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Abstract. The relation between numerical and analytical
calculations is explored in a number of ways. I begin with
brief comments on a number of simple examples, many of which
are detailed elsewhere in this volume. Then I describe in
detail a specific example: a numerical test of the validity of
the analytic approximation known as the "quadrupole formula"
for calculating the gravitational radiation emitted by a
pulsating neutron star. In this case, the analytic
approximations revealed unsuspected errors in early numerical
calculations, and subsequent numerical calculations not only
verified the quadrupole formula but also delimited its range of
validity. As another example, I show how simple model-problem
calculations suggest that there are as yet undiscovered
strongly-damped normal modes of pulsation of neutron stars, and
even that such modes may be unstable in very compact stars. I
follow this with a survey of some features that present
analytic calculations suggest may be seen in three-dimensional
gravitational collapse problems: (i) Their results should be
qualitatively different from two-dimensional axisymmetric
collapse calculations. (ii) They will show much stronger
fluxes of gravitational wave emission. (iii) They may require
much more numerical precision to produce believable results
than current two-dimensional collapse calculations have

needed. This leads to the conclusion that in the immediate
future, computations limited by machine resources should give
priority to the accurate calculation of the hydrodynamics,
rather than devote large numbers of grid points to the exterior
gravitational-wave calculation. To this end, many workers have
suggested that one might be able to read off the dominant
quadrupolar contribution to the outgoing radiation from the
near—-zone field, effectively solving the exterior-wave problem
analytically and matching this to numerical data near the

star. I give a new, gauge invariant way to do this, by
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integrating certain components of the Riemann tensor over a
sphere of radius r, near the star:
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where a is a coefficient which disappears when one takes the
TT-projection of the distant wave amplitude, and where nJ is
the unit radial vector. An error analysis suggests that this
will be reasonably accurate (factor of 2) for strong sources of
gravitational waves. This is a crude but simple way to avoid
calculating the waves numerically. More sophisticated
approaches are possible and are being investigated by others.

1. INTRODUCTION
As the increasing power of supercomputers makes interesting and
realistic numerical calculations possible in general relativity, the
balance between analytic and numerical calculations will inevitably
change, and the interaction between the two will increase. There are
many examples of this mutual feedback in the lectures in this volume.
It is interesting to try to list some of the ways this happens.

Analytic calculations feed into the numerical work in a number of ways:

(1) They provide tests. Exact solutions, secure analytic
approximations and specially devised test problems all help to debug and
to verify the validity of numerical schemes. The articles by Evans,
Piran & Stark, Shapiro & Teukolsky, and Isaacson, Welling & Wiricour in
this volume all contain explicit examples of this.

(ii) They provide support. First there are analytic studies of
numerical schemes to determine their accuracy, efficiency, and
stability, for which numerical relativity can draw on a vast amount of
development in other fields. Analytic relativity contributes in
addition such assistance as studies of the initial value problem
(Choquet-Bruhat & York 1980), alternative computational approaches (such
as variational methods: Bardeen 1970, Detweiler & Ipser 1973,
Nahmad-Achar & Schutz 1986), properties of different gauges (Bardeen
1983), ways of slicing spacetime (Isenberg & Nester 1980), the treatment
of coordinate singularities (Bardeen 1983), and (still in its infancy)
the treatment and identification of genuine physical singularities
(Tipler et al. 1980).

(iii) They can be incorporated into mixed analytic—numerical
schemes. For example, one can use an analytic approximation to
calculate the spacetime exterior to a star, reserving the numerical
calculation for the interior hydrodynamics. Anderson & Hobill describe
in this volume the implementation of such a scheme in a model
calculation, and I describe a crude version for general relativity below.

Numerical calculations similarly feed back into analytic ones. For
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example:

(i) They can test analytic approximations. I will describe
such a test of the quadrupole formula by Balbinski ef al (1985) below.

