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Abstract. The phase-integral method has proved to be a powerful tool for studying the
quasinormal modes of black holes. A generalization of the WKB methods of quantum
mechanics, its treatment of the complex coordinate plane brings a number of important
simplifications and potentially powerful computational aids to bear on the problem of
computing eigenfrequencies with large imaginary parts. It holds great promise of further
applications to related problems, such as the quasinormal modes of relativistic stars.
However, in some respects the method is incomplete, particularly in its assessment of
ertor bounds. This paper makes available to researchers in the field of relativity a
simple and self-contained introduction to the fundamental concepts of the phase-integral
method, in which we also point out areas that seem o need further development. As
an example of the use of the method, we derive the two-transition-point phase-integral
formula for quasinormal modes of the Schwarzschild black hole, which is an accurate
asymptotic approximation for the fitst modes. The present paper provides the foundation
for related papers in which we use the method to develop accurate asymptotic expressions
for highly damped modes.

FACS numbers: 0270, 0420, 0430, 9760L

1. Introduction

1.1, Background

The quasinormal modes of a radiating system in general relativity are solutions of
the perturbation equations that satisfy the ‘causal’ boundary condition that the waves
be outgoing at infinity. In addition, if the system is a black hole, one requires as
well the causal condition that the waves be ingoing at the horizon. These conditions
generally lead to a set of discrete complex eigenfrequencies {o}, whose imaginary
parts usually have the appropriate sign to provide the damping expected for such
boundary conditions. However, it is of course possible that a particular mode could
represent an instability, and then the eigenfrequency’s imaginary part will have the
other sign. Rather unexpectedly, it has been found that these boundary conditions
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lead to sequences of eigenfrequencies with ever-increasing imaginary parts, i.e. which
damp faster and faster. This was discovered for black holes by Leaver [1}. For stars
it was predicted and verified by Kokkotas and Schutz {2,3] and also by Kojima [4].
In general, we know rather little about the properties of the quasinormal modes of
most systems; only the Schwarzschild case has been studied in much detail.

For a review of the fundamental theory of black hole perturbations, including
references to early work, see [5]. The quasinormal modes may be an important
source of gravitational waves emitted in any dynamical process involving a black
hole. Investigations of slightly perturbed black holes show that the quasinormal-mode
oscillations will dominate the emitted radiation at late times [6). For non-spherical
gravitational collapse there are situations where the bulk of the radiation is emitted
via the quasinormal modes [7,8]. With the new generation of gravitational-wave
detectors that is being developed [9,10], it is conceivable that this radiation will be
detected. Because the quasinormal-mode frequencies are characteristic of the black
hole and depend only on its mass, charge and angular momentum, an identification'of
these frequencies in a detected gravitational-wave spectrum would in principie enable
the positive identification of a black hole and the determination of all its parameters.
Hence, there is a need for reliable theoretical predictions and an increased knowledge
of these processes.

We know much less about the quasinormal modes of stars. For a review of stellar
quasinormal-mode theory before the discovery of the very strongly damped modes,
but including a discussion of the rather surprising result that coupling to gravitational
radiation can induce instabilities, see Friedman [11]. The quasinormal modes of
stars will be equally observable by gravitational-wave detectors, but computational
complexities have so far prevented a thorough theoretical study of their properties,
even for non-rotating stars.

The basic difficulty of calculating quasinormal-mode frequencies that have
significant imaginary parts is well known. The main point is that it is diflicult to
resolve numerically the two independent solutions of the differential equation near
infinity, because for a damped wave the outgoing-wave solution grows exponentially
while the ingoing one dies exponentially. For a black hole, this problem also occurs
at the event horizon. A number of methods have been applied to the study of
Schwarzschild quasinormal modes to get around this problem. The original discovery
of the very strongly damped modes by Leaver [1] resulted from his solving the
recurrence relation for a series solution of the wave equation by transforming the
relation into a continued fraction. This discovery in turn stimulated a number of
alternative approaches to try to find more transparent methods of finding modes, and
to check Leaver’s numerical results. Among these is the elegant treatment of Nollert
and Schmidt [12] in which the quasinormal mode frequencies are defined as poies of
the Green function for the Laplace-transformed wave equation.

Approximate analytic methods have aiso been applied to the problem; see for
example Ferrari and Mashhoon [13] and references therein. The application of
WKB-type methods in the complex coordinate plane was first suggested by Guinn
et al [14], who obtained good agreement with Leaver for the first few modes but
found significant differences when the damping increased. Slightly better agreement
for highly damped modes was found by Froman et af [15] in the first application
of the phase-integral method, which is a generalization of the WKB method. In a
direct application of the formulae developed in this article the present authors [16]
have obtained results in agreement with those of Leaver and Nollert and Schmidt.
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Moreover, Nollert {17,18) applied asymptotic methods to the same recurrence
relations used by Leaver, and found the asymptotic form of the cigenfrequencies for
very high index numbers (much larger than Leaver had examined). The full power of
the phase-integral method has become apparent with Andersson and Linnzeus’ [19]
verification of Nollert’s asymptotic result {20].

The importance of the phase-integral method is its wide potential applicability.
Methods that use recurrence relations may need relations of a particular form, and
may not generalize to other systems of interest. The phase-integral method uses
essentially only one feature of the problem: that there is an analytic wave equation
which can be continued into the complex coordinate plane when the eigenfrequency
is complex. The method therefore offers results not only for black holes but for
the treatment of the exterior solution to the wave equation for spherical and slowly-
rotating stars. As an analytic method, it also offers the possibility of making the
numerical results more intuitive. Moreover, as we note below, it provides a way
around the numerical problems that occur near infinity: it shows one how to do the
problem even by numerical integration, without running the risk of losing one of the
independent solutions in the numerical noise [21].

