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Abstract: Recently, an asymptotic Bethe Ansatz that is claimed to describe anomalous

dimensions of “long” operators in the planar N = 6 supersymmetric three-dimensional

Chern-Simons-matter theory dual to quantum superstrings in AdS4 × CP
3 was proposed.

It initially passed a few consistency checks but subsequent direct comparison to one-loop

string-theory computations created some controversy. Here we suggest a resolution by

pointing out that, contrary to the initial assumption based on the algebraic curve consid-

erations, the central interpolating function h(λ) entering the BMN or magnon dispersion

relation receives a non-zero one-loop correction in the natural string-theory computational

scheme. We consider a basic example which has already played a key role in the AdS5×S5

case: a rigid circular string stretched in both AdS4 and along an S1 of CP
3 and carrying

two spins. Computing the leading one-loop quantum correction to its energy allows us

to fix the constant one-loop term in h(λ) and also to suggest how one may establish a

correspondence with the Bethe Ansatz proposal, including the non-trivial one-loop phase

factor. We discuss some problems which remain in trying to match a part of world-sheet

contributions (sensitive to compactness of the worldsheet space-like direction) and their

Bethe Ansatz counterparts.
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1. Introduction

The duality [1] between planar N = 6 supersymmetric three-dimensional Chern-Simons-

matter theory and free type IIA superstring theory in AdS4 × CP
3 (AdS/CFT3 for short)

has attracted much attention recently. This is for a good reason, as both the perturbative

gauge theory and the dual free string theory appear to be integrable (as was partially

verified at two-loop level in gauge theory — namely in the scalar sector [2] (see also [3])

— and at the classical level in string theory [4, 5]). If so, this correspondence may be

providing us with a second example of integrable gauge-string duality, in addition to the

by now well understood canonical one relating the N = 4 super-Yang-Mills theory (SYM)

and the AdS5×S5 superstring (or AdS/CFT4).

Being less than maximally supersymmetric, this new duality is useful as it reveals var-

ious seemingly obvious assumptions that were made (and eventually shown to be correct in

the maximally supersymmetric context) in the construction of the solution for the spectrum
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of AdS/CFT4 based on the Bethe Ansatz (see [6] and references therein). Bearing in mind

possible future studies of less supersymmetric dualities in both three and four dimensions

this is an important step forward.

One crucial change compared to the AdS/CFT4 case is that now the BMN or magnon

dispersion relation is no longer protected and receives nontrivial corrections both in the

weak and strong coupling expansions [7 – 9] (see also [10 – 12]). For example, the dispersion

relation for the “lighter” magnon and its BMN limit are given by

ǫ(p) =
1

2

√

1 + 16h2(λ) sin2 p

2
→ 1

2

√

1 + 16π2h2(λ)
k2

J2
, (1.1)

with p = 2πk
J in the BMN limit and where

h(λ≪ 1) = λ[1 + c1λ
2 + c2λ

4 + · · · ] , h(λ≫ 1) =

√

λ

2
+ a1 +

a2√
λ

+ · · · . (1.2)

Incorporating this new interpolating function, the authors of [10] made a remarkable pro-

posal for the corresponding Bethe Ansatz which has (somewhat surprisingly at first sight)

essentially the same structure as in the AdS/CFT4 case. It was suggested in [10] that

the leading strong coupling (one-loop in the world sheet theory) correction to h(λ) should

vanish, i.e. a1 = 0; this was apparently confirmed in [13] where the fluctuation spectrum

near the giant magnon solution was computed using the algebraic curve technique [14 – 16]

(the conjecture also passed a few other consistency checks see [11, 17]).

However, the subsequent direct string theory computations [18 – 20] of the one-loop

correction to the universal scaling function, i.e. the coefficient of the lnS term in the folded

spinning string energy [21, 22], led to the result that was different from the Bethe Ansatz

prediction of [10] based on the assumption that a1 = 0.

It was suggested in [23] that this disagreement was due to different regularizations

used, or rather to different ways of combining fluctuation frequencies in the calculation

of the one-loop correction to the string energy. The proposed prescription, argued to be

intrinsic to the algebraic curve description of the classical string solutions in the Bethe

Ansatz context, favored the a1 = 0 choice.

While the string theory sigma model is manifestly one-loop finite in the ultraviolet,

separate terms in one-loop corrections contain logarithmic divergences. Hence results ob-

tained by regularizing separate terms in different ways, e.g. using different cutoffs, may

differ by finite terms (for an example, see [25]). On general grounds, however, in the string

theory calculation one should regularize the world-sheet action or the path integral; any

acceptable regularization should be independent of the fine structure of the spectrum of

fluctuations around a specific solution1 and should preserve the basic (global and local)

symmetries of the theory. Within the class of acceptable world-sheet regularizations all

choices should be equivalent.

Our aim here will be to provide a resolution to the apparent contradiction between

the world-sheet [18 – 20] and the Bethe Ansatz [10, 23] calculations while staying within a

1Ideally, the classical solution should be constructed in the presence of the regulator.
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natural and consistent world-sheet regularization scheme. We will be led to the conclusion

that, in this context, the coefficient a1 in equation (1.2) has a non-zero value

a1 = − ln 2

2π
. (1.3)

Using this value in the Bethe Ansatz prescription of [10] restores the agreement between

the string theory result and the Bethe Ansatz result for the one-loop term in the universal

scaling function. A non-zero value for the constant term a1 may be accounted for by

a redefinition of the ’t Hooft coupling2, suggesting that the world-sheet and the Bethe

Ansatz calculations effectively employ different regularization schemes. While anomalous

dimensions at renormalization group fixed points are scheme-independent, for conformal

field theories parameterized by free parameters the scheme dependence may, in fact, arise

as the freedom of redefining these parameters. Such may be the case here, in contrast with

the world-sheet theory in AdS5×S5 where no such redefinitions appear to be necessary.

A possible way of avoiding such an ambiguity is to define the coupling constant of

the theory in terms of an observable, e.g. a particular anomalous dimension. Perhaps a

natural choice for such an observable is the universal scaling function f(λ). Eliminating the

’t Hooft coupling in favor of f effectively removes all scheme ambiguities related to coupling

constant redefinitions. Such a proposal was put forward in QCD [26] to systematically

account for the scheme dependence in the running of the coupling constant. Since at

weak coupling f(g(λ)) ∼ λ, the resulting expressions are necessarily analytic in f . This

analyticity property holds also (despite a different dependence on the ’t Hooft coupling)

for the gauge theory dual of the world-sheet theory in AdS4 × CP
3.

It is worth noting that in the all-loop Bethe Ansatz proposal of [10] the ’t Hooft

coupling appears only through the function h(λ) and consequently if we express all other

anomalous dimensions in terms of the scaling function f(h(λ)) any trace of the function

h will be removed, demonstrating that it is unphysical. However, this is only true for the

Bethe Ansatz of [10]; for the perturbative calculation in the gauge or string theory we

must work with λ and thus need the explicit weak or strong coupling expansion of h(λ) in

whatever regularization scheme we choose to work in.

In addition, below we will be able to provide a non-trivial test of the proposal of [10] by

directly computing the one-loop correction to the energy of the circular (S, J) string [54, 27,

28] from the AdS4 ×CP
3 string theory action and then trying to match the result with the

prediction of the Bethe Ansatz of [10]. We will find that the two answers are remarkably

similar, indicating that the Bethe Ansatz proposal of [10] may indeed be correct at strong

coupling. However, few issues remain, warranting a further more systematic study on the

Bethe Ansatz side.

The computation of the one-loop correction [28 – 30] to the energy of the simplest

rigid circular (S, J) string in AdS5×S5 played a key role in discovering the presence of

the one-loop term [29, 32] in the phase in the strong-coupling (or “string”) form of the

2Here we consider the coupling as it appears on the string worldsheet and thus have in mind redefinition

of the form 1√
λ′

= 1√
λ
− a1

1

λ
+ . . . . It is not a priori clear that such a redefinition will be consistent with

a similar weak coupling redefinition of the form λ′ = λ + c1λ
2 + . . . .
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Bethe Ansatz [33]. Our plan here will be to follow the same logic as in [28, 29], i.e. carry

out the analogous computation in the AdS4 × CP
3 case and then compare to the Bethe

Ansatz prediction.

For later use let us define the rescaled coupling constant, λ̄, in terms of the ’t Hooft

coupling, λ (equal to N
kcs

, where kcs is the level of the Chern-Simons action), 3 as well as

the function h̄ as

λ̄ = 2π2λ , h̄(λ̄) = 2πh(λ) . (1.4)

The role of λ̄ is to emphasize the close analogy between the AdS5 and the AdS4 string-

theory expressions.

Let us first recall the story in the AdS5×S5 case. The (S, J) string solution of [27] has

a spiral-like shape, with projection to AdS3 being a constant radius circle (with winding

number k), and projection to S5 — a big circle (with winding number m). The correspond-

ing spins are, respectively, S and J with the Virasoro condition implying that u ≡ S
J = −m

k .

The classical string energy has the following expansion in large semiclassical parameters S
and J with fixed k and fixed u = S

J [27, 28] (E0 =
√
λE(S,J , k), S = S√

λ
, J = J√

λ
,

√
λ

2π

is the string tension)

E0 = S + J +
λ

J
e1(u, k) +

λ2

J3
e3(u, k) +

λ3

J5
e5(u, k) + · · · , (1.5)

where e1 = k2

2 u(1 + u), e3 = −k4

8 u(1 + u)(1 + 3u+ u2), e5 = k6

16u(1 + u)(1 + 7u+ 13u2 +

7u3 + u4), etc. In the limit when u→ 0 or S ≪ J this takes the familiar BMN form

E0 = J +

√

1 +
λk2

J2
S +O(S2) . (1.6)

Computing the one-loop correction E1 = E1(S,J , k) to the energy gives [28, 29]

E1 =Eeven
1 +Eodd

1 , Eeven
1 =

λ

J2
g2(u, k)+

λ2

J4
g4(u, k)+· · · , Eodd

1 =
λ5/2

J5
g5(u, k)+· · ·(1.7)

The absence of the 1
J and 1

J3 terms here implies the non-renormalization of the BMN-type

part of the classical energy (1.6) which is consistent with the non-renormalization of the

BMN dispersion relation in the AdS5×S5 case. This also suggests that the two leading λ
J

and λ2

J3 terms are protected and their coefficients should directly match the corresponding

one-loop and two-loop perturbative gauge theory results.

Indeed, the coefficient g2 of the “even” 1
J2 term4 in (1.7) can be reproduced as a leading

1
J (finite spin chain length) correction from the one-loop Bethe Ansatz in the sl(2) sector

of the N = 4 SYM theory [36]. An extension to higher orders was discussed in [31]. The

same should apply to the coefficient of the other analytic even λ2

J4 term — i.e. it should

match the two-loop gauge theory result.

