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Binary neutron-star systems represent primary sources for the gravitational-wave detectors that are

presently operating or are close to being operating at the target sensitivities. We present a systematic

investigation in full general relativity of the dynamics and gravitational-wave emission from binary

neutron stars which inspiral and merge, producing a black hole surrounded by a torus. Our results

represent the state of the art from several points of view: (i) We use high-resolution shock-capturing

methods for the solution of the hydrodynamics equations and high-order finite-differencing techniques for

the solution of the Einstein equations; (ii) We employ adaptive mesh-refinement techniques with ‘‘moving

boxes’’ that provide high-resolution around the orbiting stars; (iii) We use as initial data accurate solutions

of the Einstein equations for a system of binary neutron stars in irrotational quasicircular orbits; (iv) We

exploit the isolated-horizon formalism to measure the properties of the black holes produced in the

merger; (v) Finally, we use two approaches, based either on gauge-invariant perturbations or on Weyl

scalars, to calculate the gravitational waves emitted by the system. Within our idealized treatment of the

matter, these techniques allow us to perform accurate evolutions on time scales never reported before (i.e.

�30 ms) and to provide the first complete description of the inspiral and merger of a neutron-star binary

leading to the prompt or delayed formation of a black hole and to its ringdown. We consider either a

polytropic equation of state or that of an ideal fluid and show that already with this idealized treatment a

very interesting phenomenology can be described. In particular, we show that while higher-mass

polytropic binaries lead to the prompt formation of a rapidly rotating black hole surrounded by a dense

torus, lower-mass binaries give rise to a differentially rotating star, which undergoes large oscillations and

emits large amounts of gravitational radiation. Eventually, also the hyper-massive neutron star collapses to

a rotating black hole surrounded by a torus. Finally, we also show that the use of a nonisentropic equation

of state leads to significantly different evolutions, giving rise to a delayed collapse also with high-mass

binaries, as well as to a more intense emission of gravitational waves and to a geometrically thicker torus.
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I. INTRODUCTION

Little is required to justify the efforts in the study of
binary systems. Despite the simplicity of its formulation,
the relativistic two-body problem is, in fact, one of the
most challenging problems in classical general relativity.
Furthermore, binary systems of compact objects are con-
sidered one of the most important sources for gravitational-
wave emission and are thought to be at the origin of some
of the most violent events in the Universe. While some of
the numerical difficulties involved in the simulations of
such highly dynamical systems have been overcome in the
case of binary black holes (BHs), numerical simulations of
binary neutron stars (NSs) in general relativity have so far
provided only rudimentary descriptions of the complex
physics accompanying the inspiral and merger. Simu-
lations of this type are the focus of this paper.

Binary NSs are known to exist and for some of the
systems in our own galaxy general-relativistic effects in
the binary orbit have been measured to high precision

[1–3]. The inspiral and merger of two NSs in binary orbit
is the inevitable fate of close-binary evolution, whose main
dissipation mechanism is the emission of gravitational
radiation. An important part of the interest in the study of
coalescing systems of compact objects comes from the
richness of general-relativistic effects that accompany
these processes and, most importantly, from the
gravitational-wave emission. Detection of gravitational
waves from NS binaries will indeed provide a wide variety
of physical information on the component stars, including
their mass, spin, radius, and equations of state (EOS) [4,5].
Furthermore, NS binary systems are expected to produce
signals of amplitude large enough to be relevant for Earth-
based gravitational-wave detectors and to be sufficiently
frequent sources to be detectable over the time scale in
which the detectors are operative. Recent improved extrap-
olations to the local group of the estimated galactic coales-
cence rates predict 1 event per 3–10 years for the first
generation of interferometric detectors and of 10–50 events
per year, for the generation of advanced detectors [6].
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There are three possible characteristic gravitational-
wave frequencies related to the inspiral and merger of
binary systems. The first one is the frequency of the orbital
motion of the stars in the last stages of the inspiral, before
tidal distortions become important. The second character-
istic frequency is associated with the fundamental oscilla-
tion modes of the merged massive object formed after the
onset of the merger. Numerical simulations in the frame-
works of Newtonian [7], post-Newtonian (PN) [8], semi-
relativistic [9], and fully general-relativistic gravity [10]
have shown that, if a BH is not produced promptly, the
frequency of the fundamental oscillation modes of the
merged object is between 2 and 3 kHz, depending on the
EOS and on the initial compactness of the progenitor NSs.
Finally, the third frequency is that of the quasinormal
modes (QNMs) of the BH, which is eventually formed
after the merger.

The study of NS binary systems goes beyond the impact
it has on gravitational-wave astronomy and is also finalized
to the understanding of the origin of some type of �-ray
bursts (GRBs), whose short rise times suggest that their
central sources have to be highly relativistic objects [11].
After the observational confirmation that GRBs have a
cosmological origin, it has been estimated that the central
sources powering these bursts must provide a large amount
of energy (� 1051 ergs) in a very short time scale, going
from 1 ms to 1 s (at least for a subclass of them, called
‘‘short’’ GRBs). It has been suggested that the merger of
NS binaries could be a likely candidate for the powerful
central source of a subclass of short GRBs. The typical
scenario is based on the assumption that a system com-
posed of a rotating BH and a surrounding massive torus is
formed after the merger. If the disc had a mass* 0:1M�, it
could supply the large amount of energy by neutrino
processes or by extracting the rotational energy of the BH.

The understanding of GRBs is therefore an additional
motivation to investigate the final fate of binaries after
the merger. The total gravitational masses of the known
galactic NS binary systems are in a narrow range
�2:65–2:85M� and the present observational evidence
indicates that the masses of the two stars are nearly equal.
If this is the general situation, NSs in binary systems will
not be tidally disrupted before the merger. As a result, the
mass loss from the binary systems is expected to be small
during the evolution and the mass of the merged object will
be approximately equal to the initial mass of the binary
system. Since the maximum allowed gravitational mass for
spherical NSs is in the range �1:5–2:3M�, depending on
the EOS, the compact objects formed just after the merger
of these binary systems are expected to collapse to a BH,
either promptly after the merger or after a certain ‘‘delay.’’
Indeed, if the merged object rotates differentially, the final
collapse may be prevented on a time scale over which
dissipative effects like viscosity, magnetic fields, or
gravitational-wave emission bring the star towards a con-

figuration which is unstable to gravitational collapse.
During this process, if the merged object has a sufficiently
high ratio of rotational energy to the gravitational binding
energy, it could also become dynamically unstable to non-
linear instabilities, such as the bar-mode instability
[12,13]. It is quite clear, therefore, that while the asymp-
totic end state of a binary NS system is a rotating BH, the
properties of the intermediate product of the merger are
still pretty much an open question, depending not only on
the nuclear EOS for high-density neutron matter, but also
on the rotational profile of the merged object and on the
physical processes through which the object can lose an-
gular momentum and energy.
Several different approaches have been developed over

the years to tackle the binary NS problem. One of these
approaches attempts to estimate the properties of the
binary evolution by considering sequences of quasiequili-
brium configurations, that is by neglecting both gravita-
tional waves and wave-induced deviations from a circular
orbit; this is expected to be a very good approximation if
the stars are well separated [14–26]. Other approaches have
tried to simplify some aspects of the coalescence, by solv-
ing, for instance, the Newtonian or PN version of the
hydrodynamics equations (see [7,8,27–33] and references
therein). At the same time, alternative treatments of the
gravitational fields, such as the conformally flat approxi-
mation, have been developed and coupled to the solution of
the relativistic hydrodynamical equations [34,35], either in
the fluid approximation or in its smooth-particle hydro-
dynamics (SPH) variant [36]. Special attention has also
been paid to the role played in these calculations by the
EOS and progress has been made recently with SPH cal-
culations [4,5].
While all of the above-mentioned works have provided

insight into the coalescence process and some of them
represent the state of the art for their realistic treatment
of the matter properties [4,5], they are nevertheless only
approximations to the full general-relativistic solution. The
latter is, however, required for quantitatively reliable co-
alescence waveforms and to determine those qualitative
features of the final merger which can only result from
strong-field effects.
Several groups have launched efforts to solve the equa-

tions of relativistic hydrodynamics together with the
Einstein equations and to model the coalescence and
merger of NS binaries [37–40]. The first successful simu-
lations of binary NS mergers were those of Shibata and
Uryu [41–43]. Later on, Shibata and Taniguchi have ex-
tended their numerical studies to unequal-mass binaries
providing a detailed and accurate discussion of simulations
performed with realistic EOSs (see [44] and references
therein). More recently, Anderson et al. [45] have made
important technical progress by presenting results of bi-
nary NS evolutions using an adaptive-mesh-refinement
(AMR) code. However, despite the high resolution avail-
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able with the use of AMR, no waveforms from the BH
formation were reported in Ref. [45] over the time scales
discussed for the evolutions. Finally, a set of simulations
involving (among other compact binaries) also binary neu-
tron stars have been recently presented by Yamamoto et al.
using AMR techniques with moving boxes [46].

An aspect common to all the above-mentioned simula-
tions is that, while they represent enormous progress with
respect to what was possible to calculate only a few years
ago, they provide a description of the dynamics which is
limited to a few ms after the merger. The work presented
here aims at pushing this limit further and to provide a
systematic investigation of the inspiral, but also of the
merger and of the (possibly) delayed collapse to a BH.
Despite the fact that we do not account for the transport of
radiation or neutrinos, our results benefit from a number of
technical advantages (some of which are also shared by
other groups): (i) The use of high-resolution shock-
capturing methods for the solution of the hydrodynamics
equations and high-order (i.e. fourth order in space and
third order in time) finite-differencing techniques for the
solution of the Einstein equations; (ii) The use of adaptive
mesh-refinement techniques that provide higher resolution
around the orbiting stars; (iii) The use of consistent initial
data representing a system of binary NSs in irrotational
quasicircular orbits; (iv) The use of the isolated-horizon
formalism to measure the properties of the BHs produced
in the merger; (v) The use of two complementary ap-
proaches for the extraction of the gravitational waves
produced. Most importantly, however, our simulations
can rely on unprecedented evolution time scales spanning
more than 30 ms.

Exploiting these features we provide, within an ideal-
ized treatment of the matter, the first complete description
of the inspiral and merger of a NS binary leading to the
prompt or delayed formation of a BH and to its ringdown.
While our treatment of the matter is simplified with the use
of analytic EOSs, we show that this does not prevent us
from reproducing some of the most salient aspects that
more realistic EOSs would yield. In particular, we show
that an isentropic (i.e. polytropic) EOS leads either to the
prompt formation of a rapidly rotating BH surrounded by a
dense torus if the binary is sufficiently massive, or, if the
binary is not very massive, to a differentially rotating star,
which undergoes oscillations, emitting large amounts of
gravitational radiation and experiencing a delayed collapse
to BH. In addition, we show that the use of nonisentropic
(i.e. ideal-fluid) EOS inevitably leads to a further delay in
the collapse to BH, as a result of the larger pressure support
provided by the temperature increase via shocks.

Our interest also goes to the small-scale hydrodynamics
of the merger and to the possibility that dynamical insta-
bilities develop. In particular, we show that, irrespective of
the EOS used, coalescing irrotational NSs form a vortex
sheet when the outer layers of the stars come into contact.

This interface is Kelvin-Helmholtz unstable on all wave-
lengths (see, e.g., [47] and references therein) and, exploit-
ing the use of AMR techniques, we provide a first
quantitative description of this instability in general-
relativistic simulations.
Special attention in this work is obviously dedicated to

the analysis of the waveforms produced and to their prop-
erties for the different configurations. In particular, we find
that the largest loss rates of energy and angular momentum
via gravitational radiation develop at the time of the col-
lapse to BH and during the first stages of the subsequent
ringdown. Nevertheless, the configurations which emit the
highest amount of energy and angular momentum are those
with lower mass, because they do not collapse promptly to
a BH, but instead produce a violently oscillating transient
object, which produces copious gravitational radiation
while rearranging its angular-momentum distribution. We
also show that, although the gravitational-wave emission
from NS binaries has spectral distributions with large
powers at high frequencies (i.e. f * 1 kHz), a signal-to-
noise ratio (SNR) as large as 3 can be estimated for a
source at 10 Mpc if using the sensitivity of currently
operating gravitational-wave interferometric detectors.
Many aspects of the simulations reported here could be

improved and probably the most urgent among them is the
inclusion of magnetic fields. Recent calculations have
shown that the corrections produced by strong magnetic
fields could be large and are very likely to be present [see
Ref. [48] for Newtonian magnetohydrodynamical (MHD)
simulations and Refs. [49,50] for a recent general-
relativistic extension]. While we have already developed
the numerical code that would allow to perform the study
of such binaries in the ideal-MHD limit [51], our analysis
is here limited to unmagnetized NSs.
The paper is organized as follows. In Sec. II we first

summarize the formalism we adopt for the numerical
solution of the Einstein and of the relativistic-
hydrodynamics equations; we then describe briefly the
numerical methods we implemented in the Whisky code
[52,53], we outline our mesh-refined grid setup, and we
finally describe the quasiequilibrium initial data we use. In
Secs. III A and III B we describe binaries evolved with the
polytropic EOS and having a comparatively ‘‘high’’ or
‘‘low’’ mass, respectively. In Secs. III C and III D we
instead discuss the dynamics of the same initial models
when evolved with the ideal-fluid EOS, while Sec. III E is
dedicated to our analysis of the Kelvin-Helmholtz insta-
bility. In Secs. IVA and IVB we characterize the
gravitational-wave emission for the case of the polytropic
and ideal-fluid EOS, respectively. Finally in Secs. IVC and
IVD we report about the energy and angular momentum
carried by the gravitational waves and their power spectra.
In the appendix, further comments on numerical and tech-
nical issues are discussed.
We here use a spacelike signature ð�;þ;þ;þÞ and a

system of units in which c ¼ G ¼ M� ¼ 1 (unless explic-
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itly shown otherwise for convenience). Greek indices are
taken to run from 0 to 3, Latin indices from 1 to 3, and we
adopt the standard convention for the summation over
repeated indices.

II. MATHEMATICAL AND NUMERICAL SETUP

A. Evolution system for the fields

We evolve a conformal-traceless ‘‘3þ 1’’ formulation
of the Einstein equations [54–57], in which the spacetime
is decomposed into three-dimensional spacelike slices,
described by a metric �ij, its embedding in the full space-

time, specified by the extrinsic curvatureKij, and the gauge

functions � (lapse) and �i (shift) that specify a coordinate
frame (see Sec. II B for details on how we treat gauges and
[58] for a general description of the 3þ 1 split). The
particular system which we evolve transforms the standard
ADM variables as follows. The three-metric �ij is confor-

mally transformed via

� ¼ 1
12 lndet�ij; ~�ij ¼ e�4��ij; (1)

and the conformal factor � is evolved as an independent
variable, whereas ~�ij is subject to the constraint det~�ij ¼
1. The extrinsic curvature is subjected to the same confor-
mal transformation and its trace trKij is evolved as an

independent variable. That is, in place of Kij we evolve:

K � trKij ¼ gijKij; ~Aij ¼ e�4�

�
Kij � 1

3
�ijK

�
;

(2)

with tr ~Aij ¼ 0. Finally, new evolution variables

~� i ¼ ~�jk~�i
jk (3)

are introduced, defined in terms of the Christoffel symbols
of the conformal three metric.

