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Abstract. In this paper we consider the relation between the volume
deceleration parameter obtained within the Buchert averaging scheme and the
deceleration parameter derived from supernova observation. This work was
motivated by recent findings that showed that there are models which despite
having Λ = 0 have volume deceleration parameter qvol < 0. This opens the
possibility that back-reaction and averaging effects may be used as an interesting
alternative explanation to the dark energy phenomenon.

We have calculated qvol in some Lemâıtre–Tolman models. For those models
which are chosen to be realistic and which fit the supernova data, we find that
qvol > 0, while those models which we have been able to find which exhibit
qvol < 0 turn out to be unrealistic. This indicates that care must be exercised in
relating the deceleration parameter to observations.

Keywords: dark energy theory, supernova type Ia, cosmological constant
experiments, superclusters and voids

ArXiv ePrint: 0807.3577

c©2008 IOP Publishing Ltd and SISSA 1475-7516/08/10003+15$30.00

mailto:bolejko@camk.edu.pl
mailto:larsa@math.miami.edu
http://stacks.iop.org/JCAP/2008/i=10/a=003
http://arxiv.org/abs/0807.3577


JC
A

P
10(2008)003

Apparent and average accelerations of the Universe

Contents

1. Introduction 2

2. The Buchert scheme 4
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1. Introduction

Accelerated expansion, modeled by a positive cosmological constant, is an essential
element of the current standard cosmological model of the Universe. The accelerated
expansion was originally motivated by supernova observations [1] and is supported by
many other types of cosmological observations. Observational data are, in modern
cosmology, analyzed almost exclusively within the framework of homogeneous and
isotropic Friedmann models [2]. This analysis leads to the concordance model, which
provides a remarkably precise fit to cosmological observations. In this situation, if the
Ehlers–Geren–Sachs theorem [3] and ‘almost EGS theorem’ [4] are invoked5, then it seems
that an assumption of large scale homogeneity of the Universe can be justified. This on
the other hand implies that the Universe must be filled with dark energy which currently
drives the acceleration of the Universe.

However, the concordance model is not the only one which can fit cosmological
observations. Anti-Copernican inhomogeneous models which assume the existence of a
local Gpc scale void also fit cosmological observations [6] (see [7] for a review). Moreover,
on small and medium scales our Universe is not homogeneous. Therefore, one may
ask whether Friedmann models can describe our Universe correctly. In particular, it
is important to ask what is the best way to fit a homogeneous model to a realistic and
inhomogeneous Universe. This problem, known as the fitting problem, was considered
by Ellis and Stoeger [8]. In considering the fitting problem, it becomes apparent that
a homogeneous model fitted to inhomogeneous data can evolve quite differently from
the real Universe. The difference between the evolutions of homogeneous models and
an inhomogeneous Universe is caused by back-reaction effects, due to the non-linearity
of the Einstein equation. Unfortunately, in the standard approach, the back-reaction is

5 These theorems imply that if anisotropies in the cosmic microwave background radiation are small for all
fundamental observers then the Universe is locally almost spatially homogeneous and isotropic. However, as
shown in [5] the almost Robertson–Walker geometry also requires smallness of the Weyl curvature.
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rarely taken into account—in most cases when modeling our Universe on a local scale
Newtonian mechanics is employed and on large scales the Friedmann equations (or linear
perturbations of Friedmann background) are used [9]. Such an approach to cosmology
is often encouraged by the ‘no-go’ theorem which states that the Universe can be very
accurately described by the conformal Newtonian metric perturbed about a spatially flat
background, even if δρ/ρ � 0. In such a case the back-reaction is negligible [10, 11].
However, the results obtained by van Elst and Ellis [12] and recently by Kolb, Marra
and Matarrese [13] show that the application of ‘no-go’ theorem is limited. Therefore,
one should be aware that in the absence of an analysis of the back-reaction and other
effects caused by inhomogeneities in the Universe, there remains the possibility that the
observed accelerated expansion of the Universe is only apparent [14]. The direct study
of the dynamical effects of inhomogeneities is difficult. Due to the non-linearity of the
Einstein equations, the solution of the Einstein equations for the homogeneous matter
distribution leads in principle to a different description of the Universe than an average of
an inhomogeneous solution to the exact Einstein equations (even though inhomogeneities
when averaged over a sufficiently large scale might tend to be zero).