(ii) More generally, they help to develop our physical
intuition. This is, after all, the goal of numerical explorations of
physical theories. One way of doing this is to change or remove certain
aspects of the physics from a numerical code to see how the results
change. This is a useful way to develop an understanding of which
aspects of a complicated physical theory are responsible for which
physical effects. Numerical code builders often do this to solidify
their own understanding of their code, but they do not usually tell the
analyticians about these experiments. Maybe it is embarrassing to admit
that one got the same result after leaving out 90% of one’s code; but
this would be very important information to an analytic approximator!
Numerical calculations also provide a body of "experimental" data which
can lead to new analytic approximations designed to exhibit the same
results, or they may give one confidence to use existing approximations
in new territory. The original calculations of Eppley & Smarr (see
Smarr 1979) showed that the head-on collision of two black holes gave
gravitational radiation fluxes not very different from the predictions
of test-particle calculations; for this reason, we may be more sanguine
about extrapolating to black holes the test-particle calculations for
particles spiralling into black holes reported by Oohara & Nakamura in
this volume. Eardley in this volume describes an analytic attempt to
calculate the results of that Eppley-Smarr computation. If successful
it might be extendable to more complicated situations, but such an
extrapolation would be inconceivable without the confidence that it
reproduces well the numerical results of Eppley and Smarr. Another
example of this is the stellar cluster collapse calculation rerorted by
Shapiro & Teukolsky in this volume, on the basis of which they have been
able to devise useful analytic estimates of the size of the black hole
finally formed by the collapse. We even have a mention of
computer—algebraic examples of this in the article by MacCallum in this
volume where long algebraic calculations by computer have resulted in
simple answers which were then re—derived by hand, with hindsight. And
finally, and most obviously, we develop physical intuition by using the
computer to explore parameter space, to calculate many examples of a
phenomenon with different values of relevant parameters. Smarr in this
volume gives examples, in some of which the computer was used in
preference even to performing the physical experiments.

2. A NUMERICAL TEST OF THE QUADRUPOLE FORMULA

In the limit of very weak gravitational fields (linearized
theory) and slow motions, the gravitational radiation generated by
systems is quadrupolar in character and has its source in the second
time-derivative of the system’s quadrupole moment, as we shall show in
the final section of this lecture. The appreciation of this goes back
to Einstein (1918), and the demonstration that there is a corresponding
quadrupolar radiation-reaction force inside the source was first given
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by Eddington (1924). It is a remarkable consequence of the equivalence
principle that these formulae, suitably expressed, apply unchanged in
nearly—Newtonian systems, i.e. when the system’s self-gravitational
field exerts a significant influence on its motions. But the
demonstration of this fact has proved to be very subtle, and its history
is marked by controversey and considerable confusion. (For reviews, see
Walker & Will 1980 and Damour 1983). Even though the controversy has
died away and the result is regarded now as secure, there is still
uncertainty about the range of validity of these quadrupole
approximations: how relativistic may a system be and still generate
radiation governed by these formulae? Analytically it is possible to
give only rough estimates, but numerical calculations offer the
possibility of a quantitative test.

Small-amplitude pulsations of stars offer an attractive testbed for this
problem. On the one hand it is possible to solve the normal-mode
pulsation problem to essentially arbitrary accuracy for Newtonian
stellar models, and then the quadrupole radiation-reaction formula may
be applied to estimate the damping times of these modes. On the other
hand, one can similarly construct relativistic stellar models for the
same equation of state and calculate their outgoing-wave normal mode
eigenfrequencies. Each eigenfrequency will have a real part, which we
expect to be close to the Newtonian eigenfrequency if the star is not
too relativistic, and an imaginary part, which is the standard against
which the Newtonian reciprocal damping time is to be compared. The
Newtonian praoblem can be done to essentially arbitrary accuracy, as it
involves only ordinary differential equations. 1Its relativistic
counterpart also involves only ode’s, but the eigenfrequency problem is
potentially a source of errors, especially in weakly relativistic

stars. The imaginary part of the frequency may be only 107* of the real
part, and its value depends on the outgoing-wave boundary condition that
is applied in the asymptotic region far from the star.

The first comparisons of this type were performed by Balbinski & Schutz
(1982), with very surprising results. Using the early relativistic
calculations of Thorne (1969) and Detweiler (1973) as the standard,
Balbinski & Schutz calculated the Newtonian frequencies and quadrupolar
damping times and found discrepancies of a factor of three in damping
times in very weakly Newtonian models (surface redshifts of 3%). Was
this a failure of the quadrupole formula, a sign that some of the early
relativistic calculations had large errors, or a result of some subtle
physics?

Of the many possible explanations, there was a real possibility that the
discrepancy was a result of the particular equation of state used for
the models (the HWW equation of state: see Harrison et al 1965).
Because of neutronization, this has a very soft regime at densities that
are important for the low-redshift neutron stars, and there were indeed
significant differences in the masses and radii of the Newtonian and
relativistic models compared by Balbinski & Schutz. (They chose to
compare models with the same central density, since these gave very
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close agreement for the real parts of the frequencies.) In order to
eliminate such non-uniformities in the equation of state and focus just
on the quadrupole approximations, Balbinski, Detweiler, Lindblom &
Schutz (1985) completely redid the comparison for models obeying the
simple polytropic equation of state

p = Kpl*n, (2.1)

where n is the polytropic index and ¢ is interpreted as the density of
total mass—energy in the relativistic stars.