The Einstein equations specify a well-known set of
evolution equations for the listed variables and are given by

ð@t �L�Þ~�ij ¼ �2� ~Aij; (4)

ð@t �L�Þ� ¼ �1
6�K; (5)

ð@t �L�Þ ~Aij ¼ e�4�½�DiDj�þ �ðRij � 8�SijÞ�TF
þ �ðK ~Aij � 2 ~Aik

~Ak
jÞ; (6)

ð@t �L�ÞK ¼ �DiDi�

þ �½ ~Aij
~Aij þ 1

3K
2 þ 4�ð�ADM þ SÞ�; (7)

@t~�
i ¼ ~�jk@j@k�

i þ 1
3
~�ij@j@k�

k þ �j@j~�
i � �j@j�

i

þ 2
3
~�i@j�

j � 2 ~Aij@j�þ 2�ð~�i
jk
~Ajk þ 6 ~Aij@j�

� 2
3
~�ij@jK � 8�~�ijSjÞ; (8)

where Rij is the three-dimensional Ricci tensor, Di the

covariant derivative associated with the three metric �ij,

‘‘TF’’ indicates the trace-free part of tensor objects, and
�ADM, Sj, and Sij are the matter source terms defined as

�ADM � n�n�T
��; Si � ��i�n�T

��;

Sij � �i��j�T
��;

(9)

where n� � ð��; 0; 0; 0Þ is the future-pointing four-vector
orthonormal to the spacelike hypersurface and T�� is the
stress-energy tensor for a perfect fluid [cf. Eq. (19)]. The
Einstein equations also lead to a set of physical constraint
equations that are satisfied within each spacelike slice,

H � Rð3Þ þ K2 � KijK
ij � 16��ADM ¼ 0; (10)

M i � DjðKij � �ijKÞ � 8�Si ¼ 0; (11)

which are usually referred to as Hamiltonian and momen-

tum constraints. Here Rð3Þ ¼ Rij�
ij is the Ricci scalar on a

three-dimensional time slice. Our specific choice of evo-
lution variables introduces five additional constraints,

det~�ij ¼ 1; (12)

tr ~Aij ¼ 0; (13)

~� i ¼ ~�jk~�i
jk: (14)

Our code actively enforces the algebraic constraints (12)
and (13). The remaining constraints,H ,Mi, and (14), are
not actively enforced and can be used as monitors of the
accuracy of our numerical solution. See [59] for a more
comprehensive discussion of the these points.
Among the diagnostic quantities, we compute the angu-

lar momentum as a volume integral with the expression
[60]:

Jivol ¼ "ijk
Z
V

�
1

8�
~Ajk þ xjSk þ 1

12�
xjK;k

� 1

16�
xj ~�

lm
;k
~Alm

�
e6�d3x: (15)

B. Gauges

We specify the gauge in terms of the standard ADM
lapse function � and shift vector �i [61]. We evolve the
lapse according to the ‘‘1þ log’’ slicing condition [62]:

@t�� �i@i� ¼ �2�ðK � K0Þ; (16)

where K0 is the initial value of the trace of the extrinsic
curvature and equals zero for the maximally sliced initial
data we consider here. The shift is evolved using the

hyperbolic ~�-driver condition [59],

@t�
i � �j@j�

i ¼ 3
4�B

i; (17)
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@tB
i � �j@jB

i ¼ @t~�
i � �j@j~�

i � �Bi; (18)

where � is a parameter which acts as a damping coefficient
which we set to be constant (� ¼ 1). The advection terms
on the right-hand sides of these equations have been sug-
gested in [63–65].

All the equations discussed above are solved using the
CCATIE code, a three-dimensional finite-differencing
code based on the Cactus Computational Toolkit [66]. A
detailed presentation of the code and of its convergence
properties have been recently presented in Ref. [67].

C. Evolution system for the matter

An important feature of the Whisky code is the imple-
mentation of a flux-conservative formulation of the hydro-
dynamics equations [68–70], in which the set of
conservation equations for the stress-energy tensor T�	

and for the matter current density J�, namely

r�T
�	 ¼ 0; r�J

� ¼ 0; (19)

is written in a hyperbolic, first-order, and flux-conservative
form of the type

@tqþ @if
ðiÞðqÞ ¼ sðqÞ; (20)

where fðiÞðqÞ and sðqÞ are the flux vectors and source terms,
respectively [71]. Note that the right-hand side (the source
terms) does not depend on derivatives of the stress-energy
tensor. Furthermore, while the system (20) is not strictly
hyperbolic, strong hyperbolicity is recovered in a flat
spacetime, where sðqÞ ¼ 0.

As shown by [69], in order to write system (19) in the
form of system (20), the primitive hydrodynamical varia-
bles (i.e. the rest-mass density �, the pressure p measured
in the rest-frame of the fluid, the fluid three-velocity vi

measured by a local zero-angular momentum observer, the
specific internal energy 
, and the Lorentz factor W) are
mapped to the so-called conserved variables q � ðD; Si; �Þ
via the relations

D � ffiffiffiffi
�

p
W�; Si � ffiffiffiffi

�
p

�hW2vi;

� � ffiffiffiffi
�

p ð�hW2 � pÞ �D;
(21)

where h � 1þ 
þ p=� is the specific enthalpy and W �
ð1� �ijv

ivjÞ�1=2. Note that only five of the seven primi-

tive variables are independent.
In this approach, all variables q are represented on the

numerical grid by cell-integral averages. The functions the
q represent are then reconstructed within each cell, usually
by piecewise polynomials in a way that preserves conser-
vation of the variables q [72]. This operation produces two
values at each cell boundary which are then used as initial
data for the local Riemann problems, whose (approximate)
solution gives the fluxes through the cell boundaries. A
method-of-lines approach [72], which reduces the partial

differential equations (20) to a set of ordinary differential
equations that can be evolved using standard numerical
methods, such as Runge-Kutta or the iterative Cranck-
Nicholson schemes [73,74], is used to update the equations
in time (see Ref. [52] for further details). The Whisky
code implements several reconstruction methods, such as
total-variation-diminishing (TVD) methods, essentially-
nonoscillatory (ENO) methods [75], and the piecewise
parabolic method (PPM) [76]. Also, a variety of approxi-
mate Riemann solvers can be used, starting from the
Harten-Lax-van Leer-Einfeldt (HLLE) solver [77], over
to the Roe solver [78] and the Marquina flux formula
[79] (see [52,53] for a more detailed discussion). A com-
parison among different numerical methods in our binary-
evolution simulations is reported in Appendix A 1.
Note that in order to close the system of equations for the

hydrodynamics an EOS which relates the pressure to the
rest-mass density and to the energy density must be speci-
fied. The code has been written to use any EOS, but all the
tests so far have been performed using either an (isen-
tropic) polytropic EOS

p ¼ K��; (22)

e ¼ �þ p

�� 1
; (23)

or an ‘‘ideal-fluid’’ EOS

p ¼ ð�� 1Þ�
: (24)

Here, e is the energy density in the rest frame of the fluid,K
the polytropic constant (not to be confused with the trace of
the extrinsic curvature defined earlier), and � the adiabatic
exponent. In the case of the polytropic EOS (22), � ¼ 1þ
1=N, where N is the polytropic index and the evolution
equation for � does not need to be solved. Note that
polytropic EOSs (22) do not allow any transfer of kinetic
energy to thermal energy, a process which occurs in physi-
cal shocks (shock heating). It is also useful to stress that by
being isentropic, the polytropic EOS (22), far from being
realistic, can be considered as unrealistic for describing the
merger and the post-merger evolution. However, it is used
here because it provides three important advantages. First,
it provides one ‘‘extreme’’ of the possible binary evolution
by being perfectly adiabatic. Second, it allows us to use the
same initial data but to evolve it with two different EOS.
This is a unique possibility which is not offered by other
(more realistic) EOSs. As we will comment below, it has
allowed us to highlight subtle properties of the binary
dynamics during the inspiral which were not reported
before (see the discussion in Sec. III C). Finally, by being
isentropic it provides the most realistic description of
the inspiral phase, during which the neutron stars are
expected to interact only between themselves and only
gravitationally.
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In contrast to the polytropic EOS, when using the ideal-
fluid EOS (24), nonisentropic changes can take place in the
fluid and the evolution equation for � needs to be solved.

D. Adaptive mesh refinement and singularity handling

We use the Carpet code that implements a vertex-
centered adaptive-mesh-refinement scheme adopting
nested grids [80] with a 2:1 refinement factor for succes-
sive grid levels. We center the highest resolution level
around the peak in the rest-mass density of each star.
This represents our rather basic form of AMR.

The time step on each grid is set by the Courant condi-
tion (expressed in terms of the speed of light) and so by the
spatial grid resolution for that level; the typical Courant
coefficient is set to be 0.35. The time evolution is carried
out using third-order accurate Runge-Kutta integration
steps. Boundary data for finer grids are calculated with
spatial prolongation operators employing third-order poly-
nomials and with prolongation in time employing second-
order polynomials. The latter allows a significant memory
saving, requiring only three time levels to be stored, with
little loss of accuracy due to the long dynamical time scale
relative to the typical grid time step.

In the results presented below we have used six levels of
mesh refinement with the finest grid resolution of h ¼
0:12M� ¼ 0:177 km and the wave-zone grid resolution
of h ¼ 3:84M� ¼ 5:67 km. Our finest grid has then a
resolution of a factor of 2 higher compared to the one
used in [44], where a uniform grid with h ¼ 0:4 km was
instead used. Each star is covered with two of the finest
grids, so that the high-density regions of the stars are
tracked with the highest resolution available. These
‘‘boxes’’ are then moved by tracking the position of the
rest-mass density as the stars orbit and are merged when
they overlap. In addition, a set of refined but fixed grids is
set up at the center of the computational domain so as to
capture the details of the Kelvin-Helmholtz instability (cf.
Sec. III E). The finest of these grids extends to r ¼
7:5M� ¼ 11 km. A single grid resolution covers then

the region between r ¼ 150M� ¼ 221:5 km and r ¼
250M� ¼ 369:2 km, in which our wave extraction is car-
ried out. A reflection symmetry condition across the z ¼ 0
plane and a �-symmetry condition1 across the x ¼ 0 plane
are used.
We have performed extensive tests to ensure that both

the hierarchy of the refinement levels described above and
the resolutions used yield results that are numerically con-
sistent although not always in a convergent regime. The
initial data used for these tests refer to a binary evolved
with an ideal-fluid EOS from an initial separation of 45 km
and in which each star has a mass of 1:8M�; such a mass is
larger than the one used for the rest of our analysis
(cf. Table I) and it has been employed because it leads to
a prompter formation of a black hole, thus saving computa-
tional costs.
The 2-norm of the typical violation of the Hamiltonian

constraint grows from & 10�6 at the beginning of the
simulations to & 10�4 at the end of the simulations. The
convergence rate measured in the 2-norm of the violation
of the Hamiltonian constraint is ’ 1:7 before the merger
(i.e. the same convergence rate measured in the evolution
of isolated stars [53]), but it then drops to ’ 1:2 during the
merger. It is still unclear whether this difference is due to
the generation of a turbulent regime at the merger (see the
discussion in Sec. III E and in Ref. [81]) or to a resolution
which is close but not yet in a fully convergent regime.
Tests showing the convergence rate, the conservation of the
mass (baryonic and gravitational), and angular momentum,
as well as the consistency in the gravitational waves have
been validated by the referee but, for compactness, are not
reported here.
The apparent horizon (AH) formed during the simula-

tion is located every few time steps during the evolution
[82]. Exploiting a technique we have first developed when

TABLE I. Properties of the initial data: proper separation between the centers of the stars d=MADM; baryon mass Mb of each star in
solar masses; total ADM mass MADM in solar masses, as measured on the finite-difference grid; total ADM mass ~MADM in solar
masses, as provided by the Meudon initial data; angular momentum J, as measured on the finite-difference grid; angular momentum ~J,
as provided by the Meudon initial data; initial orbital angular velocity �0; mean coordinate equatorial radius of each star re along the
line connecting the two stars; ratio re0=re of the equatorial coordinate radius of a star in the direction orthogonal to the line connecting
the two stars and re; ratio of the polar to the equatorial coordinate radius of each star rp=re; maximum rest-mass density of a star �max.

The initial data for the evolutions with polytropic and ideal-fluid EOS are the same. Note that the asterisk in the model denomination
will be replaced by ‘‘P’’ or by ‘‘IF’’ according to whether the binary is evolved using a polytropic or an ideal-fluid EOS.

Model d=MADM Mb

ðM�Þ
MADM

ðM�Þ
~MADM

ðM�Þ
J

ðgcm2=sÞ
~J

ðgcm2=sÞ
�0

ðrad=msÞ
re

ðkmÞ
re0=re rp=re �max

ðg=cm3Þ
1.46-45-* 14.3 1.456 2.681 2.694 6:5077� 1049 6:5075� 1049 1.78 15 0.890 0.899 4:58� 1014

1.62-45-* 12.2 1.625 2.982 2.998 7:7833� 1049 7:7795� 1049 1.85 14 0.923 0.931 5:91� 1014

1.62-60-* 16.8 1.625 2.987 3.005 8:5548� 1049 8:5546� 1049 1.24 13 0.972 0.977 5:93� 1014

1Stated differently, we evolve only the region fx > 0; z > 0g
applying a 180-degrees rotational-symmetry boundary condition
across the plane at x ¼ 0.
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performing simulations of gravitational collapse to rotating
BHs [83,84] and that has now been widely adopted by
other codes, we do not make use of the excision technique
[85]. Rather, we add a small amount of dissipation to the
evolution equations for the metric and gauge variables only
and rely on the singularity-avoiding gauge (16) to extend
the simulations well past the formation of the AH (note that
no dissipation is added to the evolution of matter varia-
bles). More specifically, we use an artificial dissipation of
the Kreiss-Oliger type [86] on the right-hand sides of the
evolution equations for the spacetime variables and the
gauge quantities. This is needed mostly because all the
field variables develop very steep gradients in the region
inside the AH. Under these conditions, small high-
frequency oscillations (either produced by finite-
differencing errors or by small reflections across the refine-
ment or outer boundaries) can easily be amplified, leave
the region inside the AH and rapidly destroy the solution.
In practice, for any time-evolved quantity u, the right-hand
side of the corresponding evolution equation is modified
with the introduction of a term of the type LdissðuÞ ¼
�"h3@4i u, where h is the grid spacing and " ¼ 0:075 and
is kept constant in space (see Ref. [84] for additional
information and different prescriptions).

E. Initial data

As initial data for relativistic-star binary simulations we
use the ones produced by the group working at the
Observatoire de Paris-Meudon [20,25]. These data, which
we refer to also as the ‘‘Meudon data,’’ are obtained under
the simplifying assumptions of quasiequilibrium and of
conformally flat spatial metric. The initial data used in
the simulations shown here were produced with the addi-
tional assumption of irrotationality of the fluid flow, i.e. the
condition in which the spins of the stars and the orbital
motion are not locked; instead, they are defined so as to
have vanishing vorticity. Initial data obtained with the
alternative assumption of rigid rotation were not used
because, differently from what happens for binaries con-
sisting of ordinary stars, relativistic-star binaries are not
thought to achieve synchronization (or corotation) in the
time scale of the coalescence [87]. The Meudon initial
configurations are computed using a multidomain
spectral-method code, LORENE, which is publicly avail-
able [88]. A specific routine is used to transform the
solution from spherical coordinates to a Cartesian grid of
the desired dimensions and shape.