Neither the analysis of the evolution of a general matter distribution nor the numerical
evolution of cosmological models employing the full Einstein equations are available at
the level of detail which would make them useful for this problem. There are currently
several different approaches which attempt to take back-reaction effects into account. One
approach is based on exact solutions—see for example [15]. Another and more popular
approach is based on averaging.

In the averaging approach to back-reaction, one considers a solution to the Einstein
equations for a general matter distribution and then an average of various observable
quantities is taken. If a simple volume average is considered then such an attempt
leads to the Buchert equations [16]. The Buchert equations are very similar to the
Friedmann equations except for the back-reaction term which is in general non-vanishing,
if inhomogeneities are present. For a review on back-reaction and the Buchert averaging
scheme the reader is referred to [17, 18]. Within this framework and using spherically
symmetric inhomogeneous models Nambu and Tanimoto [19], Paranjape and Singh [20],
Kai et al [21], Chuang et al [22], provided explicit examples that one can obtain negative
values of the volume deceleration parameter even if Λ = 0. Another interesting example
was presented by Räsänen [17, 23] where it was shown that the total volume deceleration
parameter of two isolated and locally decelerating regions can also be negative.

There are however important ambiguities in the application of an averaging procedure.
The average itself not only depends on a choice of volume but also on a choice of time
slicing. This is very crucial in cosmology. Once inhomogeneities are present the age of
the Universe is not everywhere the same. Namely, the big bang in inhomogeneous models
is not a single event, so the average taken over a hypersurface of constant cosmic time
t is different from the average taken over a hypersurface of constant age of the Universe
t−tB [24]. Moreover, the results of the averaging procedure vary if the discrepancy between
the average cosmic time and the local time is introduced (the local time is the time which
is measured by local clocks; the cosmic time is the time which appears in the averaged
homogeneous model). This phenomenon was studied by Wiltshire [25], and has been
used in an ambitious alternative concordance model. The model proposed by Wiltshire
introduces some additional assumptions which allow to some extent a comparison of
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averaged quantities with observations. Such a comparison shows quite good agreement
with observations [26]. Thus, while serious fundamental questions remain concerning
Wiltshire’s approach, it is another example of an approach where one does not need dark
energy to fit cosmological observations.

The averaging procedure is also gauge dependent. For example using different gauge
one can obtain that the back-reaction mimics not dark energy but dark matter [27]. The
averaging schemes in the literature, therefore, have been criticized, and their inherent
ambiguities (and in some cases obscurity) have been discussed; cf e.g. [10]. A key point
is that it is far from obvious whether the average quantities, such as the acceleration
of the averaged Universe, are really the quantities which are measured in astronomical
observations. In particular, an operational analysis is to a large extent lacking in the
discussions of averaging. Thus, it is important to test the averaging procedures with the
exact and inhomogeneous solutions of the Einstein equations. Within exact models each
quantity can easily be calculated and then compared with its averaged counterpart. This
paper aims to perform such an analysis within the Lemâıtre–Tolman model.

The structure of this paper is as follows. Buchert’s averaging procedure is presented
in section 2, and some background on the Lemâıtre–Tolman model is given in section 3.
The volume and distance deceleration parameters are introduced in section 4. Finally,
in section 5, we discuss the relation between the deceleration parameters, supernova
observations and models of cosmic structures.