The relativistic eigenfrequencies were calculated by the improved
techniques of Detweiler & Lindblom (1985), and the principal results are
illustrated in Figs. 1 and 2, taken from Balbinski et al. (1985). The
results are presented in terms of the numbers c;(n), where for the
Newtonian polytropes the damping time T is given by

c R

Figure 1. Gravitational radiation damping times for
relativistic n=1 polytropes.
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QUADRUPOLE FORMULA VALUE

Because of the scaling properties of Newtonian polytropes, cr(n) depends
only on the polytropic index. In relativity, the equivalent coefficient
depends on central density as well. In Fig.l we display the Newtonian
and relativistic coefficients for n = 1 polytropes. The most striking
feature is the smooth approach of the relativistic curve to the
Newtonian value as the surface redshift gets smaller. This shows at
once that the quadrupole approximation is an asymptotic approximation at
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least in this case, and also that the numerical calculations of the
relativistic eigenfrequencies are accurate even for remarkably low
redshifts (1%). The quadrupole formula is in error by no more than a
factor of two even at fairly high redshifts (12%).

Figure 2. Gravitational radiation damping times for polytropes
with M=1.0Mg and GM/c?R=0.03.
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Why, then, did the first comparison give a factor of 3 error? Part of
the error can be ascribed to equation-of-state effects (discussed by
Balbinski et al.1985), but mostly it seems that the early relativistic
calculations had larger errors than were appreciated at the time. With
hindsight, given the delicacy of the calculation, in which for
low-redshift stars one has to determine a tiny imaginary part of the
frequency, these errors are not hard to understand. But this example
illustrates the two-way nature of analytic/numerical comparisions. In
the first comparison the analytic approximations revealed errors in the
numerical calculation. In the second comparison, the asymptotic
validity of the quadrupole formula was established by numerical means,
and its range of validity delineated.

Note that the error the quadrupole formula makes is to overestimate the
amount of radiation produced by the relativistic star. Presumably that
is because, in this case, the effects of wave interference in the
relativistic star dominate the higher l-poles of radiation which the
relativistic star produces. It will be interesting to see if collapse
calculations follow this pattern, too. (See the final section of this
lecture.)
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3. NEW FEATURES OF THE STELLAR PULSATION PROBLEM?

‘ Because the problem of the linear pulsations of a relativistic
star must be solved numerically, it is useful to have model calculations
which can be treated analytically and which can guide our calculations
in the full problem. Even the simplest model calculations turn out to
reveal features which have not yet been seen (or even looked for) in the
stellar problem. I shall discuss two models: a very simple one
examined by Kokkotas & Schutz (1985), and a more realistic one due
originally to Aichelburg & Beig (1976) and treated in detail by Dyson
(1980) and by Anderson & Hobill in this volume.

Figure 3. The coupled system consists of a finite string of

length 22 and a semi~infinite string, coupled as shown by a spring with
spring constant k.
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The Kokkotas and Schutz problem is of two strings coupled by a massless
spring, as in Figure 3. String 1 is of finite length 292; string 2 is
semi~-infinite. Both have wave speed c and tension T. When the spring
constant k is set to zero, the strings are uncoupled. Then string 1’s

ngr?al mode eigenfrequencies are the usual ones (with the convention

Op= Tinc/9 (3.1)

whereas the semi-infinite string has no modes that satisfy an
outgoing—-wave boundary condition. For general k, the eigenfrequency
equation is (in terms of k’'= k2/2T)

z(e 2 + eZ) = k’ (e™2 - eZ)(2 + e722), z = io%/c. (3.2)

For small k’, the solutions of Eq.(3.2) fall into two faimiles of

modes. One family is close to the modes of the uncoupled finite

string. The even—order modes of this family have nodes at the
attachment point of the spring, so they do not couple to the second
string for any k; their frequencies are unchanged. The odd-order modes
damp slowly, as one would expect, with (for any interger n 3 0)

o, = m(n#¥)c/2+ k'c/m(n+) 2+ i2k 2c/(n+4#)2n2Q. (3.3)




Schutz: Synergism between Numerical and Analytic Relativity 453

The amplitudes of these modes are larger in the finite string than in
the semi~infinite one. The second family of modes is strongly damped
under an outgoing-wave boundary condition, with

o, = m(n+¥%)(1+1/2a)c/2+ iac/9®, (3.4)
where the dimensionless imaginary part a is the larger of the two
solutions of the transcendental equation

a = k'e?@ | (3.5)

The amplitude of this family is larger in the semi-infinite string. As
k’» 0 these modes acquire infinitely large imaginary parts, accounting
for their absence in the uncoupled strings.

The physical interpretation of these modes becomes clearer if we imagine
posing initial data for the wave problem on both strings. The
weakly-damped family, being related to the modes of the uncoupled string
1, are a complete set for representing the excitation of string 1, but
they have no freedom left over for representing the independent data on
string 2. For this we need to use the strongly-damped modes. They damp
rapidly because the initial excitation simply moves down the
semi-infinite string at the wave speed c¢c. We can see from Eq.(3.5) that
the modes’ damping rate is independent of the order n of the mode, which
is reasonable in light of the fact that all waves leave the system at
speed c, regardless of wavelength.