The binaries used as initial-data configurations have
been chosen so as to provide the variety of behaviors that
we wanted to illustrate and some of their physical quanti-
ties are reported in Table I. Furthermore, since it is the least
computationally expensive, we have chosen model 1.62-
45-* as our fiducial initial configuration. For this binary the
initial coordinate distance between stellar centers in terms

of the initial gravitational wavelength is d ¼ 0:09�GW,
where �GW ¼ �=�0 is the gravitational wavelength for a
Newtonian binary of orbital angular frequency �0. For
evolutions that employ a polytropic EOS, the polytropic
exponent is � ¼ 2 and the polytropic coefficient K ¼
123:6 ¼ 1:798� 105 g�1 cm5 s�2. (Reference [4] has re-
cently made the useful remark that a choice of � ¼ 2:75
and K ¼ 30 000 leads to an EOS that fits well the super-
nuclear regime of the Shen-EOS at zero temperature [89],
as well as yielding density profiles that are very similar to
those obtained with that realistic EOS; unfortunately no
initial data with this adiabatic exponent is available at the
moment.)

III. BINARY DYNAMICS

In what follows we describe the matter dynamics of the
binary initial data discussed in the previous section. To
limit the discussion and highlight some of the most salient
aspects we will consider two main classes of initial data,
represented by models 1.62-45-* and 1.46-45-*, respec-
tively. These models differ only in the rest mass, the first
one being composed of stars each having a mass of
1:625M� (which we refer to as the high-mass binaries),
while the second one is composed of stars of mass
1:456M� (which we refer to as the low-mass binaries).
Variations of these initial data will also be considered by

changing, for instance, either the initial coordinate separa-
tion (i.e. 60 km in place of 45 km) or the EOS (i.e. an ideal-
fluid EOS or a polytropic one). Additional variations in-
volving, for instance, different mass ratios, will be pre-
sented elsewhere [90].

A. Polytropic EOS: high-mass binary

We start by considering the evolution of the high-mass
binary evolved with the polytropic EOS, i.e. model 1.62-
45-P in Table I. Figure 1, in particular, collects some
representative isodensity contours (i.e. contours of equal
rest-mass density) on the ðx; yÞ (equatorial) plane, with the
time stamp being shown on the top of each panel and with
the color-coding bar being shown on the right in units of
g=cm3.
The binary has an initial coordinate separation between

the maxima in the rest-mass density of 45 km and, as we
will discuss more in detail later on, a certain amount of
coordinate eccentricity and tidal coordinate deformation is
introduced by the initial choice for the shift vector. As the
stars inspiral, their orbital angular velocity increases and
after about 2.2 orbits, or equivalently after about 5.3 ms
from the beginning of the simulation, they merge, produc-
ing an object which has a mass well above the maximum
one for uniformly rotating stars, but which supports itself
against gravitational collapse by a large differential rota-
tion. Such an object is usually referred to as a hypermas-
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FIG. 1 (color online). Isodensity contours on the ðx; yÞ (equatorial) plane for the evolution of the high-mass binary with the
polytropic EOS (i.e. model 1.62-45-P in Table I). The time stamp in ms is shown on the top of each panel, the color-coding bar is
shown on the right in units of g=cm3, and the thick dashed line represents the AH.
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sive neutron star or HMNS.2 As the inspiral proceeds and
the two NSs progressively approach each other, tidal waves
produced by the tidal interaction become visible (cf. first
and second rows of panels in Fig. 1) and these are particu-
larly large, i.e. of �5%, for the high-mass binary and
considerably smaller for the low-mass one (cf. Fig. 8).

This is shown in Fig. 2, which reports the evolution of
the maximum rest-mass density normalized to its initial
value. Indicated with a dotted vertical line is the time at
which the stars merge (which we define as the time at
which the outer layers of the stars enter in contact), while
a vertical dashed line shows the time at which an AH is
found. After this time the maximum rest-mass density is
computed in a region outside the AH and therefore it refers
to the density of the oscillating torus. It is only a few orders

of magnitude smaller. Note that before the merger the
central rest-mass density not only oscillates but it also
increases secularly, although at a much smaller rate (cf.
also Fig. 6).
As mentioned above, the merger takes place after about

5 ms and the two NSs collide with a rather large impact
parameter. This reduces significantly the strength of the
shocks which have been computed in the case of head-on
collisions [91], but it also produces a considerable amount
of shear, which could then lead to a series of interesting
dynamical instabilities (see also the discussion in
Sec. III E). Because of the adiabatic nature of the EOS,
which prevents the formation of physical shocks (i.e. dis-
continuities where entropy is increased locally),3 the
HMNS produced at the merger is beyond the stability limit
for gravitational collapse, so that despite the high amount
of angular momentum and the large degree of differential
rotation,4 it rapidly collapses to produce a rotating BH, at
about 8 ms.
More specifically, soon after the merger, the two massive

and high-density cores of the NSs coalesce and during this
rapid infall they experience a considerable decompression
of �15% or more as shown in the small inset of Fig. 2.
However, after t� 6 ms, the maximum rest-mass density
is seen to increase exponentially, a clear indication of the
onset of a quasiradial dynamical instability, and this con-
tinues through the formation of an AH, which is first found
at time t ¼ 7:85 ms (see the last row of panels in Fig. 1
where the AH is shown with a thick dashed line, or Fig. 2,
where the time of appearance is marked by a dashed
vertical line).
This complex general behavior, namely, the very small

secular increase in the central rest-mass density accompa-
nied by small tidal oscillations, and the final decompres-
sion as the two NS cores merge into one, should help to
clarify a long-standing debate on whether the NSs experi-
ence a compression prior to the merger which leads them to
collapse to a BH [34,35,92] or, rather, a decompression
[17,93,94], as a result of the dynamical instability leading
to the merger. Clearly, for the rather restricted set of stellar
models which are close to the stability limit to BH col-
lapse, the small secular increase could lead to the forma-
tion of two BHs prior to the merger.
After an AH is first found, the amount of matter outside

of it is still quite large and, most importantly, it is the one
with the largest amount of angular momentum. This leads

FIG. 2 (color online). Evolution of the maximum rest-mass
density normalized to its initial value for the high-mass binary.
Indicated with a dotted vertical line is the time at which the stars
merge, while a vertical dashed line shows the time at which an
AH is first found and which is a few ms only after the merger in
this case. After this time, the maximum rest-mass density is
computed in a region outside the AH and therefore it refers to the
density of the oscillating torus. It is only a few orders of
magnitude smaller. Note that the non-normalized value of the
maximum rest-mass density at t ¼ 0 is 5:91� 1014g=cm3 (see
Table I). The binary has been evolved using the polytropic EOS.

2We recall that a HMNS is a star whose mass is larger than the
maximum one allowed for a uniformly rotating model with the
same EOS (i.e. the supramassive limit). For the � ¼ 2 polytropes
considered here this maximum mass is M ¼ 2:324M� (with an
equivalent baryon mass ofMb ¼ 2:559M�), while the maximum
mass for a nonrotating model is M ¼ 2:027M� (with an equiva-
lent baryon mass of Mb ¼ 2:225M�). Clearly, all the models
considered in Table I lead to a HMNS after the merger.

3Note that very large gradients can nevertheless be produced
because of the nonlinear nature of the hydrodynamic equations.
These gradients, however, are not physical shocks in that no
entropy is increased locally.

4Note that the HMNS is not axisymmetric and hence it is
difficult to provide a unique measure of the degree of differential
rotation. On average, however, the angular velocity decreases
about 1 order of magnitude between the rotation axis and the
surface.
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to the formation of an accretion torus with an average
density between 1012 and 1013 g=cm3, a vertical size of a
few km but a horizontal one between 20 and 30 km (see
evolution of �max in Fig. 2 after the AH). The torus has an
initial rest mass of ðMTÞ0 ’ 0:04M�,

5 which, however,
decreases rapidly to become ðMTÞ3 ms ¼ 0:0117M� only
3 ms later.

The dynamics of the torus are summarized in Fig. 3,
which shows the isodensity contours on the ðx; zÞ plane;
also in this case the time stamp is shown on the top of each
panel, while the color-coding bar is shown on the right in
units of g=cm3. Note that the panels refer to times between
13.2 ms and 16.7 ms and thus to a stage in the evolution
which is between the last two panels of Fig. 1. Other
information on the properties of the merged object can
be found in Table II.

Overall, the torus has a dominantm ¼ 0 (axisymmetric)
structure but, because of its violent birth, it is very far from
an equilibrium. As a result, it is subject to large oscilla-
tions, mostly in the radial direction, as it tries to compen-
sate between the excess angular momentum and the intense
gravitational field produced by the BH. In doing so, it
triggers quasiperiodic oscillations with a period of
�2 ms, during which the torus moves in towards the BH,
accreting part of its mass. A behavior very similar to this
one has been studied in detail in a number of related works
[95–99], in which the torus was treated as a test fluid.
While the above-mentioned studies represent an idealiza-

tion of the dynamics simulated here, they have highlighted
that the harmonic dynamics of the torus represent a generic
response of the fluid to a quasiradial oscillation with a
frequency reminiscent of the epicyclic frequency for point-
like particles in a gravitational field [100,101]. Further-
more, because of the large quadrupole moment possessed
by the torus and its large variations produced by the
oscillations, a non-negligible amount of gravitational ra-
diation can be produced as a result of this process (see also
the discussion of Fig. 18).
As mentioned in the introduction, the existence of a

massive torus around the newly formed rotating BH is a
key ingredient in the modeling of short GRBs and the
ability of reproducing this feature through a fully nonlinear
simulation starting from consistent initial data is a measure
of the maturity of simulations of this type. For compact-
ness, we cannot present here a detailed study of the dy-
namics of the torus, of the variation of its mass, and of the
consequent accretion onto the BH. Such an analysis will be
presented elsewhere [90], but it is sufficient to remark here
that the choice of suitable gauge conditions and the use of
artificial viscosity for the field variables allow for a stable
evolution of the system well past BH formation and for all
of the time we could afford computationally.
Using the isolated-horizon formalism [102] and its nu-

merical implementation discussed in Ref. [103], we have
measured the final BH to have a massMBH ¼ 2:99M� and
spin JBH ¼ 7:3M2� ¼ 6:4� 1049 g cm2 s�1, thus with a
dimensionless spin a � JBH=M

2
BH ¼ 0:82 (cf. Table II).

This is a rather surprising result when compared to the
equivalent measure made in the inspiral and merger of an
equal-mass binary BH. In that case, it has been found that
the final dimensionless spin is afin ’ 0:68 for BHs that are
initially nonspinning and increasing/decreasing for BHs
that have spins parallel/antiparallel with the orbital angular
momentum (see, e.g., [104–107]). More specifically, the
two initial BHs need to have a substantial spin, with
ainitial ’ 0:45, in order to produce a final BH with afinal ’
0:82. On the other hand, the NSs have here little initial spin
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FIG. 3 (color online). Isodensity contours on the ðx; zÞ plane highlighting the formation of a torus surrounding the central BH, whose
AH is indicated with a thick dashed line. The data refers to the high-mass binary evolved with the polytropic EOS.

5We define the initial mass of the torus as the rest mass outside
the AH soon after the AH is first found. Note that such a measure
could be ambiguous since the time of the first AH detection
depends also on the frequency with which the AH has been
searched for and on the initial guess for the AH radius. To
improve this notion and to give a measure that is indicatively
comparable for different simulations, we take the values of the
rest mass of the torus at the time at which the AH mean radius
has reached the arbitrarily chosen value of 2.1. This mass should
really be taken as an upper limit for the torus rest mass, since its
value decreases considerably as the evolution proceeds and the
torus accretes onto the BH.
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(they are essentially spherical besides the tidal deforma-
tion) and the little they have is antiparallel to the orbital
angular momentum (i.e. they counterspin with respect to
the orbital angular momentum). Yet, they are able to
produce a rapidly spinning BH. It is apparent therefore
that the merger of two equal-mass NSs is considerably less
efficient in losing the orbital angular momentum (or equiv-
alently more efficient in transferring the orbital angular
momentum to the final BH), thus producing a BH which is
comparatively more rapidly spinning.

An important validation of the accuracy of the simula-
tions presented here can be appreciated when comparing
the evolution of the same binary when evolved starting
from different initial separations. More specifically, we
have considered high-mass binaries with initial coordinate
separation of either 45 or 60 km (i.e. models 1.62-45-P and
1.62-60-P in Table I) and evolved them with a polytropic
EOS. The results of this verification are summarized in
Fig. 4, with the upper part reporting the evolution of the
proper separation (continuous lines) and the lower one that
of the coordinate separation (dotted lines) for binaries with
initial coordinate separation of either 45 or 60 km (i.e.
models 1.62-45-P and 1.62-60-P in Table I). It should be
remarked that the evolution of the latter binary is computa-
tionally much more challenging, with an inspiral phase that
is about three times as long when compared with the small-
separation binary. In particular, the stars merge at t�
18 ms, corresponding to �5:5 orbits. This is to be com-
pared with the �2:2 orbits of 1.62-45-P and it is close to
the limit of what is computationally feasible at these
resolutions.

The first thing to note in Fig. 4 is the remarkable
difference between the coordinate separation, which shows
very large oscillations, and the proper separation, which
instead shows only very little variations superposed to the
secular decrease. These are probably associated to a small
but nonzero residual eccentricity like the one observed in
binary BH simulations [67]. The oscillations in the coor-
dinate separation, which have been reported also in
Ref. [45] (cf. their Figs. 5 and 7), are in our case clearly

related to the gauge choice, as demonstrated by the evolu-
tion of the proper separation. This is also apparent when
looking at Fig. 5, which shows the coordinate trajectory
(dashed line) and the proper trajectory (solid line) of one of
the two NSs in the high-mass binary starting from a coor-
dinate separation of 45 km. While a certain amount of
eccentricity is present also in the proper trajectory, this is
rather small.
A more careful analysis has revealed that the large

oscillations in the coordinate separation are simply the
result of nonoptimal gauge conditions. As mentioned in
Sec. II E, we import the initial data from the solution of the
Meudon group, adopting the same shift vector �i com-

TABLE II. Summary of the results of the simulations: proper separation between the centers of the stars d=MADM; baryon mass Mb

of each star in solar masses; initial rest mass of the torus ðMTÞ0 (see footnote on page 10); rest mass of the torus 3 ms after the
appearance of the AH ðMTÞ3 ms (actually 3 ms after the time when the AH mean radius has reached the value 2.1, see footnote on
page 10); mass of the BHMIH

BH, as computed in the isolated-horizon formalism; angular momentum of the BH JIHBH, as computed in the

isolated-horizon formalism; BH spin parameter aIH � ðJBH=M2
BHÞIH, as computed in the isolated-horizon formalism; ratio of the ADM

mass carried by the waves to the initial ADM mass; ratio of the angular momentum carried by the gravitational waves to the initial
angular momentum.

Model d=MADM Mb=M� ðMTÞ0=M� ðMTÞ3 ms=M� MIH
BH=M� JIHBH ðg cm2=sÞ aIH MGW=M� JGW=Jðt ¼ 0Þ

1.46-45-P 14.3 1.456 0.1 0.0787 2.60 4:61� 1049 0.76 1:8� 10�2 0.21

1.62-60-P 16.8 1.625 0.04 0.00115 3.11 7:0� 1049 0.82 9:6� 10�3 0.22

1.62-45-P 12.2 1.625 0.04 0.0117 2.99 6:4� 1049 0.82 9:3� 10�3 0.12

1.46-45-IF 14.3 1.456 � � � � � � � � � � � � � � � 8:5� 10�3 0.15

1.62-45-IF 12.2 1.625 0.2 0.0726 2.94 6:4� 1049 0.84 1:2� 10�2 0.17

FIG. 4 (color online). Evolution of the proper separation (top
part) and of the coordinate separation (bottom part) for binaries
with initial coordinate separation of either 45 or 60 km (i.e.
models 1.62-45-P and 1.62-60-P in Table I). Indicated with a
dashed line is the proper separation for the binary starting at
45 km and suitably shifted in time.
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puted for the quasicircular solution. While this may seem
like a reasonable thing to do, it actually introduces the
oscillations commented above. We have also performed
alternative simulations in which the shift vector has been
set to be zero initially and then evolved with the gauge
conditions (17). We have found that in this case also the
coordinate separation is much better behaved and only very
small oscillations are present (see also the discussion in
Appendix A 2).

