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1. Why Study Perturbation and Approximation Theory?

Let me begin by saying what a pleasure it is to give these
lectures in such beautiful surroundings, and I hope that this meeting
will stimulate many more contacts between us.

I want to preface my lectures with some remarks on the role
that approximation theory plays in general relativity. Relativists
seem to take a perverse pride in the fact that Einstein's equations
are hard to solve. We are generally fond of blaming most of our
problems on the fact that there are few exact solutions that describe
physically interesting situations, especially dynamical ones. In
fact, however, this is a circumstance that we share with most of
rest of physics. Most important physical equations are nonlinear,
and in most branches of physics exact solutions are hard to obtain
except in the simplest situations. Although some field equations
are linear, such as Schrodinger's egquation or Maxwell's equations,
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as soon as they are coupled to dynamical sources the system becomes
nonlinear. What really distinguishes general relativity from other
branches of physics is that it is not an experimental science.

Even when we can observe situations in astrophysics where general
relativity is important, we cannot control or even observe all the
variables that one would normally control in a well-designed
Taboratory experiment.

The difficulty of solving equations means that in all branches
of physics progress can normally be made only by using idealizations
and approximations. In most of physics, what happens is that someone
makes an assumption or approximation, and that leads to some predic-
tion. Others may make different approximations and derive different
predictions. The question of which approximation is justified is
resolved by experiment. Nobody worries too much about the rigor of
the methods: their justification is in the answers they give. If
the methods are really difficult to justify mathematically, they
can even be incorporated into the 'axioms' of the physical theory,
as has happened with renormalization in quantum field theory. Some
of the most respected physicists are precisely those who have the
insight and intuition to develop successful approximations and
idealizations. The BCS theory of superconductivity is a case in
point: the fundamental equations —Schrodinger's and Maxwell's
equations for N-body systems —were already known but impossible
to solve. The Nobel-prize-winning achievement was to know what
extraneous degrees of freedom one should throw away in order to
arrive at a tractable idealization that worked, i.e., that explained
the experimental results.

In general relativity we also have toc make approximations,
and we also often disagree about what approximation methods are
appropriate. But we cannot resolve the questions experimentally,
at least not with quite the finality that other branches of physics
can. It is therefore harder to resolve disagreements, and questions
of mathematical rigor play a greater role.
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The debate over the validity of the so-called quadrupole
formula for gravitational radiation illustrates this difficulty.
The initial derivations of the quadrupole formula used approxima-
tion methods adapted from ones which have worked successfully in
other branches of physics; they were guided by considerable physical
intuition. But when looked at with a more rigorous eye, they were
flawed: there were hidden divergences, unspoken assumptions,
incomplete analysis. The question was, do we believe the results
despite these flaws, relying instead on physical intuition? There
was only one observed fact which supported the quadrupole formula:
The rate of change of the orbital period of the binary pulsar
system.] But this is only an observation, not an experiment.

We cannot change some parameters to test the theory. If the
quadrupole formula were wrong, we could undoubtedly find another
explanation for the changing period.

It has taken considerable time to achieve a consensus on the
issue of the quadrupole formula. It has proved possible to add
rigor to the earlier derivations, a step which has not only cleared
up some problems but has also taught us new things about the
Newtonian approximation. It has also proved possible to derive
the quadrupole formula from a number of independent points of view.
I will return to this subject in §7.

This example suggests that we in relativity should recognize
that approximation theory is one of the most important tools we
have for getting physical predictions from Einstein's equations.
Our mathematical education tends to stress the 'exact' disciplines,
such as geometry, group theory, and functional analysis. We know,
as a whole, far less about approximations than do our colleagues in
other branches of physics. But in order to make contributions to
the interesting dynamical problems that astrophysics will throw
our way in the coming decade — the decade of the Space Telescope
and the first gravitational wave detectors with interesting
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sensitivity —we will have to become much more comfortable with
approximation theory. Approximating general relativity, both
analytically and numerically, is one of the ‘growth areas' of our
dicipline.

The plan of my lectures is as follows. After a short review
of approximation theory for simple functions (§2), we will study the
simplest 'approximate' solutions: waves on fixed backgrounds, such
as stars and black holes (§3). Then in 84 we will study linear
perturbations of Einstein's equations and meet some puzzles regarding
second-order conserved quantities. To solve these we need to define
higher-order perturbation theory more carefully (85) and then apply
our new methods to practical problems, like the gravitational-wave
instabilities in rotating stars (§6). Finally we put these methods
to work on the more difficult problem of the (singular) Newtonian
limit, and establish the validity of the quadrupole formula (§7).

Footnotes §1

1. J. H. Taylor and J. M. Weisberg, Astrophys. J. 253, 908 (1982);
and V. Boriakoff, D. C. Ferguson, M. P. Haugan, Y. Terzian,
and S. A. Teukolsky, Astrophys. J. 261, L101 (1982).

2. Approximations in Physical Theories

Because most physical problems are too hard to solve exactly,
most physical predictions emerge from various types of approximations.
There are three main types, which 1 list in ascending order of their
usefulness: convergent Taylor expansions, asymptotic approximations,
and physical idealizations. It is useful to begin our study by
reviewing what these are and how they are used.

38



2.1 Taylor Expansions. An analytic function f(x) has the repre-
sentation

-5}

f(x) = ¥ %r,lf(")(o) , (2.1)
n=0

which converges for all complex x in some neighborhood N of the
origin, [x]| < Xo» say. The very existence of such an expansion
for f may be useful for proving analytic theorems about f, but
for physical predictions the usefulness of (2.1) is that for any
x €N we may compute f(x) to any desired accuracy by taking enough
terms. Equation {2.1) may therefore be regarded as giving an
arbitrarily accurate approximation to the value of f at some (any)
point x e N.

2.2 Asymptotic Approximations. In most physical problems we do

not try to use a large number of terms in (2.1) even when we know

f is analytic, either because that would be too cumbersome or because
we do not know more than the first few terms of the expansion. We
therefore deduce from (2.1) an asymptotic approximation to f, such
as

£(x) = flo) + xF'(0) + 0(x?) (2.2)

where 0{g(x)) stands for any function h(x) such that 11mx+0(h(x)/g(x))
exists. If this limit is zero then we can use the lower-case symbol
o(g(x)). Equation (2.2) is not guaranteed to be arbitrarily accurate
at any xeN. Instead, if we are given some accuracy limit §, then

we are guaranteed that we can find some sufficiently small X such
that |f(x) - (f(o)+xf'(0))| <& for all |x|< x;. It is best, there-
fore, to regard Eq. (2.2) as an approximation to the function f
rather than to its value at any x, since to get increased accuracy

we have to change x.
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Asymptotic approximations are used in the overwhelming majority
of cases where physicists need numerical answers. For example, the
approximation J (x)=1-x /4 for the Bessel function is very usefu1
if x is small. Its somewhat more accurate extension, J (x) =1-x /4
+ X /64 provides only a small extension to the useful range of values
of x. And if we want Jo(x) for x near 10, taking more and more terms
of its expansion about x=0 is not the way to calculate it: one
Tooks up an asymptotic approximation] suitable for this x.

There are other ways of generating asymptotic approximations
than simply truncating Taylor expansions. By Taylor's theorem any
¢" function whose (n+1) - st derivative exists has the asymptotic

approximation
. x" o(n)
f(x) = flo)+xf'(o) + ...+ o f (°)+Rn+1 (2.3)
where the remainder term Rn+l is
n+l 1 1
_ X n+1 d"
Ry = S !I (1-2) dxn] (ax)dg=o(x") . (2.4)
0

Notice that f("”) is needed over the whole range (o0,x) in order to
calculate Rn+1’ but Rn+1 may be bounded by a bound on f(n+]). This
is the sort of approximation generated by iteration schemes, such
as the slow-motion approximation in general relativity, which do not
a-priori know that f is analytic but simply generate one term after
another of the series (2.3). We will discuss this in detail in the
final section.

Another useful asymptotic approximation is that by continued
fractions. These can be convergent but are most often used

asymptotically. They are very useful in numerical ana1y5i52’3

but
are far less useful than power-series methods in approximations to
operators and matrices, because they involve inverses that are
hard to compute.




The various methods of numerical analysis can also be viewed
as asymptotic approximations. For example, finite-difference methods
get better as the grid is refined. Most such methods can be viewed
as generalized approximations by polynomials or rational fractions
(equivalently continued fractions), whose order and whose coefficients
change as the 'smallness parameter' (grid size) changes.

Perturbation theory, which is the study of small changes away
from known solutions of whatever field equations one has, is a
form of asymptotic approximation, valid when the perturbation is
sufficiently small. We shall see in §5 how to view it as a special
case of Eq. (2.3).

2.3 Idealizations. Perhaps the most widely used form of approxima-

tion in physics is idealization. It is so ubiquitous that it is
easy to forget that it is there, but it often plays a crucial role.
An idealization reduces the complexity of a problem by throwing
away elements that are regarded as unimportant. Thermodynamics
and other continuum theories of physics are idealizations that
throw away the variables associated with individual atoms in favor
of macroscopic averages. The successful BCS theory of superconduc-
tivity throws away most electron-electron interactions, focussing
on the spin correlations called Cooper pairs. Solutions in general
relativity which apply an asymptotically-flat boundary condition
throw away the rest of the universe surrounding the system of
jnterest. The primary objective of astrophysical modelling is
to find a successful and simple idealization for observed phenomena.
The difficulty with idealizations is that it is sometimes
hard to estimate their errors. This is particularly true in astro-
physics, where the physical system cannot be manipulated to test
an idealization. I will return to this problem when we discuss
the binary pulsar system in the final section.
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Footnotes 2

1. For example, M. Abramowitz and I. A. Stegun, Handbook of
Mathematical Functions (National Bureau of Standards,
Washington, D.C., 1964). Even the polynomial approxima-
tions given here and elsewhere are asymptotic approxima-
tions in the sense of numerical calculations, described
below.

2. F. S. Acton, Numerical Methods that Work (Harper and Row,

N. Y. 1970).

3. A nice application in relativity is J. M. Cohen and M. W.

Kearney, Astrophys. Sp. Sci. 70, 295 (1980).

3. Normal Modes of Wave Fields

The simplest introduction to perturbation theory in general
relativity is to study scalar wave fields on fixed backgrounds.
A1l massless, integer-spin vacuum wave equations have basically
the same character, particularly when the wavelength is short
compared to the mean radius of curvature of the spacetime, so a
study of the scalar wave equation provides a good introduction to
the behavior of electromagnetic and gravitational wave fields on
fixed backgrounds.