1.2, Mathematical formulation

For a Schwarzschild black hole, and for the exterior of a spherical star, the
fundamental perturbation equations can be reduced to a single ordinary differential
equation by separating out the dependence on time and angles. Assuming that
the time dependence is exp[—i(o/M)t], and fixing the spherical-harmonic index £,
we obtain a time-independent Schrodinger-like differential equation for a wave
variable ¥

a2

F+R‘(r)‘1’ =0 (1)

where U is related to the solution, Uy, 10 the Regge-Wheeler equation by

¥ =v1-2/rUpy. 2

From Wgy all components of the perturbed metric tensor can be reconstructed [3].
If we scale the usual Schwarzschild coordinate v by the mass, M, of the black
" hole, then R, takes the form

rt

2 3
L N el
Ry(r) = TEDD [0' Vi(r) + 3 r4] 3)
where the Regge-Wheeler potential Vi, (r) [22] is given by

v = (1-2) [ - 5] *

r r? r3

Note that the function R, is more complicated than the Regge-Wheeler potential
because of the transformation of the dependent variable that has been applied to the
usual Regge—Wheeler equation in order to put it into the standard Schrodinger form
with the Schwarzschild coordinate r as the independent variable, (Relativists may be
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more familiar with a different transformation in which r is changed to the ‘tortoise’
coordinate r,. We avoid that transformation here because it introduces logarithmic
singularities.) Note also that R, contains the eigenfrequency, so when one iterates
over a set of frequencies to find the right one, the function R, changes. Moreover,
it may be worth pointing out that this means that the analysis described below will
be equally applicable to problems where the potential V, is explicitly dependent on
the frequency. This is the case for perturbations of Kerr black holes.

One obtains the same complex frequencies from (4) as with the alternative
potential derived by Zerilli [23], as is shown in [24] and [25]. In the present work we
will only consider the potential given by (4) because it has a simpler functional form.

It was shown by Regge and Wheeler [22] (see Chandrasekhar [5]) that the energy
integral, together with the given boundary conditions, leads to damped quasinormal
modes: there are no instabilities. Therefore, with our choice of time factor we must
have Imo < 0.

The purpose of this paper is to discuss the application of the phase-integral
method o the quasinormal-mode problem. In the phase-integral method, developed
in a book [26] and several papers by Froman and Frbman, a local solution to (1)
is given by a symmetric phase-integral approximation. To the lowest order this
approximation is equivalent to the first-order WKB approximation. Taken to higher
orders [27,28] the phase-integral approximation has, in general, the same formal
accuracy as the WKB approximation of higher orders. It is easier to establish error
bounds in the phase-integral method, although we shall see that these bounds still
leave something to be desired. Moreover, the Wronskian of any two exact linearly
independent solutions to (1) must be constant. This property is preserved in the
phase-integral approximation, but not for the higher-order WKB solutions. This
constancy of the Wronskian at any order of approximation allows for a systematic
use of higher orders in continuing an approximate solution in the complex coordinate
plane. However, the notation used has changed through the years, thus obscuring the
reading of many of the original papers. Therefore, we will review the phase-integral
method in this paper. All the formulae and ideas relevant to a phase-integral analysis
of the quasinormal-mode problem will be discussed.

For a discussion of the much wider context in which the method finds applications,
and for further references, we suggest a recent article [29], The use of F-matrices
(seec below) to solve connection problems is extensively discussed in [30]. Naturally
there are alternatives to the method devised by Froman and Froman. A nice review of
semiclassical methods was written by Berry and Mount [31]. An extensive description
of the history of phase-integral methods can be found in Heading’s book [32}
Although these references are 20 and 30 years old, respectively, they are still worth
reading. For a comprehensive textbook description of the WKB approximation we
refer the reader to [33,34].

2. The phase-integral method

2.1. Fundamental concepts

In the phase-integral method the approximate solution to (1) is continued into the
complex r-coordinate plane. Consequently all functions of » considered hereafter are
complex-valued analytic functions.
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The most general transformation of the dependent and independent variables
that preserves the reduced form of (1) is given in terms of an arbitrary function g, a
redefined wave variable ¢, and a new indeperdent variable w. We define [26]

U(r) = ¢~ /3(r)g(r) )
and

w(r) = / q(§)dg. (6)
Equation (1) transforms to the convenient form

&¢ 1 =0 7

dw? + ( +e)p= €))]
where

R,—q | _ap@ ¢ _
o=t g () ®

should be thought of as a functional ¢[q]. We note in passing that, by using an exact
relation obtained by Dammert [35],

d2 1 d 2 d /1 d
~-3/2 > =12y _ _ - -m-12 m e = —m-1_m
T 4 (6717) = (2m ar? ) dw (qu ar? ) ©)

where m is an arbitrary real number (# 0), one can write the definition of ¢ in
various different and useful ways.

Let us now assume that the function ¢(r) is somehow chosen to be an exact
solution to (8) with ¢ = 0 in some region of the complex r-plane. Then the two
functions

¢ (r) = e*win) ' - (10)

are linearly independent exact solutions to (7). The general solution to (1) is then
given by the linear combination

V(r) = ag fi(r} + az f5(7) _ D
where
ey =g V() e fi(r) = g (r)em (12)

Of course, if the function R,(r) has a complicated functional form it is generally
not possible to find an exact solution to € = 0. However, it may be possible to find
an approximation to g{r) in such a way that |¢| is small compared to unity. Then
(12) still gives approximate solutions to the differential equation (1). This will be our
approach below.