When concentrating on the evolution of the proper
separation it is clear that the binary starting at a large
separation has a larger eccentricity, but also that most of
it is lost by the time the stars merge. Indicated with a
dashed line in Fig. 4 is also the evolution of the proper
separation for the binary starting at 45 km when this is
suitably shifted in time of �13 ms; the very good overlap
between the two curves is what one expects for a binary
system that is simply translated in time and it gives a
measure of our ability of accurately evolving binary NSs
for a large number of orbits. This provides us with suffi-
ciently long waveforms to perform a first match with the
PN expectations and also to establish the role played by the
tidal interaction between the two NSs as they inspiral. Both
of these studies will be presented elsewhere [90].

A comparison of the waveforms produced in these two
simulations will be discussed in Sec. IVA, but we show in
Fig. 6 the evolution of the maximum rest-mass density
normalized to its initial value for high-mass binaries with
initial coordinate separation of either 45 or 60 km. For the
large-separation binary, we observe a behavior very similar
to that of the small-separation binary, as discussed for

Fig. 2, namely, the very small secular increase with super-
posed small tidal oscillations, the decompression as the
two NS cores merge and the final exponential growth
produced by the collapse to a BH. Note, however, that
the two evolutions are not exactly the same and that small
differences are appreciable both in the decompression
phase and in the post-collapse phase which is dominated
by the dynamics of the torus around the BH (note that the
different final values in �max are due to the different times
at which the AH is first found and which do not coincide
for the two runs; see also the footnote on page 10).
Although a larger truncation error is to be expected in

the case of the large-separation binary simply because of
the larger integration time, we believe these differences are
genuine and reflect the fact that the initial data used are not
invariant under time translation. Stated differently, the
large-separation binary 1.62-60-P, when evolved down to
a separation of 45 km, will not coincide with the equilib-
rium solution 1.62-45-P computed for a quasicircular bi-
nary in equilibrium at 45 km. Because these differences are
mostly in the internal structure, the deviations in the evo-
lution become evident only at and after the merger and
are essentially absent in the premerger evolution of both
the central-density (cf. Fig. 6) and of the waveforms
(cf. Fig. 20 in Sec. IVA).
Since considerations of this type have never been made

before in the literature and we are not aware of careful
comparative studies of this type, our conclusions require
further validation. Work is now in progress to perform

FIG. 6 (color online). Evolution of the maximum rest-mass
density normalized to its initial value for high-mass binaries with
initial coordinate separation of either 45 or 60 km. The vertical
dashed lines denote the time at which an AH was found. The
polytropic EOS was used for the evolutions.

FIG. 5 (color online). Coordinate (dashed line) and proper
(solid line) trajectory of one of the stars for the high-mass binary
from a coordinate distance of 45 km (about 2.2 orbits).
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similar simulations with different polytropic indices. If the
differences reported in Fig. 6 are indeed physical, they will
also show variations in case stiffer or softer EOS are
considered and they should indeed disappear for perfectly
incompressible stars. The results of this analysis will be
reported in a future work [90].

B. Polytropic EOS: low-mass binary

We next consider the evolution of the low-mass binary
evolved with the polytropic EOS, i.e. model 1.46-45-P in
Table I. As for the high-mass binary, we first show in Fig. 7,
the representative isodensity contours on the ðx; yÞ plane,
with the time stamp being shown on the top of each panel
and with the color-coding bar being shown on the right in
units of g=cm3. Note that because the evolution is different
in this case, the times at which the isodensity contours are
shown are different from those in Fig. 1.

Since the mass difference with model 1.62-45-P is less
than 10%, one expects that the orbital dynamics before the
merger are essentially the same. Indeed this is what our
simulations indicate and differences appear only as higher-
order effects, such as in the strength of the tidal waves (see
Fig. 7). However, despite the small difference in mass, the
evolution after the merger is considerably different. This is
nicely summarized in Fig. 8 which shows that the merger
time is essentially the same as for the high-mass binary (i.e.
�5:3 ms), but the subsequent evolution does not lead to the
prompt formation of a BH. Rather, the HMNS is still quite
far from the instability threshold and undergoes a number
of quasiperiodic oscillations (cf. Fig. 8), which have almost
constant amplitude in the central rest-mass density.

A more careful analysis reveals that the core of the
HMNS undergoes violent nonaxisymmetric oscillations,
with the development of an overall m ¼ 2 deformation,
i.e. a bar, as the system tries to reach a configuration which
is energetically favorable through the rearrangement of the
angular-momentum distribution. The bar-deformed star
has an initial value of the ratio of the kinetic energy to
the binding energy T=jWj ’ 0:22, which remains roughly
constant and only slightly decreases to 0.19 until the time
of the collapse. As the bar rotates, it also loses large
amounts of angular momentum through gravitational ra-
diation and this is reported in Fig. 9, which shows the
evolution of the angular momentum as normalized to the
initial value. The top panel, in particular, refers to the high-
mass binary, while the bottom one to the low-mass binary
(a more detailed discussion of the losses of energy and
angular momentum will also be presented in Sec. IVC).
Indicated with different lines are the computed values of
the volume-integrated angular momentum [solid line, com-
puted with the integral (15)], of the angular momentum lost
to gravitational waves (dotted line), and of their sum
(dashed line). In both cases the slight secular increase is
due to the truncation error and is at most of 3% over more
than 20 ms (cf. dot-dashed line). A very similar figure can

be made for the one of the ADMmass, whose conservation
is even higher (the error is below 1%). For compactness we
will not show such a figure here.
Note that the loss of angular momentum is of �5% of

the total initial angular momentum during the inspiral and
merger, but becomes much larger once the HMNS has been
produced and while the bar-deformed core rotates. Indeed,
in the case of the large-mass binary this loss increases to
�13% after the BH quasinormal ringing, while it becomes
as large as �22% for the low-mass binary. Overall, the
post-merger evolution for the low-mass binary is rather
long and spans over�16 ms. The inset in Fig. 8 shows that
during this time the maximum rest-mass density oscillates
but it also increases secularly of a factor of about 2. This is
due to the fact that as the HMNS loses angular momentum,
its centrifugal support is also decreased and thus it reaches
more and more compact configurations. At one point the
HMNS is past the threshold of the quasiradial instability
for the collapse to a BH, which takes place at �20 ms
(cf. Fig. 8), with an AH being found at t ¼ 21:3 ms.
Also in this case, a large amount of matter with sufficient

angular momentum is found to be orbiting outside the BH
in the form of an accretion disc. Differently from the high-
mass binary, however, the torus here has a larger average
rest-mass density (between 1012 and 1014 g=cm3; see evo-
lution of �max in Fig. 8 after the AH), a larger extension in
the equatorial plane (between 20 and 50 km) but a com-
parable vertical extension (below 10 km). It also has a
larger baryon mass, which is initially ðMTÞ0 ¼ 0:1M�
and becomes ðMTÞ3 ms ¼ 0:0787M� after 3 ms (see foot-
note on page 10 and Table II). The dynamics of the torus
are summarized in Fig. 10, which shows the isodensity
contours on the ðx; zÞ plane; note that the panels refer to
times between 21.4 ms and 27.4 ms and thus to a stage in
the evolution which is between the last two panels of Fig. 7.
A simple comparison between Figs. 3 and 10 is sufficient
to capture the differences between the tori in the two cases
and also to highlight that for a polytropic EOS the high-
mass binary produces a lower-mass torus (cf. Table II and
see the discussion in Sec. IVC).
In analogy with what is seen for the high-mass binary,

the torus has an overall axisymmetric structure and is far
from equilibrium. As a result, it is subject to large oscil-
lations, mostly in the radial direction, at a frequency close
to the epicyclic one. A more detailed analysis of this will
be presented in a companion paper [90].
Using again the isolated-horizon formalism we have

estimated that the final BH has in this case a mass MBH ¼
2:60M�, spin JBH ¼ 5:24M2� ¼ 4:61� 1049 g cm2 s�1,
and thus a dimensionless spin a � JBH=M

2
BH ¼ 0:76

(cf. Table II). Interestingly, the dimensionless spin is lower
in the low-mass binary.
It should also be remarked that the long time interval

before which the collapse takes place has prevented pre-
vious studies from the complete calculation of the dynam-
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FIG. 7 (color online). Isodensity contours on the ðx; yÞ (equatorial) plane for the evolution of the low-mass binary with the polytropic
EOS (i.e. model 1.46-45-P in Table I). The time stamp in ms is shown on the top of each panel, the color-coding bar is shown on the
right in units of g=cm3, and the thick dashed line represents the AH.
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ics of NS binaries which would not lead to the prompt
formation of a BH. The investigations of Refs. [44,45,49],
for instance, are limited to a few ms after the merger and
should be contrasted with the evolutions reported here that
cover a time scale of �30 ms, also for the additional
calculation of the gravitational waves. As a result, our
simulations represent, within an idealized treatment of
the matter, the first complete description of the inspiral
and merger of a NS binary leading to the delayed formation
of a BH.

C. Ideal-fluid EOS: high-mass binary

We now move on to discussing the dynamics of binary
inspiral and merger when the other EOS, the ideal-fluid one
in Eq. (24), is used. As discussed in Sec. II C, while this is
an idealized and analytic EOS, it has the important prop-
erty of being nonisentropic and thus of allowing for the
change of the thermal part of the internal energy density
(or, equivalently, of the temperature). As we will show in
the remainder of this section, this difference can lead to
significant differences in the properties and dynamics of

FIG. 8 (color online). The same as in Fig. 2 but for the low-
mass binary. Note that the merger time is essentially the same as
for the high-mass binary but there is a long delay in the collapse
and the onset of quasiharmonic oscillations in the HMNS. The
binary has been evolved using the polytropic EOS. Note that the
non-normalized value of the maximum rest-mass density at t ¼
0 is 4:58� 1014 g=cm3 (see Table I).

FIG. 9 (color online). Conservation of the total angular mo-
mentum for the high-mass binary (upper plot) and the low-mass
one (lower plot). Indicated with different lines are the computed
values of the volume-integrated angular momentum (solid line),
of the angular momentum lost to gravitational waves (dotted
line), and of their sum (dashed line). The dot-dashed line marks a
3% error.
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FIG. 10 (color online). Isodensity contours on the ðx; zÞ plane, highlighting the formation of a torus surrounding the central BH,
whose AH is indicated with a thick dashed line. The data refers to the low-mass binary evolved with the polytropic EOS (cf. Fig. 3).
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the HMNS produced by the merger. More specifically, we
concentrate on the evolution of model 1.62-45-IF in
Table I, namely, a binary in which each NS has a baryon
mass of Mb ¼ 1:625M� and an initial coordinate separa-
tion of 45 km. As for the previous binaries, we collect in
Fig. 11 some representative isodensity contours on the
equatorial plane.

As one would expect from PN considerations (which
suggest that finite-size effects are expected at orders equal
or smaller than the fifth [108]), the bulk dynamics of the
binary before the merger are essentially identical to the one
already discussed for model 1.62-45-P and small differ-
ences are appreciable only in the low-density layers of the
stars, where the different tidal fields cause comparatively
larger amounts of matter to be stripped from the surface;
this can be appreciated by comparing the second and third
panels of Figs. 1 and 11. Indeed, this is a subtle point which
is worth remarking: when using the ideal-fluid EOS, the
evolution before the merger (i.e. during the inspiral) is not
isentropic. This is because small shocks are produced in
the very low-density layers of the stars as these orbit. These
small shocks channel some of the orbital kinetic energy
into internal energy, leading to small ejections of matter
(i.e. �10�6M�), and are thus responsible for the slight
differences in the inspiral. We also note that these shocks
would appear quite independently of the fact that the NSs
are surrounded by an atmosphere as they represent the
evolution of small sound waves that, propagating from
the central regions of the stars, steepen as they move out-
wards; we have checked that essentially identical results
are obtained when changing the threshold for the atmo-
sphere of one or more orders of magnitude (a discussion of
this process for isolated stars evolved within the Cowling
approximation can be found in Ref. [109] and in Ref. [110]
for the extension to a dynamical spacetime).

Besides this small difference, the merger takes places at
almost the same time as for model 1.62-45-IF, namely,
after about 2.5 orbits, or equivalently after 5.8 ms from
the beginning of the simulation. However, the post-merger
evolution of the HMNS is considerably different. This is
nicely summarized in Fig. 12, which reports the evolution
of the maximum rest-mass density normalized to its initial
value and which, after the AH is found, refers to the region
outside the AH. In this case shocks are allowed to form and
the HMNS does not collapse promptly to a BH but, rather,
undergoes very large oscillations with variations of 100%
in the maximum of the rest-mass density (cf. Fig. 12).
These oscillations are the result of what appears to be a
dynamical bar-mode instability which develops and is sup-
pressed at least four times during the post-merger phase.
More specifically, after the first initial merger at t� 5 ms,
the two stellar cores break up again to produce a bar-
deformed structure, which rotates for more than a period
before disappearing as the cores merge again. This process
takes place four times and the merged object becomes

increasingly more compact as it loses angular momentum
and thus spins progressively faster. This behavior is clearly
imprinted in the gravitational-wave signal as we will illus-
trate in Sec. IVB.
Together with these large variations, the rest-mass den-

sity also experiences a secular growth similar to the one
already discussed for the low-mass polytropic binary and,
as discussed before, the increased compactness eventually
leads, at t� 14 ms, to the collapse to a rotating BH. The
use of the isolated-horizon formalism reveals that in this
case the final BH has a mass MBH ¼ 2:94M�, spin JBH ¼
7:3M2� ¼ 6:4� 1049 g cm2 s�1, and thus a dimensionless
spin a � JBH=M

2
BH ¼ 0:85 (cf. Table II).

The explanation for this behavior in the post-merger
phase and the appearance, also at high masses, of a delayed
collapse to BH, can be found by considering the compo-
nent of the specific internal energy which is produced by
the shock heating. This can be done by splitting the specific
internal energy 
 into a cold component 
cold ¼
K���1=ð�� 1Þ and into a thermal one 
th, defined as [111]


th ¼ 
� 
cold ¼ p

�ð�� 1Þ �
K���1

�� 1
: (25)

[Note that Eq. (13) of Ref. [111] contains a typo for the
expression of 
cold, which is corrected in expression (25)].
Figure 13 then reports the evolution of the coordinate
volume-integral of the thermal part of the internal energy
density

R
V �
thdx

3, which increases secularly soon after

the merger (vertical dotted line) [indicated with the shaded
area is the window in time in which the calculation of 
th
via Eq. (25) becomes inaccurate as a result of the steep
gradients in the hydrodynamical variables developing in-
side the AH]. We recall that in the case of an isentropic
EOS (such as the polytropic EOS), 
th ¼ 0 and the quantity