3Since we are interested in the strict ‘t Hooft limit when N → ∞, kcs → ∞ with λ being fixed we can

treat λ as a continuous parameter.
4Its value is g2 = − 1

2
M2 +

P∞
n=1

[n
√

n2 + 4M2 − n2 − 2M2], M2 ≡ k2u(1 + u).
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At the same time, the presence of the non-analytic in λ and “odd” in 1
J term λ5/2

J5

in (1.7) (with g5 = k6

3 u
3(1+u)3) implies that a similar 1

J5 term in the classical energy (1.5)

is not protected so that its coefficient cannot be directly compared to three-loop result

on the gauge theory side. This resolves the infamous “three-loop disagreement” [24] and

implies [29] that the corresponding “string” Bethe Ansatz [33] should be modified to contain

a non-trivial one-loop correction to the phase.5

The circular (S, J) string solution in AdS4 × CP
3 is essentially the same as that in

AdS5×S5, with the classical energy having again the form (1.5) (modulo some numerical

factors due to the different definition of string tension). However, as we shall find below, the

expression for the one-loop correction is drastically changed: the expansion of Eodd
1 in (1.7)

starts already with 1
J and 1

J3 terms. This implies that the corresponding leading terms in

the classical energy (1.5) are no longer protected.6 Indeed, considering the S ≪ J limit,

i.e. comparing to equation (1.6), these odd one-loop corrections can be unambiguously

interpreted as a one-loop renormalization of the coefficient of the k2

J2 term under the square

root in the BMN dispersion relation (1.6), leading to the value of the one-loop shift in h(λ)

given in (1.3) (cf. equations (1.1), (1.6)).

Several of the 1
J5 terms can similarly be interpreted as arising from the one-loop shift

in h(λ); the remaining term happens to be essentially the same as in AdS5×S5 case, which

is in perfect agreement with the Bethe Ansatz proposal of [10] where the S-matrix dress-

ing phase has the same form as in the AdS/CFT4 case (up to the replacement of
√
λ by

2h̄(λ̄) = 4πh(λ)).

The even 1
J2 and 1

J4 terms do not appear to be the same as in the AdS5×S5 case,

but can be formally related to their AdS5×S5 counterparts by restricting the sum over

mode numbers to odd integers and making some re-identification of parameters. While the

results of our computation appear to be in agreement with the general structure of the

Bethe Ansatz of [10] with h(λ) given by (1.2), (1.3) there are still remaining subtle issues

related to 1
J2n terms which require further clarification.

The rest of this paper is organized as follows. In section 2 we discuss, following closely

the model of AdS5×S5 [27, 28], the structure of the classical circular string solution in

AdS4 × CP
3. In section 3 we present the spectrum of quadratic fluctuations near this

solution derived directly from the Green-Schwarz superstring action. In section 4 we sum

up these frequencies to derive the one-loop correction to the string energy. We then compare

it to the similar expression in the AdS5×S5 case, determining in the process the one-loop

term in the h(λ) function and discussing correspondence with the Bethe Ansatz result

implied by the proposal of [10]. Some computational details and special cases are collected

in five appendices.

5The one-loop term in the S-matrix dressing phase can be completely determined by including higher

order terms in the expansion of E1 [32].
6This is of course not surprising given that the leading gauge-theory correction here is the two-loop

one [2], i.e. proportional to λ2, while the leading term in the classical string energy still scales as λ.
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2. The circular rotating string in AdS4 × CP
3

As was recently pointed out [1], the closed superstring (type IIA) background which de-

scribes holographically the U(N)×U(N) N = 6 Chern-Simons theory at levels (kcs,−kcs)

is (we follow the notation of [18])

ds2 =
R3

4kcs

(

ds2AdS4
+ 4ds2

CP
3

)

, e2φ =
R3

k3
cs

F2 = kcs J
CP

3 , F4 =
3

8
R3VolAdS4

(2.1)

Here

ds2AdS4
= − cosh2 ρ dt2 + dρ2 + sinh2 ρ

(

dθ2 + sin2 θdφ2
)

, (2.2)

ds2
CP

3 = dζ2
1 +sin2 ζ1

[

dζ2
2 +cos2 ζ1

(

dτ1+sin2 ζ2
(

dτ2+sin2 ζ3dτ3
))2

+sin2 ζ2

(

dζ2
3 +cos2 ζ2

(

dτ2+sin2 ζ3dτ3
)2

+sin2 ζ3 cos2 ζ3dτ
2
3

)]

. (2.3)

The radii of curvature of the AdS4 and of CP
3 factors are

R2
AdS =

R3

4kcs
, R2

CP
3 = 4R2

AdS . (2.4)

At the world-sheet tree level, the relation between the radius of curvature and the gauge

theory ’t Hooft coupling arises from simply matching the charges of the supergravity soli-

ton describing the relevant stack of branes, and to leading order in the strong coupling

expansion one finds [1]

R2
AdS =

√

λ̄ . (2.5)

Due to the non-maximal supersymmetry of the space this relation may, in principle, receive

world-sheet quantum corrections (see footnote 8 below).7 We have used here the notation

λ̄ introduced in (1.4) to maintain a formal similarity with string theory in AdS5×S5, where

the radius of the space is the ’t Hooft coupling of the dual gauge theory.

While not entering in the interactions of the world-sheet bosons, the flux fields govern

the interactions of the bosons and the Green-Schwarz fermions. In that context, their tan-

gent space components are relevant. For the field strengths in (2.1) these components read

(F2)µν = 2
k2
cs

R3
Jµν , (F4)abcd = 6

k2
cs

R3
ǫabcd , (2.6)

or

eφ(F2)µν =
1

RAdS
Jµν , eφ(F4)abcd =

3

RAdS
ǫabcd . (2.7)

7We shall ignore this possibility here. One way to determine if this relation is modified would be to

study possible renormalization of 3-point functions of chiral primary operators both on the gauge theory

and string theory sides.
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An important property of AdS4 × CP
3 space, largely similar to that of AdS5×S5 space, is

that all relevant tangent space tensors are constant. Indeed, here J and ǫ are numerical

tensors with entries ±1 and 0. They are, respectively, the entries of the Kähler form and

of the volume form on unit CP
3 and AdS4.

All classical spinning string solutions with sufficiently few charges are common between

string theory in AdS5×S5 and AdS4 × CP
3, since AdS4 ⊂ AdS5 and, up to a change of

radius, a single isometry direction looks the same in S5 and CP
3 (for a discussion of related

classical string solutions which excite more fields in CP
3 see [37]). Like the spinning folded

string, the circular rotating string is also in this class of common solutions. They, in fact,

excite the same fields, which makes them ideal to identify potential conceptual differences

between strings in AdS5×S5 and AdS4 × CP
3.

The world-sheet action is

S = SAdS4
+ S

CP
3

=
R2

AdS

4π

∫

dτ

∫ 2π

0
dσ

√
ggab

(

GAdS
µν ∂aX

µ∂bX
ν + 4GCP

3

µν ∂aX
µ∂bX

ν
)

. (2.8)

We express the string tension T =

√
λ̄

2π in terms of the radius of the AdS space as in the

AdS5×S5 case.8 We will be using the conformal gauge and thus take the worldsheet metric

to be flat, gab = ηab.

All conserved quantities derived from this action are related to the corresponding

charge densities by factors of the string tension:

(E, S, J) =
√

λ̄ (E , S, J ) , (2.9)

where (E , S, J ) are given in terms of the momenta conjugate to isometry directions from

the Lagrangian

L =
1

2
ηab
(

GAdS
µν ∂aX

µ∂bX
ν + 4GCP

3

µν ∂aX
µ∂bX

ν
)

. (2.10)

The rotating string solution we are interested in lies in an AdS3×S1 subspace of AdS4×CP
3.

The choice of the circle S1 ⊂ CP
3 should be such that it corresponds to the BMN vacuum

state chosen on the gauge theory side, i.e. a gauge-invariant combination Tr(Y 1Y †
4 )J of the

scalar field bilinear Y 1Y †
4 [7, 9].

It is useful to discuss in more detail how the CP
3 coordinates in (2.3) are related to

the scalar fields of the dual gauge theory of [1]. It is natural to start with the form of

the metric written in projective coordinates (see e.g. [34]). Given an eight-dimensional flat

space ds2 = dZAdZ̄A with complex coordinates ZA with A = 1, 2, 3, 4, restricting to the

8 This relation may, in fact, receive quantum corrections. Indeed, since the AdS4 ×CP
3 geometry is not

maximally supersymmetric, it may be corrected at the world-sheet quantum level. Type IIA supergravity

action is known to receive higher derivative corrections; modifications of the classical geometry arise from

requiring that the geometry solves the modified equations of motion. Such higher derivative corrections,

however, first arise at order O(α′3), i.e. they would be suppressed by an additional factor of λ−3/2. They

are thus of too high an order to be relevant to the one-loop calculation we will be interested in here.
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7-sphere
∑

A |ZA|2 = 1, choosing Z4 = eiτ4 |Z4| and then introducing ξm = Zm/Z4 with

m = 1, 2, 3 one ends up with the S7 metric written as a circle fibration over CP
3. Rewriting

ξm in terms of its norm and a unit vector um as ξm = tan ζ1 u
m one may then repeat this

construction recursively.

