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We developed algorithms which allow us to find regimes of the signal-recycled Fabry-Perot–Michelson

interferometer [for example, the Advanced Laser Interferometric Gravitational Wave Observatory

(LIGO)], optimized concurrently for two (binary inspirals þ bursts) and three (binary inspirals þ bursts

þ millisecond pulsars) types of gravitational wave sources. We show that there exists a relatively large

area in the interferometer parameters space where the detector sensitivity to the first two kinds of sources

differs only by a few percent from the maximal ones for each kind of source. In particular, there exists a

specific regime where this difference is � 0:5% for both of them. Furthermore, we show that even more

multipurpose regimes are also possible that provide significant sensitivity gain for millisecond pulsars

with only minor sensitivity degradation for binary inspirals and bursts.
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I. INTRODUCTION

Within the last decade we have witnessed very signifi-
cant progress in experimental gravitational wave (GW)
astronomy. All the ground-based interferometric GW an-
tennas such as LIGO [1] in the USA, VIRGO [2] in Italy,
GEO600 [3] in Germany, and TAMA300 [4] in Japan have
been commissioned to operation and have started to record
scientific data. Nevertheless, no signs of gravitational
waves were found thus far in these data which is, as we
understand now, quite reasonable as it agrees with moder-
ately optimistic predictions of the astrophysicists on the
rate of measurable events within the limits of the antennas
detection range. This possibility was realized by the GW
community, and work on the design of the next, second
generation of GWantennas went on in parallel with efforts
in enhancement of the first generation ones. A pioneer
among the second generation GW detectors will become
an American Advanced LIGO project whose construction
should start in 2010 [5]. It is planned to have sensitivity
more than an order of magnitude higher than its predeces-
sor. Such a dramatic increase will be provided by a sig-
nificantly lower seismic noise level due to new active
antiseismic isolation, the use of higher quality optics, and
a lower level of quantum noise.

The main difference between the initial LIGO and the
Advanced LIGO designs that is crucial for lowering this
noise is the use of the signal recycling (SR) technique first
suggested by Meers in his pioneering work [6]. Its imple-
mentation in contemporary detector setup is relatively easy
as it requires one to install only one additional mirror in the

interferometer output port. This mirror reflects the side-
band signal field coming out of the interferometer back to
the arm cavities or ‘‘recycles’’ it. However, the dynamics
and quantum noise properties of the interferometer become
much richer and thus provide more freedom in adjusting its
sensitivity curve to fit the current research goals. In par-
ticular, it was stressed by Buonnano and Chen [7] that the
optical system composed of the SR cavity and the arm
cavities forms a composite resonant cavity whose eigen-
frequencies and quality factors can be controlled by the
position and reflectivity of the SR mirror, thus increasing
or decreasing the storage time of the signal inside the
cavity. Moreover, as in Advanced LIGO it is planned to
increase the optical power, circulating in the arm cavities
approximately 80 times with respect to the initial LIGO, an
optomechanical interaction between laser field and mirrors
will significantly influence the dynamics of the test masses
turning them from free bodies (within the detection fre-
quency band, �10–104 Hz) into oscillators with eigenfre-
quency falling into the detection band. This effect, known
as ponderomotive rigidity [7–11], arises when an off-
resonant optical field creates an effective restoring force
originating from radiation pressure, which occurs as a
function of mirror displacement. In this situation one can
say that the optical field creates a frequency-dependent
mechanical rigidity [7,10,12–15].
As a result, the quantum noise spectral density of signal-

recycled interferometers (SRI) can be tuned to provide the
best sensitivity for different gravitational wave sources. So
far, it was supposed that in order to reach good sensitivity
for each of the source types, totally different strategies
should be used, which correspond to different optical
parameters sets. Detection of gravitational waves from
inspiraling neutron star (NS) binaries requires, for ex-
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ample, that the noise spectral density be as small as pos-
sible at low and medium frequencies, f & 100 Hz. If one is
interested in narrow-band detection of GWs from the
source with well-defined center frequency fpuls, such as

high-frequency pulsars, the optimal regime of the interfer-
ometer will be absolutely different: evidently, one should
choose such a set of optical parameters that provides
minimum to noise at fpuls. Searches of GWs from super-

novae bursts or stochastic relic gravitational radiation,
where analytical waveforms are not known, require flat
broadband noise curves [16–18].

