and subdominant, respectively. 

The importance of these lines is that the solutions (10) behave as travelling waves 
along anti-Stokes lines. From the system (20) it is clear that the character of the 
solution does not alter qualitatively along an anti-Stokes line, provided of course that 
e remains small. In fact, the changes in the qualitative behaviour of the solution that, 
as we noted above, can take place in the complex plane, actually take place as one 
moves across a Stokes separatrix [31]. 

In the section on the Schwarzschild problem, we will show that by placing the 
boundary conditions determining a quasinormal mode on anti-Stokes separatrices 
one obtains the correct boundary conditions at infinity and the horizon. The 
anti-Stokes separatrices therefore hold the key IO avoiding the numerical problems of 
damped travelling-wave solutions near infinity: they allow one to pick out, analytically or 
numerical&, the desired solution. 

In the fist-order phase-integral approximation it is customary to choose the 
constant lower limit of integration in (6) to be a zero of Qz(r). However, this 
is not the case when one uses higher-order phase-integral approximations because 
the integral is divergent at these points. In this case one replaces the definition of 
w ( r )  by 

where r(r)  is a path of integration that starts at a point corresponding to r on the 
adjacent Riemann sheet, encircles the chosen zero t, of Q2(r), and ends up at T.  

In higher orders of approximation the function q(r)  has several zeros in the vicinity 
of a zero of Q2(r). These ‘additional’ zeros, which are not branch points of Q(r), 
must be encircled in the integration defining W( r) [37]. 
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2.3.3. F-matrices for a well separaled transition point. As we have noted above, 
the phase-integral functions fi and fi are singular at transition points and the 
approximation breaks down. In the phase-integral method we must therefore avoid 
these points. Consequently, the solution to (1) is found by continuation on a path 
circumventing each transition point at a safe distance. This is done by following anti- 
Stokes separatrices toward and away from transition points and then jumping from 
one separatrix to another in the neighbourhood of a transition point, being careful to 
control the errors in so doing. It is instructive to look at exactly what happens along 
this path. 

When we move on a path from one anti-Stokes separatrix to another, we cross 
a Stokes separatlix emanating from the same transition point, and the quantity leiV'l 
reaches an extremum there (see figure 1). When continuing the linear combination 
(11) across'one of these Stokes separatrices the coefficient of the solution that is 
subdominant on that Stokes separatrix changes and the coefficient of the dominant 
solution remains roughly constant. This is the so-called Stokes phenomenon. In a 
series of recent papers, Berry [38,39,40] has shown that this change enters smoothly. 
The change in the coefficient of the subdominant solution can qualitatively be 
compared to the error function. It grows rapidly in the vicinity of the Stokes separatrix 
and very slowly far away from it. The result is that, when we reach the second anti- 
Stokes separatrix, we have a different linear combination of the two solutions fl 
and f2. Changes in the coefficients ai of this kind are necessary if we are to satisfy 
boundary conditions in both directions far from the transition point. 

For our purposes, all we need is to find out how to continue a given linear 
combination from one anti-Stokes separatrix to another. The F-matrices do this 
for us. Below we give some F-matrix estimates that are useful in a phase-integral 
treatment of the quasinormal-mode problem. The situations analysed here are all 
illustrated in figure 1. 

Let a collection of points { z i ,  zi,} lie sufficiently near a transition point that 
other transition points elsewhere in the complex plane do not affect the analysis. (If 
this condition cannot be satisfied, then one must perform an analysis for a so-called 
cluster of transition points.) Then there are a number of possible cases of interest, 

The points zu and z1 lie on the same anti-Stokes line well away from a transition 
point. Then a h e a r  combination of the two solutions is preserved to lowest order: 

The points z1 and z2 lie on adjacent anti-Stokes separatrices emanating from a 
well isolated transition point. The curve joining them does not cross the cut emanating 
from the transition point, and where it crosses the Stokes separatrix emerging from 
the same point, the quantity leiwl has a maximum. Then the linear combination 
changes as follows: 

The points z3 and z2 lie on adjacent anti-Stokes separatrices emanating from a 
well isolated transition point. The curve joining them does not cross the cut emanating 
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from the transition point, and where it crosses the Stokes separatrix emerging from 
the same point, the quantity leiwI has a minimum. Then we have 

The formulae (26) and (27) are only valid when we have defined w such that 
w = 0 at the transition point. 