The isometric directions of the resulting metric denoted by τ1,2,3 correspond to the

phases of the analogs of Z4 at each step of the recursion, i.e. Z4 = eiτ4 |Z4|, Z3 =

ei(τ3+τ4)|Z3|, Z2 = ei(τ2+τ3+τ4)|Z2|, Z1 = ei(τ1+τ2+τ3+τ4)|Z1|.
To identify the spinor representation of the SO(6) ⊂ SO(8) R-symmetry of the gauge theory

(the scalars Y A are transforming as a spinor) let us define a new set of angles

τ1 =ϕ2−ϕ1 , τ2 =ϕ3−ϕ2 , τ3 =ϕ2+ϕ1 , τ4 =τ0+ϕ4 , ϕ4≡−1

2
(ϕ1+ϕ2+ϕ3) (2.11)

getting

Z1 = ei[τ0+
1

2
(+ϕ3+ϕ2−ϕ1)]|Z1| , Z2 = ei[τ0+ 1

2
(+ϕ3−ϕ2+ϕ1)]|Z2| ,

Z3 = ei[τ0+
1

2
(−ϕ3+ϕ2+ϕ1)]|Z3| , Z4 = ei[τ0+ 1

2
(−ϕ3−ϕ2−ϕ1)]|Z4| . (2.12)

Observing that the shift by τ0 does not affect the CP
3 coordinates, the homogeneous

coordinates ZA are in one-to-one correspondence with the four gauge theory scalar fields Y A

in the spinor representation of SO(6), provided one identifies the three Cartan generators

of SO(6) as represented by shifts of ϕ1,2,3, i.e. Ji = −i ∂
∂ϕi

. Then

J1(Z
A)=

(

− 1

2
,
1

2
,
1

2
,−1

2

)

, J2(Z
A)=

(

1

2
,−1

2
,
1

2
,−1

2

)

, J3(Z
A)=

(

1

2
,
1

2
,−1

2
,−1

2

)

. (2.13)

Thus, the SO(6) charges of the operator Tr[(Y 1Y †
4 )J ] are matched by the charge of the

product of J bilinears, [Z1(Z4)†]J . Since Z1(Z4)† = ei(ϕ2+ϕ3)|Z1||Z4| this means that

ϕ2 + ϕ3 should have nontrivial background. Then J1(Z
1(Z4)†) = 0, J2([Z

1(Z4)†]J) =

J3([Z
1(Z4)†]J) = J. To guarantee that the vacuum contains no other fields it is necessary

to require that ϕ2−ϕ3 and ϕ1 have trivial background.9 In terms of the original coordinates

τ1,2,3 this translates into

τ2 = 0 , τ1 = τ3 , (2.14)

which may be realized if the coordinates ζi in (2.3) take the background values

ζ̄1 =
π

4
, ζ̄2 =

π

2
, ζ̄3 =

π

2
. (2.15)

Then the relevant part of the full 10-d metric becomes

ds2 = R2
AdS

[

− cosh2 ρ dt2 + dρ2 + sinh2 ρ (dθ2 + sin2 θ dφ2) + d(ϕ2 + ϕ3)
2
]

. (2.16)

The values of the remaining coordinates on the solution of [28] here are (σ = (τ, σ))

t̄=κτ=n̂·σ , ρ̄=ρ∗ , θ̄=
π

2
, φ̄=wτ+kσ=ñ·σ , (2.17)

ϕ̄1 =0 , ϕ̄2 = ϕ̄3 =
1

2
(ωτ+mσ)=

1

2
m·σ , (2.18)

9Then in terms of homogeneous coordinates ZA, the phases of only Z1 and Z4 will be nonvanishing

which is consistent with having a bilinear combination (Y 1Y †
4
) in the spin chain vacuum [2].

– 8 –



J
H
E
P
1
1
(
2
0
0
8
)
0
6
9

where the constant vectors are

n̂ = (κ, 0) , ñ = (w, k) , m = (ω,m) . (2.19)

Here k and also m are arbitrary integers (σ-coordinate is 2π periodic). Indeed, as one can

show by considering the flat space limit of the metric (2.3), the combinations of angles

τ3 = ϕ2 + ϕ1, τ2 + τ3 = ϕ3 + ϕ1 and τ1 + τ2 + τ3 = ϕ2 + ϕ3 should have 2π periodicity,

while each ϕi is π-periodic.

Written in terms of ϕ ≡ ϕ2 +ϕ3 with ϕ̄ = 2ϕ̄2 = m ·σ this solution becomes the same

as in AdS5×S5:10 in particular, the relations between the parameters following from the

equations of motion and the Virasoro constraints are the same as those in the string theory

in AdS5×S5 case (cf. [28]):11

w2 − (κ2 + k2) = 0 , r21wk + ωm = 0

− r20κ
2 + r21(w

2 + k2) + ω2 +m2 = 0 , (2.20)

r0 ≡ cosh ρ∗ , r1 ≡ sinh ρ∗ . (2.21)

From these constraints one may find, e.g. the expression of (κ, r21,w) in terms of (m,k, ω).

The explicit relations look rather complicated and not very enlightening; below we will

only need their series expansion in a certain limit.

The charge densities are given by

E =

∫ 2π

0

dσ

2π
r20κ=r20κ, S=

∫ 2π

0

dσ

2π
r21w=r21w, J2 =J3 =

∫ 2π

0

dσ

2π
ω=ω, (2.22)

so that the classical energy, spin and the charges under the second and third Cartan

generators of SO(6) are

E0 =
√

λ̄ r20κ , S =
√

λ̄ r21w , J ≡ J2 = J3 =
√

λ̄ ω , (2.23)

while the Virasoro constraint in (2.20) implies that

kS + Jm = 0 . (2.24)

As already mentioned these are exactly the same as the AdS5×S5 case.

Similarly to the AdS5×S5 case, a (technically) useful limit is that of large spin S and

large angular momentum J with their ratio u (and also k) held fixed, i.e.

S, J → ∞ , u = −m
k

=
S
J =

S

J
= fixed . (2.25)

10Let us mention that the definition of R-charges used here is different from the one used in [18]; there

the charge J was given by the momentum conjugate to the field ϕ and thus is twice as large as the

R-charges used here.
11These relations imply certain useful identities between the seven parameters entering the solution; one

of them, which will be useful later in the calculation of the fermionic characteristic frequencies is [28]:

r1(kω − wm)
p

m2 + r2
1
k2

=
ω

kr1

q

m2 + r2
1
k2 .
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In this limit it is possible to solve perturbatively the constraints (2.20)

κ = ω +
k2

2ω2
u(2 + u) − k4

8ω3
u(4 + 12u+ 8u2 + u3) + O

(

1

ω5

)

,

r21 = u− k2

2ω2
u(1 + u)2 +

k4

8ω4
u(1 + u)2(3 + 10u+ 3u2) + O

(

1

ω6

)

,

w = ω − k2

2ω
(1 + u)2 − k4

8ω3
(1 + u)2(1 + 6u+ u2) + O

(

1

ω5

)

. (2.26)

Using these expressions, the expansion of the classical energy at large J and thus large

angular momentum J =
√

λ̄J =
√

λ̄ ω is given by

E0 = S + J +
λ̄

2J
k2u(1 + u) − λ̄2

8J3
k4u(1 + u)(1 + 3u+ u2)

+
λ̄3

16J5
k6u(1 + u)(1 + 7u+ 13u2 + 7u3 + u4) + O

(

1

J7

)

. (2.27)

This result is essentially the same as in the AdS5×S5 case (1.5) provided one identifies the

two tensions, i.e.
√

λAdS5
→
√

λ̄.

A formally alternative prescription that also relates the AdS5×S5 and AdS4 × CP
3

results for the classical string energy, is (i) to replace
√

λAdS5
→ 2

√

λ̄ in (1.5), and,

simultaneously, (ii) to replace E, S and J in AdS5×S5 result by 2E, 2S and 2J (i.e.

S → 2S, J → 2J and add an extra overall 1/2 factor in the energy). At the classical

level this is obviously equivalent to no rescaling at all: changing the string tension by 2 is

compensated by rescaling of charges by 2 so that classical parameters remain the same.

As we shall see, it is a generalization (with 2
√
λ̄ → 2h̄(λ̄)) of the second prescription

that will actually extend to the quantum level. This should not be too surprising since the

two quantum string theories appear to be quite different.

It is an analog of this generalized second prescription that was proposed, from the

Bethe Ansatz perspective, in [10] as a relation between the universal scaling functions (or

leading terms in the folded string energies) in AdS/CFT4 and AdS/CFT3 cases. As we

shall demonstrate below, quite remarkably, this prescription applies also to the non-trivial

quantum circular string case as well as to the generalized folded string case with non-zero

orbital momentum J discussed in [18, 19].

3. The spectrum of quadratic fluctuations

3.1 Bosons

It is not hard to expand the string action (2.8) around the solution (2.18). This is, how-

ever, largely unnecessary since, using the close connection to the circular string solution

in AdS5×S5, we can quickly write down the characteristic frequencies for the bosonic fluc-

tuations. The six fluctuations from the CP
3 split into one massless, four “light” degrees

of freedom

p0 =

√

p2
1 +

1

4
(ω2 −m2) , (3.1)

– 10 –



J
H
E
P
1
1
(
2
0
0
8
)
0
6
9

and one “heavy” fluctuation

p0 =
√

p2
1 + (ω2 −m2) . (3.2)

From the AdS space one finds one massless degree of freedom, one massive one

p0 =
√

p2
1 + κ2 , (3.3)

and two fluctuations whose dispersion relation is given by the roots of the quartic equation

(p2
0 − p2

1)
2 + 4r21κ

2p2
0 − 4

(

1 + r21
)

(

√

κ2 + k2 p0 − kp1

)2
= 0 . (3.4)

As in AdS5×S5 [28], the explicit solution to this equation looks complicated, but may be

constructed perturbatively in the limit (2.25). Furthermore, one can determine the appro-

priate signs with which these modes contribute to the energy correction in a similar fashion

to [28] by considering the behavior of the frequencies at large ω.

3.2 Fermions

Since the solution has non-zero angular momentum along CP
3, the spectrum of fermionic

fluctuations could be constructed by starting with the coset superstring action of [4, 5].

This is, however, not necessary here; instead, we will use the standard form of the quadratic

part of the κ-symmetric Green-Schwarz action

L2F = i(ηabδIJ − ǫabsIJ)θ̄Ie/aD
JK
b θK . (3.5)

Here sIJ = diag(1,−1) and eAa = ∂aX
MEA

M , where X denote generic coordinates and EA
M

is the vielbein. In the string frame the type IIA covariant derivative is (see e.g. [38] for a

choice of field variables with nice transformation properties under T-duality)

DJK
a =

(

∂a +
1

4
∂aX

MωM
ABΓAB

)

δJK − 1

8
∂aX

MEA
MHABCΓBC(σ3)

JK

+
1

8
eφ
[

F(0)(σ1)
JK + F/(2)(iσ2)

JK + F/(4)(σ1)
JK
]

e/a (3.6)

The spin connection components in the AdS directions are:

ω01 = −ω10 = sinh ρ dt , ω21 = −ω12 = cosh ρ dθ ,

ω31 = −ω13 = cosh ρ sin θ dφ , ω32 = −ω23 = cos θ dφ . (3.7)

The spin connection components along CP
3 are more complicated but, due to our choice

of coordinates, they will not be needed in this leading-order calculation.

To find the fermionic spectrum we evaluate the fermionic action (3.5) on the back-

ground solution (2.18) and then impose a gauge-fixing condition which is adapted to the

resulting kinetic operator: one needs to make sure that the resulting operator is invertible.

The features of the resulting kinetic operator may be exposed through a series of con-

stant field redefinitions which map the background vielbein to a scalar multiple of a single
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Dirac matrix. Then, after combining the two type IIA fermions of opposite chirality into a

single unconstrained 32-component spinor ψ and also using the symmetry properties of the

ten-dimensional Dirac matrices, the fermionic kinetic operator (3.5) becomes manifestly

proportional to the projector

P+ =
1

2
(1 + Γ0Γ3Γ−1) . (3.8)

The natural κ-symmetry gauge then is

P+ψ = ψ . (3.9)

We relegate the details of this calculation, as well as the construction of the eigenvalues

of the resulting quadratic operator, to appendix A and record here only the conclusions.