3.1 Modes of the Schwarzschild Metric. Because the Schwarzschild
metric is a vacuum metric, all small perturbations (that do not
change its mass to first order) are gravitational waves, so the
study of scalar waves should help us understand the metric's
dynamical properties, especially its stability. Because of its
spherical symmetry, the scalar wave equation]

v x=0 (3.1)

separates with the assumption

X(H) = L u(r)vg,(0,0)e™t (3.2)




to give a radial equation for y:

32
" . r w i _
r(r-2M)y" + 2Mp* + [r_m - 2(9.+1)-J¢ =0

We can eliminate the first-derivative term by defining a new radial
coordinate r, by

dr./dr = r/(r-2M) , r, =r+2M g L#)] (3.3)
We obtain

& 2

Y+ [ - V(r) =0 (3.4)

dr,
with the 'potential’ V given implicitly in terms of r(r,) by

M 2(L
v(r,) = (1 -27)(—(%‘1+ 3%) . (3.5)
r r

This equation is of a type familiar from one-dimensional wave-
scattering problems. As r =+ «, r, approaches r with a small
logarithmic correction (similar to the Coulomb wave equation).
Near the horizon 2M, things are different: r > 2M = r, > -,
(For this reason r, is sometimes called the tortoise coordinate:
a step in r, is a very small step in r.) Plotted against r,,
the potential looks like Fig. (3.1).

Anyone who has studied the null geodesics of the Schwarzschild
metric will recognize that for large £, V(r) becomes the effective
potential governing massless particles, which is reassuring. Our
interest here, however, is in wave motion. It is clear from Fig.
(3.1) that V(r,) vanishes fast enough near r, = #= that the
asymptotic solutions are exp(tiwr,) in both regions. The physical
boundary condition is that the waves be ingoing at the horizon.
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For our convention on w this means
iwr,
v ZHe s Py *= {3.6)
for some complex horizon amplitude ZH' Far away the wave has the
form

-iwr, iwr,

bvZoe e t1, e N (3.7)

We know from the Schrodinger equation that when wz is real,

2 2 2
lzinl : IZoutl * lZH' ’
vir,)
DAY
vaX
vavvvzom
Z’{‘\AAAA/
AN 7.
in
0] r‘\._

Figure 3.1. The effective potential for the scalar wave
problem in Schwarzschild. As ry =+ =, V(r,)v2(2+1)/r<,
as in flat spacetime. As r, » -= (toward the horizon),
V(r,) ~ exp(r,/M).

Our interest here is the normal modes of this equation, by
which we mean soutions which are not 'driven’ by an incoming wave
but which have Z, =0. These are impossible if w is real but may
exist for complex w, and the condition Zin/Zout =0 may be regarded




as an eigenvalue condition that determines w. The idea (which can
easily be shown to be correct by the method of Laplace transforms)
is that the evolution of ¢ will generally involive a
superposition of these normal modes. If any of the modes has
Im(w) < 0 then it will grow exponentially in time and the metric
will be unstable. It is easy to show from the positive-definiteness
of V(r,) that no solutions of £q. (3.1) grow unboundedly in time,
so Schwarzschild is in fact stab]e.2

The modes of Schwarzschild are nevertheless of interest, both
because they can be expected to give the characteristic frequencies
of gravitational waves that reach us just after the hole has been
formed in gravitational collapse, and because they are important
in the study of quantized massless fields on the black-hole back-
ground. If we use some 'WKBJ-intuition' when we look at Fig. 3.1,
we will see that we can only hope to flnd a solution in which Z
if we choose Re(m ) = V . For Re(w ) > V Z matches to Z
not ZOut For Re(w ) << V x* there is too much tunnelllng to perm1t
ZH to match to just Zou . For Re(w ) = max we can approximate the
top of the potential by a parabola, obtaining a problem that can be
solved exactly by parabolic cylinder functions. Although this exact
solution is not valid far away from the peak of V, it suffices to
determine the mode condition, because it can distinguished a wave
approaching the peak from one moving away from it. The algebra
gives, in the limit of large %, the sequence of modes Wy

= [% + i(nt1/2)1/373 (3.8)

where n is a nonnegative integer.3 Table 3.1 compares this method
with the numerical integrations of the Regge-wheeler2 equation by
Chandrasekhar and Detwei]er.4 (The R-W equation governs gravitational
wave motion and differs from our scalar wave equation only in that

the last term in Eq. (3.5) is -6M/r3. This makes no difference for
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large £.) Agreement is excellent for the fundamental mode n = 0,
especially for its jmaginary part, and gets worse as n increases.
A11 the modes decay exponentially, as expected. In the limit as
2 +o all the fundamental modes have the same imaginary part,
Im(w) = 1/6/3 = 0.09623, a fact observed numerically by Detweiler.
The approximation (3.8) gives an infinite number of modes of

5

jncreasing imaginary part, but numerical searches have only found
a few modes, and an approximate potential which can be solved
analytically has only a finite numbe\r'.4 This leads to our first
suggested research problem.

Problem 3.1. Determine whether Eq. (3.4) has a finite number of
modes for each & and devise an efficient numerical scheme for
searching for those with large imaginary parts. The techniques
of Kearney, et a1.6 may be helpful here.

Table 3.1. Comparison of Regge-Wheeler moges calculated
numerically by Chandrasekhar and Detweiler® and by our
parabolic approximation to the top of the potential3 (not
assuming & is large).

] n Mo (numerical) Mw (parabolic approx.)
2 0 0.3737 + 0.08891 0.3988 + 0.0882i
1 0.3484 + 0.2747i 0.4534 + 0.2329i
3 0 0.5994 + 0.0927i 0.6166 + 0.0923i
1 0.5820 + 0.2812i 0.6619 + 0.2580i
4 0 0.8092 + 0.09411 0.8223 + 0.0939i
1 0.7965 + 0.2844i 0.8601 + 0.26941
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3.2 Modes of Metrics Representing Compact Stars. When the
Schwarzschild horizon is replaced by a compact star, the character

of the problem changes dramatically. Supposing the star to be
transparent to our scalar field, then if the star is not very compact,
the metric is nearly that of flat spacetime and the wave equation
has the form

v+ [f - ne)riy =0,

where primes denote derivatives with respect to r. This has the
characteristic angular momentum barrier at r=0 (Fig. 3.2a). It
can be shown that there is no value of w for which Zin/Zout = 0.

If, on the other hand, the star is so compact that its radius
is less than 3M, then the wave equation will have an effective

potential that looks like Fig. 3.2b.

Problem 3.2. For the Schwarzschild interior so]ution] for a
uniform-density star of radius RS <3M, show that the local minimum

of V(r) in Fig. 3.2b corresponds to the existence of stable null
circular geodesics inside the star. Calculate (in a WKBJ approxima-
tion or with more accuracy) the normal modes the wave field has for
Re(wz) near this local minimum, and show that they decay exponentially
in time. Show that there are only a finite number of modes.

If we allow RS to increase for fixed M, eventually the star gets so
diffuse that the minimum and maximum in Fig. 3.2b disappear and we
recover Fig. 3.2a. The potential V(r) changes continuously with RS
(though it is not analytic in either r or Rs)’ and we would like to
think that the normal-mode eigenfrequencies change smoothly with Rs‘
But clearly they all have to disappear as Rs gets large enough. If,
as suggested in Problem 3.2, there are only a finite number of them,
then presumably they disappear one-by-one.
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Problem 3.3. Study the disappearance of the modes of Problem 3.2
as Rs increases. What happens to their role in the description
of the evolution of an arbitrary initial perturbation?

(a)
Vv(r)
fu+nr?
0 T
(b)
v(r)
0 R; :3M r

Figure 3.2. (2) The effective potential of flat spacetime
is just the angular-momentum term. (b) Quantitative
character of V(r) for a star of radius Rg < 3M. The
potential for r>Rg is the same as in Figure 3.1, so it
has a maximum near 3M. Near r=0 spacetime is flat and
the angular-momentum rise dominates.




3.3 Modes of Rotating Stars with Ergospheres. Things get even

more interesting when we allow our stars and black holes to rotate.
Once a star rotates, spherical symmetry is broken and the wave
equation no longer separates. But we can get a qualitative under-
standing of the effects of rotation by studying waves on the
following background metric:

ds2 = - 92¢(r) dt2+e2A(r)dr2+r2d62

+ rzsinze(d¢-c(r)dt)2 . (3.9)

This turns out to be a good approximation for compact rotating
stars.7 The scalar wave equation separates, using spherical
harmonics, but now because the metric is not invariant under
the reflection t > -t but is still invariant under {t - -t and

¢ + -¢}, the radial equation has terms not just in wz but also

in mw, where m is the axial eigenvalue of Y Separating the

o
equation as before and defining

dr,/dr = exp(A-2) . (3.10)

we obtain the radial equation

2 ) '
——%-+ [(w+mo)2 + A——%EL-eZ(A’¢) - &j&;ll eZQ]w =0 . (3.11)

dry r

[=%

Since ¢ is a function of r, this contains linear terms in w in an
essential way. Such cases do not arise in the Schrddinger equation,
but we can generalize our intuition by factoring the potential term:

2
9L b (v, ) (v )} = 0 (3.12)
dr,
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where

L

1 ' - 2
L(a41) 20 _ A ;d> e2(A <I>)] (3.13)
r

V,(re) = -mo(r)+ [

again depending on r, implicitly through r. In this case r, is a
regular function of r and we can set ry= 0 where r =0, while as

r » «, r, approaches r. The potentials V,  are sketched in Fig.

3.3a for a slowly-rotating star (o small) and in Fig. 3.3b for a

very rapidly rotating star. In the limit of large 2 and m= ¢ we
should recover the equation for null geodesics in the equatorial

plane, and (3.13) becomes

v, = ml-o ¢e¢/r] . (3.14)

*

We can see that V_ is negative, as in Fig. 3.3b, where e¢- ro is

negative. From the metric {(3.9), this is where 900 in the equatorial

plane is positive: this is an ergosphere, like that outside the

Kerr horizon. Because there is no horizon, it is toroidal in shape.
How do we 'read' factored-potential diagrams 1ike Fig. 3.37?

In the standard picture, Fig. 3.2, the wave has oscillatory character

where wz > V(r,), because there w'1 dZW/drE is negative. This is

the classically allowed region, in quantum-mechanical language.

Conversely, the classically forbidden, tunnelling region is where

Wl < V(r,), i.e., where w-1 dzw/drz > 0. In our factored potentials,

w-] dzw/dri will be negative where w exceeds both V, and V_ or is

less than both, so the wave-l1ike region, marked 'allowed' in Fig.

3.3b, is above V, and below V_. Similarly, the tunnelling, 'forbidden’

region is between them, where w'] dzw/drz > 0. In the limit of large

m these potentials govern equatorial null orbits. In Fig. 3.2b

there was a single stable photon orbit at the minimum of V(r). This

is really two orbits, since a photon can go around in either direction.

In the rotating case, Fig. 3.3a, these two orbits occur, respectively,

at the minimum of V*.andthe maximum of V_: they have different radii
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and one frequency is no longer the negative of the other. Since

the wave solution is proportional to exp(im¢+iwt), and we assume
without loss of generality that m>0, a wave for which w> 0 has
d¢/dt <0: it is counterrotating. So V+ governs counterrotating
orbits and V_ corotating ones. When there is an ergospere, as in
Fig. 3.3b, both circular orbits have become corotating: no particle
can remain at rest.