=���1 is constant and proportional to the specific entropy
of the system. However, with a nonisentropic EOS (such as
the ideal-fluid EOS), entropy increases across shocks and
the latter are clearly present during the merger, thus leading
to a local and global increase of the specific internal
energy, namely, of 
th. As a result, soon after the merger
(vertical dotted line in Fig. 13), the HMNS from an ideal-
fluid high-mass binary can rely on an additional pressure
support, which allows it to balance the gravitational forces
at least for a few additional ms. Stated differently, the
shocks produced at the merger are responsible for a local
and global increase of the temperature, which will produce
a global expansion of the HMNS and thus a reduction of its
compactness. The overall smaller compactness caused by
the increased internal energy can be appreciated by com-
paring the fourth and fifth panels of Figs. 1 and 12.
A simple estimate for the temperature increase can be

made by using the thermal part of the specific internal
energy 
th and by neglecting the thermal energy due to
radiation, so that 
th ¼ 3kT=ð2mnÞ, where k is the
Boltzmann constant and mn the rest mass of a nucleon.
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FIG. 11 (color online). Isodensity contours on the ðx; yÞ (equatorial) plane for the evolution of the high-mass binary with the ideal-
fluid EOS (i.e. model 1.62-45-IF in Table I). The time stamp in ms is shown on the top of each panel, the color-coding bar is shown on
the right in units of g=cm3, and the thick dashed line represents the AH.
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In this way the temperature is simply expressed as

T ¼ 2mn

3kð�� 1Þ
�
p

�
� K���1

�

’ 7:2174� 1012

�� 1

�
p

�
� K���1

�
K : (26)

Using (26) it is then possible to estimate that the HMNS
has an initial temperature of 5� 1010 K, which rapidly
increases to 5� 1011 K as the stellar cores merge. The
additional shocks produced by the large oscillations in the
post-merger phase can increase locally the temperature
above these values, with maximum values that can reach
2� 1012 K. Clearly, at such large temperatures the radia-
tive losses, either via photons or neutrinos, can become
very important and lead to a qualitative change from the
evolution described here. While first attempts of introduc-
ing the contribution of radiative losses in general-
relativistic calculations have recently been made (see,
e.g. Refs. [112,113]), we are still far from a mathematically
consistent and physically accurate treatment of these pro-
cesses, which we will include in future works. For the time
being it is sufficient to underline that, while it is clear that
the inclusion of radiative processes will lead, quite generi-
cally, to a decrease in the survival time of the HMNS after
the merger, determining this time with any reasonable
precision will require not only the inclusion of radiative
transport but also of a more realistic treatment of the EOS
and of the scattering properties of the matter in the HMNS.
In the absence of a more detailed calculation of the

radiative losses, we can here resort to simpler back-of-
the-envelope calculations to assess the importance of ra-
diative cooling in the post-merger phase when taking into
account neutrino emission and diffusion. Let us therefore
assume that the newly produced HMNS from a high-mass
binary is approximately spherical with an average radius of
RHMNS � 20 km, a mass of MHMNS � 3:2M�, and thus an
average rest-mass density which is essentially the nuclear
rest-mass density, i.e. �HMNS � �nuc � 3� 1014 g=cm3.
We can now consider two different cooling processes act-
ing either via modified-URCA emission (see Chap. 11 of
Ref. [114]) or through the more efficient direct-URCA
emission [115]. Assuming an initial average temperature
of THMNS � 1011 K, the HMNS would cool down via
modified-URCA processes to THMNS � 1010ð109Þ K in
about 20 s (1 yr). On the other hand, if the cooling takes
place through the much more efficient direct-URCA pro-
cesses, the cooling timewould be�3 ms ð1 minÞ. Because
the latter interval is smaller or comparable with the�9 ms
elapsing in the present calculations between the formation
of the HMNS and its collapse to a BH, we conclude that
radiative losses in the HMNS would accelerate its collapse
to a BH only if direct-URCA processes take place.
Quite predictably, also the merger of a high-mass binary

evolved with the ideal-fluid EOS leads to the formation of a
torus orbiting around the BH. With respect to the high-

FIG. 12 (color online). Evolution of the maximum rest-mass
density normalized to its initial value for the high-mass binary
using the ideal-fluid EOS. Indicated with a dotted vertical line is
the time at which the binary merges, while a vertical dashed line
shows the time at which an AH is found. After this time, the
maximum rest-mass density is computed in a region outside the
AH. This figure should be compared with Fig. 2.

FIG. 13 (color online). Evolution of the coordinate volume-
integral of the thermal part of the internal energy density. Note
the secular increase in the thermal energy after the merger
(vertical dotted line). The shaded area refers to a window in
time in which the calculation of 
th via Eq. (25) becomes
inaccurate as a result of the steep gradients in the hydrodynam-
ical variables developing inside the AH.
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mass polytropic binary, however, the torus here has a
different shape and a considerably larger vertical exten-
sion. Indeed the ratio of the vertical and horizontal sizes is
�0:5, while this was�0:1 in the case of a polytropic EOS,
irrespective of the mass of the binary. Consequently, the
measured initial rest mass of the torus is of a factor 6
larger than the one of the corresponding high-mass poly-
tropic binary, namely ðMTÞ3 ms ¼ 0:0726M� instead of
ðMTÞ3 ms ¼ 0:0117M�, 3 ms after the first measure
(cf. Table II). The average density, on the other hand, is
considerably smaller (between 1011 and 1012 g=cm3).

The dynamics of the torus are summarized in Fig. 14,
which shows the isodensity contours on the ðx; zÞ plane;
note again that the panels refer to times between 14.0 ms
and 22.4 ms and thus to a stage in the evolution which is
between the last two panels of Fig. 14. A simple compari-
son between Figs. 3, 10, and 14 is sufficient to capture the
differences among the tori in the three different cases
considered so far.

In view of the discussion made above on the increased
internal energy content produced by the shocks in the case
of the ideal-fluid EOS, the formation of a vertically ex-
tended torus is not at all surprising, but the obvious re-
sponse of the matter of the torus to a larger (thermal)
pressure gradient in the vertical direction. Interestingly,
the maximum rest-mass density of the torus does not
show the typical harmonic behavior discussed so far in

the case of the polytropic binaries and produced by the
quasiperiodic oscillations in the radial direction. Rather,
the maximum density shows a clear and monotonic de-
crease with time as a result of the accretion of the torus
onto the BH (cf. Fig. 12 for t * 14 ms). At the same time,
the maximum of the internal energy in the torus is seen to
increase (cf. Fig. 13 for t * 14 ms). Both the higher tem-
perature and the geometrically thick shape of the torus
produced in this case provide an important evidence that
the merger of a massive NS binary could lead to the
physical conditions behind the generation of a GRB. A
more detailed analysis of the energetics and properties of
the torus (and, in particular, of its variability in time) is
needed to further support this possibility and it will be
presented in a future work [90].

D. Ideal-fluid EOS: low-mass binary

Despite it being significantly different from the evolu-
tion of both the low-mass polytropic binary and of the
high-mass ideal-fluid binary, the dynamics of the low-
mass ideal-fluid binary is rather simple. In particular, the
two NSs merge at essentially the same time as the corre-
sponding high-mass ideal-fluid binary (i.e. t ’ 5:8 ms) and
produce a HMNS which is, however, not sufficiently mas-
sive to collapse promptly to a BH. Rather, the HMNS
undergoes a bar-mode instability producing an m ¼ 2
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FIG. 14 (color online). Isodensity contours on the ðx; zÞ plane highlighting the formation of a torus surrounding the central BH,
whose AH is indicated with a thick dashed line. The data refer to the high-mass binary evolved with the ideal-fluid EOS (cf. Figs. 3 and
10 and the different vertical scales.)
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deformation as the system tries to reach a configuration
which is energetically favorable.

Either as a result of the �-symmetry imposed (and
which prevents the growth of the m ¼ 1 mode) or simply
because the HMNS is very close to the threshold of the bar-
mode instability, the bar is seen to persist for the whole
time the calculations were carried out, i.e.�30 ms (see the
discussion of Ref. [13] about under what conditions a bar-
mode deformation is expected to survive over a longer time
scale; recent additional work on this can also be found in
Ref. [116]). Note that the bar deformation remains only
approximately constant in time and that small oscillations
in the central rest-mass density can be measured. This is
shown in Fig. 15, which reports the evolution of the maxi-
mum rest-mass density normalized to its initial value.
Indicated with a dotted vertical line is the time at which
the stars merge. This figure should be compared with
Figs. 2, 8, and 12, of which it maintains the same scale.

During this rather long period of time (corresponding to
�16 revolutions) the HMNS also loses large amounts of
angular momentum through gravitational radiation (see
discussion in Secs. IVB and IVC). As a result, the com-
pactness of the HMNS gradually increases and the central
density shows the characteristic secular increase already
discussed for the previous binaries (cf. inset of Fig. 15).
The radiation-reaction time scale is in this case much
longer: the HMNS is not very massive (its mass of
� 2:6M� is only � 10% larger than the supramassive

limit) and is more extended as a result of the increased
internal temperature. As a result, the migration to the
unstable branch and the collapse to a BH will occur
much later than what was calculated and shown in
Fig. 15. Using the latter to compute the growth rate of
the maximum rest-mass density and assuming that the
collapse to a BH is triggered when �max=�maxðt ¼ 0Þ ’ 2
(cf. Figs. 2 and 12), we estimate that the collapse will take
place at t� 110 ms. This time scale should be compared
with the corresponding one (i.e. �21 ms) obtained from
the same initial data but evolved with a polytropic EOS.
Clearly, the increase in the internal energy via shocks is
responsible for this ‘‘long delay’’ in the collapse to a BH.
As a final comment we note that a time scale of

�110 ms is much longer than what is computationally
feasible at the moment. As a result, the analysis of this
binary will be limited to a time interval of �30 ms, which
is, however, long enough to deduce its most interesting
properties (see discussion in Secs. IVB and IVC).

E. Vortex sheet and Kelvin-Helmholtz instability

As mentioned above, when the two stars come into
contact a vortex sheet (or shear interface) develops there
where the tangential components of the velocity exhibit a
discontinuity (i.e. the x and y components of the three-
velocity in our setup). This condition is known to be
unstable to very small perturbations and it can develop a
Kelvin-Helmholtz instability, which will curl the interface
forming a series of vortices [117]. This is indeed what we
observe in all our simulations, with features that are essen-
tially not dependent on the mass or on the EOS used.
In the left panel of Fig. 16 we show the isodensity

contours and the velocity vector field on the equatorial
plane for the high-mass binary evolved with a polytropic
EOS at a time t ¼ 6:091 ms when the presence of vortices
is particularly evident. The density is shown in units of
g=cm3 and in the bottom-right part of the plot an arrow is
used as a reference for the values of the velocity.
Furthermore, in order to highlight the formation of the
shear interface, we have removed from the total velocity
field the orbital angular velocity defined as the angular
velocity of the stellar centers. The vector-field representa-
tion shows rather clearly that the vortex sheet goes from the
bottom-left corner of the plot to the upper-right one. Along
this sheet one can observe at least four main vortices, two
of which are located at [x � 	7 km, y � 	5 km], while
the other two are smaller and located at [x � 0 km, y �
	2 km]. It is worth remarking that, because these smaller
vortices have a scale of * 2 km� 1:3M�, they are well
captured by our resolution in the central regions which, we
recall, is h ¼ 0:12M� � 0:177 km. Because the employed
numerical methods are very weakly dissipative on these
scales, we believe that our description of the Kelvin-
Helmholtz instability is indeed accurate at the scales pre-
sented. Of course, different resolutions will either remove

FIG. 15 (color online). Evolution of the maximum rest-mass
density normalized to its initial value for the low-mass binary
evolved using the ideal-fluid EOS. Indicated with a dotted
vertical line is the time at which the binary merges. This figure
should be compared with Figs. 2, 8, and 12, of which maintains
the same scale.
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some of the vortices (as the resolution is decreased) or
introduce new ones (as the resolution is increased). In
practice, we have found that a vortex of scale � is lost
when the resolution used is h * 0:2�, probably because
the intrinsic numerical dissipation prevents their
formation.

A different and novel way of showing the presence of a
vortex sheet and of the consequent development of a
Kelvin-Helmholtz instability is offered in the right panel
of Fig. 16, which shows the contours of the ‘‘weighted
vorticity’’ on the equatorial plane, i.e. �jr � vjz. Although
this vector represents the Newtonian limit of the general-
relativistic vorticity tensor !�	 ¼ @½	ðhu��Þ [118], it

serves the purpose here of being proportional to the latter
and also of simpler calculation. Because the color coding is
made in a logarithmic scale, the right panel of Fig. 16
clearly highlights that the vorticity is not uniform in the
merged object but that its value in the vortex sheet is up to
three orders of magnitude larger than in the bulk of the
stars. As stressed above, while both panels of Fig. 16 refer
to the high-mass polytropic binary, very similar results
were obtained also for the low-mass binary or with the
ideal-fluid EOS.

To quantify the development of the Kelvin-Helmholtz
instability and measure its growth rate we have computed
the maximum of the weighted vorticity in the equatorial
plane and plotted its time evolution in Fig. 17, where it is
also shown as divided by the maximum of the rest-mass
density to remove the contribution due to the increase in �

after the merger. Shown with different lines are the
weighted vorticities for the high-mass binary (solid line)
and for the low-mass binary (dashed line), evolved either
with a polytropic EOS (left panel) or with an ideal-fluid
EOS (right panel). Also indicated with a vertical dotted
line is the time at which the two NSs merge, while the two
vertical dashed lines refer to the times at which the AH is
found in the two cases (no evolution is shown past this time
as the measure of the vorticity becomes much more com-
plex because of the turbulent motions in the torus). It is
evident that after an initial growth of a factor of a few
between t ¼ 0 and t ¼ 2 ms, probably produced by the
transient away from the initial data, the weighted vorticity
remains approximately small and constant. This stops at
the time of the merger at t � 5 ms (cf. dotted vertical line)
when the weighted vorticity grows exponentially of about 2
orders of magnitude. The Newtonian perturbative expecta-
tion for the growth rate is 
� �v=� where v is the value
of the velocity at the shear interface and � is the wave-
length of the smallest growing mode; for v� 10�2 and
�� 2 km, the measured growth rate is 
 ’ 103 s�1 and in
reasonable agreement with the Newtonian expectation.
The instability rapidly saturates when the two stellar

cores merge; as a result, after �2 ms from its initial
development it reaches a quasistationary state. Note that
the growth rate is essentially the same for the high- and
low-mass binary and for the two EOSs (cf. the two panels
Fig. 17); however, the evolution after the saturation is
different for the different masses. The high-mass binaries
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FIG. 16 (color online). Left panel: Isodensity contours and velocity vector field (with the orbital component removed) on the ðx; yÞ
(equatorial) plane at a selected time soon after the merger. Note the presence of localized vortices in the shear layer between the two
stars. Right panel: contours of the weighted vorticity �jr � vjz (that is the rest-mass density multiplied by the module of the z
component of the vorticity) for the same time shown in the left panel. This rendering highlights that in the shear layer the vorticity can
be up to 3 orders of magnitude larger than in the bulk of the stars. Both panels refer to a high-mass binary evolved with the polytropic
EOS.
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collapse to a BH, while the HMNSs produced by the low-
mass binaries hang on for a longer time, during which the
instability persists at almost constant amplitude [for
�13 ms (cf. dashed line in Fig. 17)].