2. The Buchert scheme

If the averaging procedure is applied to the Einstein equations, then for irrotational and
pressureless matter the following equations are obtained [16]:

3
ä

a
= −4πG〈ρ〉 + Q, (1)

3
ȧ2

a2
= 8πG〈ρ〉 − 1

2
〈R〉 − 1

2
Q, (2)

Q ≡ 2
3

(〈Θ2〉 − 〈Θ〉2) − 2〈σ2〉, (3)

where 〈R〉 is an average of the spatial Ricci scalar (3)R, Θ is the scalar of expansion, σ
is the shear scalar, and 〈 〉 is the volume average over the hypersurface of constant time:
〈A〉 = (

∫
d3x

√−h)−1
∫

d3x
√−hA. The scale factor a is defined as follows:

a = (V/V0)
1/3, (4)

where V0 is an initial volume.
Equations (1) and (2) are very similar to the Friedmann equations, where Q = 0, and

ρ and R depend on time only. In fact, they are kinematically equivalent to a Friedmann
model that has an additional scalar field source [28]. However the Buchert equation does
not form a closed system. To close these equations one has to introduce some further
assumptions [16]. As can be seen from (3), if the dispersion of expansion is large, Q can
be large as well and one can get acceleration (ä > 0) without employing the cosmological
constant.

Journal of Cosmology and Astroparticle Physics 10 (2008) 003 (stacks.iop.org/JCAP/2008/i=10/a=003) 4

http://stacks.iop.org/JCAP/2008/i=10/a=003


JC
A

P
10(2008)003

Apparent and average accelerations of the Universe

3. The Lemâıtre–Tolman model

The Lemâıtre–Tolman model6 [30] is a spherically symmetric, pressure free and
irrotational solution of the Einstein equations. Its metric is of the following form:

ds2 = c2dt2 − R′2(r, t)
1 + 2E(r)

dr2 − R2(t, r) dΩ2, (5)

where dΩ2 = dθ2 + sin2 θ dφ2. Because of the signature (+,−,−,−), the E(r) function
must obey E(r) ≥ −1/2. The prime ′ denotes ∂r.

The Einstein equations reduce, in the Λ = 0 case, to the following two:

κρ(r, t)c2 =
2M ′(r)

R2(r, t)R′(r, t)
, (6)

1

c2
Ṙ2(r, t) = 2E(r) +

2M(r)

R(r, t)
, (7)

where M(r) is another arbitrary function and κ = 8πG/c4. The dot ˙ denotes ∂t.
When R′ = 0 and M ′ �= 0, the density becomes infinite. This happens at shell

crossings. This is a singularity additional to the big bang that occurs at R = 0, M ′ �= 0.
By setting the initial conditions appropriately the shell crossing singularity can be avoided
(see [31] for detailed discussion).

Equation (7) can be solved by simple integration:
∫ R

0

dR̃
√

2E + (2M/R̃)
= c [t − tB(r)] , (8)

where tB appears as an integration constant and is an arbitrary function of r. This means
that the big bang is not a single event as in the Friedmann models, but occurs at different
times at different distances from the origin.

The scalar of the expansion is equal to

Θ =
Ṙ′

R′ + 2
Ṙ

R
. (9)

The shear tensor is of the following form:

σα
β =

1

3

(
Ṙ′

R′ −
Ṙ

R

)

diag(0, 2,−1,−1), (10)

and thus σ2 ≡ (1/2)σαβσαβ = (1/3)(Ṙ′/R′ − Ṙ/R)2.
The spatial Ricci scalar in the Lemâıtre–Tolman is equal to

(3)R = − 4

R2

(
E +

E ′R
R′

)
. (11)

6 The pressure free and irrotational solution of the Einstein equations for spherically symmetric space–time is
often called the Tolman, Tolman–Bondi, or Lemâıtre–Tolman–Bondi model. However, it is more justified to refer
to this solution as the Lemâıtre–Tolman model (cf [29]).
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4. The apparent and average accelerations

The deceleration parameter within the Friedmann models is defined as

q = − äa

ȧ2
, (12)

where a is the scale factor. By analogy we can define the deceleration parameter which is
based on the averaging scheme. Substituting (4) into (12) and using (1) and (2) we get

qvol = − −4πG〈ρ〉 + Q
8πG〈ρ〉 − 1/2〈R〉 − 1/2Q . (13)

We refer to this deceleration parameter as the volume deceleration parameter, qvol, since it
is positive when the second derivative of volume is negative and negative when the second
derivative of volume is positive (and of sufficiently large value).