(a)
Vv
V,(r)
O T,
V_(r)
(b)
Vv, (r)
ALLOWED
(o] M.
FORBIDDEN
ALLOWED

Figure 3.3. (a) The factored potentials for a slowly
rotating version of the star in Fig. 3.3b. They are
basically tne square roots of V(r) for the spherical star.
(b) If o(r) is sufficiently large, V, can dip below the axis.
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In Problem 3.2 we pointed out that there would be normal
modes of the scalar field associated with the stable photon orbit
of Fig. 3.2b. Comins and I have calculated these for Fig. 3.3
in the WKBJ approximation. In Fig. 3.3a the potentials give rise
to exponentially damped normal modes. But when, as in Fig. 3.3b,
V+ dips below the axis, there are exponentially growing modes:
the star with an ergosphere is unstable. This is the ergosphere
instability discovered by Fr‘iedman.9 On physical grounds the
instability is easy to understand. The mode in question corresponds
to a photon orbit of negative energy in the ergosphere. When the
wave tunnels through the barrier to large r it radiates positive
energy. This can only be compensated by decreasing the already
negative energy in the ergosphere. The wave amplitude grows there,
sending more waves to infinity, thereby amplifying itself further.

3.4 Modes of the Kerr Metric. Although stars with ergospheres
may be rare in nature,7 we believe that black holes with the Kerr

metric may be all over the place. Does the ergosphere cause a
similar instability? This question still has no definitive answer,
although Detweﬂer]0 has recently suggested that a subtle kind of
instability does exist.
In contrast to the case of the rotating star, we need make
no approximations to separate the wave equation on the Kerr back-
ground: the equations for scalar, electromagnetic, and gravitational
waves all separate = using spin-weighted spheroidal harmonics. For
scalar waves, these are the ordinary spheroidal harmonics whose
properties are catalogued in a number of books.]2 Our discussion
of the Kerr problem will be qualitative; the most complete study
to date is in a recent book by Chandrasekhar'.]3
The factored potentials for the scalar wave equation are
sketched in Fig. 3.4. There is only one feature of this diagram

that our previous discussion has not prepared us for: the fact
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that both potentials limit to -mﬂH as we approach the horizon,
r, > -=, where QH is the angular velocity of the horizon itself.
This means that the wave behaves like a free wave in the two
asymptotic regions r, -+ #=, but with a different zero point for
the frequency. Moreover, the correct boundary conditions at the
W the
condition is the usual one that the wave be ingoing. But for

horizon depend on the frequency. For w>0 and w< -mQ

0>w> -mQH (the 'superradiant' frequency range) the wave carries
negative energy and its phases are outgoing near the horizon, as
measured by the unphysical observer at rest with respect to infinity.
(As measured by an observer on a timelike world line near the
horizon, all three frequency ranges have ingoing phases and ingoing
energy with these boundary conditions.)

»&

out

Figure 3.4. Factored potentials for the Kerr problem.
The ergosphere causes V4 to dip below the axis, and it
stays below as r, =+ -« because the ergosphere continues
to horizon. Both V. 1imit to -mQy at the horizon, where
3y is the angular velocity of the horizon, a/2riM. The
appropriate wave conditions near the horizon are shown
for the different frequency regimes.
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Qur study of Schwarzschild suggests to us that there will be
modes at the peaks of V. If Fig. 3.4 is qualitatively correct
for all possible parameiers in the problem (&,m, and a) then Re(w)
will be outside the superradiant regime for these modes. They will
carry positive energy to the horizon and to infinity, and they will
be damped. But are there any analogues of the ergosphere modes of
Fig. 3.3b here? The long tunnelling region for a mode with
0 >w>°mQH in Fig. 3.4 suggests not: WKBJ intuition argues that
it would be impossible to match a purely outgoing wave on the left
to a purely outgoing wave oOn the right unless the tunnelling region
were small.

Detwei]er‘]0 has given a delicate asymptotic analysis which
indicates that, for a nearly equal to M all Re(w) near -mQH, such
modes do exist and are unstable. Is it possible that our picture
in Fig. 3.4 is wrong in some important detail for a near M? It is
hard to know what detail to look for, but the following properties
of V can be shown to hold for all a <M: (i) V_ decreases away
from the horizon, so it has a minimum at some w< —mQH; (i) V+
increases away from the horizon and has a maximum at some positive
value of w. Perhaps V, have secondary maxima or minima that we
do not know about, or perhaps they even intersect somewhere.
Unlikely as these possibilities seem, the reason that they cannot
yet be discounted is that we do not yet know enough about V_.

Their form is:

V. = . -Zmar ,f(rz-Zr‘+a2)1/2
- 2,2

2 2%
22 rc+2r+a”|*
77 a .
* (rf+a”) rta }

2
A+ z_z_r-a -mfa®
[ r (r2+a2)

(3.15)
The problem is with A, which is the separation constant from the

spheroidal harmonic equation. For the spherical case (a=0) we
have A = 2(2+1). But when a#0, X is a function of azmz. That
means that Fig. 3.4 is somewhat deceptive: V_ have a (hopefully
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weak) dependence onw. Even in the limit m= 2 + ©,w = -mQ

-+ -~
)

H

there are few analytic results for A to help us.

Problem 3.4. Obtain asymptotic expressions for A in the limit

msw, 2/m fixed, w/m fixed, perhaps by the methods of Thorne.
Use these to investigate Detweiler's

14

10 modes.

Footnotes §3

1.

w N

10.
1.
12.

14.

Qur conventions on notation follow C. W. Misner, K. S. Thorne,
and J. A. Wheeler, Gravitation (Freeman, San Francisco,
1973). In particular we set ¢ = G = 1 and let Greek
indices range from 0 to 3.

T. Regge and J. A. Wheeler, Phys. Rev. 108, 1063 (1957).

B. F. Schutz and C. M. Will, unpubTished. An equivalent
calculation using inverse-potential methods 1s given by
B. Mashoon, in the Proceedings of the Third Marcel
Grossman Meeting, R. Ruffini (ed.), to appear.

S. Chandrasekhar and S. Detweiler, Proc. Roy. Soc. (London)
A344, 441 (1975). - T

S. Detweiler in L. Smarr Sources of Gravitational Radiation

(Cambridge University Press, 1979).
. W. Kearney, L. S. Kegeles, and J. M. Conhen, Astrophys.
and Sp. Sci. 56, 129 (1978)

X

B. F. Schutz and N. Comins. Mon. Not. R. Astr. Soc. 182, 69
(1978)

N. Comins and B. F. Schutz, Proc. Roy. Soc. (London)A364,
211(1978) y

J. L. Friedman, Commun. Math. Phys. 63, 243 (1978)

S. Detweiler, to be published. 185, 635 (1973)

S. A. Teukolsky, Astrophys. J. 189, 3

For example, M. Abramowitz and I. A. Stegun, Handbook of

Mathematicat Functions (National Bureau of Standards,
Washington, D.C., T13964)

S. Chandrasekhar, Mathematical Theory of Black Holes (Oxford
University Press 1983).

R. C. Thorne, Phil. Trans. Roy. Soc. (London) A249, 585-621
(1957).

55



o

4, Linear Perturbations of General-Relativistic Solutions

In the last section we argued on physical grounds that a mass-
Jess scalar field was not a bad approximation to a perturbed gravi-
tational field, but that argument clearly fails if the wave has to
interact with a matter perturbation. In this section we study the
full perturbed Einstein equations for a self-gravitating perfect
f]uid.] The equations have some beautiful symmetry properties which
enable powerful theorems to be proved with relative ease. Never-
theless, when we investigate them more closely we find puzzles that
we will not be in a position to unravel until §6.

4.1 Relativistic Fluid Dynamics. A perfect fluid in general

relativity is characterized by the stress-energy tensor

™ = (prp)UHUY + pg*¥ , (4.1)

where p is the total energy density and p the pressure in each fluid
element's momentary rest frame. If we assume a particle conservation
law

(nu). =0 (4.2)
3
then the equation of motion

™ =0 (4.3)

s =0 . (4.4)

There is in fact another conservation law, that of vorticity con-
servation. If we define the specific momentum to be

v, = (o+p)Uu/n (4.5)
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then if the specific entropy is uniform, VUS =0, the curl of the
specific momentum (the vorticity) is convected with the fluid,2

.z"u(vuvv -y =0 , (4.6)

where £, denotes the Lie derivative3 along the vector field oM,

This is the relativistic form of the well known Helmholtz vorticity-
conservation theorem. Less well known, but just as important for
our purposes in 86, is its generalization to fluids in which VUS #0.
This was first discovered for nonrelativistic fluids by Erte14 and
generalized to relativity by Friedman:5

£,(7[, 5% Vyp = 0 : (4.7)

4.2 Perturbation Equations. Suppose the set (gaB,o,p,Ua) satisfies
Einstein's equations on some manifold M. How are we to describe a
perturbation of this solution, by which we mean another solution
(§a8,5,5,ﬂa) on the same manifold M which is not very different from
the first solution? The most naive way is simply to assume that the
differences between the solutions at the same coordinate points are
small. These are called the Eulerian perturbations:

H)

has(xu) = §aB(Xu) - gaB(x

so(x") = p(x") - o(x*)

U)_

= p(x") - p(x)

Sp(x
SUR(xM) = T%(xM) - U (xM) (4.8)

are all small in some sense. This is the prescription we shall adopt
here. In §5 we will refine it to make it at once more geometrical
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and more amenable to asymptotic analysis. We regard haB,ép,ép, and
su% as scalar, vector, and tensor fields on the manifold M.

It is customary, however, to insist that the perturbed solution
represent the same physical system as the unperturbed one, just in
a different state of motion. This leads to the idea that there
exists a way of indentifying a fluid element at X of the unperturbed
configuration with the 'same' one at a perturbed position X+ éa(xu)
in the perturbed configuration. This quantity Ea is called the
Lagrangian displacement vector field. The identification only makes
sense if the perturbed state could be obtained by moving the fluid
elements around while preserving the conserved quantities of mass,
entropy, and vorticity. How do we express these conditions?