This interpretation makes it plausible that these two families of modes
ought to be present in any system consisting of a bounded wave system
coupled to a ‘radiative’ wave system, and in particular that of a star
coupled to gravitational waves. The weakly damped modes are clearly
analogous to the modes that have been calculated for relativistic stars,
as discussed in the previous section. No analogues of the
strongly—-damped modes have been seen in numerical calculations of
relativistic stars, but no searches for modes have been made far from
the real axis. It seems certain they should be there.

The second model problem is of a spring with a scalar charge coupled to
a scalar field, and it too shows bo'h families of modes. (For the
equations, see the article by Anderson & Hobill in this volume.) The
first discovery of strongly-damped modes was by Dyson (1980) in this
problem. Here the remarkable added feature is that as the coupling
between the charge and the field increase, some modes of the
strongly-damped family move toward the real frequency axis and even go
unstable. This is impossible in the two-string problem, where the
energy is positive-definite. But in the Aichelburg-Beig problem there
is an interaction-energy term which is of indefinite sign, and this
allows (but does not explain) the unstable modes. This instability was
discovered by Dyson (1980).

The energy of a pulsating relativistic star (Friedman & Schutz 1975) is
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not positive—definite either, so it is at least possible that very
relativistic stars (where the coupling between star and waves is strong)
also have this instability. The question is open, but amendable to
numerical investigation.

4. PRIORITIES AND EXPECTATIONS

When we look ahead to the next five years of numerical
relativity, the challenge in everyone’s mind is to compute a realistic
three-dimensional collapse. Despite the increasing power of machines
(see the lecture by Smarr in this volume), the vastly increased
complexity of 3-D calculations may force a choice in allocating
available machine resources between doing the hydrodynamics accurately,
which requires a fine grid, and computing the outgoing gravitational
radiation accurately, which requires a large grid if it is to be done
numerically. If such a choice has to be made, it is arguable that the
hydrodynamics should be done accurately, while approximations should be
found for the calculation of the radiation. These approximations ought
at least to be able to estimate the radiation to within a factor of 2 or
so with negligible numerical effort. In this section, I will first
consider what new features we expect to see in 3-D hydrodynamical
calculations and how they will impact on the computing resources
required for the problem. Then I will consider what information may be
needed about the gravitational waves in such calculations in the near
future, and I will conclude with some remarks on how Newtonian 3-D
hydrodynamics can give us some hints about the outcome of relativistic
calculations. In the next section (85) I will describe a possible
method for calculating the gravitational wave emission by doing
integrals in the "near zone", outside the star but inside one
gravitational wavelength.

a. Hhat new features will 3-D collapse reveal?

(i) Global rotational instabilities. As the rotating fluid collapses,
conservation of angular momentum will increase its angular velocity and
rotational/kinetic energy. Two kinds of global non—-axisymmetric
instabilities may appear if the rotation is fast enough.

The first are called gravitational-wave-induced instabilities, otherwise
known as radiation-reaction "secular" instabilities. These were first
discovered by Chandrasekhar (1970) and their theory developed by
Friedman & Schutz (1978) and by Friedman (1978). Detailed calculations
of instability points for various systems have been made by Bardeen et
al. (1972), Comins (1979a,b), Durisen & Imamura (1981), and Friedman
(1983). The strongest instabilities may grow on a timescale of several
rotation periods.

For the numerical calculations it is important to appreciate that,
despite the fact that these instabilities appear only because the star
is coupled to gravitational radiation, the instability is a near—zone
effect caused by the speed-of— light retardation in the interactions
between different parts of the star. To see why this should be, first
consider Newtonian theory. Here, the equality of action and reaction
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guarantees that a body’s net self-force is zero. In a relativistic
field theory, however, action and reaction cannot always balance out;
although the action of element A on element B may cause B to react, the
effect of this reaction on A may be different if, in the intervening
delay, A has moved, say, further away. Relativistic field theories
therefore allow net self-forces, which can do work and change the body’s
energy. Since all fundamental physical field theories are conservative,
the energy lost by the body must turn up somewhere, and it does so in
the radiation. This leads to the term "radiation reaction" for such net
self-forces, but this name can be misleading. In a non-conservative
theory such self-forces would still be present but the work they did
would not tally with the radiated energy. The "gravitational radiation
induced" instability (a similar misnomer) is caused by the retardation
self-forces. If a numerical calculation correctly treats general
relativity inside the fluid but fails to calculate the radiation field
correctly (for example by imposing the wrong boundary condition or by
fixing the boundary in the near zone) it becomes in effect a
nonconservative theory, but there is no reason to expect that it will
not exhibit the correct "radiation reaction" effects. This will be true
even if, say, the boundary reflects the waves back inwards (a
standing-wave boundary condition). This is because, in order for the
reflected waves to have a significant effect on the interior dynamics,
they will have to be well correlated in frequency and phase with the
material motions. Since the relative phase of the reflected wave and
the material motion depends on where the boundary is placed and where
the collapsing matter is when the wave finally catches up with it, and
since the frequency of the reflected wave is a function of the dynamics
at a considerably earlier time, any such correlations are unlikely, and
those that occur by chance will be short-lived.

