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Abstract. We study the effect of a moving grid on the stability of the finite dif-
fer‘e approximations to the wave equation. We introduce two techniques, which
we call “causal reconnection” and “time-symmetric ADI” that together provide effi-

cient, accurate and stable integration schemes for all grid velocities in any number of
dimensions.

1 INTRODUCTION

In the numerical study of wave phenomena it is often necessary to use a reference
frame that is moving with respect to the medium in which the waves propagate.
In this paper, by studying the simple wave equation, we show that the consistent
application to such a problem of two fundamental physical principles — causality

and time-reversal-invariance — produces remarkably stable, efficient and accurate
integration methods.

Our principal motivation for studying these techniques is the development of algo-
rit‘s for the numerical simulation of moving, interacting black-holes. If we imagine
a black hole moving “through” a finite difference grid then some requirements be-
come clear. As the hole moves, grid points ahead of it will fall inside the horizon,
while others will emerge on the other side. This requires grids that shift faster than
light. Moreover, in sitnations when the dynamical time scale is large, one would like
to be free of the Courant stability condition on time-steps, i.e. one wants to use
implicit methods. Full implicit schemes require the inversion of huge sparse matrices.
Alternating Direction Implicit (ADI) schemes reduce the computational burden by
turning the integration into a succession of one-dimensional implicit integrations.

We will present here our most important results, leaving a more detailed derivation
and analysis for a future paper (Alcubierre and Schutz (1992)).

2 THE WAVE EQUATION ON A MOVING GRID
We want to find a finite difference approximation to the wave equation using a grid
that moves with an arbitrary non-uniform speed as seen in an inertial reference frame
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(t,€). To represent this situation, we need to introduce a new coordinate system
(t,z) that will be comoving with the grid

= 't &), (1)
In the new coordinates, the wave equation takes the form
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where we have introduced the following quantities

e The spatial metric tensor g;;.

e The shift vector 3 defined in the standard way (Misner, Thorne and Wheeler
(1973))
(€ t+dt) = 2'(E,t) — cBidt. (3)

e The acceleration T defined in terms of the spatial Christoffel symbols
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3 THE ONE DIMENSIONAL CASE

3.1 Finite Difference Approximation
In this case the metric, shift, and acceleration reduce to scalar functions

s*(z,t) 1= gi.(x,1), Bz, t) := B'(x.t), [(z.t) := I'(z,t). (3)
Using these expressions, (2) becomes
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For the finite difference approximation to this equation we employ the usual notation
& = ¢(iAz,jAL).
We define the first and second centered spatial differences as
. . . . . . . iy
bl = Pl — 0l 616 = ¢y =20 + 6L o

We can then write a second order accurate implicit finite difference approximation 1
(6) in the following way
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with @ an arbitrary parameter that gives the weight of the implicit terms and p the
“Courant” parameter given by

p = (cAt)/Az. (10)

The above finite difference approximation will be implicit whenever the shift vector is
different from zero, even when 8 = 0. Therefore the use of implicit approximations
for the spatial derivatives does not add any extra numerical difficulty.

3.2 Local stability

It is well known (Richtmyer and Morton (1967)) that the implicit approximation to
the wave equation can be made unconditionally stable when 8 = T' = 0 and s = 1
by taking 0 > 1/2. We have been interested in studying under what conditions this
property is preserved with a shifting grid. The existence of a shift introduces a major
difficulty: the coeflicients in the equation generally depend on both position and
time. This means that the stability analysis must be local: we will only consider the
stability of the difference equation obtained from (9) by, at each point (z,t), taking
the coeflicients to be constant, with their values at that point.

When all the parameters are free to take any value, the resulting stability condition is
very complicated, and it is then difficult to find its consequences analytically. We have
therefore studied this condition numerically, in order to find regions of the parameter
space in which the finite difference scheme is stable.

We have searched through many values of the parameters, and our local stability
analysis suggests that the finite difference scheme will be stable for all time steps if

0> 1/2, s3] < 1, I irrelevant. (11)

3.3 Causal reconnection of the computational molecules

The causal structure of a grid shifting faster than the wave speed is particularly clear
in the original (£,t) coordinates. In Figure 1 we see how, for a very large shift, the
individual grid points move outside the light-cone. It then seems plausible that the
instability found in the previous section should arise because the causal structure
in not represented properly any more. This suggests that we should not build the
computational molecules from grid points with fixed index labels, but instead from
those points that have the closest causal relationship (Figure 2).
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Figure 1: Grid moving faster than the waves,

computational molceule

Figure 2: Causal computational molecule.