The usual WKB approximation is obtained by setting ¢® ~ R,. Provided that the
second term on the right-hand side of (8) is sufficiently small, this approximation is
accurate. This requirement corresponds, roughly speaking, to saying that R,(r) is a
slowly varying function of the complex coordinate r—see for example [33].
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2.2. The phase-integral approximation

As pointed out by Fréman and Fréman (sce [29] for references) it is possible to get
close to an exact solution of € = 0 by refining the function g{r) from a first guess
Q(r) through a series of approximations, In the (2N + 1)th order of approximation
the function g(r) is given by

N
or) = Q(r) Y Vs, (13)

n=0

with ¥ = 1. If we let ¢, = ¢[Q], then the first Y, are -

1 1 2 dzfu
Yz=§fu Y4=—§(€u +d_¢2)

Po | o (do)* | ds

1 dey\ dley | odepde | diey
Y, = 128[5“+30°dc:2+50 (dc) + 06y + 287053 + gl

where ¢ is defined by

=/ " Qe de. (15)

If the value of ¢, is small (compared to unity) in the region of the coordinate plane
under consideration, the approximation (13) is locally very accurate. The expressions
for Y,, are obtained by demanding that ¢[qg] must attain a minimum value at each
order of approximation. Alternatively, ¥,, can be obtained from the well known WKB
recurrence relations [27]. Tt is customary to describe the higher-order phase-integral
approximations in terms of odd orders to retain the correspondence with the WKB
approximation.

We can always choose constants in such a way that the linear combination (11)
coincides with a desired exact solution to (1) at a certain point r;. An important
question is how far the approximation can be extended away from this point without
becoming inaccurate. A measure of the accumulated error made in continuing a
phase-integral solution from the point »; to r along a path A is given by [26]

ta(r,rg) = ]A le(w) duw| = ]A l€(€) a(€) de . (16)

This clearly is a measure of how small ¢ is in the domain of the approxima-
tion. One expects u(r,r,) to be small if A runs well away from all zeros and
poles of Q%(r), and R(r) is slowly varying in the sense described above. How-
ever, our own calculations suggest that this measure generally overestimates the size
of the errors, and we fee] that more sensitive error bounds need to be found.
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2.3. Treatment of the solution in the complex plane

2.3.1. Continuation formulae. An exact solution of (7) may be represented by

¢ = ay(w) e + ap(w)e™ 17
where a, and a, are expected to be slowly varying if ¢ is small. We wish to transform
the second-order ordinary differential equation (7) into a coupled system of first-order
ordinary differential equations for the coeflicients a;. We need to impose a further
restriction on the q; in order to make them well defined, and we choose the standard
constraint

d(jfi : fw _: —iw
a:v'- = lal(w)e — 1a2(w)e (18)
which is what the derivative of (17) would be if the a; were constant. Substituting
into (7) gives

da 1, . da 1, . ,

(-ﬂ;l = Ele[a1_+ a, exp({ —2iw)] "d_uf = —ile[az + a, exp(2iw)] . (19)
This system of differential equations can be rewritten as [26]

1da; _ 1. a, exp(—iw) 1de, 1, ay exp (iw)

a; dw 216[1 + a; exp (iw) a, dw —3 1+ ayexp(—iw) |’ (20)

In the region where the two terms in (17) are of the same order of magnitude (ie.
jei*| = O(1)), it follows from (20) that both e, and a, are approximately constant.
On the other hand, in a region where one of the terms in (17) is much larger
than the other, the coefficient of the dominant term remains approximately constant
whereas the coefficient of the subdominant term can change substantially. Therefore,
in general, different linear combinations of f; and f, have to be used to approximate
the solution ¥ to (1) in different regions of the complex plane.

There exist some guides as to where it is possible to continue a solution without
its character changing radically. It helps to write the solution of the system (19)
formally as

e (w) = Fj;(w,wy) e;(wy) (21)
where wy = w(n,), and F is a two-by-two matrix. From (19) it follows that
det F{r,ry) =1. (22)

This requirement makes the inversion of (21) trivial. Moreover, the elements of the
matrix F' (sometimes refered to as Stokes constants) were obtained as convergent
series by Froman and Froman [26]. They obtained estimates of those series based
on the assumptions that » and r, (w and wy) can be connected by a path A in the
complex r-plane (w-plane) along which |e'(")] increases monotonically from r, to r
and p{r,7y) is small. These estimates can be written

[Fu(rsrg) =1 <[e* =11 |Fyp(rmp)] € §le¥ - 1] =20
| Fyy(ry mo)| € e — 1] [eZw ()| (23)

|Fyp(r,rg) = 1 < Ja1 + [e# = 1 — ] [PTW0 7wty
In effect, F'-matrices allow one to continue 2 given solution to (1) in the complex
coordinate plane. In the following section we present and discuss some of the
F-matrices that connect points in a region of the complex plane where only one
transition point is present.
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2.3.2. Transition points: Stokes and anti-Stokes lines. Central to our treatment of the
differential equation (1) in the complex coordinate plane is the identification of the
transition points and the so-called Stokes and anti-Stokes lines.

The transition points are zeros of the function Q%(r). In a standard WKE analysis
(where Q? = R,), these points are usually called the ‘turning points’ of the classical
solution (especially when they are situated on the real coordinate axis). At a transition
point, the phase-integral approximation (13) breaks down. In fact, in the first-order
approximation g(r) vanishes at the transition point and thus the transformation {5)
becomes singular. Hence, the form (12) is not a good representation of the exact
solution locally. Furthermore, since the error function €[@Q] has a pole at such a
point, the higher-order expressions for ¢(r) will be singular (and the expansion (13)
clearly divergent). Therefore the phase-integral approximation must not be used in
the vicinity of such points.