One can think of £ as the tangent vector field to a congruence
which represents an increasing deformation of the fluid. The perturbed
fluid element at x" + £ has a four-velocity 0% which differs from the
unperturbed field u* at XM+ ¥ by sU%(x"+£*). But in the unperturbed
state the element's four-velocity was ("), not U(xM + "), so
the change in its four velocity involves the difference between
Ua(xu+€u) and Ua(xu). On a manifold with a connection we could
represent this as (£-v)U°% but it is more convenient to take it as
££Ua. This defines the Lagrangian change

A = s+ JEUO‘ (4.9)

where we can evaluate sU% at x" rather than x”+£“, the correction
being of second order. Equation (4.9) can be applied, of course,
to any tensor field on M. '
Now we can formulate our conditions on the perturbation. We
demand that 4S, A(nU%/=g), and A(F S g VY]) all vanish. Normally
o

only the first two constraints are imposed. The necessity of using
the third was first understood by Friedman and Schutz.6 With just
the first two constraints it is possible to prove the following
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results for the first-order perturbation of an arbitrary solution
of Einstein's equation with perfect f]uid.] The perturbed Einstein
tensor has the compact form

() 2o[GMV(<q) %] = - 1 MR VBY g g h +g"Bh  (4.10)

2 o (o B} Ay aB
where
GUVOLB - ;_ RU(OLB)\) 1{3 Ru(on B)\) ? v(agS)u_ RuvguB_ RaBguv]
R(g“a V8 +g Bgva _ QUvgaB) ) (4.11)
The tensor GWO‘B has the properties
B o gIeB) e e g (4.12)

Similarly the perturbed stress-energy tensor is
(-9)7% Al (-9) 1 = WP ag (4.13)

where AgaB is the Lagrangian change in 98

B9ye = hyg * Tufp * Vs o (4.14)
and with
Wt o Lo B + 3 p(a®Bg™Y - gMgBY - g*VgtH)
- 3 7p(g™ + VW) + UY) (4.15)

where vy is the adiabatic index (3 &np/d &n n)S. Again we have the
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symmetries

yived ) (eB) | eBuy (4.16)

The symmetries enable us to prove the following ‘hermiticity’
relation for two independent perturbations (barred and unbarred),
which do not necessarily satisfy any field equations:

- aB = af af
16m Ea A(VBT )+ haB §(6 - - 8aT )
- N aB 7 (0B af H
= 16m & AV,TF) + h o 8(67F - 81TT) + v, R (4.17)

where R¥ is some vector field bilinear in barred and unbarred
quantities.

4.3 A Stability Theorem. Suppose now the unperturbed metric is
stationary and asymptotically flat and that t is the Killing time
coordinate. We imagine we are perturbing a rotating star. Then

we suppose we have a solution of the first-order perturbed field

equations of the form

o= ettt gy L pvTyeiut (4.15)

where x' denotes the three spatial coordinates. Since the barred
terms were arbitrary in Eq. (4.17), let

_ i % s _ s % s
R I A I (4.19)

where stars denote complex conjugates. The barred quantities are

not overall complex conjugates of the unbarred ones because w is

not necessarily real. The perturbed field equations imply the
1.h.s. of Eq. (4.17) is zero, and since it involves second time
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derivatives 1t has tnhe form

2 . J .
WA -iwB -C + Vj RY =0 (4.20)

for quadratic functionals A, B, C, and Rj whose form is listed in
ref. 1. The key point is tnat A, 1B, and C are all hermitian forms
and hence have real values when integrated over all space. If we
therefore integrate Eq. (4.20) over an asymptotically tuture-
directed null hypersurface, a remarkable thing happens. The div-
ergence in {4.20) becomes a surface integral at future null
infinity and is just -4iw times tne modulus squared of the Bondi
news function of the perturbation huv' This leads directly to

the stabitity theorem: along a sequence of unperturbed models, a
mode which involves gravitational radiation can change from stable
to unstable only through zero frequency, w = 0. This is because
the mode will have real frequency at the transition, and if w 1s
real tne integral of the first three terms of Eq. (4.20) is real,
while the final term is pure imaginary. The equation can hold
only if this imaginary term vanishes. Since the news function
will not vanish for a radiative, time-dependent motion (w # 0),

we must have w = 0. This is a powerful restriction on where we
need to look for marginally stable modes, and is certainly not
true for, say, Newtonian perfect-fiuid stars.7

4.4 Tne Energy Criterion. From Eq. (4.20) it is clear that a

necessary condition for marginal stability (w = 0) is that the

integral of C vanish. This can be shown to be sufficient as well,

in the sense that if C > 0 but C ¥ 0 on perturbations satisfying the

initial-value constraints, then there is a mode with w = 0. What is C?
Associated with the symmetry (4.17) is the existence of a

conserved quantity when the unperturbed metric has a Killing vector

field. In the case of a stationary metric this is an energy-like

quantity. The integral of |m|2 A + C is the energy when evaluated
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for our mode, so the stability criterion is an energy criterion:
if the energy of a stationary perturbation vanishes then the star
is marginally stable.

4.5 The Trivials. So far the picture looks very nice. We
apparently just need to evaluate the energy of stationary perturba-
tions to determine the stability of a star. But not quite. In

terms of initial data we can give eight functions of x' for the
fluids's dynamical equations in their Lagrangian form: the four
components of each 5“ and éa. But in the Eulerian description
there are only five quantities: sU%, p, and p. (The normalization
U°6U° = 0 means that there are only three independent quantities
among the four sU%.) So it is therefore possible to write down a
set(&“,?;“) which represents no physical perturbation at all. These
are called the trivial Lagrangian displacements.6 Unfortunately,
one can find trivials which make the 'energy' negat1‘ve.5’6 This
means that the energy-like quantity ]wle + € is not the physical,
second-order energy, since it can be nonzero even when there is no
physical perturbation,and the marginal stability criterion is empty.

What, then, does the stability criterion mean? We have to
look more closely at the meaning of our perturbations before we
answer that.

Footnotes 4

1. Much of this section comes from J. L. Friedman and B. F.
Schutg, Astrophys. J. 200, 204 (1975); errata 222, 1119
(1978). - -
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5. Asymptotic Approximations to Sequences of Operators
and Solutions

In order to understand some of the puzzies that first-order
perturbation theory leaves us with, we must realize that we use
the first-order perturbation as an asymptotic approximation in the
sense of Eq. (2.2). We may be interested in approximating a
particular solution of the full field equations, say for a star
pulsating with surface amplitude Ar/Rs = 0.1, but we do not know
what the error would be if we used only the linear perturbation
solution with that amplitude. A1l we believe is that we can make
the error as small as we like if we reduce the amplitude Ar/RS of
the full solution sufficiently. The linear perturbation analysis
is therefore an approximation to a sequence of full solutions, of
which the unperturbed solution is the first member. In this
section we will therefore study sequences of operators and their
solutions, building up to a picture of perturbation theory involving
fiber bundles of solution manifolds (the fibers) over the real line
(the sequence's parameter).

5.1  Sequences of Linear Operators. To fix our ideas, let us study

a hypothetical sequence of linear operators L(e;x“), 0<e<1, and a
M)

sequence of solutions ¢(e;x of the equation

L(e)o(e) = O , (5.1)

where each ¢ is an element of avector space S. If we suppose that
L(e) and ¢(c) are differentiable in € up to some order then we
can write (5.1) as

(L0+EL1+52L2+...)(¢o+s¢]+ez¢2+...) =0 , (5.2)

where L = L(o;x"), L, = 3L(e; x")/%¢ at € = 0, etc. Since (5.2)
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holds for all ¢ we have the hierarchy of equations

Lo%o =
Loty *Lydg =0

(5.3)

|
o
-

Lodp + Lyoy + Loy =

and so on. These are to be solved in sequence: first solve for o>
then use that solution to solve for ¢ etc. Therefore the nth
equation is the inhomogeneous linear equation

Lotn = = Li®pq ~Lo®pp = o ~ Lo - (5.4)
So at each step we need only invert the operator LO‘ Each inversion
requires the application of initial data and/or boundary conditions.
If we are solving the hierarchy given by Eq. (5.3) then we must
recognize that the data are free at each order.

It often happens that the problem that generates the original
equation is invariant under some group G. In general relativity
this will at least be the group of coordinate transformations
(diffeomorphism group). In electromagnetism or other gauge theories
this will be a Lie group. There will be a representation of G
acting on the vector space S of solutions ¢, associating with each
element gcG a transformation ¢-»gs¢ in S. The idea is that ¢
and gs¢ are physically equivalent. Suppose we take a one-parameter
sequence of elements g(c) € G beginning with the identity element,
g(0) = e, and apply it to ¢(e). Then the asymptotic expansion
becomes

95(€)o(e) =¢0+ew]+g§h)+e%¢2+gg¢]+%gg¢0)+.“ ,)
(5.5




where g; = dgs(c)/de at € = 0, etc. Under this kind of transforma-
tion ¢] is changed by something which depends on ¢0 alone. This

is familiar to relativists from studying 'gauge transformations'
(infinitesimal coordinate transformations) in linearized theory

and in the post-Newtonian hierarchy.

Equation {5.5) applies also if ¢ is not just the solution but
any observable property or functional F(¢), provided G acts
naturally in the space H of values of F. If it happens that F(¢0)=O
then F], the first correction to F, will be gauge-invariant, because
the gauge change gﬁ F(¢O) will vanish. This applies, for example,
to the Riemann tensor of linearized theory, which is invariant under
infinitesimal coordinate transformations because the Riemann tensor
of flat spacetime vanishes. In general, F will be gauge-invariant
at its lowest non-vanishing order. This was first noticed in the
context of general relativity by Sachs],

5.2  Exact Conservation Laws of Approximate Equations. Of course,
Einstein's equations are not linear, but most of the preceding

section is easily adapted to this case. 1In particular, the remarks
on invariance groups are unchanged. When Einstein's equations are
replaced by some approximation--linear perturbations, Newtonian and
post-Newtonian equatijons--the approximate equations may admit some

exact conservation laws. Linear perturbations of a stationary metric
have a conserved energy. The Newtonian equations conserve not only
energy and momentum, but also the period of an orbit and the position
of its perihelion. (Here 1 use the word 'conserve' just to mean

that the time-derivative is zero.) To what extent do these proper-
ties carry over to solutions of the full equations? What information
do we need in order to compute the extent to which the full theory
violates these laws? 1In this section I follow the arguments of
Futamase2 and of Lapiedra, et a1.3
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We suppose a nonlinear set of field equations
Gle;0(xMse) = 0 (5.6)

for a field ¢, which is an element of some vector space S. An
approximation to these equations of order N is the set of equations
(6)cug = 0. (d6/de) g = 0, ..., (do7de) g = 0. Using our
notation for the asymptotic expansion of ¢ introduced in Eq. (5.2),
we can write these more explicitly as

6(036,) = Boleg) = 0

85 (0:09)(07) 261(67) = Hy(8g)

G](¢N) = HN(¢09¢],---r¢N_]) . (5-7)

(The main difference from Eqs. (5.3) is that the H, are nonlinear,
but the operator G] = §6/6¢ is still a linear operator.)