Note that the two formulae can be remembered in a very simple way: from the 
knowledge that the coefficient of the solution that is subdominant on the Stokes 
separatrix will change, one can figure out which of the nondiagonal matrix elements 
is non-zero. Furthermore, this element is approximately *i, with the sign depending 
on the direction (positive/negative) in which the transition point is circumvented. 

The point z, lies on an antiStokes separatrix and zl, lies on a neighbouring 
anti-Stokes line that does not reach the transition point. The point zl, is chosen in 
such a way that there is a Stokes line joining the two points. Suppose the quantity 
leizul increases monotonically as we move from z1 to zl,. Then we obtain from the 
basic estimates (23) 

where we have defined 

and we have again set w = 0 at the transition point. When the points z, and I,, are 
very close to each other Imy,,, is necessarily small, and F(z l , ,  zl) is, to order p, 
a unit matrix. This important result means that we can 'jump' from one anti-Stokes 
line to a neighbouring one where convenient It also will allow us in the next section 
to move the boundary condition at infinity from the real coordinate axis, where it is 
troublesome, to a suitable anti-Stokes line (separatrix), where it is well behaved. 

It is now straightforward to show that the F-matrices connecting points lying on 
antistokes lines that pass close to a well-isolated transition point are also given, to 
order p, by the expressions (26) or (27), as appropriate. For example, if the points 
{ z e }  lie on such lines, we find the following results. 

From (21) we obtain that the F-matrix connecting zl, and z2, across a Stokes 
separatrix on which leizu[ has a maximum is given by jumping from the first line 
to a nearby anti-Stokes separatrix that does go through the transition point, then 
connecting to the adjacent such line across the Stokes separatrix, and then jumping 
again to the desired anti-Stokes line. Algebraically, this means 

J ' ( ~ z 1 ,  zit) = F(z28,~2)  F ( ~ 2 , z i )  F(  z i 7 ~ 1 ~  . (30) 
From (28) (and its inverse) we have that both F ( z 2 , , z 2 )  and F(q, q,) are 

identity matrices to order p. Therefore, we find that 
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Analogously, we can show that the F-matrix connecting z3, and z2,, across a 
Stokes separatrix on which \e"\ has a minimum is given by 

It should be noted that in a situation where several transition point?, are close 
to each other the element$ of the F-matrices are not independent of the order of 
approximation used. General formulae relevant for studying clusters of transition 
points are discussed by Friiman et a1 in 1301. However, although their formulae 
may be used in some situations (see for example [15]) they cannot be used to 
determine explicit expressions for the F-matrix element?,. Such expressions can be 
obtained by using uniform approximations (that are unifoM& valid in all regions of 
the coordinate-plane) [31]. In order to do this a comparison with an exactly soluble 
equation is made. The exact solution is then locally mapped onto the problem under 
consideration. Basically only three such exact solutions are known: the Airy functions 
(one transition point), the parabolic cylinder (Weber) functions (two transition points) 
and the Coulomb wavefunctions (two transition points and a second-order pole). 
These last two cases were used by Andersson and Linnzus in an analysis of the 
black-hole problem [19]. However, Arafijo et af [36] have shown that the case of an 
isolated cluster of two transition points can be treated using formulae very similar to 
the ones described in this paper. 

From the discussion in this section, it should now be clear that, as with most 
asymptotic approximation methods, its application is as much an art as a science. 
The choice of Q is delicate, and a suitable function is not guaranteed. One has 
to ensure that the errors, which rise steeply near the transition points, are small 
elsewhere; in particular, one wants a region near a transition point where one can 
jump from one anti-Stokes separatrix to another without significant error. In our view, 
the study of errors in the phase-integral method is not yet suliiciently well developed, 
and we will come back to this point below. 