On the other hand one can introduce a deceleration parameter defined relative to
the distance. Within homogeneous models the distance to a given redshift is larger for
accelerating models than for decelerating ones. Taylor expanding the luminosity distance
in the Friedmann model we obtain

DL =
dDL

dz

∣
∣∣
∣
z=0

z +
1

2

d2DL

dz2

∣
∣∣
∣
z=0

z2 + O(z3)

=
c

H0
z +

c

2H0
(1 − q)z2 + O(z3). (14)

Employing a similar procedure in the case of the Lemâıtre–Tolman model we get

DL =
cR′

Ṙ′ z +
c

2

R′

Ṙ′

(

1 +
R′R̈′

Ṙ′2 +
cR′′

R′Ṙ′ −
cṘ′′

Ṙ′2

)

z2 + O(z3). (15)

Thus by comparing (15) with (14), the Hubble and the deceleration parameters in the
Lemâıtre–Tolman model can be defined as

Hdis
0 =

Ṙ′

R′ , qdis
0 = −R′R̈′

Ṙ′2 − cR′′

R′Ṙ′ +
cṘ′′

Ṙ′2 . (16)

The above quantities are defined at the origin (r = 0). However, following Partovi and
Mashhoon [32] we can extend the above quantities to any r. Then, the coefficients of
Taylor expansion are

dDL

dz
= 2R + Ṙ

dt

dz
+ R′dr

dz

d2DL

dz2
= 2R + 4Ṙ

dt

dz
+ 4R′dr

dz
+ R̈

(
dt

dz

)2

+ 2Ṙ′ dt

dz

dr

dz
+ R′′

(
dr

dz

)2

+ Ṙ
d2t

dz2
+ R′d

2r

dz2
,

(17)

and we obtain

Hdis =

(
dDL

dz

)−1

, qdis = 1 − Hdis d
2DL

dz2
. (18)

We refer to this deceleration parameter as the distance deceleration parameter. Although
of physical importance is the luminosity distance and its ability of fitting the supernova
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Figure 1. The residual Hubble diagram for models 1–4. The black dashed line
presents Δm for the ΛCDM model.

data, qdis is of great usefulness. It allows us, without solving the geodesic equations, to
easily check whether a model being considered can be used to fit supernova data. As we
will see in the next section, models which fit supernova data have at least in some regions
qdis < 0.

5. Connection between the deceleration parameter and observations

Let us first focus on supernova observations. There is already a considerable literature
on inhomogeneous models which are able to fit the supernova observations without the
cosmological constant [6]. We shall examine four such models in this section. For each
of these models we shall calculate the volume and distance deceleration parameters and
compare them with each other. The four models to be considered present a very good fit
to supernova data. The supernova data consists of 182 supernovae from the Riess gold
sample [33]. The χ2 test values for models 1–4 are respectively 183.6, 184.3, 164.7, and
178.5 (for comparison the χ2 of fitting the ΛCDM model is 165.3). The residual Hubble
diagram for these models is presented in figure 1. The deceleration parameters for models
1–4 are presented in figure 2. The left panel presents the distance deceleration parameter
(as defined by (18)—where dt/dz and dr/dz were calculated for the radial geodesic).
The distance deceleration parameter is positive at the origin, but soon becomes negative.
Moreover, a very similar shape is obtained if instead of qdis (as defined by (18)), qdis

0

(as defined by (16)) is used. Thus, qdis (or even qdis
0 , if treated as a function of r) can

be regarded as a useful test for checking whether a given model is able to fit supernova
data. However, the most significant feature is that the volume deceleration parameter,
which is presented in the right panel of figure 2, is strictly positive. Thus, the ability of
reproducing the supernova data does not require that the volume deceleration parameter
is negative. This raises the question of whether the average acceleration has any relation to
the observed acceleration of the Universe; and if yes, are models with average acceleration
also able to fit supernova data?
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Figure 2. The distance deceleration parameter (left panel) and the volume
deceleration parameter (right panel) for models 1–4.