Now we define what we mean by a conservation law. It is of
course some functional F of {¢0,...,¢N}, with values in a space H,
whose value is constant as {¢n, n=0,...,N} evolve according to Eq.
(5.7). Since it is constant, it depends only on the initial data
for {¢n}. Moreover, since we are interested in how F changes when
¢ satisfies the full field equations, we restrict consideration to
fuactions which depend on {¢n} only in the combination botedy * .-
+e ¢N. We assume therefore that we have a function

F= F(€;¢0+s¢] + ...+ eN¢N) , (5.8)




where dF/dt is identically zero when {¢n} satisfy Egs. (5.7). This
is to be zero to all orders in e, since it is an exact conservation
law of Egs. (5.7). Now we define the lowest-order conserved
quantity

Folw) = F(03p) (5.9)

and assume Fo(w) # 0. (If it is zero then we would simply go up
order by order in € to find the lowest-order conserved quantity.)
Then we write

Flesw) = Folw) + aF(esy) , aF(v) = O(eFy(v)) . (5.10)

The conservation law implies that

dd—t F(s,¢0+...+eN¢N) = é’jf Folog*.-.) + aqt‘AF(E;“’o +..0)

I
[en]
=
N
+
(=]
&>
-
.
=
.
Nt

H
o

(5.11)

where 6F0/6¢ and 8AF/6y stand for the linear operators which are the
functional derivatives of the functionals F0 and AF defined in Eq.
(5.10).

What happens to F(c:;¢(c)) when ¢(e) satisfies the full equation?
We have

SF
3t Fleso(e)) = 2 (3e)) + %8F (3(e))

N N+2

But $(c) equals $o-+... +eN$N + M1 $N+1 plus terms of order ¢ <,

so the exact law (5.11) implies
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&F . N+2,y , SAF N+1
ad? Fleso(e)) = _&D_O (" by + 0T )+ (0(70))

We have not written the argument of the second term explicitly
because AF is already of order e times FO’ so this second term
is of the same order as the 0(5N+2) terms from the first part.
Therefore we have

£ Flesole)) = ™ %—)9 (bay) *+ OGEN2) . (5.12)
This is our main result. It means that the rate of change of F
depends only on the lowest-order part of the conservation law Fg,
evaluated on the lowest-order part of the solution ¢0, and
operating on the first order of $ above that at which the conserva-
tion law holds. This is a remarkable result: even though the
conservation-law violating terms may be of quite high order, their
effect depends only on the lowest order, not on intervening orders.

Examples of this theorem are common. If the sequence of
solutions is the one we will study in §7, then the various orders
are the Newtonian and post-Newtonian approximations. In the
Newtonian equations, the periastron of the orbit of the two-body
problem is fixed in space. This is a conservation law: the rate
of change of the periastron is zero. The post-Newtonian equations
break this law, but it is well known that to compute the periastron
shift we need only the solution for the Newtonian orbit, not the
full post-Newtonian solutions. Similarly, the radial motion of the
two-body problem is periodic through post-post-Newtonian order: the
period is a constant of the motion. The 2%-post-Newtonian radiation-
reaction terms break this conservation law, but to calculate the
period derivative we only need the Newtonian solution for the orbit,2’3
not the post-post-Newtonian one.




If there is a gauge group for ¢ and the equations G(¢) =0,
as discussed in the previous section, then the sequence of trans-
formations g(c) will induce gauge transformations of the various
b By an argument similar to the one we have just given one can
show that Eq. (5.12) is gauge-invariant to the lowest order: the
periastron shift or period change do not depend on gauge trans-
formations that affect post-Newtonian orders, despite the fact
that they are post-Newtonian effects.

5.3 Fiber-Bundle Picture of a Sequence of Solutions. When we

study sequences of solutions of Einstein's equations in the next
sections, it will be helpful to look at the sequence as a five-
dimensional mam’fo]d,]’4 in fact a fiber bundle over the real line
(parameter ¢), in which each fiber is the four-dimensional manifold
which is the solution of Einstein's equations for that ¢ (Fig. 5.1a).
The fiber-bundie picture is natural because each solution is associated
with a unique value of ¢ but there is no natural map (in general)
between different solutions. Nevertheless, in order to describe
the tensor fields which solve Einstein's equations, we need to
relate points of any manifold M(e]) to those of any other one M(sz).
We therefore define an identification map e to be a four-dimensional
congruence of curves in the fiber bundle, parametrized by e, nowhere
tangent to the fibers, such that they 'cover' the whole of each

M(e) (or whatever region of M we are interested in). Then two

points P and Q in different manifolds are said to be identified

under e if they 1ie on the same curve of the congruence. Two such
maps are shown in Fig. 5.1b: e identifies P and Q while f identifies
Pwith Q'. If two identification maps e and f are 'close', as in
Fig. 5.1b, then one may be obtained from the other by moving along

a vector field n in each fiber. (This statement can be made more
precise by considering a family of identification maps, e(u). Then
n is 3/3u holding € fixed.)
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(a)

(b)

Figure 5.1. (a) Schematic picture of a fiber bundle of

solutions. The real line (e) is the base manifold and
each fiber is a solution of Einstein's equations.

{b) One-dimensional fibers with two different identifica-

tion maps e and f and the vector field n representing
their difference in each fiber.

Associated with each identification map is a natural way of
differentiating any field ¢(e) with respect to e, in order to
develop an asymptotic approximation. This is the Lie derivative
of ¢ with respect to the tangent vector field te of the identifica-
tion congruence (see ref. 3 of §4). If ¢ is a field in the fibers,
as all physical fields must be, then its Lie derivative will be,
too. So the expansion of ¢ will be

(5.13)

oeixt) < o0p) vety ool )Pen




The first-order perturbat1on in ¢ away from ¢(0) is the field £ b,
the second order is /(£t )2 ¢, etc., all evaluated at ¢ = 0. e
Usually no part1cuaar identification map is preferred. If
the manifolds are isometric (as in, say, special relativity) then
one might want e to be an isometry. If e identifies points with
the same coordinate values in the different manifolds as in s4,
it is usually called an Eulerian map and its derivative ite
is usually just called §. In fluid dynamics (again as in §4),
one sometimes identifies the 'same' fluid element in different
manifolds. This is a Lagrangian map: it carries fluid elements'
world Tines into each other. The derivative zte in this case is
usually called A. If we change from map e to a map f, then
Fig. 5.1b makes it clear that the effect to first order is

£, =& +4 . (5.14)
te te n
Where e is an Eulerian map and f a Lagrangian map, the vector field

n is called the Lagrangian displacement vector field, and Eq. (5.14)
becomes Eq. (4.9),

A=8+& . (5.15)
n
When operating on a scalar field this is the more familiar
= § + n.v . (5-]6)

Finally we note that an jdentification map enables us to
‘pull back' all the tensors in each M(e) to the 'unperturbed'
manifold M(0), so that all the fields ¢(c) become their images
¢.(€) in the same manifold. This is sometimes easier to work
with, but we will keep the general fiber bundle picture because,
in the singular Newtonian 1imit discussed in §7, we can attach
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various [imiting or boundary four-manifolds to the fiber bundle
which would be hard to describe on a single manifold.

Footnotes §5
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3 R. Lapiedra, M. PortiTla, J. L. Sanz, in press.
4 R. Gerocn, Commun. Matn. Phys, 13, 180 (1969).
6. The Instability of Rotating Stars

We can now return to our perturbation problem and look at it
in the context of a sequence of solutions. Let the 'unperturbed’
rotating stars be the € = 0 member of the sequence, and let the other
members be defined by initial data on a hypersurface which becomes the
t = 0 hypersurface in tne limit € -~ 0. We suppose for convenience
that the initial data are analytic fupgtions of € and tnat the data
which may be regarded as free (e.g. ', 95 in the ADM picture)
differ from the ¢ = 0 free data only in a compact region of the initial
hypersurface. For this problem one can prove a number of interesting
theorems which lead to the conclusion that all rotating stars are
unstable. We shall briefly look at the astrophysical consequences of
this remarkable result after we show how to arrive at it. In view of
the fact that our stabitity criterion seems to involve a second-order
energy-like functional, we begin by studying energy.

6.1 Energy in general relativity. By studying Noether's theorem

for classical field theories on fixed background metrics, Sorkin and
I]found tnat the usual canonical stress-energy 'tensor' (which is not
a tensor at all, but a pseudo-tensor) can be replaced by the truly
tensorial Noether operator, which acts (in general as a differential
operator) on any vector field £ to produce a genuine vector density,

called the g-momentum density of the dynamical field. When £ has




constant components, this gives the usual canonical energy or mom-

entum of the field, depending on whether £ is taken to be timelike or

spacelike. We want a version of this that will work in general rel-

ativity, but of course we know2 that there will be no local vector

density describing the energy of a gravitational field. Used with

care, however, a pseudotensor can be very helpful. We therefore def-

ined the gravitational Noether operator ﬁuv acting on an arbitrary i
vector field £ by

ar £8 = (o)t &0 h 0, (0 e/ (-0)h) (6.1)
where

WV = (Lg) (g8 - gVogHE). (6.2)

It is easy to verify the following important properties:

(i) there are no second derivatives of 9, in ﬁ“v-g“; (i) when
gv = const., ﬁ”v-gv is the Einstein pseudotensor; and (iii) when

£, = const. x(—g)i it is the Landau-Lifshitz pseudotensor. To make
use of this complex it is necessary to impose certain conditions at
spacelike infinity. The reason we took the free initial data for
our sequence to be nonstationary only in a region of compact support
was that we will now assume that there exists a foliation of space-
time near t = 0 by spacelike hypersurfaces # on which, as r + =,
coordinates exist such that

guv = nuv * hpv |

o(r (1 + 0)2y, by = o(r-(3 + @)/2, (6.3)

h
uv

where My is the Minkowski metric and o is some positive number. Then
if g” also goes to a constant in these coordinates one can show that
for a solution of Einstein's equations the quantity

P[E,H] = I (g Mg + ﬁ“\)-g") do (6.4)

(where dou is the appropriate coordinate volume element) is the usual
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energy-momentum associated with the asymptotic £&. The nice thing about
(6.4) is that it is an integral measure of the mass which is insensitive
to the far-field behaviour of guv’ in the sense that if we violate
Einstein's equations by arbitrarily changing the asymptotic behaviour
of I sufficiently far away (while remaining consistent with 6.3), we
make an arbitrarily small change in P[£,#]. It is therefore a fun-
ctional well-suited to variational and perturbation calculations. We
define the g-momentum of a pair (guv’ Tuv) and hypersurface ¥ by Eq.(6.4)
regardless of whether gpv and Tuv satisfy Einstein's equations. Of course,
when Einstein's equations are satisfied, Eq.(6.1) shows that

PEa) = 5 § g0 do (6.5)

the integral being over the 'boundary' of H, i.e. the 1imit r ~ = of a
2-sphere of radius r in #. Thus, for solutions, P[£,#] depends only on
the asymptotic behaviour of £ and the metric. We will be interested in
the case where & is timelike at infinity. Then P[E,H] is the usual ADM
mass of a solution.