The spectrum contains four different frequencies, each being doubly-degenerate. Two such

pairs have frequencies

(p0)±12 =± r20kκm

2(m2+r21k
2)

+
√

(p1 ± b)2+(ω2+k2r21) , b = −κm
w

w2 − ω2

2(m2 + r21k
2)

(3.10)

while the frequencies of the other two pairs are solutions of the equation

(p2
0 − p2

1)
2 + r21κ

2p2
0 −

(

1 + r21
)

(

√

κ2 + k2 p0 − kp1

)2
= 0 . (3.11)

The latter equation may be mapped to a similar one in the bosonic case (3.4) by replacing k

and κ with 2k and 2κ (or equivalently by replacing p0 and p1 with 1
2p0,

1
2p1). The constant

shifts of several of the fermionic frequencies are similar to those found in the case of the

folded string and, in fact, even for the short and fast BMN string. They may be removed

(at least at the level of the quadratic action) by a further time-dependent redefinition of the

fermions. We will not, however, do this here: as is easily seen, they simply cancel among

themselves when we consider the sum over all frequencies and so these constant shifts do

not contribute to the one-loop correction to the energy.

Let us note that the superconformal algebra supercharges — and thus the Green-

Schwarz fermions — transform in the 60 ⊕ 12 ⊕ 1−2 of the SU(4) R-symmetry group. In

the presence of the rotating string background the SU(4) ≃ SO(6) breaks to SO(4) =

SU(2) × SU(2). This breaking pattern and the spectrum listed above are consistent if we

associate the degenerate fermion pairs with the self-dual and anti-self-dual representations

of SO(4) or pairs of singlets related by charge conjugation. One may test this in the BMN

limit: the fermion spectrum splits in two sets of four modes of equal masses; since the

R-symmetry group is SO(4) and two modes are R-symmetry singlets, it follows that in this

limit the spectrum decomposes as 40 ⊕ 10 ⊕ 10 ⊕ 12 ⊕ 1−2.

4. One-loop correction to the string energy

The expression for the correction to the string energy can be found by summing the fre-

quencies over all flavours and mode numbers

E1 = E
(0)
1 + Ē1 , (4.1)
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where E
(0)
1 is the contribution of the zero modes and Ē1 involves the infinite sum over all

non-zero modes (we set p1 ≡ n = 0,±1, . . .)

E
(0)
1 =

1

2κ
e(0) , Ē1 = − 1

2κ
e(0) +

1

2κ

∞
∑

n=−∞
e(n) . (4.2)

The summand e(n) is simply the weighted sum of the bosonic and fermionic frequencies

found in the previous section:12

e(n) =
1

2

[

(p0)
B
1 + (p0)

B
2 − (p0)

B
3 − (p0)

B
4

]

+
√

n2 + κ2 +
√

n2 + (ω2 − k2u2)

+4

√

n2+
1

4
(ω2−k2u2)−2

√

(n− b)2+(ω2+k2r21)−2
√

(n+b)2+(ω2+k2r21)

−
[

(p0)
F
1 + (p0)

F
2 − (p0)

F
3 − (p0)

F
4

]

, (4.3)

where (p0)
B
i and (p0)

F
i stand for solutions of the quartic equations (3.4) and (3.11).

Before proceeding, let us make few comments about the derivation of (4.2). This

expression for the one-loop correction to the energy of the rotating string may be arrived

at in several different ways. One can use the expression for the string energy in conformal

gauge in terms of the fluctuation fields derived in appendix A of [22] (in that paper this

was in the context of the folded spinning string):

E1 =
1

κ
〈Ψ|H2|Ψ〉 , (4.4)

with H2 =
∫

dσ
2πH2(t̃, φ̃, . . . ) being the quadratic worldsheet Hamiltonian corresponding the

fluctuation action at this order.

As here we are interested only in the one-loop result, this Hamiltonian approach is

sufficient and practical. However, certain conceptual issues are perhaps clearer in the

path-integral approach. In the AdS5×S5 theory where two-loop calculations have been

performed it has been found useful to extract the correction to the string energy from the

sigma model partition function. It was argued in [39 – 41] and in greater detail in [42]

that for a homogeneous string solution like the one we consider here E1 may be defined

as the one-loop effective action divided by the two-dimensional time interval. Moreover,

the (quantum-corrected) charges of the background solution are also determined by the

one-loop effective action and, similarly to the energy, are finite at this order.

In a path integral approach the frequency sum appearing in the Hamiltonian formalism

arises in the process of evaluating the logarithm of the regularized determinants of the

operators of quadratic fluctuations around the classical solution. Though the final result is

finite, as may be seen by inspecting the large mode-number behavior of frequencies, each

determinant taken separately is divergent. As a consequence of the path integral approach,

all determinants are regularized in the same way.

An advantage of this approach is that field/fluctuation redefinitions are systematically

accounted for the path integral evaluation of the effective action or free energy. Such

12The contribution of two massless degrees of freedom cancels against the contribution of the diffeomor-

phism ghosts.
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redefinitions (e.g. the ones equivalent to changing the original coset representative) may

effectively lead to constant shifts in the frequencies of various modes. While a priori such

shifts may lead to (power-like) divergences in the free energy, their contribution is, in fact,

canceled exactly by the Jacobian due to the change in the measure of the path integral

and thus it does not change the expression for the energy shift.

4.1 Large spin expansion of one-loop correction to the energy

While computing exactly the sum over frequencies in (4.3) is difficult, there is one particular

region of the parameter space that is amenable to explicit evaluation: this is the scaling

region (2.25), i.e. that of large angular momentum J or large ω, and large spin S with the

ratio u = −m
k = S

J (and also k) fixed. As discussed in [29] in the context of string theory in

AdS5×S5, in this limit the sum over modes receives contributions from two distinct regions:

(I) n≪ ω: here the sum remains discrete

(II) n/ω = x =fixed: here the sum may be replaced by an integral over x

These two regimes are compatible; while each regime exhibits singularities, it is possible to

see that the singular part of one regime is captured by the regular part of the other. Thus,

the complete result as an expansion in 1/ω is the sum of the regular parts of the two regimes,

E1 =
1

2κ

∞
∑

n=−∞
e(n)=

1

2κ

∞
∑

n=−∞
esum
reg (n)+

ω

2κ

∫ ∞

−∞
dxeint

reg(x)=E
(0)
1 +Ēeven

1 +Ēodd
1 . (4.5)

It is an interesting question whether the zero-mode part E
(0)
1 should be kept separate or

whether it effectively belongs to Ēeven
1 or Ēodd

1 . As we will argue shortly, it belongs to Ēodd
1

part, i.e. Eodd
1 = E

(0)
1 + Ēodd

1 .

It is not difficult to solve perturbatively the quartic equations (3.4) and (3.11) and find

the most non-trivial bosonic and the fermionic frequencies at large ω:

(p0)
B
1,3 =

p1

2ω

[

2k(1 + u) ±
√

p2
1 + 4k2u(1 + u)

]

+ O
(

1

ω3

)

(p0)
B
2,4 = ±2ω ± 1

2ω

[

p2
1 ∓ 2kp1(1 + u) + 2k2(1 + u(3 + u))

]

+ O
(

1

ω3

)

(4.6)

(p0)
F
1,3 =

p1

ω

[

k(1 + u) ±
√

p2
1 + k2u(1 + u)

]

+ O
(

1

ω3

)

(p0)
F
2,4 = ±ω ± 1

ω

[

p2
1 ∓ kp1(1 + u) + k2

2 (1 + u(3 + u))
]

+ O
(

1

ω3

)

. (4.7)

Then, the summand e(n) in equation (4.5) as a function of the momentum mode number

n takes the form

esum(n) =
1

2ω

[

n

(

3n− 4
√

n2 + k2u(1 + u) +
√

n2 + 4k2u(1 + u)

)

− k2(1 + u)(1 + 3u)

]

+ O
(

1

ω3

)

. (4.8)
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The sum over n is singular with a divergence arising from the constant term which also

gives rise to the zero mode piece of the energy. This occurs at one order lower in the 1/ω

expansion than for the rotating string in AdS5×S5. Continuing to higher orders in 1/ω one

finds the same splitting into regular and singular parts, esum = esum
reg + esum

sing .

The contribution of large mode numbers, n = ωx with fixed x, may be accounted

for by replacing the sum over n with an integral over x. To leading order in the large-ω

expansion the summand becomes

eint(x) =
k2(1 + u)

2ω

[

1 + u(3 + 2x2)

(1 + x2)3/2
− 2

1 + u(3 + 8x2)

(1 + 4x2)3/2

]

+ O
(

1

ω3

)

, (4.9)

where one can see that eint
reg(n/ω) = esum

sing(n). It is interesting to note that, while capturing

the singular part of the sum over esum(n) in equation (4.8), it also correctly captures the

zero-mode contribution:

eint
reg(0) = esum

sing(0) . (4.10)

Thus, we may simply combine the zero-mode contribution esum(0) together with the con-

tribution of large mode numbers. It is possible to extend the comparison above to esum
reg and

eint
sing to higher orders in the 1/ω expansion, which we carry out explicitly in appendix B and

show that indeed eint
sing(x) = esum

reg (ωx) to all orders we checked. This is exactly analogous

to the recombination which takes place in AdS5×S5 case.

Since the sum is absolutely convergent, the coefficients in the 1/J expansion of the

discrete part of the correction to the energy may be computed as formal power series in k

Ēeven
1 =

1

κ

∞
∑

n=1

esum
reg (n)

= − λ̄k
4(1 + u)2u2

23J2

(

6ζ(2) − 15k2u(1 + u)ζ(4) +
315

8
k4u2(1 + u)2ζ(6) + . . .

)

+
λ̄2k6(1 + u)2u2

26J4

(

24(1 + 2u− u2)ζ(2) + 15k2u2(1 + u)(5 + 13u)ζ(4)

−63

2
k4u2(1 + u)2(5 + 22u + 27u2)ζ(6) + . . .