In Alcubierre and Schutz (1992) we introduce an algorithm to find the points that will
form these causal molecule. Here we will assume that we have already found thf‘SC
points. The causal reconnection of the molecule is now implemented by introduo.ng
a new local coordinate system (z’,t') adapted to the causal molecule. It can easily
be seen that this new coordinate system (z’,t') will move with respect to the old
one (z,t) with a certain speed B at the intermediate time level, and with a constant
acceleration A. In general the value of A and B will change from molecule to molecule.
so the above change of coordinates must be repeated for each molecule.
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In the primed coordinate system, the finite difference approximation will have the
same form as before (equation (9)), except for the substitutions

B A

c c
Causal reconnection can be implemented only when all the points in a given time
level are inside the light-cone of some point in the previous time level. In the case

when 8 # B(z), this requirement takes the simple form

max (s) Az

At >
- 2¢

(13)
This sets a minimum on At, and has a clear geometrical interpretation: the maximum
proper distance between grid points (max (s) Az) must be smaller than the spread
of the light-cone (2¢ At).

4 THE TWO-DIMENSIONAL CASE

4.1 Alternating Direction Implicit Methods

In matrix notation, the general form of the finite difference approximation to the
wave equation in two dimensions is

Q¢ = A + B, (14)

with Qz, A and B spatial difference operators.

A straightforward generalization of the one-dimensional case will provide us with the
most direct implicit approximation to the two-dimensional wave equation. We call
this the “fully implicit” scheme. However, the numerical solution of this fully implicit
scheme is considerably more time-consuming than in the one dimensional case. This
is due to the fact that, if we have NV grid points in each of n spatial directions, the
matrix (), acting on ¢'*! will have N™ rows and columns. Most importantly, this
matrix will not be tridiagonal. The matrix will still be sparse, but the number of
operations involved in solving it may be very large indeed.

Alternating Direction Implicit (ADI) schemes reduce the numerical work involved in
an n-dimensional problem by replacing the original large sparse matrix Q. by one
that can be factored into a product of tridiagonal matrices for each spatial direction.
If we assume that we have the same number N of grid points in all directions, we
will have to invert a series of N”~! tridiagonal matrices of size N x N for each
spatial dimension. This means that we will need only O(nN") operations to solve
the system. The reason that one can contemplate replacing the original operator Q,,
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with a different one is that the fully implicit scheme is only an approximation to the
differential equation, so if we modify it by adding extra high-order terms that are of
the same order as those neglected in the original approximation, the accuracy of the
scheme will not be affected.

For our two-dimensional wave equation, the operator acting on ¢’*! turns out to be

Qui=—1+ 5 (86 +p8,)

v g { o -] s [y - ) ) (15)
We want to add high-order terms to this expression to transform it into
Qy = Q.Qy
= —{1 - p,fr 8 — Pzg o7 = (3] 53}
x{1 — /’:/;y 8, _,fg{g“—(ﬂ“)"] 5y} (16)

Let us define S to be the difference between these operators

S = Q’z - Q2~ (17)

From this definition we find

g = S'even + Svodda (18)

where we have separated terms linear and quadratic in /3

Seven =~ ﬁ:-ﬂfﬂv 5.6, — ﬂf— (975 = (67 (9°* - (B)°) 8262,

Soaa = — ”4—0 {87 (g7 — (B)) 682 + B (g7 — (7)) 676, } -

Now, we can’t just add S (¢+!) to the finite difference approximation because in the
limit when Az — 0 and At — 0 we do not recover the original wave equation. There
are many different ways to get around this problem

e Lees’ first scheme. The most straightforward approach is that introduced by
Lees in 1962 (Lees (1962), Fairweather and Mitchell (1965)) for the case of
the ordinary wave equation on a fixed grid. In this method we add to the
difference equation _

St - (i
It is clear that as At — 0 the extra term will vanish, and we will reco\""f‘
the original differential equation. To find the accuracy of the scheme: b
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substitute the finite differences in the last expression for derivatives. We then
see that the extra terms do not vanish as fast as the errors in the original
approximation. Lees’ first method is therefore only first-order accurate.

o Lees’ second scheme. Another way to modify the equation is to add instead
S (¢t —2¢ + Y. (20)

Here again we recover the original differential equation in the limit At — 0. It
turns out that this method does not sacrifice accuracy: the introduced terms
are of the same order as the original truncation error.

e Time-symmetric scheme. Both the original differential equation and the fully
implicit scheme have the property of time-reversal invariance, that is, their
form is preserved after the transformation

t — —1 ﬂi — —Bi- (21)

The operator S is not itself invariant: it contains linear and quadratic terms
in B*. Thercfore, since Lees’ first and second schemes both add terms in which
S operates on an expression with a definite time-symmetry, neither scheme is
time-reversal invariant. If we want to preserve the time-symmetry, we must
allow the even and odd parts off S to act, respectively, on even and odd extra
terms. That is, we add to the fully implicit scheme the term

S (¢t =20 + &) + 5 (¢ - @), (22)
Again, this scheme turns out to be just as accurate as the fully implicit method.