As a final remark we note that, even if this instability is
purely hydrodynamical, it can have strong consequences
when studying the dynamics of binary NSs in the presence
of magnetic fields. Indeed, as first shown by [48] in
Newtonian simulations and later briefly reported also by
[49] in general-relativistic calculations, in the presence of a
magnetic field this instability leads to an exponential
growth of the toroidal component even if the initial mag-
netic field is a purely poloidal one. In particular, it is
reasonable to expect that even a moderate initial poloidal
magnetic field of� 1012 G can be increased up to values of
order 1015 G through this mechanism. Such high values of
the magnetic fields are the ones presumed to be behind the
phenomenology in magnetars, but are also thought to be
the values necessary in order to extract sufficient energy
from a system composed by a torus orbiting around a BH
and power short hard GRBs. Work is now in progress for
the investigation of this mechanism in fully general-
relativistic MHD using the code presented in [51]; results
of this investigation will soon be reported in a distinct
article.

IV. GRAVITATIONAL-WAVE EMISSION

The accurate determination of the gravitational-
radiation content of the simulated spacetimes represents a
delicate and yet fundamental aspect of any modeling of

sources of gravitational waves; in view of this, we have
implemented two different and equivalent methods to
compute the gravitational waves produced by the binary
evolution. The possibility of a comparison between the two
methods and the cross-validation of the results provides us
with additional confidence that the extracted waveforms
are not only numerically accurate but also physically
consistent.
The first method uses the Newman-Penrose formalism,

which provides a convenient representation for a number
of radiation-related quantities as spin-weighted scalars. In
particular, the curvature scalar

�4 � �C����n
� �m�n� �m� (27)

is defined as a particular component of the Weyl curvature
tensor, C����, projected onto a given null frame

fl;n;m; �mg and can be identified with the gravitational
radiation if a suitable frame is chosen at the extraction
radius. In practice, we define an orthonormal basis in the

three space ðr̂; �̂; �̂Þ, centered on the Cartesian origin and
oriented with poles along ẑ. The normal to the slice defines

a timelike vector t̂, from which we construct the null frame

l ¼ 1ffiffi
2

p ðt̂� r̂Þ; n ¼ 1ffiffi
2

p ðt̂þ r̂Þ; m ¼ 1ffiffi
2

p ð�̂ � i�̂Þ:
(28)

We then calculate �4 via a reformulation of (27) in terms
of ADM variables on the slice [119],

�4 ¼ Cij �m
i �mj; (29)

FIG. 17 (color online). Left panel: Maximum of the weighted vorticity �jr � vjz on the equatorial plane normalized by the
maximum of the rest-mass density �max during the evolution of the high (solid line) and low (dashed line) mass binaries evolved with
the polytropic EOS. Indicated with a dotted vertical line is the time at which the binaries merge. Both the curves are plotted until the
formation of an AH. Right panel: The same as in the left panel but for the ideal-fluid EOS.
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where

Cij � Rij � KKij þ Kk
i Kkj � i
kli rlKjk: (30)

The gravitational-wave polarization amplitudes hþ and
h� are then related to �4 by simple time integrals [120]

€hþ � i €h� ¼ �4; (31)

where the double overdot stands for the second-order time
derivative.

The second and independent method is instead based on
the measurements of the nonspherical gauge-invariant per-
turbations of a Schwarzschild BH (see Refs. [121–123] for
some applications of this method to Cartesian-coordinate
grids). In practice, a set of ‘‘observers’’ is placed on 2-
spheres of fixed Schwarzschild radius rS, derived from the
coordinate (isotropic) radius via the standard formula

rS ¼ riso

�
1� M

2riso

�
2
; (32)

where M ¼ MADM is assumed constant throughout the
simulation. On these 2-spheres we extract the gauge-
invariant, odd-parity (or axial) current multipoles Q�

‘m

and even-parity (or polar) mass multipoles Qþ
‘m of the

metric perturbation [124,125]. The Qþ
‘m and Q�

‘m variables

are related to hþ and h� as [126]

hþ � ih� ¼ 1ffiffiffi
2

p
r

X
‘;m

�
Qþ

‘m � i
Z t

�1
Q�

‘mðt0Þdt0
�
�2
Y‘m:

(33)

Here �2Y‘m are the s ¼ �2 spin-weighted spherical har-
monics and ð‘;mÞ are the indices of the angular
decomposition.

A. Waveforms from polytropic binaries

In what follows we illustrate and discuss the
gravitational-wave signal produced by the inspiral and
merger of the binaries discussed in Sec. III and we start
by discussing the waveforms produced by the binaries
evolved with the polytropic EOS.
Figure 18, in particular, shows in the left panel the

retarded-time evolution of the real part of the ‘ ¼ m ¼ 2
component of r�4 as extracted from a 2-sphere at a
coordinate radius r ¼ 200M� ¼ 295 km for the high-
mass binary. Hereafter r ¼ 200M� ¼ 295 km will be the
extraction radius for all the waveforms presented, unless
specified differently. Indicated in the inset is the final part
of the signal corresponding to the BH quasinormal ringing.
We recall that the merger takes place at ðt� rÞ � 5:3 ms
and that an AH is first found at ðt� rÞ ¼ 7:85 ms. The
gravitational-wave signal during the inspiral is clearly very
well captured and remarkably reminiscent of the one ob-
served in the many binary BH simulations performed to
date (see, for instance, [127,128] and references therein)
and deviations from this type of waveforms are evident

FIG. 18 (color online). Left panel: Retarded-time evolution of the real part of the ‘ ¼ m ¼ 2 component of r�4 as extracted from a
2-sphere at a coordinate radius r ¼ 200M� ¼ 295 km for the high-mass binary. Indicated in the inset is the final part of the signal
corresponding to the BH quasinormal ringing. The merger takes place at ðt� rÞ � 5:3 ms. Right panel: The same as in the left panel
but shown in terms of the real part of the gauge-invariant quantity Qþ

22. In both cases the binaries have been evolved using the

polytropic EOS.

ACCURATE EVOLUTIONS OF INSPIRALLING NEUTRON- . . . PHYSICAL REVIEW D 78, 084033 (2008)

084033-23



only at ðt� rÞ ’ 7 ms, when the HMNS starts its collapse
to a BH. The ability of reproducing accurately the expo-
nential decay of the quasinormal ringing is often a good
indication of having reached a sufficient level of accuracy
as this involves the ability of measuring changes in the
fields on the smallest possible physical scales (i.e. that of
the horizon). The clean quasinormal ringing shown in the
inset shows that this is indeed the case for the simulations
reported here.

It should also be added that, because the newly formed
BH is not in vacuum but rather surrounded by a relativistic
and accreting torus, the gravitational-wave signal should
not be expected to be exponentially decaying to infinitesi-
mal amplitudes during the ringdown. This explains the tiny
but nonzero oscillations which can be seen after the ring-
down and which are probably related to the accretion of
matter onto the BH. A comparison with the results of
Refs. [95,96,99] or with the perturbative analysis of
Ref. [129] could help to clarify the properties of this signal.

The right panel of Fig. 18, on the other hand, shows the
gravitational-wave signal in terms of the real part of the
gauge-invariant quantity Qþ

22. Because in this case the odd

perturbations have zero real and imaginary part, the time
evolution of the real (imaginary) part of Qþ

22 corresponds,

modulo a constant coefficient, to the time evolution of the
‘ ¼ m ¼ 2 component of hþðh�Þ. Note that the two wave-
forms are clearly different, but this is simply because they
differ by two time derivatives [cf. Eqs. (31) and (33)]. In
fact, if a double time integral is made of the
�4-waveforms, the corresponding curve lies on top of

the one for Qþ
22, after a suitable normalization (see also

Fig. 14 of Ref. [67] where this was shown in the case of
binary black holes).
The comparison offered by Fig. 18 is useful to illustrate

that, in contrast with what happens for binary BHs, the
amplitude of the hþ and h� polarizations does not increase
monotonically in time but, rather, is reduced as the two
NSs merge and as the HMNS collapses to a BH.
Nevertheless, as we will comment in Sec. IVC, the energy
loss rate is largest during these stages (cf. right panel of
Fig. 24).
Another important validation that the signal extracted

corresponds to gravitational radiation can be obtained by
verifying that �4 satisfies the expected ‘‘peeling’’ proper-
ties of the Weyl scalars, i.e. r5�n�n ¼ const. This is
illustrated in Fig. 19 which compares the real part of the
‘ ¼ m ¼ 2 component of �4 when extracted at three
considerably different radii: r ¼ 160M� ¼ 236 km (solid
line), r ¼ 200M� ¼ 295 km (dotted line), and r ¼
240M� ¼ 354 km (dashed line) (the last radius is close
to the outer boundary of our computational domain).
Clearly, the overlap among the different waveforms is
very good both in phase and in amplitude and indicates
that already at r� 150M� ¼ 222 km gravitational waves
can be extracted with confidence. (A similar figure can be
built using the Schwarzschild perturbations and has not
been shown here for compactness).
It is interesting now to reconsider the impact that differ-

ent initial separations of the same binary have on the
emitted gravitational-wave signal. This aspect was already
discussed in Sec. III A, where the different dynamics were
considered, and nicely summarized in Figs. 4 and 6. We
recall that the conclusions reached in Sec. III A were that
the differences in the evolution of the large-separation
binary 1.62-60-P and of its corresponding small-separation
equivalent 1.62-45-P had to be found mostly in the internal
structure and thus they were absent in the premerger evo-
lution of both the central rest-mass density (cf. Fig. 6) and
the proper separation. A similar conclusion can be drawn
also for the waveforms and we show in Fig. 20 a compari-
son in the real part of the ‘ ¼ m ¼ 2 component of �4

(upper panel) for the high-mass binaries evolved starting
from an initial separation of 45 or 60 km. Note that the
waveform for the 1.62-60-P binary contains more than 10
gravitational-wave cycles and is, therefore, the longest
general-relativistic waveform computed to date.
An equivalent view of this comparison is shown in the

lower panel of Fig. 20 which reports instead the amplitude
of �4. Indicated with dashed lines in both panels are the
values after a suitable time shift. The good overlap in the
inspiral phase is what is expected on PN grounds; however,
a closer inspection also reveals that small differences do
appear and these can then be used as a measure of the high-
order PN corrections coming from compact binaries with
finite size. More work and the use of long waveforms are
necessary to study this further.

FIG. 19 (color online). Comparison of the real part of the ‘ ¼
m ¼ 2 component of r�4 for the high-mass binary evolved with
the polytropic EOS when extracted at different radii: r ¼
160M� ¼ 236 km (solid line), r ¼ 200M� ¼ 295 km (dashed
line), and r ¼ 240M� ¼ 354 km (dotted line).
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We conclude this section by discussing the gravitational-
wave signal emitted by the low-mass binary and reported in
Fig. 21. Also in this case we show in the left panel the

retarded-time evolution of the real part of the ‘ ¼ m ¼ 2
component of r�4, while in the right panel the real part of
the gauge-invariant quantity Qþ

22. As mentioned in the
previous section, the HMNS has a prominent m ¼ 2 bar
deformation and gradually evolves towards a configuration
which is unstable to gravitational collapse through the
emission of gravitational waves. The loss of energy and
angular momentum progressively reduces the centrifugal
support and increases the compactness of the HMNS
which, as a result, spins more rapidly. This is particularly
clear in the evolution of �4, which is shown in the left
panel of Fig. 21 and which exhibits the typical increase in
amplitude and frequency of the gravitational-wave signal.
This runaway behavior ends at the time of the formation of
the BH, which then rings down exponentially as shown in
the two insets. A rapid comparison of Figs. 18 and 21 is
sufficient to appreciate the marked differences introduced
in the evolution of the binary by a different initial mass. In
the following section this comparison will be carried out
also across different EOSs (cf. Fig. 23).

B. Waveforms from ideal-fluid binaries

As mentioned when discussing the dynamics of ideal-
fluid binaries, the significant differences that emerged both
for the evolution of high- and low-mass binaries are re-
flected in their gravitational-wave emission. We recall that
ideal-fluid binaries will experience a considerable increase
of their internal energy (temperature) as a result of the
shocks produced at the merger. As a result, a high-mass
binary exhibits a delay in the collapse to BH of �8 ms,

FIG. 21 (color online). Left panel: Retarded-time evolution of the real part of the ‘ ¼ m ¼ 2 component of r�4 for the low-mass
binary. Indicated in the inset is the final part of the signal corresponding to the BH quasinormal ringing. The merger takes place at
ðt� rÞ � 5:3 ms. Right panel: The same as in the left panel but shown in terms of the real part of the gauge-invariant quantity Qþ

22. In

both cases the binaries have been evolved using the polytropic EOS.

FIG. 20 (color online). Comparison of the real part of the ‘ ¼
m ¼ 2 component of r�4 (upper panel) and of its amplitude
(lower panel) for the high-mass binaries evolved with the poly-
tropic EOS starting from an initial separation of 45 or 60 km.
Indicated with a dashed line are the values after a time-shift.
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which should be contrasted with the corresponding�3 ms
obtained for the same binary when evolved with a poly-
tropic EOS. Similarly, a low-mass binary will show a much
longer delay, which we estimated to be �105 ms and
which is to be contrasted with the corresponding �16 ms
obtained for the same binary when evolved with a poly-
tropic EOS.

This is nicely summarized in Fig. 22, whose left panel
shows the retarded-time evolution of the real part of the
‘ ¼ m ¼ 2 component of r�4 for the high-mass binary. As
commented in Sec. III C, the HMNS undergoes repeatedly
a dynamical bar-mode instability which develops and is
suppressed at least four times during the post-merger
phase, as the two stellar cores merge. The HMNS becomes
increasingly more compact as it loses angular momentum
and thus spins progressively faster. This behavior is clearly
imprinted in the gravitational-wave signal and it is easy to
distinguish the four stages of the bar development at times
t� 8, 10, 12, and 14 ms, respectively. The last one is
accompanied also by the gravitational collapse to BH and
exhibits a well-captured quasinormal ringing.

The right panel of Fig. 22, on the other hand, refers to the
low-mass binary and has a straightforward interpretation:
the HMNS produced has a smallm ¼ 2 deformation and is
still too far from the instability threshold to the collapse to
a BH. Rather, the bar rapidly reaches an equilibrium con-
figuration which persists over the 16 revolutions over
which the calculations were carried out. The resulting
waveforms are produced at twice the frequency of the
revolution of the bar, i.e. at �2 kHz, and show a remark-

ably constant amplitude (cf. inset in the right panel of
Fig. 22). It is still unclear whether the stability of the
deformation is the result of the bar being very close to
the dynamical instability threshold or the result of the
imposed �-symmetry, which prevents the growth and cou-
pling of the m ¼ 1 and m ¼ 2 modes [13,116]. Clarifying
this point will require calculations which are at least twice
as expensive but it will be essential to determine whether
the corresponding gravitational-wave spectrum will be
characterized by a large and predominant peak at
�2 kHz (cf. right panel of Fig. 27).
Figure 23 offers in its left panel a comparison in

retarded-time evolution of the real part of the ‘ ¼ m ¼ 2
component of r�4 for the high-mass binaries when
evolved with the polytropic or with the ideal-fluid EOS
(cf. left panels of Figs. 18 and 22). When shown in the
same graph, it becomes much easier to appreciate the
impact that the nonisentropic nature of the ideal-fluid
EOS has on the dynamics of the merger and, most impor-
tantly, on the gravitational-wave emission. Clearly, when
the waveforms from merging binary NSs will be detected,
they will effectively provide the Rosetta stone for the
deciphering of the stellar structure and EOS. In addition,
the comparison in Fig. 23 can also be used to gauge the
possible range of behaviors that a more realistic treatment
of the matter may yield. Both a polytropic and an ideal-
fluid EOS, in fact, can be considered as the extremes of
such a behavior, with either a perfectly adiabatic evolution
in which shocks (and hence shock heating) cannot occur, or
with an evolution in which local increases of the tempera-

FIG. 22 (color online). Left panel: Retarded-time evolution of the real part of the ‘ ¼ m ¼ 2 component of r�4 for the high-mass
binary evolved with the ideal-fluid EOS. Indicated in the inset is the final part of the signal corresponding to the BH quasinormal
ringing. Right panel: The same as in the left panel but for the low-mass binary. Here the inset does not refer to the BH quasinormal
ringing; it highlights, instead, the periodic nature of the gravitational radiation after the merger. In both cases the merger takes place at
ðt� rÞ � 5:8 ms.
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ture through shocks are allowed but cannot lead to radiative
processes. Furthermore, because neutrinos or photons are
expected to be trapped and would be able to leave the
system only on diffusion time scales, any realistic EOS
will lead to evolutions similar to those observed with the
nonisentropic ideal-fluid EOS.