)

− λ̄
3k8(1 + u)2u2

29J6

(

48(3 + 18u + 26u2 + 10u3 + 7u4)ζ(2)

−60k2u2(1 + u)(7 + 27u+ 53u2 + 49u3)ζ(4)

+63k4u2(1+u)2(5−20u−183u2−382u3−264u4)ζ(6)+. . .
)

+ O
(

1

J8

)

. (4.11)

Using the expression for eint listed in appendix B to go to higher orders in the 1/J expan-

sion, the continuum contribution to the energy reads:

Eodd
1 =

ω

2κ

∫ ∞

−∞
dx eint

reg(x)

= − λ̄1/2k2

J
ln 2 u(1 + u) +

λ̄3/2k4

2J3
ln 2 u(1 + u)(1 + 3u+ u2)

– 15 –



J
H
E
P
1
1
(
2
0
0
8
)
0
6
9

− λ̄5/2k6

8J5
u(1 + u)

[

3(1 + 7u+ 13u2 + 7u3 + u4) ln 2 − 4

3
u2(1 + u)2

]

+ O
(

1

J7

)

. (4.12)

While anticipated by the existence of divergences in the discrete contribution to leading

nontrivial order, the appearance of such low odd powers of 1/J with “non-analytic” factors

of λ̄ may at first look surprising. It is possible to test numerically that the expressions

above are indeed accurate (see appendix D).

4.2 Relation to the energy of the circular rotating string in AdS5×S5

Motivated by the similarity of the classical solution we started with to the one in AdS5×S5

and also by the fact that the proposed Bethe Ansatz of [10] has a structure similar to that

of the AdS/CFT4 case let us now compare the result for E1 to the corresponding expression

in AdS5×S5 string theory.13

Collecting the results of the previous section, the total one-loop corrected energy of

the circular rotating string in AdS4 × CP
3 is

E = E0 + E1 = E0 + Ēeven
1 + Eodd

1 , (4.13)

with E0, Ē
even
1 and Eodd

1 are given by equations (2.27), (4.11) and (4.12), respectively.

From equation (2.27) we note that the classical energy of the circular rotating string

in the scaling (large spin (2.25)) limit is a series in inverse odd powers of the angular

momentum J . One may then contemplate that E0 and Eodd
1 might naturally combine

together. This is indeed the case as we may write their sum as

E0 + Eodd
1 = S + J +

h̄2(λ̄)k2

2J
u(1 + u) − h̄4(λ̄)k4

8J3
u(1 + u)(1 + 3u+ u2)

+
h̄6(λ̄)k6

16J5
u(1 + u)(1 + 7u+ 13u2 + 7u3 + u4)

+
h̄5(λ̄)k6

6J5
u3(1 + u)3 + O

(

1

J7

)

. (4.14)

Here we introduced the function

h̄(λ̄) =
√

λ̄− ln 2 + O
(

1√
λ̄

)

. (4.15)

The powers of h̄(λ̄) in equation (4.14) are understood to be truncated to the two leading

terms in 1/
√
λ̄ expansion except for the last term, proportional to h̄5(λ̄)/J5 which is

understood to be truncated to the leading term. This is indeed the correct prescription, as

the λ̄ dependence of the next-to-leading term identifies it as a two-loop correction.

13Note that the fluctuation frequencies in the two theories are not directly related (corresponding to the

two superficially quite different 2d quantum theories), but their respective sums representing E1’s happen

to be similar as we describe below.
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For comparison, let us recall the analogous part of the expression for the one-loop

energy of the same circular rotating string in the AdS5×S5 case [28, 29] (see (1.5), (1.7)

and the discussion in the introduction)

(E0 + Eodd
1 )

AdS5×S5
= J + S +

λk2

2J
u(1 + u) − λ2k4

8J3
u(1 + u)(1 + 3u+ u2)

+
λ3k6

16J5
u(1 + u)(1 + 7u+ 13u2 + 7u3 + u4)

+
λ5/2k6

3J5
u3(1 + u)3 + O

(

1

J7

)

. (4.16)

We then observe that the AdS4×CP
3 expression (4.14) can be obtained from the AdS5×S5

one (4.16) by the prescription mentioned earlier at the end of section 2:

Eodd
AdS4×CP3

(S, J, k;
√

λ̄ ) =
1

2
Eodd

AdS5×S5
(2S, 2J, k; 2h̄(λ̄) ) , (4.17)

with the function h̄(λ̄) given by (4.15). It is important to note that the replacement
√
λ 7→

2h̄(λ̄) = 2
√

λ̄ − 2 log 2 + · · · is to be implemented after the energy is expressed in terms

of the conserved charges (S, J) (which are also the parameters on the gauge theory side).

Notice that what selects between the simple replacement λ→ h(λ̄) with no change to

the charges and the prescription (4.17) (which were equivalent at the classical level) is the

matching of the last “quantum phase” term in (4.14) and in (4.16).

As was already mentioned in the introduction (see eq. (1.6) and discussion below

it) the one-loop renormalization of the leading “analytic” terms in the AdS4 × CP
3 string

energy implies that the BMN spectral relation here gets a one-loop renormalization, i.e. the

function (4.15) should be identified with the function h̄(λ̄) entering the magnon dispersion

relation (cf. (1.1), (1.4))

ǫ(p) =
1

2

√

1 +
4

π2
h̄2(λ̄) sin2 p

2
. (4.18)

Notice that (4.18) is related to the familiar AdS5×S5 expression ǫ(p) =
√

1 + λ
π2 sin2 p

2 by

the same prescription (4.17) (cf. also (1.6)).

One useful way to understand the relation between the renormalization of the magnon

dispersion relation and the above function h̄(λ̄) is to consider the analog of the effective

Landau-Lifshitz (LL) model description of the large J limit as was done in the AdS5×S5

case in [43, 44]. The LL model may be viewed as an effective 2d field theory which

describes the “fast string” or large J expansion on both the string and spin chain side and

thus interpolates between the two descriptions. Considering for illustrative purposes the

analog of the SU(2) sector action parameterized by a unit 3-vector ~n the corresponding LL

action is S = J
∫

dt
∫

dσ
2π L where [44]

L = C(~n) · ∂0~n− ~n

[

√

1 − 4h̄2(λ̄)

J2
∂2

1 − 1

]

~n− a(λ̄)

J4
(∂~n)4

− 1

J6

[

b1(λ̄)(∂1~n)2(∂2
1~n)2 + b2(λ̄)(∂1~n · ∂2

1~n)2 + b3(λ̄)(∂1~n)6
]

+ . . . . (4.19)
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In general, h̄, a, bi, etc., are interpolating functions parameterizing this low-energy effective

action. In the AdS5×S5 case the first three functions are simple: 2h̄ →
√
λ, a → 3

128λ
2,

b1 → −7
4λ

3. The functions b2, b3 are non-trivial, having the same rλ3 behaviour at weak

and strong coupling but with different numerical coefficients (reflecting the “3-loop dis-

agreement”).

All of these functions are expected to be nontrivial in the present AdS4 × CP
3 case.14

By comparing the energy of the rotating string as described by the LL action with the

explicit string theory computations one observes that the u → 0 limit of (4.14) should

be essentially captured by the leading quadratic in ~n terms in (4.19), thus identifying h̄

in (4.15) with the function that governs the magnon dispersion relation (4.18).

Remarkably, the same prescription (4.17) also relates the folded string energies in

AdS5×S5 and AdS4 × CP
3. Indeed, ignoring first the J-dependence, starting with the

AdS5×S5 one-loop result [22]

E
AdS5×S5

= S +
1

π
(
√
λ− 3 log 2) lnS + · · · , (4.20)

and making the replacements in (4.17) one finds (for S ≫ 1)

E
AdS4×CP3

= S +
1

2π
[2h̄2(λ̄) − 3 log 2] lnS + · · · . (4.21)

Using the expression (4.15) for h̄ found here we end up with

E
AdS4×CP3

= S +
1

π
(
√

λ̄− 5

2
log 2) lnS + · · · , (4.22)

which is the expression found by direct string computation in [18 – 20]. Moreover, by

including the dependence on J (in the limit of large S with J
lnS fixed) one finds that

the equations (4.17), (4.15) directly relate the AdS5×S5 result of [39] to the one in the

AdS4×CP
3 case as found in [18, 19]. This provides a nontrivial consistency check between

currently available one-loop results in the AdS4 × CP
3 superstring.

It should be noted, however, that the prescription (4.17) is so far rather heuristic (or

empirical, on the string theory side) and need not a priori apply to the whole expression

for the one-loop string correction.15

Returning to the circular string solution, the relation between the equation (4.14) and

the corresponding result in AdS5×S5 (4.16) via the equation (4.17) suggests to compare

also the terms containing even powers of 1/J in (4.11) with the analogous terms in the

14In particular, due to the structure of perturbation theory in the N = 6 CS theory the function a(λ̄)

should start at weak coupling with a 4-loop λ̄4 term.
15It does seem to apply to the “non-analytic” part of the one-loop correction, which comes from the

“integral” term in the one-loop calculation and is not sensitive to the compactness of the worldsheet; this

is also the only term that determines the leading one-loop shift in the folded string case. It is, in principle,

possible that a different prescription is necessary to map the “analytic” part of the one-loop correction to

the corresponding AdS5×S5result.
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AdS5×S5 case. The part of the AdS5×S5 one-loop energy which is proportional to the even

inverse powers of the S5 angular momentum is (cf. [28])16 17

(Ēeven
1 )AdS5×S5 =

1

κ

∞
∑

n=1

esum
reg, AdS5×S5(n)

= − λk4(1 + u)2u2

22J2

(

4ζ(2) − 8k2u(1 + u)ζ(4) + 20k4u2(1 + u)2ζ(6) + . . .
)

+
λ2k4(1 + u)2u2

25J4

(

16k2(1 + 2u− u2)ζ(2) + 8k4u2(1 + u)(5 + 13u)ζ(4)

− 16k6u2(1 + u)2(5 + 22u+ 27u2)ζ(6) + . . .
)

− λ3k4(1 + u)2u2

28J6

(

32k4(3 + 18u+ 26u2 + 10u3 + 7u4)ζ(2)

− 32k6u2(1 + u)(7 + 27u+ 53u2 + 49u3)ζ(4)

+ 32k8u2(1 + u)2(5 − 20u− 183u2 − 382u3 − 264u4)ζ(6) + . . .
)

+ O
(

1

J8

)

. (4.23)

Comparing this with equation (4.11) we note that, while not exactly the same, the two

expressions may be mapped into each other by again replacing
√
λ 7→ 2h̄(λ̄), S → 2S,

J → 2J (i.e. u→ u) and E → 2E as in (4.17) but in addition also by replacing ζ(n) in the

AdS5×S5 result (4.23) by

ζ(n) 7→ 2
(

1 − 1

2n

)

ζ(n) . (4.24)

This modification of the ζ-constants in the AdS5×S5 calculation may be formally inter-

preted as replacing the sum over even mode numbers n in (4.11) by a sum over odd

mode numbers,

∑

n

ωn =
∑

n

ω2n +
∑

n

ω2n+1 7→ 2
∑

n

ω2n+1 . (4.25)

4.3 Comments on comparison to the Bethe Ansatz proposal

In a finite two-dimensional quantum field theory, loop corrections to the conserved charges

(such as the target space energy) of classical solitons may be computed using the standard

perturbative approach, either in the Hamiltonian or in the path integral setting. If this

two-dimensional theory is dual, through gauge/string duality, to some planar gauge theory,

16In the AdS5×S5 case the zero-mode contribution to the energy is also accounted for by the contribution

of large mode numbers. Note also that here we are assuming that one can interchange summation with

expansion in 1/J , but otherwise there is no regularization ambiguity (as would be present in the Landau-

Lifshitz model approach) as we start with the full UV finite expression for the sum.
17Here we record only the regular contributions to the discrete sum from the AdS5×S5 case. The divergent

contribution starts at order 1

J6 and corresponds to the non-analytic contribution coming from the dressing

phase at order 1

J5 [29]. Keeping only the regular contributions is equivalent to evaluating the summation

using the zeta-function regularization as was done in [31].
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then the target space energies obtained this way in an acceptable (in the sense defined in

the introduction) regularization scheme should yield the strong coupling expansion of the

anomalous dimensions of certain gauge theory operators.