Although bad boundary treatment should not suppress the gravitational-
wave-induced instability, viscosity will do so (Lindblom & Detweiler
1977, Comins 197%a,b). Ordinary kinematical viscosities in neutron
matter are too small to matter (Friedman 1983), but small-scale
turbulence may contribute an effective viscosity orders of magnitude
greater, as might MHD effects. If the gravitational-wave-induced
instability manifests itself, it will be important to model such
viscosities and to include them in the calculations if necessary.
Conversely, numerical viscosity may have the effect of artificially
supressing the onset of the instability. This point deserves careful
consideration in the design and testing of collapse codes. Since this
instability may be the principal source of the nonaxisymmetry of
collapses in a wide range of physical situations, the correct treatment
of viscosity places a stringent requirement on numerical codes.

The second kind of instability is the so-called "dynamical" or
"bar-mode" instability. This is seen in purely Newtonian stars at
rotation rates some 50% larger than those needed to produce the
radiation-induced instability. (See Tassoul 1978 for a review.)
Because it is driven by Newtonian hydrodynamical and gravitational
forces, it grows much faster than the radiation—induced variety,
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typically with a timescale of one rotation period. If collapsing
rotating stars reach this sort of rotation rate despite the radiation-
induced instability, then the nonaxisymmetry will grow much more
dramatically, and perhaps the star might even fission. The accurate
calculation of this instability should not be particularly difficult.

The accurate calculation of the development of these instabilities is
important not just in order to predict the gravitational radiation
emitted, but also because the nonaxisymmetric reaction forces remove
angular momentum from the collapsing star, and this can have a
singificant effect on its subsequent dynamics.

(ii) Frame-dragging effects. The angular momentum of a collapsing
object exerts a gravitational force (the Lense-Thirring effect) that
tends to drag other bodies in the same sense. The effect of this is to
reduce the effective centrifugal forces on material, perhaps allowing
the collapse to proceed to higher densities than would be seen in
Newtonian theory. This may make black holes more likely, and even
ergoregions (Schutz & Comins 1978), if only as a stage on the way to a
black hole.

(iiil) Nonaxisymmetric shear Iinstabilities. One should distinguish the
rotation—~induced instabilities discussed in (i) above from those that
arise only if there is differential rotation (shear). Much recent work
(Papaloizou & Pringle 1984, 1985; Balbinski 1984,1985; Blaes & Glatzel
1986; Goldreich & Narayan 1985) has shown that many differentially
rotating systems with free boundaries have instabilities that are not
manifested by laboratory fluids, whos= boundaries are usually fixed.
Growth times are typically a few rotation periods. These may well arise
in collapse, where differential rotation typically increases as collapse
proceeds. They would have the likely effect of transporting angular
momentum outwards from the core, driving the core to higher densities
and to either a black hole or a nearly uniformly rotating neutron star.
A reasonably fine mesh inside the star would be needed to see these
effects.

(iv) More sophisticated physics. While the stiffness of the equation
of state is already important in axisymmetric collapse, there are
reasons for believing that nonaxisymmetric collapse may be sensitive to
a variety of other physical parameters. These include:

~ Realistic nuclear equation of state. Since shear—induced
instabilities would cause mixing, one might have to take into account
the effects of composition gradients and nuclear reaction rates.

— Neutrino transport. Present axisymmetric collapse
calculations suggest that neutrinos are trapped, but in the
nonaxisymmetric situation this may change for two reasons. First,
gravitational radiation may be emitted over a longer timescale (perhaps
10 rotation periods), making diffusion more important. Second, if the
core fissions or goes into an extreme nonaxisymmetric state, there will
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be an increase in the ratio of surface area to volume and a decrease in
the mean density. Both of these will make trapping less efficient.

- Magnetohydrodynamics. If the fluid-shear-induced
instabilities carry away significant angular momentum, then it will be
natural to ask whether MHD with realistic initial fields can offer
competing mechanisms.

The net effect of the new features described in (i) - (iv) will probably
make a three-dimensional collapse qualitatively different from an
axisymmetric collapse that begins with the same angular momentum. It
will be a much more efficient generator of gravitational waves. And it
will require much more computational power per unit physical volume:
besides the extra dimension, one will be likely to need a finer grid,
more physics per grid point, and greater numerical accuracy than in the
axisymmetric collapse.

b. W#hat do we want to know about the gravitational waves?