Extensive studies of optimal modes of operation of the
Advanced LIGO interferometer most suitable for different
specific kinds of sources of GWs were carried out in the
AdvLIGO Lab in extensive detail [19]. However, in this
paper we focus on finding multipurpose regimes of signal-
recycled interferometers which might provide good (sub-
optimal) sensitivity simultaneously for different gravita-
tional wave source types. The possibility to do this
originates from the fact that the classical noise budget for
currently operating and future GW detectors masks low
and medium frequency features of the quantum noise (see
Fig. 5) that are mostly susceptible to the variation of optical
parameters of the interferometer. This fact, although being
quite unpleasant for the tunability of a GW detector for
specific sources is surprisingly advantageous for tuning the
antenna to have high enough sensitivity to GWs from
various types of astrophysical sources simultaneously. As
will be shown in subsequent sections the sensitivity
changes relatively slowly within quite a wide range of
main SRI optical parameters for different types of signals
(GWs from inspiraling compact binaries, GW bursts, high-
frequency pulsars, etc.). And the fact that these areas for
different sources significantly overlap allows one to find
quasioptimal regime for two or even three different GW
sources simultaneously. It is shown by the example of
Advanced LIGO SRI that rather significant improvement
in sensitivity to GW bursts and GWs from high-frequency
sources is possible at the cost of quite moderate deteriora-
tion of signal strength for compact binary systems. This is
illustrated in Figs. 1 and 2 where the relative improvement
in signal-to-noise-ratio (SNR) for GW bursts and high-
frequency pulsars, correspondingly, is plotted with respect
to relative deterioration of SNR for NS, provided that one
diverts optical parameters of SRI from the optimal ones for
NS. It should also be emphasized here that in spite of
Advanced LIGO being used as an example for which we
perform calculations, the results we obtain are general and
applicable to all SRI limited by classical noise at low and
medium frequencies. It is also instructive to mention that
our optimization includes only the most basic parameters
and the results can be considered only as preliminary
guidelines for designing a future generation of GW inter-
ferometers. For more specific optimization of the real
device a much larger parameter space should be consid-

ered. Moreover, two different groups of parameters should
be treated separately, namely, those that can be changed
with relative ease when the device is already working, and
those that should be fixed at the design stage and cannot be

FIG. 1 (color online). Relative improvement in signal-to-noise
ratio �burst=�

@NS
burst for bursts of GW radiation as a function of

relative deterioration in SNR for NS binaries 1� �NS=�
max
NS .

Here �@NS
burst is the value of SNR for GW burst sources when

the interferometer is tuned for reaching maximum SNR for NS
binaries.

FIG. 2 (color online). Relative improvement in signal-to-noise
ratio �puls=�

@NS
puls for one of the high-frequency pulsars (J0034-

0534 with rotational frequency f0 ’ 532, 7 Hz) as a function of
relative deterioration in SNR for NS binaries 1� �NS=�

max
NS .

Here �@NS
puls is the value of SNR for GWs from specified pulsar

when the interferometer is tuned for reaching maximum SNR for
NS binaries.
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tuned afterward. The above issues will be considered in
future works.

The paper is organized as follows. In Sec. II a brief
consideration of quantum noise of the signal-recycled
Fabry-Pérot–Michelson interferometer is performed. In
Sec. III expressions for the signal-to-noise ratio and the
detection range for the gravitational wave radiation from
the inspiraling binary system are given and the numerical
optimization procedure with respect to interferometer op-
tical parameters is described. The quantitative and quali-
tative analysis of the obtained results of optimization
against GWs from neutron star binaries is performed. In
Sec. IV the sensitivity of the interferometer to GW bursts is
analyzed and regimes for simultaneous detection of these
two types of sources are investigated. In Sec. V this analy-
sis is extended also to high-frequency quasiperiodic
sources (pulsars). In Sec. VI the obtained results are dis-
cussed and some concluding remarks are given. Some
notations and values of parameters used through this paper
are listed in Table I.

II. QUANTUM NOISE OF SIGNAL-RECYCLED
INTERFEROMETERS

In Fig. 3 the schematic drawing of a signal-recycled
interferometer is presented. Here the additional signal
recycling mirror (SRM) forms, together with the input
test masses (ITMs) of arm cavities, an additional SR cavity
whose properties are defined by two parameters of SRM,
namely, its amplitude reflectivity � and detuning phase
�SRC ¼ ½!pl=c�mod2� gained by the carrier light traveling

one way in the SR cavity (l is the length of the SR cavity).
As demonstrated by Buonnano and Chen [13], there

exists one-to-one transformation (‘‘scaling law’’) between
the parameters of a single detuned Fabry-Perot (FP) cavity
with one movable mirror and ones of SRI that allow one to
describe the optical behavior of it in terms of a much more
simple equivalent system such as the FP cavity. According
to the scaling law for any SRI there exists a unique FP
cavity with bandwidth � and detuning � defined by for-

mulas:

� ¼ ð1� �2Þ�ARM

1þ 2� cos2�SRC þ �2
; (1a)

� ¼ 2��ARM sin2�SRC

1þ 2� cos2�SRC þ �2
; (1b)

where �ARM ¼ cT=4L is the half-bandwidth of arm FP
cavities that has the same optomechanical features and
therefore the same sensitivity as the initial SRI. The effec-
tive optical power circulating in the equivalent FP cavity
should be twice as large as real optical powerW circulating
in a single arm cavity. The same is referred to masses of
input (ITM) and end (ETM) test masses of effective cavity:
Meff ¼ 2M.
Below we will use also extensively the following con-

venient parameters: generalized bandwidth,

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

q
¼ �ARM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2� cos2�SRC þ �2

1þ 2� cos2�SRC þ �2

s
(2a)

and detuning phase

� ¼ arctan
�

�
¼ arctan

�
2�

1� �2
sin2�SRC

�
: (2b)

The above expressions can be also easily reverted to obtain
the SR cavity parameters:

TABLE I. Notations used for characterizing the quantum noise
of SRI.

Value Description

M Test bodies reduced mass

c Speed of light

L SRI arms length

!p Laser frequency

� Mechanical frequency

W Circulating optical power

� Effective SRI half-bandwidth

� Effective SRI detuning

J ¼ 4!pW

McL Renormalized optical power

� Homodyne angle

� Total readout quantum efficiency (incl. losses)

Laser

Photodetection

ETMN

ITMN

ITME ETME

Power Recycling
Mirror

Signal Recycling
Mirror
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FIG. 3 (color online). Principle optical scheme of signal-
recycled interferometer of Advanced LIGO GW detector.
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� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
ARM � 2�ARM� cos�þ �2

�2
ARM þ 2�ARM� cos�þ �2

s
; (3a)

�SRC ¼ 1

2

8><
>:
arcsinð1��2

2� tan�Þ; � < �ARM;

�� arcsinð1��2

2� tan�Þ; � > �ARM:
(3b)

Using the scaling law approach, consider the FP cavity
with movable mirrors pumped by laser light with fre-
quency !0. The action of a gravitational wave on such a
system can be effectively described by means of effective
forces acting on the mirrors and therefore changing dy-
namically the phase shift of outgoing light with respect to
ingoing light.

There exist two kinds of quantum fluctuations limiting
the sensitivity of detector. They are the so-called laser shot
noise and radiation pressure noise (RPN). The first one
originates from quantum fluctuations of the electromag-
netic wave phase which prevents one from the exact phase
shift measurement and is, in essence, measurement accu-
racy. The second one, being a consequence of fluctuations
of the light amplitude, causes random radiation pressure
force to move the mirrors and masks the measured signal
force. As far as this noise is the direct consequence of the
measurement, it is also known as backaction noise because
of the backaction of the measurement device (laser light)
on the measured quantity (phase shift).

It is convenient to describe this system in terms of linear
quantum measurement theory formalism developed in [20]
and thoroughly elaborated for use in gravitational wave
interferometers in [7]. Following this formalism we can
represent our meter as two linearly coupled systems, probe
(test masses), and detector (laser light and photodetectors).
The schematic drawing of this equivalent linear system is
presented in Fig. 4. Here x̂ stands for some measured
observable of the probe (mirrors relative displacement in

our case), F̂ is some observable of the detector through
which it is coupled to the probe (radiation pressure force in
our case), G is the classical signal force being detected

(GW action on the detector), and Ẑ is the measured ob-
servable of the detector (output light quadrature in our
case). Following [13] we write down the Hamiltonian of

our system as

Ĥ ¼ ½ðĤP � x̂GÞ þ ĤD� � x̂ F̂ � Ĥð0Þ þ V̂; (4)

where Ĥð0Þ ¼ ðĤP � x̂GÞ þ ĤD is considered as a zeroth
order Hamiltonian for both the detector (marked byD) and
the probe (marked by P ) subsystems, and linear coupling

between them V̂ ¼ �x̂ F̂ considered as a perturbative
Hamiltonian. Using this approach, one can write down
all of the observables of the system as a sum of unperturbed
zeroth order terms [marked by superscript (0)] and pertur-
bations [marked by superscript (1)] [see Eqs. (2.12)–(2.14)
of [13]]. In the frequency domain these observables are
read as