3. Phase-integra1 analysis of the black-hole problem 

In order to treat the full black-hole problem, we must add to the transition-point 
analysis a treatment of the boundary conditions both far from the hole and at the 
horizon. We consider the horizon first. 

3.1. Treatment of singulanfy at the horizon. 

In the case of a Schwarzschild black hole, the function &(r) ,  as given by (3) and (4), 
is singular both at the origin and at the event horizon. The latter singularity is cause 
for concern since it is at the horizon that one should place a boundary condition. 
From (3) and (4) we have that 

If we define the constant a by 

a(a + 1) 3 - [ 4 d  + $1 (34) 
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then the elementaly theory of differential equations shows that near the horizon (a 
secondader pole of R,) 

The WKB approximation, on the other hand, using q = R:", generates approximate 
solutions with the behaviour 

f,yB(.) N (. - 2 ) ( ' / 2 ) r m  (36) 

as T --t 2. This is unsatisfactory, and tells us that we should look for a better first 
guess for Q than R;/'. It does not take long to see that if one chooses [U] 

then one has 

and 

lim ( r -2) 'Q2(r)  =4m2 
r-2 (39) 

which leads to the same behaviour near the horizon as the exact solution- 
equation (35). With this choice of Q2, there are four transition points. For the 
slowest damped modes, they remain well separated, and the analysis of the previous 
section applies to each of them. 

Interestingly, there is another way to justify this function Q2: if we were to 
take Q2 = R,, then we would find that E" remains finite at the horizon. For the 
choice (37), the error term eu goes to zero there. Hence, the two solutions (12) tend 
to exactness as the horizon is approached. 

3.2. Global structure and asymptotic behaviour of solutions 

Because we need the function Q(r) ,  not Q2(r) ,  we must introduce cuts in the 
complex plane at every transition point. The necessary cuts can always be placed in 
a way such that they need not be crossed in the continuation of our approximate 
solutions to (1). There is, of course, no unique way of cutting the complex plane, 
but our analysis would become very abstract and difficult to follow if we were to 
proceed without defining where cuts lie at this point. Nevertheless, there is no loss 
of generality in the following presentation. 

From now on we assume that the necessary cuts are introduced as in figure 2. We 
choose the overall phase of Q such that 

lim Q ( T ) = u .  
P-m 
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0 1 2 3 k 5 6 

Figure 2. Pattern of Stokes (broken) and antillokes (full) separatrices emanating from 
rhe lransilion points for the fundamental quasinormal mode (0 = 0.3737 - 0.088%). 
Cuts are represented by the zigzagged lines. The labels max and min on the Slokes 
separatrices denote maxima and minima of the function Iexp(iw)l respeclively. Three 
of the four transition points lie in the region of the plot. The ones we use for the 
analysis are labelled t t  and tz. The third, unlabelled. is near r = 1. The cut from t i  
terminales on the unseen founh transition point, so that Q is single-valued at infinity. 

(Note that this is well defined, since the cuts are taken to leave Q single-valued 
at infinity.) Having chosen the phase of Q in this way, the disposition of the cuts 
determines the phase at all other points. The cuts introduced in figure 2 lead to 

l im(v-  2)Q(r )  = 2a. 
-2  

Note that this does not correspond to the situation investigated by AraLijO et a1 
[36] or Froman et a1 [U], since they introduced the cuts in a different way. In two 
recent investigations by Andersson and Linnaeus [19] and by the present authors [16] 
the cuts are introduced in the way described above. 

From (40) and (41) and our choice of time factor, we can identify fI(v),  as 
defined in (12), with the desired outgoing-wave solution as T -+ M, and f i ( r )  with 
the waves falling across the horizon as T -t +2. It follows that a quasinomal-mode 
solution q is defined by the asymptotic behaviour 

where a2 
we stress that the solutions are single-valued at infinity. 