It is important to understand that transition points are usually simple first-order
zeros of the function Q%(»), ie. that the function Q(r) has a branch cut emanating
from the transition point. This is well known in the WKB approximation, where
Q? = R, is a simple analytic function. It then follows that in a small neighbourhood
of such a transition point the function R,(r) can be approximated by gq,(» — r) for
a complex constant g; and (1) is approximately the Airy differential equation. The
equation Im[g,(r — ry)]¥/2d(r — ry) = O defines curves emanating from a transition
point ;. Solutions to this have a three-fold rotational symmetry about r;: if one
solution has the form r()\) = r3 4+ ¢) for some complex constant ¢ and a real
parameter }, then there will also be solutions for ce?™"/? and ce~2"/3. Therefore
three such lines emanate, pairwise separated by an angle of 2z /3 from the transition
point; see figure 1. On these lines, which are called the anti-Stokes lines, the two
approximate solutions (12) to our differential equation are of the same order of
magnitude. The anti-Stokes lines separate different regions of exponential dominancy,
ie. they are boundaries of regions in the complex coordinate plane where one of our
approximate sojutions (12) is dominant and the other subdominant. Likewise, three
so-called Stokes lines, defined by Re[gq;(r — ry)]"/2d(r — 'ru) = 0, emanate from each
transition point. On these lines |e| attains either a maximum or a minimum.

Figure 1. (2) Patiern of Stokes (broken) and anti-Stokes (full) lines in the region close
to a single well separated zero of @Q%(+). Cuts are represented by the zigzagged lines.
The labels max and min on the Stokes separatrices denote maxima and minima of
the function | exp (iw)] respectively. (b) Contour of integration used to evaluate w on
the Riemann surface. It is immaterial whether we circumvent the transition point in the
positive or nepative sense.

t A detailed description of the calculation of Stokes and anti-Stokes lines has been given by Aratjo et

al [36).
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In the phase-integral method the transition points do not in general coincide
with the zeros of R,. In the phase-integral context Stokes (resp. anti-Stokes) lines
are defined as curves along which dw, or equivalently Qdr, is purely imaginary (resp.
real). In other words, Stokes (resp. anti-Stckes) lines are the integral curves of the
autonomous system of differential equations Re(Qd») = 0 (resp. Im(Qdr) = 0).
The zeros of Q%(r) (the transition points) are the fixed points of the system. At
almost all points of the complex plane, one can find a unique Stokes and anti-
Stokes line passing through that point, since the autonomous system of equations
defining them needs only the starting point as initial data. Since a transition point
has only discrete Stokes and anti-Stokes lines emerging from it, most such lines in
the neighbourhood of the point avoid it.

Although the zeros of Q%(r) and of R,(r) generally do not coincide, in most
cases one would expect them to be ‘close’. That is, the distance between the zeros
is such that they both lie inside the region where the phase-integral approximation
deteriorates. In this case, there is an annulus surrounding both zeros within which
solutions of the phase-integral equations resemble Airy functions.

Strictly speaking, the terms Stokes and anti-Stokes lines should be used to refer
only to curves emanating from a transition point. In order to make a distinction,
we will refer to the six lines emanating from a transition point as Stokes and anti-
Stokes separatrices. A comparison with the theory of autonomous systems makes
this nomenclature sensible. Furthermore, as mentioned above, the anti-Stokes lines
emanating from a transition point separate different regions where one of the
solutions (12) is exponentially dominant and subdominant, respectively.

The importance of these lines is that the solutions (10) behave as travelling waves
along anti-Stokes lines. From the system (20} it is clear that the character of the
solution does not alter qualitatively along an anti-Stokes line, provided of course that
€ remains small. In fact, the changes in the qualitative behaviour of the sojution that,
as we noted above, can take place in the complex plane, actually take place as one
moves across a Stokes separatrix [31].

In the section on the Schwarzschild problem, we will show that by placing the
boundary conditions determining a quasinormal mode on anti-Stokes separatrices
one obtains the correct boundary conditions at infinity and the horizon. The
anti-Stokes separatrices therefore hold the key to avoiding the numerical problems of
damped travelling-wave solutions near infinity: they allow one to pick out, analytically or
numerically, the desired solution.

In the first-order phase-integral approximation it is customary to choose the
constant lower limit of integration in (6) to be a zero of Q%(r). However, this
is not the case when one uses higher-order phase-integral approximations because
the integral is divergent at these points. In this case one replaces the definition of
w(r) by

w(r) = } ]F RGL (24)

where I'(r) is a path of integration that starts at a point corresponding to r on the
adjacent Riemann sheet, encircles the chosen zero ¢, of Q%(+), and ends up at r.
In higher orders of approximation the function ¢(r) has several zeros in the vicinity
of a zero of Q%(r). These ‘additional’ zeros, which are not branch points of Q(r),
must be encircled in the integration defining w(r) [37].
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2.3.3. F-matrices for a well separated transition point. As we have noted above,
the phase-integral functions f, and f, are singular at transition points and the
approximation breaks down. In the phase-integral method we must therefore avoid
these points. Consequently, the solution to (1) is found by continuation on a path
circumventing each transition point at a safe distance. This is done by following anti-
Stokes separatrices toward and away from transition points and then jumping from
one separatrix to another in the neighbourhood of a transition point, being careful to
control the errors in so doing. It is instructive to look at exactly what happens along
this path.