6.2 First-order variation in the energy. Now suppose we have a

sequence of manifolds (g N Tpv)’ not necessarily solutions of Einstein's
equations, satisfying (6.3) for every . Llet there be some identification
map, whose first derivative is called A (but which we do not yet require
to be a Lagrangian map). Let X be a region with boundary 3x which is
preserved under the map, and let £ also be invariant under the map (Lie
dragged). The following equation is an identity on each

manifold:

S B PPY-T: aBy,_ 13} 4 8 4
v J(G 81 T°)(-q) EggaBd X + J Tas;ag (-g)i d'x
X X

=BL (%56 + (o)t efao, (6.6)

In the important case where (gaB‘ TaB) are invariant under £ in the g = 0
manifold, i.e. where




£ T =0 for € =0, 6.7
e T (6.7)

then the first derivative of Eq. (6.6) along the identification map

£
3 guv

gives

é{- 57 (6B - 8u%®) (-g)bag o€ + 2(-g)nulegay
o

- v, & -9t 'y 4 nT(-g)? s ¢
- [ﬁ“a-g“ + (-g)} ™% ) do = 0 (6.8)

This equation has a number of uses; in particular it can form the
basis of methods of constructing solutions of Einstein's equaticns by
finding extrema of the £-momentum. For our purposes it has one important
consequence, which follows from (6.8) by taking 3x to consist of two
hypersurfaces H and H' that approach each other asymptotically and then
by choosing our so-far arbitrary sequence for ¢ + 0 in such a way that
all variations A on H' vanish. Then the integrals in (6.8)
are restricted to K, and we find that if the € = 0 member is any
solution of Einstein's equations then the first-order change in the
£-momentum is

(e = [ (-1 E80-0)F ) + 1)t s ¥
H

+2n(-g)t vl av ) do, (6.9)
If we take £ to be an asymptotically timelike killing vector field at

e = 0, then this has the remarkable consequence that if the 'perturbation’
A is Lagrangian in the sense of §4 then AP[£,H] = 0: the first variation
in the energy of a stationary solution vanishes if we preserve the con-
servation laws of §4. That the first two terms in (6.9) vanish is
obvious. That the condition A(V[aSVBVY]) = 0 implies the third term
vanishes requires some work, which we now describe. In the natural
coordinates in which g% = &% and do = 6u°d3x, this final term is

J n U‘AVi (-g)i d3x, clearly just thg first-order change in the 'kin-
etic energy'. (The other two terms are of course the changes in energy
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caused by the addition of particles and the addition of heat.) The
€ = 0 conservation equations [n Tk (-g)]“],i =0 and U v; S =0 imply,

respectively, that n U' (-g)? = F'J j for some F1J FVIY which van-
ishes outside the star and that F'Y VJ. S = VJ. &' for some 7' = H[U]

that also vanishes outside the star. The condition above on the var-

iation in the vorticity implies, since AS = 0, that A(V[ivj]) = K[ivj]s

for some 1-form K,. But it is also true that A commutes with exterior
differentiation, i.e. with another curl operation: V[KA(ViVj]) =

AT V) = ich impli K. .
(V(k%V5y) = 0. which implies ViKyy can be taken to be zero without

lToss of generality. The chain of argument then runs as follows:

nUi A- é 3 = ij s . 3 = =- .ij . 3 =
J V1(Ag) d F ,JAV1 d x F Av[iv“ d”x

- f FY K vss o - JH”,J. K dx = - J WY vk x =0

6.3 Second-order change in the energy. So the first-order change in
P(g,#] is not automatically zero, but it is zero for Lagrangian pertur-
bations. This means that the conserved 'energy’ of §4, which is a second-
order quantity, probably is at least part of the (now dominant) second-
order change in P[g,5]. But it is easy to see that it cannot be the
whole second-order change. Suppose we choose a sequence in which the
first-order perturbations are all actually zero. Then the second-order
changes will be the lowest-order perturbation, and if, in an obvious
notation, we do not have AZS = 0, etc., then there will be a second-
order change in P[£,#] identical to (6.9) but with A replaced by b,.

Even if the first-order perturbations are not zero, the second-order
perturbations will still contribute such a term to A2P[£,H] ,and this is
completely independent of the conserved quantity of §4, I now conjecture
that A.P[E,4] is simply the sum of the 'energy' of §4 and the explicitly
second-order version of Eq. (6.9)

Problem 6.1. Prove this conjecture. It is known to be true
for the Newtoniag analogues of these sequences. The symplectic pro-
duct of Friedman” probably supplies the key.




We can now solve the puzzle we were left with at the end of §4. In
order that a perturbation be genuinely trivial, it must be trivial at
second-order, not just at first-order. But if it is trivial at second-
order then the second-order Lagrangian changes in S, etc., will not van-
ish and will, in fact, be rather complicated, involving among other things
terms quadratic in the first-order perturbations. Then contributions to
the second-order version of (6.9) will not vanish and will just compensate !
the first-order trivial's value of the 'energy' of 84, giving a net zero
change in P[£,H] to second-order.

Problem 6.2. Calculate the second-order terms in AZS’ etc., that are
quadratic in the first-order trivial and verify that they make P([£,H]
vanish at this order.

Problem 6.3. Generalize the variational theorems of Schutz and Sorkin]
to include black holes. Thereby get expressions for the first and second
order changes in the mass and angular momentum of the holes produced by
arbitrary dynamical perturbations.

Problem 6.4. Determine the asymptotic conditions on the metric and § for i
which P[£,H] can be used to calculate the angular momentum of a spacetime, !
either at spacelike or null infinity. Find variational expressions for
angular momentum.

Problem 6.5. Recast relativistic fluid perturbation theory and Ertel's
theorem into the rheometric formalism of Carters.

Problem 6.6. Develop a full theory of second and higher order perturbations
by using second and higher order tangent spaces to the fiber bundle sequence
of solutions, or to more general multi-dimensional spaces of solutions. The
theory may involve jet bund]es6 or the connections discussed by Gowdy7. For-
mulate and extend the theorems of §5 in this new language.
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6.4 The stability criterion rescued. Although we now understand why
the original stability criterion was unphysical, since it was not the
full second-order change in the energy, we have yet to formulate an
acceptable criterion. But it is not hard to see what it should be.

If we constrain our perturbations to give not only 4S5 = 0 and
A[nU°(—g)5] = 0 at all orders, but also A[V[GSVBVY]] = 0 at all orders,

then in particular the first-order change in the energy P[£,H] will vanish
and the part of the second-order change which is linear in second-order
perturbations will also vanish. The constraint on vorticity is natural in
view of Ertel's theorem. (Moreover, the condition of triviality 6 = 0 now
implies six constraints on (n, r'\), Jeaving only two remaining degrees of
freedom. It turns out4 that these are represented by the transformation
oM o+ £(x*)UM, i.e. a change in the Lagrangian vector which preserves
the world lines. This transformation has, as we have conjectured, no
effect on the energy P[E,H].}) A displacement which is fully Lagrangian in
this sense is called canonical. There are a number of other ways of
formulating the same constraints.8 If the initial data for a perturbation
are canonical, the conservation laws guarantee that the displacement will
remain canonical. It can therefore be shown"' that a necessary and sufficient
criterion for instablilty is that it is possible to find a canonical pair
(5,.'5) which makes the energy of §4 negative.

6.5. A1l rotating stars are unstable. These technical details about
the stability criterion might be of little interest except for the fact
that for any rotating perfect-fluid star it is possible to find a canonical
displacement which does have negative energy. The proof of this is given

by Friedman4 inthe relativistic case and by Friedman and me9 in the

Newtonian radiation-reaction approximation. The fundamental reason is not
hard to see. Consider a perturbation of the form £ ~ eim, where ¢ is the
azumuthal angle in the rotating star and m is very large. Because the energy
will be quadratic in derivatives of £, it will involve some terms in m2,
which can be made as large as we like by making m large. These terms come

in fact from the term -WH%8 Egaa Aguv contributed by Eq. (4.13), and they
are negative definite. One can verify that even when { satisfies the canonical
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constraints, and even when we solve the initial-value constraints for haB,

the energy can be made negative for sufficiently large m. Every rotating
perfect-fluid star is unstable to perturbations of sufficiently large m.

6.6 Astrophysical implications. This instability was first discovered

by Chandrasekhar10 for m = 2 in the Maclaurin sequence, which is an exactly
solvable sequence of rotating Newtonian stars of uniform density. It was
assumed by everyone that the instability for m > 2 would set in later, i.e.

in stars of larger angular momentum. In fact, as we have seen, it sets in
earlier. Comins]] has calculated the growth times for m > 2 for the Maclaurin
sequence in the radiation-reaction approximation. While not realistic, these
are the only numerical results we have, so we shall use them as a guide.

Problem 6.7. Compute realistic numerical models of compact rotating stars
in Newtonian gravity and calculate the instability points for various m
and the growth times of the modes in the radiation-reaction approximat:ion.]2

The instability is damped out by the effects of viscosity]3: as m gets
larger, the effects of gravitational radiation get weaker while those of
viscosity get larger because the characteristic length-scale gets smaller.
So our result for rotating stars is not valid for realistic stars above
some m. Given estimates of the viscosity in neutron stars, Friedman]4
has concluded that this is not significant for m ¢ 5. For m = 4 the growth
time of the instability is of the order of one day to 3 years, allowing
for uncertainties in the equation of state and estimates based on the
Maclaurin sequence, so this has a significant effect on stars. It sets in
when the star is rotating at about 700 to 1900 times per second, depending
on the same uncertaint:ies.]4 The millisecond pulsar, with a rotation rate
near 600Hz, may well be sitting at the m = 4 instability point. The nature
of the instability is to radiate away angular momentum: to spin the star
down. If all very fast pulsars have a similar histor,y]4 and hence a sim-
ilar mass, the instability could force them all to the same rotation rate.
Future observations will tell us whether this speculation is supported by
evidence.
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The radiation instability operates in other circumstances, particularly
in getting rid of angular momentum after gravitational col]apse.3 Here
the time-scales are so short that probably only the m = 2 and 3 instabilities
are significant.

Problem 6.8. Our discussion has been based on outgoing-wave-normal modes,
but very little is understood of their mathematical properties. Clarify
the idea of completeness, perhaps by studying model problems as in Gowdy]5

or Dysonls. Also extend the results of Ipser 7 to this case.

Problem 6.9. Detweiler and Ipser]8 have given a variational principle for

outgoing-wave modes of spherical stars. Generalize this to rotating stars,

perhaps using the Newtonian analogue of Schutzlg.

6.7. Consistency of first-order perturbation theory. We are familiar

with the fact2 that the linearized theory of gravity does not incorporate
any coupling of gravitational fields back to the matter that generates them,
so that it cannot describe any gravitational 'forces' on matter. It is
important to realize that this failing is peculiar to linearized theory

and is not shared by linear perturbations of non-trivial solutions of
Einstein's equations. The reason for this circumstance in linearized

theory is that the unperturbed solution is flat spacetime with no matter.
Any matter in the perturbed solution is first-order in the perturbation

and generates first-order waves. The coupling of these waves to the
equations of motion for the matter involves the product of the first-order
waves and the first-order matter, and is thus second-order and negligible
in linearized theory. In the cases we have considered in §4 and here, the
unperturbed solution contained matter, so the first-order waves can couple
to the zero-order matter to produce first-order effects in the equations of
motion. Thus, linear perturbations of stationary solutions incorporate
‘radiation-reaction’' effects within the linear order.