Figure 3. The current density distribution (left panel) and deceleration parameter
(right panel) for model 5.

Let us now focus on models of cosmic structures. It was recently shown that using
a perturbative approach, back-reaction cannot explain the apparent acceleration [34].
However, because of the large density fluctuations within cosmic structures, results
obtained in terms of the perturbation framework might be questionable. Moreover,
in view of the fact that there are known examples of exact inhomogeneous models
with negative volume deceleration parameter and Λ = 0, it is worthwhile to check
whether realistically evolving models of cosmic structures can have negative values of the
deceleration parameter. First, let us consider a model of galaxy clusters with the Navarro–
Frenk–White density distribution [35] (left panel of figure 3). Although the NFW profile
describes virialized systems7, the use of this profile will prove to be very instructive. The
average deceleration parameter qvol for model 5 is presented in the right panel of figure 3.

7 The Lemâıtre–Tolman model which evolves from a smooth density profile at last scattering to a high value
profile like the NFW profile is always characterized by a collapse central region; within this models are at the
current instant collapsing. Thus such systems cannot be considered as virialized systems.
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Figure 4. The current density distribution (left panel) and volume deceleration
parameter (right panel) for models of cosmic structures (models 6, 7).

As can be seen, in this case the deceleration parameter is positive (curve 5a). However, it
is possible to modify this model so that qvol becomes negative—curve 5b in the right panel
of figure 3. This was obtained by choosing the E function which is of large positive value
(for details see the appendix). However, after such a modification this model becomes
unrealistic. Specifically, the age of the Universe in this model becomes unrealistically
small. The bang time function tB in this model is of large amplitude, around 11.44× 109

y. This means that the actual age of the Universe in this model is approximately a few
hundred thousand years.

Now let us examine the volume deceleration parameter within models of cosmic voids
and superclusters. Figure 4 presents density distribution of realistically evolving cosmic
structures (void—curve 6, supercluster—curve 7). It can be seen from the right panel
of figure 4 that the volume deceleration parameter within these models is positive. As
above, we can modify our models in such a way that the volume deceleration parameter
is negative, but again this leads to a very large amplitude of tB. For example, in model
8, whose density and the volume deceleration parameter are presented in figure 5, the8

volume deceleration parameter is negative. However, the bang time function in model 8
is of amplitude ≈11 × 109 y, which leads to an unrealistically small age of the Universe.

6. Conclusions

In this paper we have studied the relation between the volume deceleration parameter
obtained within the Buchert averaging scheme and the deceleration parameter derived
from the observations of supernovae. This work was motivated by recent results showing
that there are models for which, despite Λ being zero, the average expansion rate is
accelerating, i.e. ä > 0 (where a is defined by relation (4)). This opens the possibility that
back-reaction and averaging effects may be used as an interesting alternative explanation
to the dark energy phenomenon.

8 Employing a model of qualitatively similar features to model 8, Hossain [36] showed that the observer situated
at the origin in order to successfully employ the Friedmann model has to assume the existence of dark energy.
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Figure 5. The current density distribution (left panel) and deceleration parameter
(right panel) for model 8.

We have compared the quantities obtained within the exact and inhomogeneous
models with their average counterparts. We focused on the supernova observations and
models of cosmic structures. For this purpose the Lemâıtre–Tolman model was employed.
It was shown numerically that the averaging of models which fit the supernova observations
does not lead to volume acceleration (ä < 0 for these averaged models and hence qvol > 0).
It was also shown that realistically evolving models of cosmic structures have also qvol > 0.
It was possible to modify these models in such a way that after the averaging, qvol < 0.
This was obtained by choosing the E function of positive amplitude—as was recently
proved by Sussman [37] this is a necessary condition for obtaining qvol < 0. However, in
models with realistic density distributions, in such case, E � 1 � M/R ≈ 10−7–10−6;
hence, as seen from (8), tB ≈ t (recall that c×1010y ≈ 3 Gpc). Thus, within such models,
the age of the Universe is unrealistically small.