When we move on a path from one anti-Stokes separatrix to another, we cross
a Stokes separatrix emanating from the same transition point, and the quantity [ei¥|
reaches an extremum there (see figure 1), When continuing the linear combination
(11) across one of these Stokes separatrices the coefficient of the solution that is
subdominant on that Stokes separatrix changes and the coefficient of the dominant
solution remains roughly constant. This is the so-called Stokes phenomenon. In a
series of recent papers, Berry [38,39,40] has shown that this change enters smoothly.
The change in the coefficient of the subdominant solution can qualitatively be
compared to the error function. It grows rapidly in the vicinity of the Stokes separatrix
and very slowly far away from it. The result is that, when we reach the second anti-
Stokes separatrix, we have a different linear combination of the two solutions f;
and f,. Changes in the coefficients a; of this kind are necessary if we are to satisfy
boundary conditions in both directions far from the transition point.

For our purposes, all we need is to find out how to continue a given linear
combination from one anti-Stokes separatrix to another. The F-matrices do this
for us. Below we give some F-matrix estimates that are useful in a phase-integral
treatment of the quasinormal-mode problem. The situations analysed here are all
illustrated in figure 1.

Let a collection of points {z;, z;,} lie sufficiently near a transition point that
other transition points elsewhere in the complex plane do not affect the analysis. (If
this condition cannot be satisfied, then one must perform an analysis for a so-called
cluster of transition points.) Then there are a number of possible cases of interest.

e The points z, and z, lie on the same anti-Stokes line well away from a transition
point. Then a linear combination of the two solutions is preserved to lowest order:

o) = (g 7)+0w). @)

e The points z, and z, lie on adjacent anti-Stokes separatrices emanating from a
well isolated transition point., The curve joining them does not cross the cut emanating
from the transition point, and where it crosses the Stokes separatrix emerging from
the same point, the quantity |e®] has a maximum. Then the linear combination
changes as follows:

1
—i

Flam) = (4 7)+otw. (26)

e The points z; and z, lic on adjacent anti-Stokes separatrices emanating from a
well isolated transition point. The curve joining them does not cross the cut emanating
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from the transition point, and where it crosses the Stokes separatrix emerging from
the same point, the quantity |¢™| has a minimum. Then we have

Fewm)= (g 7)+ow. @)

The formulae (26) and (27) are only valid when we have defined w such that
w = 0 at the transition point.

Note that the two formulae can be remembered in a very simple way: from the
knowledge that the coefficient of the solution that is subdominant on the Stokes
separatrix will change, one can figure out which of the non-diagonal matrix elements
is non-zero. Furthermore, this element is approximately +i, with the sign depending
on the direction (positive/negative) in which the transition point is circumvented.

e The point z, lies on an anti-Stokes separatrix and z,, lies on a neighbouring
anti-Stokes line that does not reach the transition point. The point z;, is chosen in
such a way that there is a Stokes line joining the two points. Suppose the quantity
|ef| increases monotonically as we move from z, to z,,. Then we obtain from the
basic estimates (23)

_{ 14+0(w Oo(u)
Flavym) = (O(u)IGXP(Zim)I L+ O(k) (1 + O(w)| exp(zww)n) 28)

where we have defined
zy
o= [ qor @9
z

and we have again set w = 0 at the transition point. When the points z; and z,, are
very close to each other Im=,,, is necessarily small, and F{z, ;) is, to order p,
a unit matrix. This important result means that we can ‘jump’ from one anti-Stokes
line to a neighbouring one where convenient. It also will allow us in the next section
to move the boundary condition at infinity from the real coordinate axis, where it is
troublesome, to a suitable anti-Stokes line (separatrix), where it is well behaved.

It is now straightforward to show that the F-matrices connecting points lying on
anti-Stokes lines that pass close to a well-isolated transition point are also given, to
order p, by the expressions (26) or (27), as appropriate. For example, if the points
{z,} lie on such lines, we find the following results,

e From (21) we obtain that the F-matrix connecting z;, and 2z, across a Stokes
separatrix on which |e"”| has a maximum is given by jumping from the first line
to a nearby anti-Stokes separatrix that does go through the transition point, then
connecting to the adjacent suchline across the Stokes separatrix, and then jumping
again to the desired antj-Stokes line. Algebraically, this means

Fzy,zp) = F(zy,2) F(23,2)) F (27, 20) . (30)

From (28) (and its inverse) we have that both F(z,,z,) and F(z,z;) are
identity matrices to order u. Therefore, we find that

1

Flapm)= (4 1)+ o0t B1)
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o Analogously, we can show that the F-matrix connecting z; and z, across a
Stokes separatrix on which |} has a minimum is given by

Flasnz) = (§ 1) +0w). (32)

It should be noted that in a situation where several transition points are close
to each other the elements of the F-matrices are not independent of the order of
approximation used. General formulae relevant for studying clusters of transition
points are discussed by Froman et a/ in [30}. However, although their formulae
may be used in some situations (see for example [15]) they cannot be used to
determine explicit expressions for the F-matrix elements. Such exptressions can be
obtained by using uniform approximations (that are uniformiy valid in all regions of
the coordinate-plane) [31). In order to do this a comparison with an exactly soluble
equation is made, The exact solution is then locally mapped onto the problem under
consideration. Basically only three such exact solutions are known: the Airy functions
(one transition point), the parabolic cylinder (Weber) functions (two transition points)
and the Coulomb wavefunctions (two transition points and a second-order pole).
These last two cases were used by Andersson and Linnazus in an analysis of the
black-hole problem [19]. However, Araijo et al [36] have shown that the case of an
isolated cluster of two transition points can be treated using formulae very similar to
the ones described in this paper.