3.3. Boundaiy conditions on anti-Stokes separafrices 

The introduction of these boundary conditions on the real coordinate axis leads to 
well known numerical difficulties 125,141. Given our choice of time factor, the desired 
solutions (42) and (43) increase exponentially as we approach the event horizon and 

4 2 )  and al al(m) are undetermined normalization factors. Again, 
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infinity along the real axis, and the solutions that do not fit the boundary condition 
decrease exponentially. In order to determine the frequency of a quasinormal mode, 
we have to find the exponentially decreasing term to decide whether, for any given 
frequency, it is or is not present. Given the finite accuracy of any numerical scheme, 
this is a delicate problem, since at some critical value vC of the coordinate, the 
decreasing term will become smaller than the error in the increasing one. 

TO avoid this difficulty, we note that the asymptotic conditions (42) and (43) 
can be applied on any line approaching the horizon and infinity, respectively. In 
particular, the boundary conditions can be introduced on anti-Stokes separatrices 
(see [36,15,21]), where the two solutions (12) are essentially of the same order of 
magnitude, and the undesired solution can easily be singled out. In this paper we will 
implement this idea analytically, to get approximations to the quasinormal modes. 
But we note that the same thing can be done numerically, albeit at the cost of finding 
the appropriate anti-Stokes lines numerically. This would be a powerful way to find 
numerical values for the quasinormal mode frequencies with an accuracy limited only 
by machine arithmetic precision [21]. In cases where the full analytic treatment of the 
present paper is not available, such as for modes of stars whose structure is known 
only from numerical integrations and therefore cannot be extended into the complex 
plane, the troublesome boundary condition at infinity can still be handled this way. 
We intend to treat this case in a future paper. 

We would like to introduce the 
condition (43) on the anti-Stokes separatrix emanating from the transition point t l  
and running towards infinity (see figure 2). Let us consider a point situated on this 
anti-Stokes separatrix and a point on the real axis. It has been shown by Aracljo et 
a1 [36] that there exist paths such that the p-integral between these points tends to 
zero as the points tend to infinity. This p-integral provides an error bound, and the 
solution (43) is exponentially increasing if continued from the anti-Stokes separatrix 
to the real axis. Hence, it follows from the basic estimates (23) that the F-matrix 
connecting these points is exactly the identity matrix. The boundary condition, as 
imposed on the anti-Stokes separatrix, therefore implements the correct condition on 
the real axis. Alternatively it can be argued that, since E -+ 0 as we approach infinity, 
the single-valuedness of Q (and therefore w )  means that we can use the asymptotic 
form exp(iw) anywhere near infinity. Hence, once the desired sign of the exponent 
has been identifed we can automatically use it on the anti-Stokes separatrix running 
in the same direction. 

We will also introduce the condition (42) on the anti-Stokes separatrix extending 
from the transition point t, towards the horizon (see figure 2). In the appendix we 
demonstrate that our choice of QZ( T )  and the boundary condition for quasinormal 
modes at the horizon allow us to write 

We consider first the condition at infinity. 

U l ( T )  = F1,(7-,+2)a2(+2) U 2 ( T )  = F 2 2 ( T , + 2 )  a2 (+2) .  (44) 
These equations have the same significance for the boundary condition at the 

horizon as we have just found for the one at infinity. One can apply this boundary 
condition on an anti-Stokes separatrix and follow that curve out to a transition point. 
This can be done either analytically (as we do below) or fully numerically. 

3.4. Example: a simpIe derivation of the Bohr-SommerJeM formula 
As an example of the application of the phase-integral method to the determination 
of the characteristic frequencies of quasinormal modes, we derive a formula for 
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the Schwarzschild case. The formula is valid under the simplifying assumption that 
only two well separated transition points are relevant for our analysis. This will be 
applicable to the first few modes in the infinite sequence, and corresponds to the 
situation depicted in figure 2 

As mentioned in the previous section the boundary condition of outgoing waves 
at infinity is imposed on the anti-Stokes separatrix that emerges from the transition 
point t ,  towards infinity. The F-matrix connecting two different points on this anti- 
Stokes line, both lying far away from t,, is approximately a unit matrix. Hence, 
using (21), the solution (43) can be extended from infinity to the point p1 (situated 
sufficiently far away from the transition point for the integral &, m) to be small), 
and we obtain 