Finally, the right panel of Fig. 23 is the same as in the left
panel but for the low-mass binaries (cf. left panel of
Figs. 21 and right panel of Fig. 22). Also in this case the
analogies and differences have a straightforward interpre-
tation and underline the importance of considering the time
between the merger and the collapse to BH as an important
indicator of the properties of the binary.

C. Energy and angular-momentum losses

We have computed the energy and the angular momen-
tum carried away by gravitational waves using the even
and odd-parity perturbations, Qþ

‘m and Q�
‘m, respectively.

The rate of energy loss, simply given by [126]

dEGW

dt
¼ 1

32�

X
‘;m

���������dQ
þ
‘m

dt

��������
2þjQ�

‘mj2
�
; (34)

is shown in the right panel of Fig. 24 for all the low-mass
and high-mass binaries considered here. In the left panel of
the same figure we show the value of EGW normalized to
the initial ADM mass of the systemMADM as a function of
the retarded time t� rwhere r ¼ 200M� ¼ 295 km is the
radius at which the waveforms were extracted. In both
panels the solid line refers to the high-mass polytropic
model 1.62-45-P, the dashed line to the high-mass ideal-

fluid case 1.62-45-IF, the dotted line to the low-mass
polytropic binary 1.46-45-P, the dotted-dashed line to the
low-mass ideal-fluid one 1.46-45-IF, and finally the long-
dashed line to the high-mass polytropic model with an
initial separation of 60 km, namely, 1.62-60-P.
From the right panel of Fig. 24 it is evident that all the

models have a first maximum in the energy emission rate
soon after the merger. This initial increase in the emission
rate is related to the last part of the inspiral phase, when the
amplitude and the frequency of the gravitational-wave
signal increase. After this first peak, however, the emission
rate has a substantial drop, which is common to all the
models and it is due to a very short (i.e.
 1 ms) transition
phase in which the deviations from axisymmetric are
smaller. We now concentrate on describing the different
dynamics of the different models after this initial common
part, i.e. on the emission rate related to the evolution of the
system after the merger.
In the case of the two high-mass polytropic binaries, i.e.

1.62-45-P and 1.62-60-P, there is also a second peak in the
energy emission at the time of the collapse and, except for
the different times at which the merger and the subsequent
collapse to BH take place, their profiles are very similar,
with a total energy emitted which is �0:01MADM. This
second peak, which has an amplitude comparable to or
higher than the first one, is simply related to the increase in
amplitude and frequency of the gravitational waves emit-
ted during the collapse (see also Fig. 20). In the case of the
high-mass binary evolved with an ideal-fluid EOS, how-
ever, the emission rate exhibits four peaks after the merger
and this is due to the different post-merger dynamics. As

FIG. 23 (color online). Left panel: Comparison in retarded-time evolution of the real part of the ‘ ¼ m ¼ 2 component of r�4 for
the high-mass binary when evolved with the polytropic or with the ideal-fluid EOS. Right panel: The same as in the left panel but for
the low-mass binary.

ACCURATE EVOLUTIONS OF INSPIRALLING NEUTRON- . . . PHYSICAL REVIEW D 78, 084033 (2008)

084033-27



already discussed in Sec. III C, instead of collapsing
promptly to a BH as the polytropic one, this system forms
a bar-shaped HMNS with the high-density cores of the two
NSs periodically merging and bouncing until sufficient
angular momentum is carried away and the collapse starts.
These periodic bounces and mergers of the two cores
determine the several peaks seen in the emission rates.
At the end, the total energy radiated through
gravitational-waves is larger than the one emitted in the
polytropic case and is ’ 0:012MADM.

For the two low-mass binaries, 1.46-45-P and 1.46-45-
IF, on the other hand, the emission rate is always smaller
than for the high-mass binaries, but it shows several peaks
and for a longer time. This is related to the dynamics of the
bar-deformed HMNSs that rotate for several stellar periods
before collapsing to BHs. As a result, even if the emission
rate is smaller, the total energy emitted in gravitational
waves is much larger and in the case of the low-mass
polytropic binary is ’ 0:018MADM at the time of the col-
lapse, while for the low-mass ideal-fluid binary it can be
estimated to be � 0:04MADM when extrapolating the time
of the collapse to t � 110 ms (see discussion in Sec. III D).

The two panels in Fig. 24 are particularly useful to
appreciate and quantify the differences that emerge among
different binaries in the inspiral phase and, later on, in the
post-merger phase. It is particularly instructive to consider
the similarity in the evolutions of binaries having the same
initial separation and mass, but different EOS, i.e. 1.62-45-
P and 1.62-45-IF or 1.46-45-P and 1.46-45-IF. We recall

that these sets of binaries have exactly the same initial data
and hence the differences during the inspiral are due
uniquely to the role played by the EOS. As clearly shown
in the left panel of Fig. 24, these differences are very small,
so that 1.62-45-P and 1.62-45-IF have lost to gravitational
waves essentially the same amount of mass at the time of
the merger, although the latter actually takes place at
slightly different times (i.e. t� 5:3 ms for 1.62-45-P and
t� 5:8 ms for 1.62-45-IF; see the discussion in Sec. III C).
Because an identical comment also applies for 1.46-45-P
and 1.46-45-IF, we conclude that the EOS introduces major
differences in the binary evolutions only after the merger.
On the contrary, for binaries having the same EOS but

different masses (e.g. binaries 1.62-45-P and 1.46-45-P),
also the evolution before the merger is different and can
contribute to different post-merger evolutions (see the
comment below on the angular-momentum losses).
In a similar way, we have computed the angular-

momentum loss as [126]

dJGWðtÞ
dt

¼ 1

32�

X
‘;m

im

�
dQþ

‘m

dt
ðQþ

‘mÞ�

þQ�
‘m

Z t

�1
ðQ�

‘mÞ�ðt0Þdt0
�

(35)

and, in analogy with Fig. 24, of which we use the same
line-type convention, we show in the left panel of Fig. 25
the loss of angular momentum normalized to the initial

FIG. 24 (color online). Left panel: Energy emitted in gravitational waves for the high-mass binary evolved with a polytropic EOS
(solid line), for the low-mass binary evolved with a polytropic EOS (dotted line), for the high-mass binary evolved with the ideal-fluid
EOS (dashed line), and for the low-mass binary evolved with the ideal-fluid EOS (dot-dashed line). Note that the largest amount of
radiation comes from the low-mass binary whose emission has not been computed before. Indicated with a long-dashed line is the
high-mass polytropic binary starting at 60 km. Right panel: The same as in the left panel but for the rate of the energy loss. Note that
the largest burst of radiation is produced by the high-mass polytropic binary at the time of the prompt collapse to a BH.
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angular momentum of the system and in the right panel the
loss rate.

Overall, the angular-momentum losses and loss rates
follow rather closely the behavior already discussed for
the energy, namely, there is very little difference during the
inspiral for binaries having the same mass. When looking
more carefully, however, it is possible to note that the
evolution of the angular momentum shows small differ-
ences after about 3 ms even for binaries with the same
mass, e.g. 1.62-45-P and 1.62-45-IF. This time corresponds
roughly to that of the first orbit, after which the nonisen-
tropic evolution of model 1.62-45-IF will have changed the
stellar structure only slightly but in a manner sufficient to
produce a different emission of gravitational waves and
hence a different loss of angular momentum. Indeed it is
clear from the left panel of Fig. 25 that the merger begins
when the two binaries have lost �1% of their initial
angular momentum but that this takes place at different
times for the two binaries, happening earlier for model
1.62-45-P which is isentropic, more compact, and with a
larger quadrupole moment.

More marked are the differences seen when comparing
binaries differing only in the mass (e.g. binaries 1.62-45-P
and 1.46-45-P or binaries 1.62-45-IF and 1.46-45-IF). We
recall that these two sets of binaries essentially merge at
the same time and it is then apparent from Fig. 25 that at
the time of the merger the high-mass binary will have lost a
larger relative amount of the initial orbital angular momen-
tum. As a result, the matter orbiting outside the AH when
this forms will also have a smaller amount of angular
momentum and is therefore more likely to be more rapidly

accreted. This explains why the high-mass polytropic bi-
nary 1.62-45-P produces a torus with a smaller rest mass
than the low-mass polytropic binary 1.46-45-P, both at the
AH formation and after 3 ms (cf. Table II).6

This behavior indicates that, at least for binaries having
the same EOS, the rate of loss of angular momentum
during the inspiral phase plays an important role in deter-
mining the final mass of the torus and that the models that
lose less angular momentum during the inspiral, hence
comparatively low-mass binaries, are expected to have
comparatively high-mass tori. This confirms what is al-
ready observed in Ref. [44].
Note, however, that such a simple conclusion is strictly

true for binaries having the same EOS and when no radia-
tive losses are taken into account. Under more generic
conditions, however, the EOS is also expected to play an
important role and a representative example comes from
comparing the high-mass binaries 1.62-45-P and 1.62-45-
IF. In this case, in fact, the loss of angular momentum
during the inspiral is essentially the same (cf. left panel of
Fig. 25), but it is substantially different after the merger,
with a loss of angular momentum which is at least 50%
larger for the ideal-fluid binary. Yet, because of the in-
creased pressure support the latter produces a torus with a
mass which is �7 times larger than the corresponding one
for the polytropic binary.

FIG. 25 (color online). Left panel: The same as in Fig. 24 but for the orbital angular momentum normalized to its initial value
(cf. Table I). Right panel: The same as in Fig. 24 but for the rate of loss of orbital angular momentum.

6Since we cannot follow the low-mass ideal-fluid binary till
BH formation we cannot verify that this conclusion holds also
for the ideal-fluid binaries, although we expect so.
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D. Gravitational-wave spectra and signal-to-noise
ratios

We have also studied and compared the amplitudes and
frequencies of the gravitational-wave signal produced by
the different models. In particular in Fig. 26 we plot the
amplitude of the ‘ ¼ m ¼ 2 component of the total

gravitational-wave amplitude
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2þðtÞ þ h2�ðtÞ

q
[where we

neglect the contribution of the spin-weighted spherical
harmonic �2Y22 in Eq. (33)], for four different binaries,
all starting from an initial separation of 45 km, as a
function of the retarded time t� r, where r ¼ 200M� ¼
295 km is the radius at which the signal was extracted. In
particular, in the right panel we show the evolution of the
gravitational-wave amplitude for the low-mass binaries
1.46-45-* evolved using a polytropic EOS (solid line)
and an ideal-fluid EOS (dashed line) while in the left panel
we show the same but for the high-mass binaries 1.62-45-*.
We recall that for all of these models the merger takes place
after � 5 ms, which corresponds to the time when the
amplitude reaches its maximum. The slight difference in
the position of these maxima between the polytropic and
the ideal-fluid binaries is related to the difference in the
time of the merger and is & 1 ms.

Since the dynamics in the inspiral are very similar, the
two high-mass binaries have a very similar and increasing
amplitude, up to the merger. Note, however, that the in-
crease is not monotonic and this is due mostly to the
presence of a nonzero eccentricity. As commented in
Sec. III A, a good part of the eccentricity is due to gauge
effects (and is significantly reduced when the shift vector is
initially set to zero), but a small portion of it is also

genuinely present in the initial data. Fortunately this spu-
rious eccentricity has only a small impact in the power-
spectral density (PSD) of the gravitational-wave signal and
it is easy to isolate being it at �4 times the orbital fre-
quency. The evolution of the amplitude in the post-merger
phase is rather different and, while it drops significantly for
the polytropic binary, it remains at large values for the
ideal-fluid binary as a result of the delayed collapse to the
BH; as we will comment later on, this will have an impact
also on the detectability of this signal.
The two low-mass binaries in the right panel of Fig. 26

also show a similar evolution up to the merger with an
increase of the amplitude which is modulated by eccen-
tricity and reaches its maximum at the merger. Of course,
the maximum value reached in this case is lower than the
one obtained in the high-mass cases. After the merger the
amplitude is reduced by a factor of�2 and remains to that
level for the � 15 ms which separate the merger and the
collapse to a BH. In the case of the ideal-fluid binary, on
the other hand, the post-merger amplitude is smaller and
essentially constant for the whole time the simulation was
carried out. As mentioned already, this binary is expected
to collapse to a BH on a time scale of �110 ms.
We next consider the gravitational-wave emission in the

frequency domain and for this we have computed the
power-spectral density of the effective amplitude

~hðfÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~h2þðfÞ þ ~h2�ðfÞ

2

s
; (36)

where f is the gravitational-wave frequency and where

FIG. 26 (color online). Left panel: Comparison of retarded-time evolution of the amplitude the ‘ ¼ m ¼ 2 component of h ¼
ðh2þ þ h2�Þ for the high-mass binary when evolved with the polytropic (solid line) or with the ideal-fluid (dashed line) EOS; cf., Fig. 23,
left panel. Right panel: The same as in the left panel but for the low-mass binary; cf., Fig. 23, right panel.
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~hþ;�ðfÞ �
Z 1

0
e2�ifthþ;�ðtÞdt (37)

are the Fourier transforms of the gravitational-wave am-
plitudes hþ;�ðtÞ, built using only the largest ‘ ¼ m ¼ 2
multipole.

In Fig. 27 we compare the spectral distribution of the

quantity ~hðfÞf for the high-mass binaries (left panel) and
the low-mass binaries (right panel) when evolved with the
two EOSs. In both cases we use a solid line for the poly-
tropic binaries and a dashed line for the binaries evolved
with the ideal-fluid EOS. Also indicated in both panels
with a vertical long-dashed line is the frequency corre-
sponding to twice the initial orbital frequency f0 �
�0=ð2�Þ where f0 ¼ 283 Hz for the low-mass binaries
and f0 ¼ 295 Hz for the high-mass ones. These frequen-
cies are representative of the signal at the beginning of the
simulated inspiral and thus represent lower cutoff frequen-
cies, below which the PSD is not meaningful. On the other

hand, the peaks in the PSDs observed at frequencies
slightly larger than the orbital ones are very important as
they refer to the power emitted during the inspiral.
The PSD for the high-mass polytropic binary (left panel

of Fig. 27) is quite simple, as it shows, besides the inspiral
peak, also a peak at f � 4 kHz, corresponding to the
collapse of the HMNS (cf. left panel of Fig. 26). Note
that the PSD shown does not include the frequency of the
fundamental QNM of the newly produced BH. Using the
approximate expression [130,131]

fQNM � 3:23

�
MBH

10M�

��1½1� 0:63ð1� aÞ0:3� kHz; (38)

this frequency is fQNM ’ 6:7 kHz for the BH produced by

this binary (cf. Table III).
The PSD for the high-mass ideal-fluid binary, on the

other hand, is more complex, with the inspiral peak at f �
0:75 kHz being accompanied by a number of other peaks,

FIG. 27 (color online). Left panel: Comparison of the PSD of the ‘ ¼ m ¼ 2 component of hðfÞf for the high-mass binary when
evolved with the polytropic (solid line) or with the ideal-fluid (dashed line) EOS; cf., Fig. 23, left panel. Right panel: The same as in
the left panel but for the low-mass binary; cf., Fig. 23, right panel. Indicated with a vertical long-dashed line is twice the initial orbital
frequency.