If this two-dimensional theory is also integrable, then its semiclassical states can be

described using the algebraic curve techniques [35], which also determines the fluctuation

frequencies [14, 52, 15] near the solitonic solutions and thus, effectively, the 1-loop correc-

tions to their charges. Furthermore, there may exist a set of (discrete) Bethe equations

that should provide the exact description of quantum corrections to all loop orders. The

results of the algebraic curve approach and the Bethe Ansatz approach should of course

agree with the results found by the direct worldsheet computations, and this should be, in

fact, a test of the validity of the algebraic curve and Bethe Ansatz approaches.

In the Bethe Ansatz approach one solves directly the algebraic (“discrete”) Bethe

equations and thus no choice of regularization is required. Such a choice is, however,

required in the algebraic curve approach, where, similarly to the worldsheet calculation,

one finds the frequencies of small fluctuations near a soliton from an algebraic curve and

then uses the standard quantum-mechanical prescription to evaluate the one-loop correction

by computing the sum of frequencies (weighted by (−1)F where F is the fermion number).

Since the all-order Bethe Ansatz construction is based on a “discretization” [33] of the

classical (integral) Bethe equations [35] and since their solution requires no regularization,

it follows that a special choice of regularization is required in the algebraic curve calculation

to reproduce the results of the Bethe Ansatz calculation.

This is the case for strings in AdS5×S5, where the Bethe equations and the worldsheet

calculation yield the same result which is matched by the algebraic curve calculation [52, 15]

provided one chooses a natural regularization which accounts for certain constant shifts in

the space-like momenta of fluctuations and essentially amounts to introducing different

cutoffs for various partial frequency sums (cf. [15, 53, 36, 31]).

For string theory in AdS4 × CP
3 the same three strategies are, in principle, also avail-

able. In particular, for the circular rotating string we have already the worldsheet results

obtained in the previous subsection. One may also consider the implications of the algebraic

curve approach [16, 47] and of the Bethe Ansatz equations proposed in [10] to describe the

corresponding set of gauge theory operators with one spin and one R-charge.18 Below we

shall only briefly comment on the corresponding solution to the Bethe Ansatz equations

and its comparison with the worldsheet approach.19 The relevant Bethe Ansatz equations

are given by:

(

x+
l

x−l

)2J

= −
S
∏

j 6=l=1

ul − uj + i

ul − uj − i

(

x−l − x+
j

x+
l − x−j

)2

σ2
BES(ul, uj) , (4.26)

18It is worth pointing out that this rank one sector, in fact, captures only some of the sl(2) sector

solutions, namely those with odd Bethe mode number. The other solutions mix with the other sectors,

requiring the use of the complete set of nested Bethe equations.
19More details and comparison with the algebraic curve approach should appear in ref. [47].
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where20

x± +
1

x±
=

1

h(λ)

(

u± i

2

)

, (4.27)

and h(λ) is the interpolating function in the magnon dispersion relation (cf. (1.1), (1.4)).

Here σBES is the same dressing phase as in the context [6], but with
√
λ replaced by 4πh(λ)

in the appropriate way [10]. We will consider a class of solutions of (4.26), with the one-cut

solution of [46] particularly in mind, vis-à-vis those of the analogous sl(2) Bethe equation

in AdS5×S5 to which it has a great degree of similarity. The total energy of the solutions

is given by

E − J = 2ih(λ)

S
∑

l=1

(

1

x+
l

− 1

x−l

)

, (4.28)

or in terms of the magnon momenta

E − J =

S
∑

l=1

√

1 + 16h2(λ) sin2 pl

2
, (4.29)

and the zero-momentum condition is

[

S
∏

l=1

(

x+
l

x−l

)

]2

= 1 . (4.30)

The absence of the factor of 1/2 in the expression for the energy (4.29) and the square

in (4.30) are due to the identification of the u4 and u4̄ roots [10].

As was mentioned in [10], the only differences between the equations above and the

analogous ones in AdS5×S5 are the replacement of the square-root of the ’t Hooft coupling

λ of N = 4 SYM with 4πh(λ) = 2h̄(λ̄), the different relation between the R-charge and

the spin-chain length and the existence of an additional minus sign on the right-hand-side

of (4.26). This additional sign is like a familiar “magnetic field” twist and the corresponding

Bethe Ansatz equations are also analogous to those that appear in the β-deformed SYM

theory [48, 49] for a special real value of the deformation parameter βd = 1
2J . Indeed, the

β-deformed Bethe equations and the zero momentum condition are [50]

e−2iπβdJ

(

x+
l

x−l

)2J

=

S
∏

j 6=l=1

ul − uj + i

ul − uj − i

(

x−l − x+
j

x+
l − x−j

)2

σ2
BES(ul, uj) . (4.31)

This equation becomes the same as equation (4.26) upon choosing βd = 1
2J .

21

20The charge J used here in the Bethe equations is the same as the angular momentum J used in our

worldsheet calculation and the gauge theory R-charge J which in turn is half the spin-chain length.

21The zero-momentum condition, e−2iπβdS QS
l=1

x+

l

x−

l

= 1, is, however, different from eq. (4.30) by a factor

of (−1)S/J . It is the consequences of the latter equation which we will discuss here.
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In the β-deformed context [49, 50] the only effect of the phase βd is to shift the integer

number that appears in the logarithm of the Bethe equations by βdJ . This may be seen

directly by taking the logarithm of equations (4.26) and (4.30):

2πi

(

k̃ +
1

2

)

+ 2J ln
x+

l

x−l
=

S
∑

j 6=l=1

ln

[

ul − uj + i

ul − uj − i

(

x−l − x+
j

x+
l − x−j

)2

σ2
BES(ul, uj)

]

, (4.32)

2πim̃+ 2

S
∑

l=1

ln
x+

l

x−l
= 0 , (4.33)

where k̃ ∈ Z is the Bethe mode number and m̃ is an integer. Consistency of the equa-

tions (4.32) and (4.33) implies that

m̃J +

(

k̃ +
1

2

)

S = 0 . (4.34)

Compared to the corresponding equations in the AdS5×S5 case there are five changes:

(1) here 4πh(λ) is in place of
√
λ;

(2) here the spin chain length is 2J not J ;

(3) here the energy of a solution is doubled (due to the double number of excitations);

(4) the BPS condition at vanishing coupling requires that spin S be doubled;22

(5) here k̃ + 1
2 is in place of k̃ (due to the additional minus sign in the equation (4.26)).

The square in the equation (4.30) and together with the doubled number of excitations

(point (3) above) imply that no change in m̃ is necessary. With these identifications (4.34)

is formally the same as the usual constraint in the AdS5×S5 case: m̃(2J) + (k̃ + 1
2 )(2S) =

0 → mJ + kS = 0. In the case of the circular (rational) solution we are interested in, m

and k are, respectively, the S5 and the AdS5 winding numbers.

The solution of these Bethe equations in the strong coupling limit, to the leading and

subleading order, proceeds as in the AdS5×S5 case [36, 31] (see [29, 32] for the inclusion

of the one-loop corrections to the dressing phase). To obtain the solution of the Bethe

equations (4.26) from that of the AdS5×S5 Bethe equations with length J and parameters

k,m, S with mJ+kS = 0 one is then to make the following formal replacements as implied

by the above discussion:

(1)
√
λ→ 4πh(λ); (2) J → 2J ; (3)S → 2S; (4)E → 2E; (5) k → k̃ +

1

2
; (6)m→ m̃.

Comparing now the solution of the above AdS/CFT3 Bethe equations to the classical

AdS4 ×CP
3 string solution discussed in section 2 we are led to the following identification:

1. k̃ + 1
2 → k, where k is the AdS4 winding number;

2. m̃ → m, where m is the CP
3 winding number.

22That is, items (3) and (4) imply that E = S + J + . . . → 2E = 2S + 2J + . . .

– 22 –



J
H
E
P
1
1
(
2
0
0
8
)
0
6
9

Note that (4.34) becomes then equivalent to the Virasoro constraint in (2.24).

The above replacements reproduce the energy of the classical rotating string in AdS4×
CP

3 from the energy of the classical rotating string in AdS5×S5. Moreover, keeping the

next to leading term in h(λ) reproduces all the non-analytic terms in (E0 +Eodd
1 )AdS4×CP

3 ,

those related to the classical energy of the string as well as those related to the corrections

from the one-loop phase.

In addition, the various identifications of parameters which relate the Bethe Ansatz

energy with the result of the worldsheet calculation for the circular rotating string also

lead to the correct map for the folded spinning string and the universal scaling function,

as may be seen by inspecting the Bethe Ansatz solution in [51].

Unfortunately, the same cannot be said about the relation between the analytic 1-loop

terms (Eeven
1 )AdS5×S5 in (4.23) and (Eeven

1 )AdS4×CP
3 in (4.11). Using the above identifica-

tions in (Eeven
1 )AdS5×S5 , it appears that an additional formal replacement for the ζ-constants

is needed. This is exactly the same replacement described earlier, (4.24), and has the same

interpretation of replacing the sum over even modes by an additional sum over odd modes.

Such a replacement, however, seems unjustified on the basis of the Bethe equations (4.26)–

(4.30).

To summarize, we have found that the conjectured all-loop Bethe Ansatz [10] repro-

duces the general structure of the AdS4 × CP
3 superstring calculation.

In particular, the worldsheet approach predicts that the function h(λ) that should

be used in the Bethe Ansatz proposal of [10] should be given by (1.2), (1.3) (or, equiva-

lently (4.15)). This conclusion (as well as the confirmation that the strong-coupling limit

of the phase in the Bethe Ansatz should be, indeed, the same as in AdS5×S5 case) is not

sensitive to the compactness of the worldsheet σ direction.