Ten years ago, when the "quadrupole formula" was in some doubt,
a high priority for a collapse calculation would have been to test the
formula: to verify that a real system in relativity radiated an amount
well approximated by the quadrupole formula. Today, however, this is
not such a strong motivation. There is more confidence in the formula,
not only from observations of the reaction effects in the binary pulsar
system (Weisberg & Taylor 1984) but also from numerical tests (Balbinski
et al. 1985) as described earlier, and from a large body of analytic
work (Anderson et al. 1982; Kates 1980; Damour 1983; Futamase & Schutz
1985; Walker & Will 1980; and many others).

The priority today must be to predict the observable features of
astrophysical radiation, and to be in a position to¢ interpret any
observations that may be made five or ten years from now. Over that
period of time, I would argue that accuracy to a factor of two in
amplitude is likely to be adequate. At present, gravity-wave
experimenters want that sort of accuracy as reassurance that observable
radiation may well be arriving at the Earth regularly. But to insist on
better accuracy than this from any collapse calculation would be to
ignore the other uncertainties in the astrophysics: initial conditions
for collapse, the right equation of state, the influence of magnetic
fields, even the distance to likely sources (which depends on the Hubble
constant).

But in a decade or so, when (if?) gravitational wave observations become
of reasonable quality, then accurate gravitational wave calculations
will become necessary in order to use the observations to help unravel
the other astrophysical uncertainties. This is then the timescale over
which a gravitational wave astronomer might hope for the development of
very accurate 3-D codes.

c. Hhat can we learn from 3-D Newtonian hydrodynamics?
Obviously, the development that is now taking place, of
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three-dimensional collapse codes in Newtonian gravity, is an important
first step toward the relativistic codes. Many of the new 3-D effects
mentioned earlier can be studied here: the rotation-induced dynamical
instability, shear—induced instabilities, and whatever extra physics is
needed.

A first attempt can also be made here at taking into account the
radiation-reaction effects, such as the development of the ‘secular’
nonaxisymmetric instabilities in more slowly rotating collapses, and the
calculation of the loss of angular momentum and energy through
gravitational radiation. This can be done by using the near—zone
quadrupole Newtonian reaction potential, as given in Misner et al.
(1973). Although this gives reasonably good results for pulsating
neutron stars (the calculation of Balbinski et al. (1985) described
earlier), it must be used with care. The potential depends on five time
derivatives of the quadrupole moment; done carelessly (e.g. handled as
a fifth-order initial-value problem), these can feed back into the
dynamical equations to cause runaway solutions, as in (but worse than)
electromagnetism. To my knowledge, this has not been adequately studied.

Even the frame-dragging effects can be included to first order in the
angular momentum by adding into the Newtonian equations the
Lense-Thirring "gravito—magnetic" terms.

But Newtonian theory, even with corrections, will not generate results
we can have confidence in when the collapse produces compact objects.
Will we need then to go to a full implementation of general relativity,
including its wave field, or is there a useful halfway stage? That is
the subject of the next section.

5. NEAR-ZONE CALCULATION OF GRAVITATIONAL WAVE EMISSION

As I shall describe in some detail below, it turns out that for
a radiating, nearly-Newtonian system, the quadrupole moment that
determines the radiation also determines the quadrupole part of the
near-zone Newtonian potential. Is it therefore possible to read off
this quadrupole moment from the near—zone field and thereby to predict
the radiation emitted without even extending the grid into the far
zone? This possibility was first suggested by Ipser (1970), and it has
been repeated in various circumstances by Thorne (1980), Anderson &
Hobill (this volume), Futamase (1985), and others. I will suggest here
a method of doing this, at least approximately, for nearly-Newtonian
systems, and argue that the method may not be much worse even for some
highly relativistic systems.

a. How it works in Linearized Theory
In Linearized Theory (see Misner et al.1973), we have a metric

g = v by (5.1)

in which it is possible to treat hjy as a tensor field on flat
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spacetime. Defining the trace-reversed potential

R4V = hMV — MV K&, (5.2)

and adopting the gauge condition (Lorentz gauge)

n

.3)

HW’V:O, ’\

we arrive at a simple form for Einstein’s equations, correct to linear
order in hg:

O Ky = - 167 Ty, (5.4)

in units in which ¢ = G = 1. (Other conventions follow Misner et al.
1973.) This has the retarded solution

B (t,x) = 4flx-y|™t T (t-Ix-yl,y)d%. (5.5)
Now suppose that we want the field of a bounded source at some very
large distance (far zone), and that the source is in slow motion.