TABLE III. Signal-to-noise ratio (SNR) computed for different detectors assuming a source at 10 Mpc. The different columns refer
to: the proper separation between the centers of the stars d=MADM; the baryon mass Mb of each star in solar masses; the total ADM
mass MADM in solar masses, as measured on the finite-difference grid; the approximate quasinormal mode frequency of the
fundamental mode fQNM in kHz; the SNR for Virgo, LIGO, Advanced LIGO, and GEO.

Model d=MADM MbðM�Þ MADMðM�Þ fQNMðkHzÞ SNR (Virgo) SNR (LIGO) SNR (Adv. LIGO) SNR (GEO)

1.46-45-P 14.3 1.456 2.681 7.3 1.92 1.33 12.54 0.57

1.46-45-IF 14.3 1.456 2.681 � � � 2.08 1.45 13.52 0.62

1.62-45-P 12.2 1.625 2.982 6.7 2.15 1.48 13.29 0.63

1.62-45-IF 12.2 1.625 2.982 7.0 2.29 1.57 14.42 0.67

1.62-60-P 16.8 1.625 2.987 6.5 3.97 3.15 35.52 1.48
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the most prominent having a similar amplitude at f �
1:75 kHz and f � 3 kHz. These additional peaks (and
also the smaller ones between the two) are obviously
related to the post-merger phase at t * 5 ms and, in par-
ticular, to the dynamics of the HMNS formed after the
merger and especially to the dynamics of the cores of the
two NSs, which merge and bounce several times before the
HMNS collapses to a BH, producing a small peak at f �
4 kHz. Also in this case even the fundamental QNM has a
frequency fQNM ’ 7:0 kHz (cf. Table III) and is therefore

outside the range shown in Fig. 27.
In a similar way it is possible to interpret the PSDs of the

low-mass binaries. The polytropic one, in particular, shows
an excess power at f � 0:75 kHz due to the inspiral but
also a very broad peak between f � 2 kHz and f �
3:5 kHz, that is related to the dynamics of the bar-
deformed HMNS formed after the merger and persisting
for several milliseconds. Also in this case a small excess
power is seen at f * 4 kHz and is associated with the
collapse to the BH, whose fundamental QNM has a fre-
quency fQNM ’ 7:3 kHz. Interestingly, the low-mass ideal-

fluid PSD does not show the broad peak but a very narrow
and high-amplitude one at f � 2 kHz. This is obviously
related to the long-lived bar deformation of the HMNS,
which we have followed for�16 revolutions (as computed
from the cycles of the quadrupolar gravitational radiation).
At this stage it is unclear whether this prominent peak will
survive when the simulations are repeated without the use
of a �-symmetry and more conclusive results on this will
be presented elsewhere [90]. Note that the high-frequency
part of the PSD for the low-mass ideal-fluid binary (i.e. for
f * 2 kHz) is essentially zero, because of the absence of a
collapse to BH, which for this binary takes place in an
excessively long time.

A fundamental piece of information necessary to assess
the relevance of binary NSs as sources of gravitational
waves comes from the calculation of the SNR which we
have computed for interferometric detectors such as Virgo,
LIGO, Advanced LIGO, and GEO. For all the models
discussed above, including the high-mass polytropic bi-
nary with a larger initial separation of 60 km, the SNR has
been computed as

�
S

N

�
2 ¼ 4

Z 1

0

j~hþðfÞj2
ShðfÞ df; (39)

where ShðfÞ is the noise power-spectral density for a given
detector. The results computed assuming a source at a
distance of 10 Mpc are reported in Table III and show
that, while a detection is ideally possible with the
current interferometers [the SNR is Oð1Þ], it is unlikely
in practice, given the small event rate at such distances, i.e.
� 0:01 yr�1. On the other hand, larger SNRsOð10Þ can be
obtained with advanced detectors. This also means that a
detection of these sources up to a distance of 100 Mpc will
be possible and so there will a higher event rate.

Interestingly, binaries of the same mass, but described by
a nonisentropic EOS have a slightly higher SNR and this is
simply due to the increase in the delay for the collapse to
the BH.
Both the small range in which the masses of NSs fall and

the low sensitivity of present detectors in the high-
frequency region, where a lot of the power is emitted,
underline the importance of the inspiral phase for the
detection. This is particularly evident when comparing
the large SNR of signals in which the inspiral is a signifi-
cantly long part. The signal for the high-mass polytropic
binary 1.62-60-P starts from an initial separation of 60 km
and spans over more than 5 orbits, resulting in a SNR
which is a factor of 3 larger than the one of the other
binaries, which have an initial separation of 45 km and
merge in little more than 2 orbits. This result strongly
motivates the investigation, both through simulations and
PN approximations, of binaries inspiralling over time
scales longer than the already long ones presented here.
Stated differently, the study of longer simulations can be
used to assess when the lower-order PN expressions are
very accurate, while the study of the final part of the
inspiral (say the last two orbits) can be used to determine
those higher-order PN effects that have not been worked
out analytically yet.

V. CONCLUSIONS

We have discussed accurate general-relativistic simula-
tions of binary systems of equal-mass NSs which inspiral
starting from irrotational configurations in quasicircular
orbit. Spanning over �30 ms, our simulations are the
longest of their kind and provide the first complete (within
an idealized treatment of the matter) description of the
inspiral and merger of a NS binary leading to the prompt
or delayed formation of a BH and to its ringdown.
More specifically, we have considered binary NSs with

two different initial masses: low-mass binaries with
MADM ¼ 2:681M� and high-mass binaries with MADM ¼
2:982M�. Such binaries have then been evolved using two
different EOSs: namely, an isentropic (i.e. polytropic) EOS
and a nonisentropic (i.e. ideal-fluid) EOS. Despite the use
of only simple, analytical EOSs, we were able to reproduce
some of the aspects that a more realistic EOS would yield.
In particular, we have shown that the polytropic EOS leads
either to the prompt formation of a rapidly rotating BH
surrounded by a dense torus in the high-mass case, or, in
the low-mass case, to a HMNS which develops a bar, emits
large amounts of gravitational radiation, and eventually
experiences a delayed collapse to the BH. Conversely, we
have shown that the ideal-fluid EOS inevitably leads to a
further delay in the collapse to the BH as a result of the
larger pressure support provided by the temperature in-
crease via shocks. In this case the temperature in the
formed HMNS can reach values as high as 1011–1012 K,
so that the subsequent dynamics and especially the time of
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the collapse can be reduced if cooling mechanisms, such as
the direct-URCA process, take place.

With the exception of the low-mass ideal-fluid binary,
whose HMNS is expected to collapse to the BH on a time
scale which is computationally prohibitive (i.e.�110 ms),
all the binaries considered lead to the formation of a BH
surrounded by a rapidly rotating torus. The masses and
dimensions of the tori depend on the EOS, but are generi-
cally larger than those reported in previous independent
studies, with masses up to � 0:07M�. Confirming what
was reported in Ref. [44], we have found that the amount of
angular momentum lost during the inspiral phase can
influence the mass of the torus for binaries that have the
same EOS. In particular, the models that lose less angular
momentum during the inspiral, the comparatively low-
mass binaries, are expected to have comparatively high-
mass tori. A more detailed study of the dynamics of the
torus (especially when produced from non-equal-mass bi-
naries) and of its implication for short hard GRBs will be
the subject of a following paper [90].

Most of the binaries considered have an initial coordi-
nate separation of 45 km and merge after �2 orbits or,
equivalently, after �6 ms. However, we have also consid-
ered a high-mass polytropic binary with an initial coordi-
nate separation of 60 km, which merges after�5 orbits or,
equivalently, after �20 ms. As a stringent test of the
accuracy of our results we have carried out a systematic
comparison between identical binaries starting at different
initial separations. Such a comparison, which has never
been performed before, has shown that there is an excellent
agreement in the inspiral phase (as expected from the
lowest-order PN approximations), but also small differ-
ences at the merger and in the subsequent evolution.
These results provide us with confidence on our ability to
perform long-term accurate simulations of the inspiral
phase, and also open the prospect of investigating higher-
order PN corrections.

Besides the study of the bulk dynamics of the two NSs,
we have also investigated the small-scale hydrodynamics
of the merger and the possibility that dynamical instabil-
ities develop. In this way we have provided the first quan-
titative description of the onset and development of the
Kelvin-Helmholtz instability, which takes place during the
first stages of the merger phase, when the outer layers of
the stars come into contact and a shear interface forms. The
instability curls the interface forming a series of vortices
which we were able to resolve accurately using the higher
resolutions provided by the AMR techniques. Since the
development of this instability is essentially independent
of the EOS used or of the masses of the NSs, it could have
important consequences in the generation of large mag-
netic fields. Also this aspect will be further investigated in
a subsequent work [90].

Given the importance of binary NSs as sources of gravi-
tational waves, special attention in this work has been

dedicated to the analysis of the waveforms produced and
to their properties for the different configurations. In par-
ticular, we have found that the largest loss rates of energy
and angular momentum via gravitational radiation develop
at the time of the collapse to the BH and during the first
stages of the subsequent ringdown. Nevertheless, the con-
figurations which emit the highest amount of energy and
angular momentum are those with lower masses, since they
do not collapse promptly to a BH. Instead they produce a
violently oscillating HMNS, which emits copious gravita-
tional radiation, while rearranging its angular-momentum
distribution, until the advent of the collapse to the BH. We
have also found that although the gravitational-wave emis-
sion from NS binaries has spectral distributions with large
powers at high frequencies (i.e. f * 1 kHz), a signal-to-
noise ratio as large as 3 can be estimated for a source at
10 Mpc using the sensitivity of currently operating
gravitational-wave interferometric detectors.
Several aspects of the simulations reported here could be

improved and probably the most urgent among them are
the use of more realistic EOSs and the inclusion of mag-
netic fields via the solution of the MHD equations. Recent
calculations [48,49] have indeed shown that the corrections
produced by strong magnetic fields could be large and are
probably very likely to be present. Work is in progress
towards these improvements using the code developed in
Ref. [51]. The results of these investigations will be pre-
sented in forthcoming works.
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APPENDIX A: CHARACTERIZING THE
TRUNCATION ERROR

1. The influence of numerical methods

The inherent numerical viscosity of the numerical
method used for the reconstruction of the variables on
cell interfaces is crucial to determine the time of the
merger. As one might expect, lower-order reconstruction
schemes result in an anticipated merger due to their higher
numerical viscosity, as Fig. 28 shows (for a review of the
numerical methods implemented in Whisky, see II C).
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The results in the test simulations presented in the figure
were produced through the evolution of initial data that are
not listed in Table I, i.e. proper separation between the
centers of the stars d=MADM ¼ 12:6; baryon mass of each
star Mb ¼ 1:78M�; total ADM mass MADM ¼ 3:24M�;
angular momentum J ¼ 9:93M2� ¼ 8:75� 1049 gcm2=s;
initial orbital angular velocity �0 ¼ 9:39� 10�3 ¼
1:9 rad=ms; approximate mean radius of each star R ¼
8:4M� ¼ 12 km; ratio of the polar to the equatorial coor-
dinate radius of each star rp=re ¼ 0:945.

In particular, in Fig. 28 we show the differences in the
evolution of the rest-mass density normalized to its initial
value when different numerical methods are used for the
evolution: the solid line refers to an evolution performed
using the Marquina flux formula and a PPM reconstruction
(which is our usual choice), the dotted line to the HLLE
approximate Riemann solver with PPM reconstruction and
the dashed line to the HLLE solver with TVD reconstruc-
tion (in particular, the van Leer slope limiter was used).
Smaller changes in the merger time and in the evolution of
the HMNS are observed also by changing some parameters
of the PPM reconstruction method, in particular those
related to the shock detection, that is the parameters that
define how big a jump in the evolved variable has to be,
in order to be considered a discontinuity and treated as
such.

We have found instead that the choice of approximate
Riemann solver does not influence significantly the evolu-
tion of the coalescence. As one can see from Fig. 28, when
coupled with the PPM reconstruction, both the Marquina
and the HLLE solvers produce very similar dynamics and
the time of the merger is almost the same. The situation
changes when a lower-order reconstruction method, such
as the van Leer one, is used. In this case the numerical
viscosity is large and the time of the merger is very differ-
ent, i.e. � 4 ms instead of � 6:5 ms.
From these tests one can then learn that the numerical

viscosity of the evolution method is very important in this
scenario, being responsible for changes in the dynamics
and also in the estimate of the gravitational-wave emission.
Of course, one should always employ the least viscous
method available.

2. The influence of the initial gauge conditions

We have found that using the shift profile given in the
Meudon data introduces a considerable amount of gauge
dynamics, which can be avoided by setting the initial shift
to zero. We recall that the Meudon shift condition is
determined through the Killing equation which is implicit
in the quasiequilibrium assumption for binary systems
[20]. A clear way to highlight this feature is a comparison
of the time evolution of the coordinate separation between
the stellar centers. This is shown in Fig. 29, which offers a
comparison of the time evolution of the coordinate sepa-
ration (upper panel) and the proper separation (lower

FIG. 28 (color online). Comparison of the rest-mass density
normalized to its value at t ¼ 0 for evolutions performed with
different numerical methods; the solid line refers to an evolution
performed using the Marquina flux formula and a PPM recon-
struction, the dotted line to HLLE-PPM, and the dashed line to
HLLE-TVD (van Leer slope limiter). These data refer to an
initial configuration not present in Table I (see text for details)
and to an evolution with the ideal-fluid EOS.

FIG. 29 (color online). Comparison of the time evolution of
the coordinate separation (upper panel) and the proper separation
(lower panel) between the stellar centers in case the initial
Meudon shift is used (dashed line) and in case the initial shift
is set to zero (continuous line).

LUCA BAIOTTI, BRUNO GIACOMAZZO, AND LUCIANO REZZOLLA PHYSICAL REVIEW D 78, 084033 (2008)

084033-34



panel) between the stellar centers in case the initial
Meudon shift is used (dashed line) and in case the initial
shift is set to zero (continuous line). The evolution equation
for the shift is the same for the two simulations.

It is clear that the coordinate orbit of the evolution
started with the Meudon shift has a noticeable amount of
eccentricity (which appears as large oscillations of the
coordinate separation of the stars during the inspiral),
which is absent in the simulation in which the shift is

zero at the initial time. In addition, the adoption of a zero
initial shift results into a larger initial violation of the 2-
norm of the Hamiltonian constraint, which is, however,
below 10�6 for the typical resolution used.
As a final remark we note that the proper separations of

the stars, the maximum of the rest-mass density, and other
gauge-invariant quantities, such as the gravitational wave-
forms, are instead very similar during the inspiral phase.
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E. Seidel, and J. Shalf, in Vector and Parallel Processing—
VECPAR’2002, 5th International Conference, Lecture
Notes in Computer Science (Springer, Berlin, 2003).

[67] D. Pollney, C. Reisswig, L. Rezzolla, B. Szilágyi, M.
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