However, the matching of the analytic 1/J2n terms in the string 1-loop energy (whose

coefficients are sensitive to the compactness of the σ direction) is not immediately clear.

It might be that we are missing some subtlety in the identification of the circular string

configuration as a Bethe Ansatz solution, or that some details of the Bethe Ansatz proposal

of [10] still need to be adjusted. Further analysis is required to settle these issues.
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A. Details of calculation of the fermionic spectrum

Our starting point is the action in (3.5). We will analyze separately the geometric and the

flux part of the covariant derivative. The action has constant coefficients and the kinetic
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operator may be extracted directly. For the purposes of analytic calculations, however, it

is useful to first perform certain field redefinitions.

The background value of the slashed vielbein is

e/a = n̂aΓ0 + ñaΓ3 + maΓ9 (A.1)

Here as in (2.18) n̂ = (κ, 0), ñ = (w, k) and m = (ω,m). A sequence of two rotations with

constant coefficients

S = S39S09 , S39 = cos p+ sin pΓ39 , S09 = cosh q + sinh qΓ09

sin 2p =
m

√

m2 + k2r21
, sinh 2q = − ω

kr1
(A.2)

transform e/0and e/0 into two Dirac matrices. Then the transformed value of the slashed

vielbein becomes:

S−1e/0S =
√

m2 + k2r21 Γ0 , S−1e/1S =
√

m2 + k2r21 Γ3 . (A.3)

Due to the choice of isometry direction ϕ3 in the construction of the circular rotating

string solution, all components of the spin connection along CP
3 vanish when evaluated

on the background. Thus, the geometric part of the (transformed) covariant derivatives is

as in [28]:

Da ≡ ∂a +
1

4
ωa

ABΓAB ,

DS
0 =S−1D0S = ∂0−

r0r1k
2

2
√

m2 + r21k
2
Γ01−

r0r1kw

2
√

m2 + r21k
2
Γ13+

κm

w

w2 − ω2

2(m2 + r21k
2)

Γ19,

DS
1 =S−1D1S = ∂1+

r0
r1

mω

2
√

m2 + r21k
2
Γ01−

r0r1k
2

2
√

m2 + r21k
2
Γ13+

r20kκm

2(m2 + r21k
2)

Γ19 (A.4)

In the type IIA theory the fermions θ1,2 are chiral and of opposite chirality

Γ−1θ
1 = θ1, Γ−1θ

2 = −θ2 . (A.5)

They may be combined into a single 32-component unconstrained spinor ψ = θ1+θ2. Then,

s1JθJ + s2JθJ = Γ−1ψ . (A.6)

With these observations the geometric part of the action for the fermionic quadratic fluc-

tuations may be written as

(ηabδIJ − ǫabsIJ)θ̄Ie/aDbθ
J = ψ̄e/aDb(η

ab1l − ǫabΓ−1)ψ

= −ψ̄e/0D0ψ + ψ̄e/1D1ψ − ψ̄e/0D1Γ−1ψ + ψ̄e/1D0Γ−1ψ

= −ψ̄′Γ0(1+Γ03Γ−1)D
S
0 ψ

′+ψ̄′Γ3(1+Γ03Γ−1)D
S
1 ψ

′ (A.7)

where ψ′ = (m2 + k2r21)
1/4S−1ψ. Opening the parenthesis one finds without difficulty

that the terms in DS
i which do not commute with (1 + Γ03Γ−1) cancel out either among

themselves or because of the constraint ψ̄ΓAψ = 0. One is finally left with

(ηabδIJ − ǫabsIJ)θ̄Ie/aDbθ
J = ψ̄′(−Γ0D0 + Γ3D1)(1 + Γ03Γ−1)ψ

′ (A.8)
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Let us focus next on the flux-dependent terms in the super-covariant derivative. Their

contribution to the action (3.5) as well as the precise expressions for the slashed fluxes are

(ηabδIJ−ǫabsIJ)θ̄Ie/a

[

F/2(iσ
2)JK +F/4(σ1)

JK
]

e/bθ
K = ψ̄e/a[−F/2Γ−1+F/4]e/b(η

ab1l+ǫabΓ−1)ψ

F/2 = 2(Γ45 − Γ67 + Γ89) , F/4 = 6Γ0123 . (A.9)

To simplify this expression we next split S−1(−F/2Γ−1 + F/4)S into a sum of terms

S−1(−F/2Γ−1 + F/4)S = F + F03 + F0 + F3 , (A.10)

where F commutes with Γ0 and Γ3, Fi anticommutes with Γi and Fij anticommutes with

Γij . These properties are sufficient to show that F0 and F3 cancel out and that the only

relevant terms will be F and F03 whose expressions are

F = −2(Γ45 − Γ67)Γ−1 − 2 cosh 2q cos 2pΓ89Γ−1 ,

F03 = 6cosh 2q cos 2pΓ0123 (A.11)

Using (A.3) one may rewrite the flux term in the fermionic action as

ψ̄e/a [−F/2Γ−1 + F/4] e/b(η
ab1l + ǫabΓ−1)ψ

=
√

m2 + k2r21ψ̄
′ [F − F03] (1l + Γ03Γ−1)ψ

′

= −
√

m2 + k2r21ψ̄
′ [2 ((Γ45 − Γ67) + cosh 2q cos 2pΓ89) Γ−1

+6cosh 2q cos 2pΓ0123] (1l + Γ03Γ−1)ψ
′ , (A.12)

Then, the complete fermionic quadratic Lagrangian is

L = i(ηabδIJ − ǫabsIJ)θ̄Ie/aD
JK
b θK = iψ̄Kψ′ ,

K =

{

2(−Γ0D
S
0 + Γ3D

S
1 ) − 1

4

√

m2 + k2r21

[

6 cosh 2q cos 2pΓ0123 (A.13)

+2
(

(Γ45−Γ67)+cosh 2q cos 2pΓ89

)

Γ−1

]

}

P+ ,

where

P+ =
1

2
(1l + Γ03Γ−1) . (A.14)

The presence of this projector in the quadratic Lagrangian is an indication of the κ-

symmetry of the action. A naturalκ-symmetry gauge choice is then that none of the

components of ψ lie in the orthogonal subspace of P+.

Next, we need to find the frequencies of the fermionic modes described by this La-

grangian. To this end it is useful to consider a general operator of which K is a special

case. Such an operator is:

K = −ip0Γ0 + ip1Γ3 + aΓ013 + bΓ019 + cΓ139

+6AΓ0123 + 2BΓ89Γ−1 + 2C(Γ45 − Γ67)Γ−1 (A.15)
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where

a = 0 , A = −1

8

√

ω2 + k2r21 ,

b = −κm
w

w2 − ω2

2(m2 + r21k
2)
, B = −1

8

√

ω2 + k2r21 , (A.16)

c = − r20kκm

2(m2 + r21k
2)
, C = −1

8

√

m2 + k2r21 .

To evaluate the eigenvalues and enforce κ gauge fixing P+ψ = ψ, let us find the eigenval-

ues of

Kg = PT
+Γ0KP+ . (A.17)

The factor of Γ0 implies that p0 may be extracted from the zeros of the characteristic

polynomial.

To identify the zeros it is useful to note that the operator K commutes with Γ4567 and

that the projectors P± = 1
2 (1± Γ4567) commute with the κ-symmetry projector P+. Then

one may make a further split

Kg+ = P T
+KgP+ , Kg− = P T

−KgP− (A.18)

The characteristic polynomials for these operators may be found without difficulty.

The one for Kg+ implies that p0 is determined by the equation

[−(p0+c)2+(p1−b)2+4(3A+B)2]2[−(p0−c)2+(p1+b)2+4(3A+B)2]2 =0 , (A.19)

from which one should keep the positive frequencies. The factorized form means that there

are two doubly-degenerate modes with the frequencies:

(p0)±12 = ±c+
√

(p1 ± b)2 + 4(3A +B)2 . (A.20)

It is worth noting that these correspond to the “heavy” fermions. If one reduces the

solution to the case of the BMN string the mass of these fermions is twice that of the

“lighter” fluctuations.

The frequencies of those lighter modes are determined by the characteristic polynomial

of Kg−, i.e. are the roots of the following quartic polynomial:

[

(−p2
0 + p2

1)
2 − 2p2

0C++++ − 2p2
1C+−+− − 8 b c p0p1 + C2

++−−
]2

= 0 , (A.21)

where

C+αβγ = b2 + 4α(3A −B)2 + βc2 − 16γC2 . (A.22)

As for Kg+, there are two doubly-degenerate modes; upon using the expressions (A.16) for

the constants appearing above, one finds the equation (3.11) quoted in the text.
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B. Details of comparison of the fixed and large mode number contribu-

tions to the one-loop string energy

In this appendix we record the regular and singular terms in the one-loop frequency sum

in the large ω limit in the discrete and continuous regimes (see section 4.1)

esum = esum
reg + esum

sing , eint = eint
reg + eint

sing , (B.1)

and compare their structures. The part of the summand esum
sing that gives rise to a singular

contribution in the discrete regime is

esum
sing(n) =

1

2ω

(

−k2(1 + u)(1 + 3u)
)

+
1

4ω3

(

7k2(1 + u)(3 + 5u)n2 +
1

8
k4(1 + u(44 + u(86 + (28 − 15u)u)))

)

+
1

16ω5

(

−93k2(1+u)(5+7u)n4− 1

4
k4(1+u)(375+u(2509+u(3157+687u)))n2

− 1

16
k6(1 + u)(1 + u(257 + u(1134 + u(1006 + u(65 + 33u))))) + · · ·

)

+ O
(

1

ω7

)

. (B.2)

The part of the integrand eint
reg(n) that leads to a regular contribution in the continuum

regime is

eint
reg(x) =

1

2ω

(

−k2(1+u)(1+3u)+
7

2
k2(1+u)(3+5u)x2− 93

8
k2(1+u)(5+7u)x4+· · ·

)

+
1

32ω3

(

k4(1 + u(44 + u(86 + (28 − 15u)u)))

−1

2
k4(1 + u)(375 + u(2509 + u(3157 + 687u)))x2

)

− 1

256ω5

(

k6(1 + u)(1 + u(257 + u(1134 + u(1006 + u(65 + 33u))))) + · · ·
)

+ O
(

1

ω7

)

. (B.3)

By inspection, it is not hard to notice that

esum
sing(n) = eint

reg

(

n

ω

)

, (B.4)

which shows that the regular part in the continuum regime correctly captures the apparent

singularities in the large ω limit of the discrete regime.