Whichever ADI method we choose, we will always produce an equation of the form
Qoo = Ay + B o, (23)

with A’ and B’ new spatial finite difference operators whose specific form will depend
on the method chosen. From the the definition of Q) we see that the last equation
can be decomposed into a system of two coupled equations in the following way

! 2 8 2] ¢2 j+1 »J+1
{1~pf 5y—p’§[g”—(ﬂ”)]6y}¢’+ = ¢t (24)

: 4 2 2 »J+1 AL f j~1
{1~”f 6r~p2§[g”—(ﬁ’)]5,}¢ S_Ag + Be (25)

where the first equation defines the so-called intermediate value ¢*’*".
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4.2 Local Stability

The different ADI schemes differ not only on their accuracy, but also in their stability
properties. We have studied numerically the local stability condition for each of these
schemes. The details of this stability analysis, together with plots in parameter space
of the stability properties of the different schemes, can be found in Alcubierre and
Schutz (1992). Here we will only summarize our most important results:

e All three methods become unconditionally unstable as soon as one of the
components of the shift is larger than the wave speed.

e For § < 1/2 all three methods become unstable for at least some value of the
Courant parameter p, regardless of the value of the shift vector considered.

e For 8 > 1/2, Lees’ first method turns unstable for at least some value of
p whenever the grid speed is not aligned with one of the coordinate axis.
The instabilities for speeds below that of the waves are mild, but nevertheless
significant as our numerical experiments show.

o [or Lees’ second method the situation is even worst: the instabilities grow
faster than for the first scheme.

e For § > 1/2, the time-symmetric ADI seems to be unconditionally stable for
all values of the shift up to the wave speed. This scheme is therefore superior
to both of Lees” methods when we have a moving grid.

5 NUMERICAL EXAMPLES

We have tested the difference methods introduced in the last sections in a number of
different situations. In the one-dimensional case, we have tested causal reconnection
using a grid that oscillates harmonically. We find that the direct approach, without
causal reconnection, goes unstable as soon as the maximum grid speed is larger than
the wave speed. Causal reconnection, on the other hand. has allowed us to use grid
speeds of up to 15 times the wave speed without any instabilities.

The different ADI schemes have been tested in a uniformly moving two-dimensional

grid. In accordance with our stability analysis, both Lees’ methods turn unstable for

. . .. . . - as
quite small grid velocities. Time-symmetric ADI, however, remains stable as long

the grid speed doesn’t reach the wave speed. In Figure 3 we see one such calculali«‘m
where we compare the results of the evolution of a gaussian wave packet on a movins
grid for both Lees’ first method and time-symmetric ADI. The grid is moving 519“:("'
than the waves, but nevertheless Lees’ first method shows a very clear instabilit?

. . . . ; ble
after only 30 time steps. The calculation using time-symmetric ADI remains sta ?
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Figure 3. Uniformly moving grid: Lees’ first method and time-symmetric ADI.
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TIME SYMMETRIC
(Non—Causal Approach)
Time Steps = 32

Rotating Grid TIME SYMMETRIC
w =025

Rotating Grid
(Non-Causal Approach)
Ax =0.10 p =100
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Time Steps = 37 Ax =0.10 p =100
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TIME SYMMETRIC Rotating Grid
(Causal Reconnection)

TIME SYMMETRIC

Rotating Grid
w =025 (Causal Reconnection) w =025
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Figure 4. Rotating grid: non-causal method and causal reconnection.
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Taking the time-symmetric ADI scheme as a starting point, we have tested causal
reconnection in two dimensions using a rotating grid. We find that we can use
grids whose edges move at many times the wave speed, without encountering any
instabilities. In Figure 4 we show one example of a grid rotating in such a way that
the speed at the edges is 1.25 of the wave speed, and we consider the evolution of
a gaussian wave packet initially at rest at the center of the grid. When we don’t
reconnect the molecules, an instability forms after only 32 time steps, and grows
so fast that 5 time steps later the original wave is no longer visible (the scale is
set automatically to show the largest value). When we use causal reconnection, the
instability is not present.

6 CONCLUSIONS

The wave equation is a prototype for more complex equations of mathematical
physics. One would expect the instabilities we have found here to be generic: any
numerical approximation to a hyperbolic system on a shifting grid should exhibit
them. Only experience will show us just how well our cures for these generic in-
stabilities transfer to more interesting equations. However, the instabilities we have
described here are cured by the application of two clear physical principles, causality
and time-reflection invariance. It scems clear that it would be asking for trouble not
to incorporate these principles into the design of algorithms for the numerical integra-
tion of any fundamental physical equation. We are confident that causal reconnection
and time-symmetric ADI will generalize easily to many problems in numerical rel-
ativity. These methods are stable, offer all the computational advantages of ADI
schemes, and remain second order accurate.
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