Ẑð1Þð�Þ ¼ Ẑð0Þð�Þ þ RZFð�Þx̂ð1Þð�Þ; (5a)

F̂ð1Þð�Þ ¼ F̂ð0Þð�Þ þ RFFð�Þx̂ð1Þð�Þ; (5b)

x̂ð1Þð�Þ ¼ x̂ð0Þð�Þ þ Lhð�Þ=2þ Rxxð�ÞF̂ð1Þð�Þ: (5c)

Here Lhð�Þ � RxxGð�Þ is the GW signal proportional to
metrics variation spectrum hð�Þ. Quantities RABð�Þ are
frequency-dependent susceptibilities, in particular, RZFð�Þ
is the optomechanical coupling factor,

Rxxð�Þ ¼ � 1

M�2
(6)

is the mechanical susceptibility of the SRI, and

RFFð�Þ ¼ MJ�

�2 ��2 � 2i��
(7)

is the optical rigidity. Ẑð0Þ corresponds to shot noise of the

laser light, xð0Þ � xtech stands for any displacement noise
sources associated with the test mass reflecting surface
with respect to its center of mass position, namely, ther-
moelastic and Brownian noise of the mirror coatings and
substrate, and

F̂ ð0Þð�Þ ¼ F̂RPNð�Þ þ Ftechð�Þ; (8)

where F̂RPNð�Þ is the radiation pressure noise and Ftechð�Þ
is describing all the classical force noises, most notably
suspension thermal, gravity gradient, and seismic noises.
Using these definitions one can now write down the

output of the SRI reduced to metrics variation h units as

ĥ outð�Þ ¼ hð�Þ þ 2

L
fRxxð�Þ½F̂RPNð�Þ þ Ftechð�Þ�

þ ½Rxxð�ÞRFFð�Þ þ 1�½x̂SNð�Þ þ xtechð�Þ�g;
(9)

where

x̂ SNð�Þ ¼ Ẑð0Þ

RZFð�Þ (10)

is the normalized shot noise.

ZG
Probe Detector

F

x ^^

^

FIG. 4. Schematic diagram of the quantum measurement de-
vice. G is the classical observable (e.g.,force) acting on the probe
that is measured. Ẑ is the output signal of the detector device, x̂ is
the linear observable (e.g., displacement) of the probe, and F̂ is
the linear observable of the detector which describes the back-
action force on the probe.
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Accounting for these definitions, one can write down
spectral density of the interferometer output noise as

Shð�Þ ¼ Shquantð�Þ þ Shtechð�Þ: (11)

Here

Shquantð�Þ ¼ 4

L2
ðjRxxð�ÞRFFð�Þ þ 1j2SSNx ð�Þ

þ 2<f½Rxxð�ÞRFFð�Þ þ 1��SxFð�Þg
þ jRxxð�Þj2SRPNF ð�ÞÞ (12)

is the sum quantum noise spectral density,

SSNx ð�Þ ¼ @

2MJ��

�4 þ 2�2�2 cos2�þ �4

�2cos2ð�þ�Þ þ�2cos2�
(13)

is the shot noise (10) spectral density,

SRPNF ð�Þ ¼ 2@MJ�ð�2 þ�2Þ
�4 þ 2�2�2 cos2�þ �4

(14)

is the radiation pressure noise F̂RPNð�Þ spectral density,

SxFð�Þ ¼ @
� sinð�þ�Þ þ i�sin�

� cosð�þ�Þ þ i�cos�
(15)

is their spectral cross-correlation function,

Shtechð�Þ ¼ 4

L2
ðjRxxð�ÞRFFð�Þ þ 1j2Stechx ð�Þ

þ jRxxð�Þj2StechF ð�ÞÞ (16)

is the sum technical noise spectral density, and StechF ð�Þ
and Stechx ð�Þ are spectral densities of nonquantum noise
sources Ftechð�Þ and xtechð�Þ. Optical losses influence, as
shown in [15], can be accounted for by introducing effec-
tive quantum efficiency � of the readout photodetector,
which appears in Eq. (13).