Similarly, the singular part in the continuum regime eint
sing(x) and the regular part in

the discrete regime esum
reg (n) are

eint
sing(x) = −3k4u2(1 + u)2

4x2ω3
+

1

8ω5

(

15k6u3(1 + u)3

x4
− 3k6u2(1 + u)2(−1 + 2u2)

x2

)

+ O
(

1

ω7

)

, (B.5)
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and

esum
reg (n) =

1

2ω

(

− 3

2n2
k4u2(1 + u)2 +

15

4n4
k6u3(1 + u)3 + · · ·

)

+
1

4ω3

(

− 3

2n2
k6u2(1 + u)2(−1 + 2u2)) +

15

16n4
k8u4(1 + u)3(13 + 17u) + · · ·

)

+ O
(

1

ω5

)

, (B.6)

respectively. Again, it is not hard to see that

eint
sing(x) = esum

reg (ωx) , (B.7)

implying that the regular part of the discrete regime correctly describes the singular part

in the continuum regime.

These observations parallel those in AdS5×S5 made in [29]. As in that case, they imply

that the one-loop correction to the energy of the circular rotating string is given by the

equation (4.5).

C. Higher orders in the 1/ω expansion of eint(x)

In this appendix we include the expression of eint (whose leading order was quoted in (4.9))

to higher orders.

eint(x) =
k2(1 + u)

2ω2

(

1 + u(3 + 2x2)

(1 + x2)3/2
− 2

1 + u(3 + 8x2)

(1 + 4x2)3/2

)

− k4(1 + u)

32ω4x2

[

1

(1 + x2)7/2

(

32u2(1 + u) + (7 + u(77 + u(221 + 135u)))x2

+4(−7+u(−7+u(29+21u)))x4 +16u(1+u(3+u))x6+16u(1+u)x8
)

− 8

(1 + 4x2)7/2

(

u2(1 + u) + (1 + 3u(5 + u(11 + 5u)))x2

+8(−1 + 3u)(2 + u(4 + u))x4 + 64u(2 + 3u)x6 + 256u(1 + u)x8
)

]

+
k6(1 + u)

256ω6x4

[

1

(1 + x2)11/2

(

512u3(1 + u)2 + 128u2(1 + u)(1 + 22u+ 20u2)x2

+(31 + u(735 + u(3570 + u(10418 + u(12447 + 4991u)))))x4

+4(−93 + u(−596 + u(−907 + u(373 + u(1412 + 707u)))))x6

+8(31 + u(93 + u(254 + u(358 + u(201 + 71u)))))x8

+32u(28 + u(132 + u(146 + u(40 + u))))x10

+64u(1 + u)(6 + u(26 + 9u))x12

+32u(1 + u)(3 + u)(1 + 3u)x14
)

− 32

(1 + 4x2)11/2

(

u3(1 + u)2 + u2(1 + u)(1 + 22u+ 20u)x2

+(1 + u(31 + u(147 + u(357 + u(391 + 157u)))))x4
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+4(−12 + u(−52 + u(−9 + u(137 + u(179 + 91u))))))x6

+16(8 + u(64 + u(232 + u(240 + u(67 + 21u)))))x8

+128u(32 + u(140 + u(142 + u(32 + u))))x10

+1024u(1 + u)(7 + 26u+ 8u)x12

+2048u(1 + u)(3 + u)(1 + 3u)x14
)

]

+ O
(

1

ω8

)

. (C.1)

At each order in 1/ω one notices terms which are singular as x → 0. These are the terms

contributing to eint
sing quoted in the previous appendix.

D. Numerical checks

The fact that the leading term in the large ω expansion of the one-loop string energy is

proportional to ω−1 contrasts with what happened in the case of the rotating string in

AdS5×S5, whose “odd” part starts only at 1/ω5 order. A check of this dependence may be

obtained by a numerical evaluation of the sum in the regime leading to (4.12). The main

complication is related to the fact that, while the correction to the energy is finite, each

of the sums contributing to it is divergent. These divergences are of two types: power-like

and logarithmic. While one may directly evaluate the sums with a cutoff, the presence of

divergences leads to a quick loss of numerical accuracy.

This may be somewhat improved by separating the sum into two sub-sums and sub-

tracting the divergences in each of them.23 Concretely, we split the full sum into two sums

— over the light and heavy modes; schematically, they are

e(n)light = 4 ×
√

n2 +
1

4
(ω2 − k2u2) − 2 × 1

2

(

(p0)
F
1 + (p0)

F
2 − (p0)

F
3 − (p0)

F
4

)

,

e(n)heavy =
√

n2 + κ2 +
√

n2 + (ω2 − k2u2) +
1

2

(

(p0)
B
1 + (p0)

B
2 − (p0)

B
3 − (p0)

B
4

)

−2
√

(n− b)2 + (ω2 + k2r21) − 2
√

(n+ b)2 + (ω2 + k2r21) , (D.1)

where, as before, pB,F
1,2,3,4 are solutions of the bosonic and fermionic quartic equations.

Since the subtracted sums are absolutely convergent, one may carry out this subtrac-

tion for each mode separately. The subtracted terms add up to zero. In each of them the

power-like divergences cancel out. Then, from each of them we may subtract the leading

term in the large n expansion for fixed values of the other parameters

∆Slight = (ω2 − k2 −m2)
1

2n
,

∆Sheavy = (3(κ2 − ω2) −m2 − 4k2r21)
1

2n
. (D.2)

23One may in fact go even further and subtract the divergences of each frequency sum separately.
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These subtractions cancel out when the two sums are added together because of the usual

mass sum rule

∑

i

(−)Fim2
i = 0 ⇔ κ2 −m2 − ω2 − 2k2r21 = 0 , (D.3)

which here appears as a consequence of the Virasoro constraint.

An unfortunate feature of these sums is that they converge somewhat slowly in their

effective parameter which is n/ω. Indeed, since the leading large n behavior is ∼ n−3, the

corrections are of the order δS ∼ 1
2(ω/N)2. Consequently, for a sufficiently large ω which

probes the asymptotic behavior of the sum, the necessary cutoff N is relatively large.

Numerical evaluation with ω = 104 and an estimated error 5 × 10−3 (i.e. a cutoff

N = 105) gives

2ωE = −(1.383 ± .005)k2u(1 + u) + O(ω−1)

= −(1.995 ± .01) ln 2 k2u(1 + u) + O(ω−1) (D.4)

Clearly, this is consistent with the leading term in the large ω = J√
λ̄

expansion obtained

analytically in (4.12).

It is possible, though somewhat cumbersome, to perform similar checks for the sub-

leading terms in the 1/J expansion.

E. Large J , large k limit of circular string solution

It is interesting to study the large J , fixed S, limit of the solution considered in the main

text for, as we will see, this limit does not seem to follow the same rules for finding the

AdS4 × CP
3 string energies from their AdS5×S5 analogues. This limit may, however, be

somewhat exceptional, as it requires scaling AdS4 winding number to infinity. Nonetheless,

if for nothing other than completeness, we decided to mention it here.

We will consider the limit where J = ω is taken to be large while S and m are kept

fixed with m
S < 0. The constraints on the parameters in section 2 then imply that we must

also take the winding k to be large. We will use the notation k = βω where β = −m
S . In

this limit the parameters of the solution become

κ = ω − m2

√
m2 + S2

+ O
(

1

ω

)

r21 =
S2

ω
√
S2 +m2

+ O
(

1

ω2

)

w =
ω

S
√

S2 +m2 +
Sm2

S2 +m2
+ O

(

1

ω

)

. (E.1)

Then the energy density, E , is infinite but as for the BMN string or giant magnon the

difference E − J is finite, and is given simply by

E − J =
√

S2 +m2λ̄ . (E.2)
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This classical energy is what we would expect from the analogous AdS5×S5 result found

in [45] where the one-loop correction was also calculated and shown to be zero. Based

on the replacement rule, (4.17), we would then expect to find a non-vanishing one-loop

contribution proportional to ln 2 in AdS4 × CP
3 geometry (coming from the λ̄ 7→ 2h̄(λ̄)

replacement in the classical expression (E.2) with h̄ given by (4.15)). However, we will see

that this is not the case — the one-loop correction found by direct evaluation from string

theory actually vanishes.

It is straightforward to find the fluctuation frequencies about this large-J solution from

the general frequencies calculated in section 3. From the quartic equation (3.4) we find the

characteristic frequencies

(p0)
B
1,2 =

√

(p+ β)2 + 1 ±
√

1 + β2 , (p0)
B
3,4 = −

√

(p − β)2 + 1 ∓
√

1 + β2 . (E.3)

We should note here that we have rescaled the worldsheet coordinate so that the string has

infinite length, scaling like ω. Thus the worldsheet momenta, p, are now continuous. From

the remaining bosonic fluctuation frequencies we have six free massive modes — two with

mass 1 and four with mass 1/2. For the fermions we find four with frequencies calculated

from the quartic equation (3.11)

(p0)
F
1,2 =

1

2

(

√

(2p+ β)2 + 1 ±
√

1 + β2
)

,

(p0)
F
3,4 =

1

2

(

−
√

(2p − β)2 + 1 ∓
√

1 + β2
)

(E.4)

while the remaining four fermions have frequencies

(p0)
F
5,6 =

√

(

p+
1

2
β

)2

+ 1 ± 1

2

√

1 + β2,

(p0)
F
7,8 =

√

(

p− 1

2
β

)2

+ 1 ∓ 1

2

√

1 + β2. (E.5)

We can now straightforwardly calculate the sum over frequencies which to leading order in

ω can be replaced by an integral.

E1 ∼
∫ ∞

0
dp

[

2
√

1 + p2 + 2
√

1 + 4p2 +
√

1 + (p− β)2 +
√

1 + (p+ β)2 (E.6)

−
√

1+(2p−β)2−
√

4+(2p−β)2−
√

1+(2p+β)2−
√

4+(2p+β)2
]

.

If we follow the standard procedure of imposing a cut-off, performing the integral and

taking the cut-off to infinity we find that the one-loop correction to the energy of the circle

string in this limit is zero.

For comparison, if we follow [23], we can identify the “light” and “heavy” modes as24

pL
0 =

{

4 ×
√

1/4 + p2, 2 ×
√

1/4 + (p± β/2)2
}

, (E.7)

pH
0 =

{

2 ×
√

1 + p2,
√

1 + (p± β)2,
√

1 + (p± β/2)2
}

, (E.8)

24This can be done by taking the β → 0 which can be viewed as taking S → 0 but with m = 0 and which

corresponds to the BMN string.
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Then we note that the formula [23] for the one-loop energy correction

E1 =
1

2κ

∞
∑

n=−∞

[

pH
0 (n) +

1

2
pL
0 (n/2)

]

(E.9)

becomes, in the limit of large J = ω (where we again set n = ωp and replace the sum by

an integral), exactly half of the analogous result in AdS5×S5 which in this case is also zero.
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