In the next section we will discuss the Newtonian limit, which is a
Limit essentially to flat spacetime. It shares some of the problems of

linearized theory, in particular in putting radiation-reaction effects at a
higher order, and it adds some unique singular features of its own. The

80




experience we now have with the regular perturbation theory of stars, and
the fiber-bundle framework we have developed for it, will be very helpful
in achieving a secure understanding of the Newtonian 1limit, which is at
once the most singular and most important limit of general relativity.
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7. The Newtonian Limit and the Asymptotic Nature of the Quadrupole Formulas

One of the most controversial problems of recent years has been over
the validity of the quadrupole formulas for the lowest-order gravitational
radiation from nearly-Newtonian systems. The quadrupole formulas (plural
because there are two, a far-field formula for the radiation emitted and
a near-zone formula for the radiation-reaction effects) have received more
attention and sparked more controversy than other approximations in general
relativity for a number of reasons. First, the long-standing confusion in
some minds about the reality of gravitational radiation itself raised sen-
sitivities higher than normal; and second, with the discovery of the binary
pulsar system these formulas became the first predictions of general relativity
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beyond post-Newtonian order that could be tested observationa]]_y]. But

the main reason is that there wereand still are genuine difficulties

over the derivations of these formulas, because the Newtonian limit is

a singular limit of general relativity. I will begin by outlining the
usual derivations of the Newtonian and post-Newtonian equations, and

then I will use the techniques we have developed here to formulate the
limit in a way that enables one to show that the quadrupole formulas are
part of an asymptotic approximation to a sequence of solutions of Einstein's

field equations.

7.1 Qutline of the usual approaches. Most textbooks extract the
Newtonian field equations from Einstein's equations in a slow-motion,
weak-field limit, either by formally letting ¢ -~ « and keeping the
leading terms in c-] or by assuming that the velocities v are small,

the stresses divided by the densities are 0(v2), and the dominant met-
ric perturbation is hgp~ 0(v2). One can go beyond Newtonian theory by
keeping successively higher-order terms in the same approximations. One

finds that the next terms after Newtonian order are 0(c-2) higher, and
are called post-Newtonian terms (pN). The post-post-Newtonian terms
(pzN) are another factor of c—2 higher. After that are a group of terms
only one power of c beyond pZN, and they are called post-2i-Newtonian
order, pz'sN.

Up to and including the pzN terms, the equations of motion for a
perfect fluid are conservative. There is a conserved energy-like quantity,
and two-body solutions are periodic. The solutions also involve only
elliptical operators, which require boundary conditions only at spatial
infinity. The p2'5N equations are not of this type. The terms of this
order require some conditions on the radiation, such as that it be out-
going far away. Moreover, they break the conservation laws and cause
changes in the period and energy in the manner described in §5.2. These
are called the radiation-reaction effects, because when one computes the
energy appearing at infinity in the manner described by Dr. Walker in his
lectures in this volume, it agrees with the energy lost locally to the

pz' 5N terms:




dE ] G se e .an jk
C -1 By, 1k, (7.1)
it 5 ok
where
=1, -+s, 1% (7.2)
gk T Lk T3 85 T '
- 3 7
Ijk = J P XXy d°x. (7.3)

7.2 Why there are problems. Although the derivations just described
give physically plausible, even desirable results, they suffer from a
number of prob]ems2 which arise basically because the limit is a singular
one: as ¢ + = the wave operator ([0 = -c-2 ai + V2 goes over to V2, and
the whole character of the problem is different. The global meaning of
the outgoing-wave boundary conditions that are usually applied is not
clear, because we do not know how to connect conditions at I-, where we
wish to exclude incoming radiation, with the metric in the sources. The
most serious problem is that if the method is continued beyond p2'5N one
finds divergent terms.3 This is so important that I will describe it in
some detail.

One imagines that these approximations form some sort of asymptotic
approximation to the full solution, e.g. that forg%othere is an expansion

4o= -1+ 2 (Newtonian part) + c_4(pN part)

6,2 7,2.5

+ ¢ O(p°N part) + ¢/ (p° 7N part)

+ < 83N part) + ... (7.4)
where each coefficient of ¢ " is a function of x¥ which is found by inte-
grating some differential equation. The problem is that the integral
which gives the 'p3N part' is logarithmically divergent as the upper limit
of integration goes to infinity. This means that if one wants to add up
the terms in Eq. (7.4) for some value of c, they behave nicely until

p3N order, where one gets an infinite contribution for any non zero c-].
This means that keeping the terms only through p2'5N order seems to be
making an arbitrarily large error: our post-Newtonian hierarchy of approx-
imations may not be close to the real world after all!

83




o

7.3 One way out: change the idealization. The divergent term came from
an integral over an unbounded domain, and a detailed examination of the
calculation shows that this integral is related to the attempt to apply

a no-incoming-radiation condition at I, which is infinitely far away.

Our remedy will be to reformulate the problem in more local terms, so that

we have integrals over finite domains.

The global condition that there be no incoming radiation is an
idealization as discussed in §2. The real binary pulsar system sits in
a bath of gravitational radiation incident on it from all sorts of sources.
But we believe that this radiation makes no important difference in the
problem, because it is uncorrelated with the dynamics of the system: it
is essentially random. The no-incoming radiation condition is one way of
idealizing the system as isolated. As with many idealizations, we have
no way of knowing exactly how good this idealization is, since we cannot
directly measure the radiation incident on the binary pulsar. Since this
idealization brings about the unbounded domains of integration that
produce the divergent terms, it seems sensible to change it.

Our new idealization allows incoming radiation, but insists that
it be random and that we average over its randomness. Specificalily, we
solve an initial-value problem in which the data for the fluid are fixed
but the free data for the gravitational field are allowed to be random.
lle adopt the coordinate condition

R =0 (7.5)

ROB - %8 - (-g)} oo (7.6)

described by Dr. Halker in his lectures. On the initial hypersurface
t = 0 one may choose h'Y and h'J o @rbitrarily and obtain R° from the
constraint equations. The cruciél assumption is that the random data
average to zero:

<> - 1 0> =0 (7.7)

where < > denotes an ensemble average. This is basically a random-phase
condition, and it replaces the usual no-incoming-radiation condition,




To construct a sequence of solutions with a Newtonian limit we have
to choose the initial data for the fluid in a particular way. To grasp
the idea we must first understand an important scale-invariance of
Newton's equations.

7.4. Newtonian scale-invariance. Newton's equations for a perfect fluid
are (with G = 1) i

V2¢ = 4mp (7.7) !
i
3P + 9y (pv') =0 (7.8)
i j i i i
paL V. + pvd ajv +3p+p3d=0 (7.9)

supplemented by an equation of state. These are invariant under the re-
placement

o(xi,t) > ezp(xi,et)

p(x ,t) > E4p(x1,€t)

o L (7.10)
Wix',t) » eVl (x,et)

®(x1,t) - €2¢(X1,€t).

That is, if the functions {p, p, vj, 9) satisfy Eqs. (7.9) then so do the
scaled functions in Eq. (7.10), as may be readily verified. A little
thought convinces one that this is precisely the scaling that our limit
clao (with Vi 0, ¢ = 0(v2), p/p = 0(v2)) applies to Einstien's
equations. Newton's equations are the approximation that scales as in
Egs. (7.10).

In an initial-value problem therefore, it is clear how we should
choose the data for a sequence of solutions of Einstein's equations that
should become Newtonian in some limit. We define the data to scale as in
(7.10).

85



o

7.5. The Newtonian fiber bundle. We define a sequence of solutions

by the initial data

p(t = 0, xi,e) = eza(x )

(7.11)

n
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o
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p(t = 0, x',¢)
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vj(t = 0,_xi,a)
plus Eq. (7.7).

The time-evolution of these data preserves their ordering, though of
course higher-order terms arise from the nonlinearity of Einstein's equations.
Thus, for t >0 we will still have p of order ez, but it will have e
(post-Newtonian) pieces as well.

In our fiber bundles of solutions earlier the identification map was
a convenience, but it was to a large extent arbitrary. But here it is
crucial, because we will use it to implement the scaling of time that our
scaled initial data require to resemble Newton's equations (7.10). We define

the dynamical time

T=ect (7.12)

and map points in the different manifolds into each other at constant

(1» xi). The name dynamical time is appropriate. If a Newtonian binary
system for € = 1 completes an orbit in a time T, then Eqs. (7.10) show

that the € = 3 system will complete an orbit in a time 2T, in other words

in the same interval of 1. Our identification map (Fig.7.1) thus identifies
points which are at the same dynamical phase in the limit € - 0.

With our coordinate choice (7.5) Einstein's equations take the form
given in Dr. Walker's lectures

O™ = -16m AW, (7.13)
where (J represents the flat-space wave operator in our coordinates and
AYV is a nonlinear function of A*Y and TV, They have the (formal) solution

Vx,t) = 4 J My, e pxey]) eyl ddy e AR (x',t),  (7.14)

C(Xist)




T = const. —— >

t = const.

Fig.7.1

The fiber bundle with only the t-coordinate of each M(e) dis-
played. The identification map with T = const follows the
solid hyperbolae. The dashed lines represent the t = const
identification map.

where C(xi,t) is the retarded coordinate light-cone of the event (xi,t)
truncated at t = 0 (see Fig.7.2) and ﬁﬁv is the unique solution of the
homogeneous equation CJRYY = 0 that satisfies the initial data we have
posed for our field.

A few words are in order about this solution. We presume that the
initial data for any e define a unique solution of Einstein's equation,
which is represented by Eq.{7.14). The fact that the integration in (7.14)
s over a coordinate light cone and not the true light cone is irrelevant,
since the homogeneous solution can and will prevent any faster-than-light
propagation of initial data. To assume (7.14) without ﬁﬁs would be an
approximation, and a questionable one. With it, it is exact.
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S(T,xi)

Fig.7.2

As ¢ +~ 0 for fixed 1, the t-coordinate of the point (X1,T) we are
looking at goes to «, SO its retarded light-cone C gets larger and larger.
It is this which eliminates the divergences at high order.

7.6. How the divergent integrals go away. Given the representation (7.14)
and the initial data (7.11), we can in principle differentiate Eq.(7.14) with

respect to € along the T = const map and evaluate these derivatives ate =0
to find successive approximations to the sequence of solutions. In practice
these calculations need a number of plausible but unverified assumptions
about the differentiability and convergence of the sequence, which must be
made in the absence of a theorem on the existence and uniqueness of solutions
of Einstein's equations for fluids of compact spatial support.4

The lowest non-vanishing derivative is indeed Newtonian theory, and
the pN and pZN equations emerge two and four orders of differentiation higher,

respectively. At the next order, the quadrupole radiation-reaction terms




come out as in previous calculations. But at the next order, dramatic dif-
ferences occur: there are no divergent terms. It is easy to see why.