Our analysis has been performed for the limited class of Lemâıtre–Tolman models,
which due to their spherical symmetry are arguably too simple to give a full understanding
of averaging and back-reaction problems. However, we conclude that, within this class,
the volume deceleration parameter qvol is not a quantity which can be directly related to
observations.

It is possible that the volume deceleration parameter qvol becomes negative only after
averaging over scales which are larger than 100 Mpc. On such large scales the structure
of the Universe becomes too complicated to be fully described by spherically symmetric
models. However, it is intriguing that models which fit the supernova observations and
for which the distance deceleration parameter, qdis, is negative still have qvol > 0. This
suggests that the volume deceleration qvol does not have a clear interpretation in terms of
observable quantities. It does not, of course, mean that averaging and back-reaction effects
cannot potentially be employed to explain the phenomenon of dark energy. However, our
work here indicates that such a potential solution of the dark energy problem should
be based upon methods different to those related to the volume deceleration parameter.
Rather than showing that qvol < 0, the averaging approach should explain observations—
reproduce correct values of distances to supernovae, the correct shape of the CMB power
spectrum, etc. An interesting, quasi-Friedmannian approach was recently suggested
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in [38]. In this approach, back-reaction is modeled in terms of the morphon field [28].
In such a case a Universe is described by a homogeneous model with the spatial curvature
being just a function of time. As shown in [38], such an approach leads to agreement with
supernova and CMB data without the need for dark energy, but requires qvol < 0.
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Appendix. Model specification

There are three arbitrary functions of the radial coordinate in the Lemâıtre–Tolman case.
However only two functions are independent and the third one is specified by the choice
of the radial coordinate. The models considered in this paper are defined as follows:

(i) Models 1 and 2
The radial coordinate is chosen as the present day value of the areal distance r := R0.
Models 1 and 2 are specified by the present day density distribution and the bang
time function. The density distribution is parameterized by

ρ(t0, r) = ρb

[
1 + δρ − δρ exp

(
− r2

σ2

)]
, (A.1)

where ρb = Ωm × (3H2
0 )/(8πG), Ωm = 0.27, H0 = 70 km s−1 Mpc

−1
. In model 1

ρδ = 1.9, σ = 0.9 Mpc, and in model 2 ρδ = 1.5, σ = 0.5 Mpc. In these models
the big bang is assumed to occur simultaneously at every point, i.e. tB = 0. The
functions M and E are then calculated using equations (6) and (8) respectively. The
background density ρb in all models (1–8) is chosen as the density of a Friedmann
model (Ωm = 0.27, H0 = 70 km s−1) and the time instants are calculated using the
following formula [9]:

t(z) =
1

H0

∫ ∞

z

dz̃

(1 + z̃)
√

Ωmat(1 + z̃)3 + ΩK(1 + z̃)2
, (A.2)

where ΩK = 1 − Ωm. The last scattering instant (tLS) is set to take place when
z = 1089 and the current instant (t0) when z = 0—tLS = 4.98 × 105 y, and
t0 = 11.4421 × 109 y.

(ii) Models 3 and 4
As above, the radial coordinate is chosen as the present day value of the areal distance
r := R0. These two models are defined by the current expansion rate, and the
assumption that ρ(t0, r) = ρb. The expansion rate is parametrized using

HT(t0, r) =
Ṙ

R
= H0

[
1 − δH + δH exp

(
− r2

σ2

)]
, (A.3)