*(P1) = Ql(m)f , (P l ) .  (45) 

In order to continue this solution to the point p,, the transition point 1, must be 
ciscumvented at a safe distance, that is, one must choose a path connecting p ,  to p ,  
such that g ( p , ,  pl) is small. In doing this, a single maximum of 1e'"I will be crossed. 
It follows from a comparison with figure 1 that the F-matrix relating the solution at 
these two points is given by (26). Therefore, from (45) and (21) we find that 

*(PA = QdW)  tfl(PZ) - iMP2)I . (46) 

So far the transition point t 1  has been used as phase-reference level for the functions 
f i ,  i.e. it is the lower limit of the integral in (6) in the first-order approximation or 
the encircled point in the calculation of (24) in higher orders of approximation. We 
could carry on doing so, but it will simplify the matching of solutions to be made 
later, if we use t ,  as reference level. That means we work with a different definition 
f,,z of the fundamental solutions, differing by a constant phase: 

jl = einkfl j ,  = e+n f 2  (47) 

where, in the first order of approximation, 

t ,  
721 = iz q d v .  (48) 

In higher orders of approximation this definition must be replaced by the contour 
integral, cf (24), 

where the contour FZl is to encircle the two transition points t l  and t,. Now (46) 
takes the form 

We now consider the boundary condition of purely ingoing waves falling across 
the event horizon (42) that is imposed on the anti-Stokes separatrix that emanates 
from t, towards the horizon. Since the F-matrix connecting two points on the same 
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anti-Stokes line is asymptotically a unit matrix, we immediately obtain from (44) 
(provided that .u(p3, t 2 )  is small) that the solution at point p, is 

Q ( P 3 )  = 4 2 ) f 2 2 ( P 3 ) .  (51) 

We want to continue this solution to the point p2, near p,. We must then 
circumvent the transition point t2 along a path such that p ( p 2 , ,  p3) is small. In doing 
this, a single minimum of leiWl is crossed. Hence, the F-matrix connecting p2, with 
p, k given by (27), cf figure 1. We obtain 

Finally, we want to continue the solution to p,. We take a Stokes line as the path 
connecting pz, to p,. Using the basic estimates (23) we find that 

We have used the fact that Imy,,, = Imy,,. Provided that Iexp(iyzl)l - 1 we can 
approximate F(p,,  pz , )  by the identity matrix (to order p )  and obtain 

The two expressions (SO) and (54) must be identical within the approximation. Hence, 
we must have 

a,(W)exp(--i-td = -ia2(2) - ia,(ca)exp(iy,,) = 4 2 ) .  (55) 

Dividing these two equations yields the phase-integral condition determining a 
quasinormal-mode solution 

exp(2ir2,) = -1. (56) 

r21=(n+;)7rF. (57) 

"king the logarithm of this expression we obtain the BohrSommeifekfformula 

It follows from our choice of phase for Q that Re r2, must always be positive, and n 
is therefore a non-negative integer labelling the modes. 

In the analysis leading to (57) we assumed that the two transition points 
considered, t ,  and t2, were well separated from each other as well as from all 
other transition points. This is, in fact, not a necessary requirement for the validity 
of the formula. Alternative analyses by Arafijo et a1 [36] and Froman er al [U], yield 
that the formula remains valid even if the two transition points considered lie close 
together. Nevertheless, all other transition points must be remote. 

Numerical calculations using the WKB BohrSommerfeld formula (which is (57) 
with q in the integrand (48) for r2, replaced by R:") were performed by Guinn et 
a1 [14] and with the present BohrSommerfeld formula by Frijman er a1 [U]. The 
formula is also discussed in a further paper by the present authors [16]. It is very 



752 N Andersson et al 

accurate for quasinormal modes such that [Real > IImol, but not reliable when 
( I m a (  increases. Hence, for the Schwarzschild black hole it can be used to determine 
the lowest-lying modes. In a real astrophysical situation, it is probable that only 
the first few modes will be extracted from the gravitational waveform. The simple 
derivation above (or the more general analysis in [36] and [U]) leads to a condition 
that accurately determines those quasinormal-mode frequencies that are likely to be 
of the most physical interest 