Letting [x]| be denoted by r, and defining u = t-r, then the dominant
term in Eq.(5.5) is

4

. 4 3
Hﬁv(t,x) = = j Tuv(u,y)d vy . (5.6)

To see what this says about the radiation, we change from Lorentz gauge
the TT gauge. Defining the projection on to a sphere,

Pij = ®ij —ngny By = X3/, (5.7)
we have Hzg = 0 for all u and

RIT = pk; p1; By - % Py (PKL Byp). (5.8)
The spatial components of Huv can be found from Eq.(5.6) if we define

Ijj(u) = JToe (u,y) y;y;d3 (5.9)
and use the identity (for bounded sources)

JT35(u,y)d%y = % Tj;5(u), (5.10)

where dots denote derivatives with respect to u. Then we have the
familiar result that

TT . _ 2 -TT
Hij (t,x) = = - I.. (u) . (6.11)

How to turn this into a flux and the quadrupole formula is described in
Misner et al. (1973) or Schutz (1985).
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Having learned that the radiation field is dominated by the quadrupole
tensor I;;, we turn now to the near zone to see if we can find the same
tensor there. The natural place to look is in the analogue of the
Newtonian potential, Tyg:

B (t,x) =4 J Ix-y| * Too(t-lx—yl,y)dSY'

Here we make the approximation of slow motion, and expand Tyo in time
about t:

B (t,%) =4 j x-yI T, (t,9)d% - 4 J T, () + ...
(5.12)

The first term is the Newtonian field, and the second is zero by the law
of conservation of energy. We shall drop the higher-order terms: their
time derivatives make them small for slow motion. If we expand the
Newtonian field for r > |y| we obtain

_ 4 3 ni 3
Hbo =z J Too(t:y)dy + 4 ;3 J Too(t.y)yid y

2 sty 1L+ L., (5.13)
3 ij
where

ni = xi/r (5.14)

is the unit radial vector. These are the monopole, dipole and
quadrupole terms. The integral I;; indeed appears here, and the
temptation is to read it off the near—zone field (i.e. as an integral of
hoo Yoy over a sphere) and use it to predict hjj in the far zone from
Eq.(5.11).

There are two difficulties with this idea. The first is one of gauge.
None of the currently working numerical codes uses Lorentz gauge, so one
would have to transform gauge. This is a nonlocal transformation,
involving a solution of the wave equation

DE“:HW’V

for the gauge vector €M, and so it is hard to do. The second difficulty
is that two time derivatives of Ij; are needed in Eq.(5.11). Not only
does this degrade the accuracy of ghe numerical result for I;;, but it
also produces a term which is of the same order as the terms %hat have
been neglected in the slow-motion expansion in Eq.(5.12). So the method
may not even be self-consistent.
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A better way is to look instead at the near-zone Hij’ which is given by

_ -t 3
Ry (t,%) = 4 J Ix-y1 7T (o dy + (5.15)

P
=21 (t) + ..., (5.16)

with the same approximations as in Eqs. (5.12)~(5.13). This gives the
second time derivative of I; j directly, and it is the dominant term in
the slow—motion limit, so 1t overcomes the second difficulty mentioned
above. Motivated by the other difficulty of gauge dependence, we shall
look at a related quantity, the spatial components of the Riemann tensor:

Rjjke = #(hip ji * hjk i9 ~ hik,je ~ hje,ik)- (5.17)

I shall now prove the following

§ R. n n r dQ - I8¢ I., + &5, (5.18)

where « is a constant and the integral is over a sphere of radius r.
Let us begin with the identity

2
r
1 Can ¢ 1 am 1
§ |x=yl "n;n.d% =3 N (nyny = 38,5 + 37 5 %55
>

(56.19)

where ry(r¢) is the larger (smaller) of |x| and |y|, and the integral is
over the unit sphere of x. (The identity may be proved using the
spherical-harmonic expansion of |[x-y|~!.) Now, we can find hij from
Eq.(5.5) in the near zone,

_ -t 3 - B P
hy (£,%) = [ Iyl e ey dly, £ = AT e ).
(5.20)
This means that
32
hij,kQ(t’x) = J fij(t,Y) ;;§;;§ lX"Y|
32
= _[ f. . (t,y) —/— Ix- vt
ij aykayg

-1,3
= £y ety ey TNy
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From this we find, assuming the sphere of radius r contains all the
source (I1.e. that |y|<|xl),

' 2 2
} h . o(ts®)n n rda = r J £i5 p(tsy) § 2 y' do_ d°.

- 4n _2 3
= 5r Ckp®es * %ks®op T T Sie®ps’ | £ ;(ty)dy,
(5.21)

where the last step follows from applying Eq.(5.19) and integrating by
parts on y. When this is put into the 1l.h.s. of Eq.(5.17), the part of
fi; containing T u contributes only to the «®;), term on the r.h.s.,
which will drop out later. The part that involves Tij introduces Iij
from Eq.(5.10), and the result in Eq.(5.18) follows.