From the discussion in this section, it should now be clear that, as with most
asymptotic approximation methods, its application is as much an art as a science.
The choice of Q is delicate, and a suitable function is not guaranteed. One has
to ensure that the errors, which rise steeply near the transition points, are small
elsewhere; in particular, one wants a region near a transition point where one can
jump from one anti-Stokes separatrix to another without significant error. In our view,
the study of errors in the phase-integral method is not yet sufficiently well developed,
and we will come back to this point below.

3. Phase-integral analysis of the black-hole problem
In order to treat the full black-hole problem, we must add to the transition-point

analysis a treatment of the boundary conditions both far from the hole and at the
horizon. We consider the horizon first.

3.1. Treatment of singularity at the horizon.
In the case of 2 Schwarzschild black hole, the function R,(r), as given by (3) and (4),
is singular both at the origin and at the event horizon. The latter singularity is cause
for concern since it is at the horizon that one should place a boundary condition.
From (3) and (4) we have that

1l_i_r_r12(r~2)zR£(r) =407 4 }. (33)
If we define the constant a by

ala+1) = -[40® + 1] (34)
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then the elementary theory of differential equations shows that near the horizon (a
second-order pole of R,)

(.,,_2)&4-1
\I‘~{(r_2)_a asr—2. (35)

The WKB approximation, on the other hand, using g = R}f ?, generates approximate
solutions with the behaviour

oo (r) ~ (r = 2)/BFVeledl) (36)

as r — 2. This is unsatisfactory, and tells us that we should look for a better first

guess for ¢ than Ri’ 2, It does not take long to see that if one chooses [15]

QXr) = Ry(r) - ﬁ 37
then one has

lim Q¥(r) = o? (38)
and

lim (r — 2)°Q¥(r) = 4o (39)

which leads to the same behaviour near the horizon as the exact solution—
equation (35). With this choice of Q?, there are four transition points. For the
slowest damped modes, they remain well separated, and the analysis of the previous
section applies to each of them.

Interestingly, there is another way to justify this function Q2 if we were to
take Q* = R,, then we would find that ¢, remains finite at the horizon. For the
choice (37), the error term ¢, goes to zero there. Hence, the two solutions (12) tend
to exactness as the horizon is approached.

3.2. Global structure and asymptotic behaviour of solutions

Because we need the function Q(r), not @%(r), we must introduce cuts in the
complex plane at every transition point. The necessary cuts can always be placed in
a way such that they need not be crossed in the continuation of our approximate
solutions to (1). There is, of course, no unique way of cutting the complex plane,
but our analysis would become very abstract and difficult to follow if we were to
proceed without defining where cuts lie at this point. Nevertheless, there is no loss
of generality in the following presentation.

From now on we assume that the necessary cuts are introduced as in figure 2. We
choose the overall phase of ¢ such that

lim Q(r) = o. (40)

T—00
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Figure 2. Pattern of Stokes (broken) and anti-Stokes (full) separatrices emanating from
the teansilion points for the fundamental quasinormal mede (o = 0.3737 — 0.0889i).
Cuts are represented by the zigzagged lines. The labels max and min on the Stokes
separatrices denote maxima and minima of the function |exp (iw)] respectively. Three
of the four transition points lie in the region of the plot. The ones we use for the
analysis are labelled #; and t,. The third, unlabelled, is near r = 1. The cut from 2,
lerminates on the unseen fourth transition point, so 1hai Q is single-valued au infinity.

(Note that this is well defined, since the cuts are taken to leave @ single-valued
at infinity.) Having chosen the phase of @ in this way, the disposition of the cuts
determines the phase at all other points. The cuts introduced in figure 2 lead to

rﬁﬂ(r -2)Q(r) = 2e. (41)

Note that this does not correspond to the situation investigated by Araijo e al
[36] or Fréman er af [15], since they introduced the cuts in a different way. In two
recent investigations by Andersson and Linnzeus [19] and by the present authors [16]
the cuts are introduced in the way described above.

From (40) and (41) and our choice of time factor, we can identify fi(r}, as
defined in (12), with the desired outgoing-wave solution as r — co, and fy(r) with
the waves falling across the horizon as » — +2. It follows that e quasinormal-mode
solution U is defined by the asympiotic behaviour

'Ifr::l_zaz F(r) (42)
and
\I'r_:;mal fi(r} (43)

where a, = a,(2) and o, = a(o0) are undetermined normalization factors. Again,
we stress that the solutions are single-valued at infinity.

3.3. Boundary conditions on anti-Stokes separatrices

The introduction of these boundary conditions on the real coordinate axis leads to
well known numerical difficulties [25,14]. Given our choice of time factor, the desired
solutions (42) and (43) increase exponentially as we approach the event horizon and
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infinity along the real axis, and the solutions that do not fit the boundary condition
decrease exponentially. In order to determine the frequency of a quasinormal mode,
we have to find the exponentially decreasing term to decide whether, for any given
frequency, it is or is not present. Given the finite accuracy of any numerical scheme,
this is a delicate problem, since at some critical value r, of the coordinate, the
decreasing term will become smaller than the error in the increasing one.