For each €, the integral domains (light-cone C) are finite. The
integrands are the same as the integrands that would arise at p3N order
in the old scheme, but here they are integrated to an upper limit R prop-

ortional to e .

So an integral that in the old scheme diverged as &nR
now becomes fne times a finite number. Instead of a term eslnoo as in Eq.(7.4).

we now have egzne, and (7.4) is replaced by

950 "V + ez(N part) + 54(pN part) +

66(p2N part) + 57(p2‘5N part) +
Bane (P3N part) + B(pN part) + ... (7.15)
v 3Ly o . 8 , .
where 'p” "N' part stands for the finite coefficient of ¢ ¢ne and 'p°N part

stands for the remaining terms that were finite at p3N order in the old
scheme as well as here.

The reason for the divergence is now clear. The old iteration method
assumed that the only terms in the asymptotic approximation were powers of
e (or of c']). This turns out not to be the case, but by trying to force
it, the old method put a term into the p3N terms that was really of lower
(p3LN) order, so it naturally looked infinitely large compared to gen-
uinely p°N terms.

The lesson is that above pZ'SN order, the sequence of solutions is not

differentiable in € at € = 0, but it still has an asymptotic approximation
in ¢ that involves logarithms. There are no infinite terms, and in particular
the radiation-reaction terms in the equations of motion are good asymptotic

approximations.

7.7. Picturing the near-zone map. We have been dealing up to now with
the identification map (t, x‘) = const, which we shall call the near-zone

map n because as € + 0 the characteristic wavelength X of radiation gets
larger as e_] (because time-scales get longer as e_]), so any point x' = const
eventually enters the rnear zone ]xil < A2r. The effect of this map is dis-
played pictorially in Fig.(7.3).
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Near zone map in Proper Time

£=1 £<<1

Near zone map in Dynamical Time

P+ 0

£=1 . €<< 1
Fig.7.3

The upper left shows the manifold e = 1, with the t = 0
hypersurface, a light cone, the world tube enclosing the
matter region, and two events P and Q. These events are
mapped into the € = |/3 manifold on the upper right by
sending t + 3t. The same manifolds are displayed in the
lower figures using the coordinate T as the time coor-
dinate. The left-hand figure is unchanged but in the
right-hand figure proper time is 'squashed'. The events
P and Q occupy the same position but the light cone gets
flattened out. This picture is appropriate tor taking
the timit ¢ + « rather than € + 0.




Now we should ask about the € = 0 Timit of our sequence. Since
we know the limit is a singular one for the field equations, we should
not be surprised to see unusual behaviour here. From the initial data
it is clear that the € = 0 fiber is flat Minkowski spacetime. This is
reached as the € + 0 1imit of the t = const map in Eq.(7.1). But where
do the T = const lines go? They never reach the ¢ = 0 fiber. In Fig(7.4).
we re-coordinatize the fibers of Fig(7.1) to usetas the time-coordinate.
Then the t = const lines converge on the point in the lower right corner -
all of Minkowski spacetime is squashed to this point in this picture.
The 1imit € + 0 of the T = const congruence is a quite different four-
dimensional manifold, which I shall call NM, the Newtonian limiting
manifold of the fiber bundle M{e). (The Minkowski Timit is called OM).
One can show4 that it has the Newtonian geometry: a connection which
causes the effects of gravity, and a degenerate 4-metric.

Near zone limit Spaces

M (€) A
7]
T = const \
P SN Newtonian

t =const ~ - Spacetime NM

R 4 h N

~ ~
>~ ~N
~ - ~ N

~ ~ N
-~ \\L\\\\ L Minkow ski
~ @+ Spacetime OM

A
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7.8 The far zone. The manifolds in our sequence are complete man-

jfolds with outgoing radiation, but our map n has concentrated our
attention on the near zone around the fluid bodies. We can study the
far zone by definipg a new identification map f, which holds not only

T but also n1 = ex' constant:
f:(x',t) » (x'/e, t/e). (7.16)

The effect of this is to keep a point (n1,r) a fixed number of wavelengths
from the source as € + 0, which is to say that if (x‘,t) is in the far

zone (|x1| >> A/2n) for € = 1 then the corresponding (n1,r) will be there
for all €. These maps are displayed in Fig(7.5).

Far zone map in Proper Distance

—Xx JE——

€=1 £<<1

Far zone map in characteristic Coordinates

Pt

Fig. 7.5

As Fig(7.3) but for the far-zone map f. In the coordinates
(n1,rz in the lower right, the matter-occupied world tube
shrinks.




Since the map f puts us further and further away in proper dis-
tance as € » 0, the scaled metric in (ni.r) space approaches the
Minkowski metric with an arbitrarily small perturbation. The limiting
manifold FM (far-zone limit of M(g)) is shown in Fig(7.6) with the
manifold NM as the singular line at lni| = 0. The converse picture
showing where FM is in relation to NM is shown in Fig(7.7).

i in FM
Location of NM in Location of FM relative to NM

NM pro
LM
/
To FM T To FM
— t-0
oM

—qi

Figs. (7.6), (7.7)

By averaging in the sense of Isaacson5 to obtain the flux in the
waves on FM, we find that the 'constant' M/r terms go away and we are
left with the wave terms of the form discussed by Dr Walker in his
lectures, whose flux in the Isaacson sense is the same as their flux
at null infinity, namely the far-field quadrupole formula.

93




o

It is important to understand that we have not computed the limit
to I of the radiation in any of our manifolds M(e) Instead we have
attached a flat far-field four-dimensional boundary to our sequence,
in which the waves behave like linear waves. This is an appropriate
way of formulating the problem because the limit to I+ in any one
spacetime does not take into account the fact that as € + 0 the mass
of the spacetime is changing and thus the structure of I+ is changing.
We have combined these two limits of r > » and ¢ + 0 in such a way as
to get a boundary which is natural for the Newtonian problem, which is
fundamentally a problem of radiation in a sequence of solutions rather
than in a single solution. This limit is described further in a forth-

coming paper6.

7.9 What are we approximating? The various identification maps

described here have been chosen to facilitate the development of
asymptotic approximations in certain regimes. In the near zone we
have already described the approximation in some detail. The aim
there is to describe the motion of the fluid, and in particular to
calculate the rate of change of a binary's period. The results above
and in §5 suffice to do this, and the result is in agreement with the
observations of the binary pulsar.]

In the far field the choice of what to approximate has not usually
been clearly defined in discussions in the literature. It seems that
most writers have assumed that since I' and the Bondi flux give an
invariant description of radiation in spacetime, what is wanted is
an asymptotic approximation to it. The necessity of this is by no
means obvious to me.

In the end, any predictions will have to be tested by observations,
and the observer does not really sit at I+. The notion of I+ is an
idealization of the observer's position. The flux an observer would
measure at a fixed number of wavelengths away is presumably approximated
to order r°2 by quantities on I+. In our sequence of solutions we are
approximating what an observer a fixed number of wavelengths from the
source would measure. Since every observer is a finite distance away,
such an approximation is appropriate, and it is not necessary to Justify
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it by appealing to concepts developed at I in single spacetimes.

7.10 How accurate are the quadrupole formuias? Now that we know

that the quadrupole formulas are asymptotic, we must ask about the

size of the errors in using them. We expect them to be quite good for,

say, main-sequence stars, moderately good for compact stars, and bad

for black holes. But where is the dividing line for a given accuracy? ;

This question is of far greater consequence for astrophysics than many
of the technical mathematical problems associated with the Newtonian
Timit.

Error bounds can in principle be estimated from the next order
of the approximation, but this may in practice prove difficult. There
seems to be only one area where a fully relativistic calculation can
be compared with one using the quadrupole approximation: normal modes
of spherical stars. In the late 1960's and early 1970's, Thorne and
Detweiler independently integrated the linear perturbation equations
of general relativity (described in §4) numerically to obtain normal
modes with complex eigenfrequencies. Balbinski and I7 decided to
test the near-zone quadrupole formula by calculating Newtonian models
of stars, computing their eigenfrequencies, and using the quadrupole
formula to obtain their damping rate (hence the imaginary part of the
trequency). On the least relativistic models of Thorne and Detweiler,
with surface redshifts of about 5%, we expected agreement of perhaps
50% at worst. We found that we could compute the real parts of the
frequencies accurately, but were a factor of three larger in the
imaginary parts.

The fully relativistic calculations are delicate for such stars,
since the imaginary part of the eigenfrequency is much smaller than
its real part and numerical errors may be significant. Recent num-
erical re-calculations by Detweiler and Lindblom (not yet published)
using more accurate techniques, have narrowed the gap to a factor of
two, a circumstance that may be regarded as a minor triumph for the
quadrupole formula! It remains to be seen whether further numerical
improvements will narrow the gap still more. But this is only gne
example. Much more needs to be done.
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Problem 7.1 Either by comparing fully relativistic calculations with
quadrupole approximations or by estimating error bounds from higher
terms in the approximations, improve our understanding of the applicability

of the quadrupole formulas.

Problem 7.2 The quadrupole approximation should certainly fail in
gravitational collapse, yet in many collapses the velocities may not
exceed 0.1 - 0.3 ¢. Is there an approximation to general relativity,
perhaps neglecting radiation effects, which considerably simplifies
the equations that must be integrated numerically?

Footnotes §7

1 See J. H. Taylor and J. M. Weisberg, Astrophys. dJ. 253, 908 (1982)
for discussion and references. Because of the precision of the
pulsar 'clock' in this binary, the observations are accurate enough
to fit a number of post-Newtonian effects, which are sufficient to
determine the masses of the two stars and the eccentricity, inclination
and semi-major axis of the Newtonian orbit. The only higher-order
effect measureable is the change of the period of the orbit caused
by the radiation-reaction forces. This effect accumulates with
time and therefore can be measured despite its intrinsic smallness
by simply observing the system for a number of years.

2 J. Ehlers, A. Rosenblum, J. N. Goldberg, and P. Havas Astrophys. J.
208, L77 (1976). This paper contains references to the original
work on the problem by S. Chandrasekhar and collaborators.

3 An important study of them is by G. D. Kerlick, Gen. Rel. and Grav.
12, 467 (1980) and ]2, 521 (1980). He gives references to work on
the problem after that described by Ehlers et al., ibid.

4 petailsof the calculations appear in T. Futamase and B. F. Schutz,
Phys. Rev. D. (in press) and T. Futamase, Phys. Rev. D. (in press).

5 C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman,
San Francisco 1973).
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6 T. Futamase and B. F. Schutz, in preparation.

7 E. F. L. Balbinski and B. f. Schutz, Mon. Not. Roy. Astr. Soc.

ggg, 43P (1982). References to the papers of Thorne and Detweiler
appear here.
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