The $; term in Eq.(5.18) disappears when we take the TT-projection, as
in Eq.(5.8). It follows, therefore, that an integral of certain
components of the Riemann tensor over a sphere containing all the source
and located in the near zone produces the radiation amplitude directly.

b. Can we do the same in the Newtonian limit?

The main difference between the calculation in Linearized
Theory and here is that the stress tensor contains gravitational
stresses as well,

Tij » Tij + (4m)~ (V;89;8 - 48, ;VkaV,a), (5.22)
where @ is the Newtonian potential. The integral for h;j; is no longer
over a finite domain, so in obtaining the analogue of Eq.(5.21) we need
to integrate over regions where ]y| is larger than |x|. From the
identity Eq.(5.19) it can be shown that this adds extra terms to
Eq.(5.18) that are of order (M/r)2%;) and MI; /r4 The $;j) terms goes
away when we take the TT part, and the other error can be made small by
choosing r sufficiently large. So on the face of it, the method seems

to work here as well.

But the situation is not quite as rosy as this if we consider the effect
of numerical errors. The numerical TT-projection will not be perfect,
so there will be an error of order (M/r)2u in Eq.(5.18), where u is a
measure of the relative numerical error in the Riemann tensor. The
ratio of this to the term we want in Eq.(5.18) is

~(M/r)zu ~M2/r
I/r I

relative error M.

Now, by the virial theorem, i~€Mv2~€M2/R, where R is the radius of the
collapsing body and € is a (possibly small) number measuring the
nonsphericity of the collapse. We have
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relative error in radiation ~ g s (5.23)
Now, R/r may be small, but not very small, since the whole point of this
is to enable one to work with a small grid. Therefore we need U/€ < 1:
the method ought to work in the Newtonian limit if the numerical
accuracy M of the Riemann tensor is good and the amount of radiation €
is not abnormally small, as in a highly symmetrical collapse. Since our
interest is in nonsymmetrical collapse, this is an encouraging result.

c. Will it work in strong-field collapse?

At first one might expect that a Newtonian result would fail
for strong fields, but we are rescued here by the remarkable fact that,
at least in slow motion, the equivalence principle applies in general
relativity even to "gravitational potential energy". This means that,
if motions are slow, there is a region outside any body, no matter how
compact, where the field is basically Newtonian and therefore
insensitive to the body’s compactness. This region is called the near
zone. This is borne out by calculations in different contexts by D’Eath
(1975), Kates (1980), Futamase (1985), and Damour (1983). Thorne (1980)
has stressed that this means that the radiation field of such a body
must be the same as the radiation field of a Newtonian body with the
same near-zone field, since the radiation field must be determined by
the near-zone field. Therefore, we can expect Eq.(5.18) to give the
radiation even in strong-field collapse, provided the collapse is slow
compared to the speed of light. This might happen if centrifugal
effects, for example, hold up the collapse.

In the general strong-field case, however, collapse will be fast, and we
can expect Eq.(5.18) to give no more than a rough idea of the

radiation. Nevertheless, "rough" might still be within a factor of two
of the right result. The only way to learn the accuracy of the formula
is to test it on an axisymmetric numerical calculation in which the
radiation is calculated directly.

I would strongly urge that such tests ought to be undertaken, because if
the formula should prove to be reasonably reliable it will permit a
dramatic improvement in the speed with which collapse codes can run and
in the accuracy of the first 3-D collapse calculations in relativity.

d. Are there better ways of doing this?

The method based on Eq.(5.18) is easy but crude. Much more
sphisticated approaches to the problem of treating the radiation field
analytically are possible. The lectures by Anderson & Hobill in this
volume describe a method of doing this for the scalar wave equation on a
Schwarzschild background spacetime, in which one solves the vacuum field
equations outside the source as an iterative series in M (the
Schwarzschild mass), and then one uses the solution to set boundary
conditions on the numerical interior solution. This in turn provides
field variables at the interface between the interior and exterior
which determine the outgoing field.
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This can be done in principle in general relativity, and of course
Anderson and Hobill have this very much in mind. A possible theoretical
framework for doing these calculations has recently been worked out by
Blanchet & Damour (1986), as an elaboration of slow-motion methods of
Bonnor (1959) and Thorne (1980).

Such schemes offer the chance to reduce grid sizes, to make the
numerical calculations run either faster or more accurately. But if the
exterior analytic solution is so complicated that the matching
procedures begin to carry a significant computing cost, then there may
be little saving in the end. Nevertheless, such a method could provide
a useful alternative to the standard approaches and act as a check on
their accuracy.
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