To avoid this difficulty, we note that the asymptotic conditions (42) and (43)
can be applied on any line approaching the horizon and infinity, respectively. In
particular, the boundary conditions can be introduced on anti-Stokes separatrices
(see [36,15,21]), where the two solutions (12) are essentially of the same order of
magnitude, and the undesired solution can easily be singled out. In this paper we will
implement this idea analytically, to get approximations to the quasinormal modes.
But we note that the same thing can be done numerically, albeit at the cost of finding
the appropriate anti-Stokes lines numerically. This would be a powerful way to find
numericai values for the quasinormal mode frequencies with an accuracy limited only
by machine arithmetic precision {21]. In cases where the full analytic treatment of the
present paper is not available, such as for modes of stars whose structure is known
only from numerical integrations and therefore cannot be extended into the complex
plane, the troublesome boundary condition at infinity can still be handled this way.
We intend to treat this case in a future paper.

We consider first the condition at infinity. We would like to introduce the
condition (43) on the anti-Stokes separatrix emanating from the transition point t,
and running towards infinity (see figure 2). Let us consider a point situated on this
anti-Stokes separatrix and a point on the real axis. It has been shown by Araiijo et
al [36] that there exist paths such that the p-integral between these points tends to
zero as the points tend to infinity. This u-integral provides an error bound, and the
solution (43) is exponentially increasing if continued from the anti-Stokes separatrix
to the real axis. Hence, it follows from the basic estimates (23) that the F-matrix
connecting these points is exactly the identity matrix. The boundary condition, as
imposed on the anti-Stokes separatrix, therefore implements the correct condition on
the real axis. Alternatively it can be argued that, since € — 0 as we approach infinity,
the single-valuedness of @ (and therefore w) means that we can use the asymptotic
form exp(iw) anywhere near infinity. Hence, once the desired sign of the exponent
has been identified we can automatically use it on the anti-Stokes separatrix running
in the same direction.

We will also introduce the condition (42) on the anti-Stokes separatrix extending
from the transition point t, towards the horizon (see figure 2). In the appendix we
demonstrate that our choice of Q%(r) and the boundary condition for quasinormal
modes at the horizon allow us to write

ay(r) = Fia(r,+2) ay(+42) ay(r) = Fo(r,+2) ap(+2).  (44)

These equations have the same significance for the boundary condition at the
horizon as we have just found for the one at infinity. One can apply this boundary
condition on an anti-Stokes separatrix and follow that curve out to a transition point.
This can be done either analytically (as we do below) or fully numerically.

3.4, Example: a simple derivation of the Bohr-Sommerfeld formula

As an example of the application of the phase-integral method to the determination
of the characteristic frequencies of quasinormal modes, we derive a formula for
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the Schwarzschild case. The formula is valid under the simplifying assumption that
only two well separated transition points are relevant for our apalysis. This will be
applicable to the first few modes in the infinite sequence, and corresponds to the
situation depicted in figure 2.

As mentioned in the previous section the boundary condition of outgoing waves
at infinity is imposed on the anti-Stokes separatrix that emerges from the transition
point %, towards infinity. The F-matrix connecting two different points on this anti-
Stokes line, both lying far away from i, is approximately a unit matrix. Hence,
using (21), the solution (43) can be extended from infinity to the point p, (situated
sufficiently far away from the transition point for the integral p(p,, c0) to be smail),
and we obtain

Y(py) = a;(0) filp1) - (45)

In order to continue this solution to the point p,, the transition point ¢, must be
circumvented at a safe distance, that is, one must choose a path connecting p; t0 p,
such that p{p,, p;) is small. In doing this, a single maximum of |e'”| will be crossed.
It follows from a comparison with figure 1 that the F-matrix relating the solution at
these two points is given by (26). Therefore, from (45) and (21) we find that

¥{p;) = a4(x) [f1(Pz) ~ifa(p2)] - {46)

So far the transition point ¢, has been used as phase-reference level for the functions
fi, i€, it is the Jower limit of the integral in (6) in the first-order approximation or
the encircled point in the calculation of (24) in higher orders of approximation. We
could carry on doing so, but it will simplify the matching of solutions to be made
later, if we use %, as reference level. That means we work with a different definition
f1.2 of the fundamental solutions, differing by a constant phase:

fi=e™fy  f=emf (47)
where, in the first order of approximation,
3]
T = gdr. (48)

tz

In higher orders of approximation this definition must be replaced by the contour
integral, cf (24),

1
m=34 atr (49)
2l

where the contour I'y; is to encircle the two transition points i; and ¢,. Now {(46)
takes the form

U(ps) = ay(o0) [e7™ (py) — €™ folpy)] - (50)

We now consider the boundary condition of purely ingoing waves falling across
the event horizon (42) that is imposed on the anti-Stokes separatrix that emanates
from £, towards the horizon. Since the F-matrix connecting two points on the same
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anti-Stokes line is asymptotically a unit matrix, we immediately obtain from (44)
(provided that p(ps, ) is smali) that the solution at point p, is

¥(ps) = “2(2).??2(?3) . (31)

We want to continue this solution to the point p, near p,. We must then
circumvent the transition point ¢, along a path such that p(p,, p;) is small. In doing
this, a single minimum of |e™] is crossed. Hence, the F-matrix connecting p,, with
p3 is given by (27), cf figure 1. We obtain

U(py) = ay(2) [—ifl(Pz') + fz(le)] : : (52)

Finally, we want to continue the sclution to p,, We take a Stokes line as the path
connecting p,, t0 p,. Using the basic estimates (23) we find that

3 14 O(p) O(x)
F(pzipy) = (o(p)lexp(Zi'm)l 1+0(u)(1+0(u)|eXP(2i'rzl)l)) '

We have used the fact that Im-vy,,, = Im+y,. Provided that |exp (ivy}] ~ 1 we can
approximate F'(p., p,) by the identity matrix (to order u) and obtain

(33)

W(y) = ay(2) [-ifulma) + Falp2)] - (54)

The two expressions (50) and (54) must be identical within the apprbximation. Hence,
we must have

aq(co)exp(—ivyr) = —iey(2) —ia(co)exp(ivy) = a3(2) . (55)

Dividing these two equations yields the phase-integral condition determining a
quasinormal-mode solution

exp(2ivy) = -1. (56)
Taking the logarithm of this expression we obtain the Boar-Sommerfeld formula
v = (n+Yr. (57)

It follows from our choice of phase for @ that Re -y, must always be positive, and n
is therefore a non-negative integer labelling the modes.