Journal of Cosmology and Astroparticle Physics 10 (2008) 003 (stacks.iop.org/JCAP/2008/i=10/a=003) 11

http://stacks.iop.org/JCAP/2008/i=10/a=003


JC
A

P
10(2008)003

Apparent and average accelerations of the Universe

where H0δH = 9.6 km s−1 Mpc
−1

, σ = 0.6 Mpc, and H0δH = 12 km s−1 Mpc
−1

,
σ = 1.2 Mpc for models 3 and 4 respectively. In these models, density is assumed
to be homogeneous at the current epoch. The function M is then calculated using
the above relation and equation (7). It should be noted that the HT is one of several
generalizations of the Hubble constant; in the Friedmann model it is H0 = ȧ/a.
Besides the transverse Hubble parameter, HT, one can also define the radial Hubble
parameter, HR (see equation (16)), and the volume Hubble parameter defined as
HV = (1/3)Θ = HR + 2HT.

(iii) Model 5a
The radial coordinate is chosen as the present day value of the areal distance,
i.e. r := R0. The model is defined by density distributions given at the present
instant and at last scattering. The density distribution at the current instant is
parametrized by

ρ(t0, r) = ρb
δ

(r/rs)(1 + r/rs)2
, (A.4)

where δ = 28170 and rs = 191 kpc. This is a Navarro, Frenk, and White galaxy
cluster profile [35]. As can be seen, this profile is singular at the origin but this
problem can be overcome by matching the NFW profile with a singularity free profile,
as f(r) = −ar2 + b.
The density profile at last scattering is assumed to be homogeneous; thus the areal
distance at last scattering is

R(tLS, r) =

(
M

κρLSc2

)1/3

. (A.5)

The function M(r) is then calculated from equation (6). Function E can be calculated
by subtracting solutions of (8) for tLS and t0 (for details see [39]). The function E is
presented in the left panel of figure A.1.

(iv) Model 5b
The radial coordinate is chosen as the present day value of the areal distance, r := R0.
The model is defined by density distribution given by (A.4) and E of the following
form:

E(r) = 103 sin
(
10−3r Mpc−1

)
. (A.6)

This profile is presented in the left panel of figure A.1 and the bang time function tB
in the right panel.

(v) Models 6 and 7
The radial coordinate is chosen as the value of the areal distance at last scattering
instant, r := RLS. Models 6 and 7 are defined by the assumption that tB = 0 and the
density distribution, which at last scattering is of the following form:

ρ(tLS, r) = ρb

(

1 − δ exp (−a�2r2) + γ exp

[

−
(

�r − c

d

)2
])

, (A.7)

where � = 1 kpc−1; δ = 1.2 × 10−3 and 2 × 10−3 for models 6 and 7 respectively;
γ = 14.62 × 10−4 and 8.03 × 10−4 for models 6 and 7 respectively; a = 0.01 and 0.04
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Figure A.1. The left panel presents the function E(r) for models 5a and 5b.
Please note that the y-scale in the upper part of the left panel is different than
in the lower part. Right panel: bang time function for model 5b.

Figure A.2. The functions E(r) (left panel) and tB(r) (right panel) for model 8.

for models 6 and 7 respectively; c = 18 and 12 for models 6 and 7 respectively; and
d = 6 and 5 for models 6 and 7 respectively. The bang time function for both of these
models is tB = 0. The mass function M(r) is calculated from equation (6), and the
function E(r) is calculated from equation (8).

(vi) Model 8
The radial coordinate is chosen as a present day value of the areal distance: r := R0.
The density distribution is of the following form:

ρ(t0, r) = 6.2ρb exp (−4 × 10−8(�r)2), (A.8)

and the function E is

E(r) =

(
H0

c
r

)2

exp (10−3�r), (A.9)

Journal of Cosmology and Astroparticle Physics 10 (2008) 003 (stacks.iop.org/JCAP/2008/i=10/a=003) 13

http://stacks.iop.org/JCAP/2008/i=10/a=003


JC
A

P
10(2008)003

Apparent and average accelerations of the Universe

which except for [exp (10−3�r)] is the same as the E(r) profile in the empty Universe.
This profile is presented in the left panel of figure A.2 and the bang time function tB
in the right panel.
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