Our assertions about the accuracy of the Bohr-Sommerfeld formula are based on 
comparing its results with the accurate numerical calculations of Leaver [l], which 
have been subsequently verified by others [21,12]. Interestingly, if we ask for the 
intrinsic error test, namely the values of p ,  they are rather large: in our experience 
it is in fact hard to find trajectories that make p very small.,Given the success of the 
phase-integral formulae, we have come to the conclusion that bounds obtained using 
/L overestimate in a serious way the actual errors in the calculation. 

It is not hard to see how this might happen. The quantity p in fact often arises 
as a bound on integrals of the type (cf (7) and (10)) 

e+* dw - €eiiw dw J J  
which are bounded by Jlcdwl, but which may in fact bc much smaller than this 
bound because of the cancellations inside the integration region produced by the 
oscillations of the exponential &. Better limits on the errors can probably be 
obtained by integrating such expressions by parts and looking at bounds on de/dw: 
if the function E is smooth, then the integrals above should be small even if c is not 
always very small itself. 

This is one area of this subject that needs further study a more accurate bound 
on the errors would be very helpful when the method is applied to problems for 
which calculations by other methods are not available. 
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Appendix 

The purpose of this appendix is to prove the two formulae 

al(T) = Flz(r,+2)a2(t2)  (AI) 

and 

az(r)  = Fz,(r,+2)az(+2) 

with mathematical rigour. Although (Zl), defining the F-matrix, together with the 
boundary condition of no outgoing waves at the event horizon make them seem 
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plausible it is necessary to be careful. Namely, the formulae represent limiting values 
that must exist and be finite if they are to make sense. 

We have already seen that our choice of Q2 (37) guarantees that the p-integral 
tends to a finite limit as P tends to 2 (and that c + 0). The phase-integral method 
then gives satisfactory results in the neighbourhood of T = 2 since our approximate 
solutions tend to exactness. 

Let ru be a point in the complex plane such that al(ru) and u2(v0) are finite, 
and A be a path connecting ro to the horizon, along which [exp[-iw(r)]l is 
monotonically increasing and the p-integral convergent It can be shown, in analogy 
with a demonstration given in [26], that under these circumstances the two formulae 

F,,(P,, +2) r - t 2  lim Fl,(r,, r )  exists and is finite 

F2,(r,,,+2) 3 v 3 t 2  lim FZ1(ru,r) exists and is finite 

(-43) 

and 

('44) 

are valid (with the limits calculated along A). These formulae form the basis of the 
analysis below. 

By letting T tend to +2 in the i = 2 component of (21) we immediately obtain 

4 + 2 )  = T'+Z a z ( r )  = F21(+2,P")U1(PU) + F22(+2,TO)UZ(7-"). (AS) 

From (M), (A4) and the inverse of the matrix F(r,,,f2), it follows that 
Fz1(+2,rO) and F2,(+2,r,) in (AS) exist and are finite, which in turn implies 
that 4 + 2 )  exists and is finite. 

Now, the i = 1 component of (21) gives 

U l ( V )  = ~ I l ( ~ ~ ~ U ) Q l ( ~ " )  + F12(7-7 ~ " ) ~ Z ( d .  (-46) 

Using (AS) to replace a2(ro) in this expression and taking the limit r i +2 we 
obtain 

The boundary condition of no waves coming out of the event horizon leads to the 
vanishing of this limit. Since F1,(ru,+2) is finite, this establishes the first of our 
results, equation (Al). 

Similarly, the i = 2 component of (21) is 

az(r )  = F z I ( ~ , ~ o ) ~ I ( ~ o )  + F z ( ~ , ~ ) a z ( ~ " p U )  . (-48) 

Replacing u2(ro)  according to (AS) and using the multiplication rule for F-matrices 
we obtain 

Using (AI) to replace ul(ro) the second result, (M) ,  follows after a little algebra. 
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