In the analysis leading to (57) we assumed that the two transition points
considered, t; and t,, were well separated from each other as well as from all
other transition points. This is, in fact, not a necessary requirement for the validity
of the formula. Alternative analyses by Aratjo et a/ [36] and Froman er al [15], yield
that the formula remains valid even if the two transition points considered lie close
together. Nevertheless, all other transition points must be remote.

Numerical calculations using the WKB Bohr-Sommerfeld formula (which is (57)
with ¢ in the integrand (48) for ~,, replaced by R}/ %y were performed by Guinn et
al [14] and with the present Bohr-Sommerfeld formula by Fréman et 4/ [15]. The
formula is also discussed in a further paper by the present authors [16]. It is very
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accurate for quasinormal modes such that |[Reo} > |Imo|, but not reliable when
|Im o | increases. Hence, for the Schwarzschild black hole it can be used to determine
the lowest-lying modes. In a real astrophysical situation, it is probable that oniy
the first few modes will be extracted from the gravitational waveform. The simple
derivation above {or the more general analysis in [36] and [15]) leads to a condition
that accurately determines those quasinormal-mode frequencies that are likely to be
of the most physical interest.

Our assertions about the accuracy of the Bohr—Sommerfeld formula are based on
comparing its results with the accurate numerical calculations of Leaver [1], which
have been subsequently verified by others [21,12]. Interestingly, if we ask for the
intrinsic error test, namely the values of yu, they are rather large: in our experience
it is in fact hard to find trajectories that make u very small. Given the success of the
phase-integral formulae, we have come to the conclusion that bounds obtained using
1 overestimate in a serious way the actual errors in the calculation.

It is not hard to see how this might happen. The quantity p in fact often arises
as a bound on integrals of the type (cf (7) and (10))

f by, dw ~ / eeti du (58)

which are bounded by [|edw|, but which may in fact bc much smalier than this
bound because of the cancellations inside the integration region produced by the
oscillations of the exponential ¢,. Better limits on the errors can probably be
obtained by integrating such expressions by parts and looking at bounds on de /dus
if the function ¢ is smooth, then the integrals above should be small even if ¢ is not
always very small itself.

This is one area of this subject that needs further study: a more accurate bound
on the errors would be very helpful when the method is applied to problems for
which calculations by other methods are not available.
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Appendix
The purpose of this appendix is to prove the two formulae

ay(r) = Fp(r, +2)a,(+2) (A1)
and

as(r) = Fp(r,+2)ay(+2) (AZ)

with mathematical rigour. Although (21), defining the F-matrix, together with the
boundary condition of no outgoing waves at the event horizon make them seem
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plausible it is necessary to be careful. Namely, the formulae represent limiting values
that must exist and be finite if they are to make sense.

We have already seen that our choice of Q% (37) guarantees that the u-integral
tends to a finite limit as » tends to 2 (and that ¢ — 0). The phase-integral method
then gives satisfactory results in the neighbourhood of » = 2 since our approximate
solutions tend to exactness.

Let ry be a point in the complex plane such that a,{(r,;) and a,(r;) are finite,
and A be a path comnecting r, to the horizon, along which [exp[—iw(r)]| is
monotonically increasing and the u-integral convergent. It can be shown, in analogy
with a demonstration given in [26], that under these circumstances the two formulae

F(re,+2) = ]inzz F(ry,r) exists and is finite (A3)

and

Fy(ry, +2) = 1“22 Fy(ry,™) exists and is finite (Ad)

are valid (with the limits calculated along A). These formulae form the basis of the
analysis below.
By letting r tend to 42 in the { = 2 component of (21) we immediately obtain

a,(+2) = r£m+2 ay(r) = Fyu(42,rg}a1(ry) + Fpu(+2, r)ay(ry) - (AS)

From (A3), (A4) and the inverse of the matrix F{r,,+42), it follows that
Fy(+42,7) and Fypp(+2,7;) in (AS) exist and are finite, which in turn implies
that a,(+2) exists and is finite.

Now, the ¢ = 1 component of (21) gives

ay(r) = Fyy(r, rg)ay(ry) + Fia(r, ro)az(rg) - (A6)

Using (AS5) to replace a,(r,) in this expression and taking the limit » — +2 we
obtain :

ay(ry) F1o(+2,7)a,(42}
Fiy(ry,+2) Fi{rg, +2) ) (A7)

ar(+2) = lim ay(r) =

The boundary condition of no waves coming out of the event horizon leads to the
vanishing of this limit. Since Fj(ry,+2) is finite, this establishes the first of our
results, equation (Al). '

Similarly, the 1 = 2 component of (21) is

ay(r) = Fy(r,rpay(r) + Fa(r,rplas(ry) . (AB)

Replacing a,(r,) according to (AS5) and using the multiplication rule for F-matrices
we obtain

_ Fy(r,+2}a,(ry)
ax(r) = Fi1(rp, +2)

Py rp)ag(+2) .

T R +2)

(A9)

Using (Al) to replace a,(r} the second result, (A2), follows after a little algebra.
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