III. BINARY SOURCES

The most popular and easy to implement criteria used to
determine the optimal regime of GW detectors relates to
the evaluation of the detection range for inspiraling binary
systems of compact objects such as neutron stars and/or
black holes. This method is based on the estimation of the
SNR using a well-known analytical expression for the
spectral density of GWs emitted by the system of two
gravitationally binded inspiraling astrophysical objects
(see Sec. 3.1.3 of [21]):

jhðfÞj2 ¼ G5=3

c3
�

12

M5=3

r2
�ðfmax � fÞ

ð�fÞ7=3 ; (17)

whereM � 	3=5M2=5 is the so-called ‘‘chirp mass’’ of the
binary system constructed from reduced mass 	 ¼
M1M2=M and total mass M ¼ M1 þM2 of the binary
system with component masses M1 and M2 correspond-
ingly. One can readily see the indicative frequency depen-

dence jhðfÞj2 / f�7=3 and inverse dependence on the
distance to the system squared r2. The upper cutoff fre-
quency fmax corresponds to the period of binary system
rotation on the innermost stable circular orbit when the
system goes from a quasistationary rotation phase to a
nonstationary merger phase. This frequency can be esti-
mated as

fmax ’ 4400� ðM�=MÞ Hz: (18)

Given the GW signal shape (17) and the noise spectral
density (11), it is possible to write down the optimal SNR �
which can be obtained on a given detector. As demon-
strated by Flanagan and Hughes [22], the SNR averaged
over all mutual orientations between the detector and the
source and over both polarizations of GWs is equal to

�2
NS ¼

4

5

Z fmax

fmin

jhðfÞj2
Shð2�fÞdf

¼ 2

15

G5=3

�4=3c3
M5=3

r2

Z fmax

fmin

df

f7=3Shð2�fÞ ; (19)

where fmin is the lower cutoff frequency at which binary
system motion cannot be considered as stationary. In our
calculations we will take fmin ’ 10 Hz.
In order to estimate detection range r one should set a

threshold SNR �0 which defines the level of confidence in
the detection of GWs from the binary system. Then the
detection range can be written as

r ¼
�
2

15

G5=3

�4=3c3
M5=3

�2
0

Z fmax

fmin

df

f7=3ShðfÞ
�
1=2

: (20)

Of course, all formulas we use here are obtained in the
lowest post-Newtonian order of general relativity [23] that
definitely limits their application area to stellar mass sys-
tems and asymptotically flat space-time background.
However, for our purposes it is enough, and the most
significant feature for us of the above expressions is their
relative simplicity.
We calculated the detection range for the standard

(M ¼ 2:8M�) neutron stars binary system numerically
considering it as a function of three parameters: � 2
½500; 12500� s�1, � 2 ½��=2; �=2�, and � 2
½��=2; �=2�. The number of values for each of the pa-
rameters was 193, giving in total 1933 � 7:2� 106 optical
configurations. Distribution of points in parameter space
was taken uniform over angle variables � and �, and
logarithmic over variable �. For other parameters, we
used the values planned for Advanced LIGO; see Table I.
To account for technical noises, we used the noise budget
also planned for Advanced LIGO and generated by BENCH

software [24]; see Fig. 5.
For each pair of �, � we have maximized SNR with

respect to�, thus obtaining a function of only two parame-
ters �, �. The result of this calculation is presented in
Fig. 6 as contour plots of normalized SNR �NS=�

max
NS .
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Contours act in this plot as margins for regions in parame-
ter space where SNR is higher than the certain percentage
of maximal SNR �max

NS , being indicated in the plot by the

point marked as MAX. The parameter values for this
maximal sensitivity point are listed in Table II.

It is easy to note flat behavior of SNR within a spacious
range of parameters �, �. It arises due to two reasons. The
first one is technical noises. It can be shown that in the
absence of them, it is possible, in principle, to obtain
arbitrary high values of SNR using a deep and narrow
well in quantum noise spectral density created by means
of the second-order-pole regime of the optical rigidity

[10,15], which corresponds to � ¼ ðJ=4Þ1=3 and � ! 0.
Technical noise which has flat and smooth spectral depen-
dence makes such excesses in the quantum noise useless.
Moreover, they increase the quantum noise at other fre-
quencies and thus decrease the sensitivity.

On the other hand, the integral character of criterion (20)
allows significant variations of values of � and �. The
increase of � decreases the quantum noise level at low

frequencies (f & 100 Hz), but increases it at medium fre-
quencies (100 & f & 1000 Hz), and vice versa. Moderate
positive values of detuning � (and hence positive values of
�) create resonance ‘‘wells’’ in the noise spectral density,
but increase the low-frequency noise. As a result, the
integral (20) does not change significantly.
This consideration can be illustrated by Fig. 7, where

quantum noise spectral densities for the optimal parame-
ters set (point MAX in Fig. 6) as well as for four typical
suboptimal ones (points A—D) are plotted.

IV. GRAVITATIONALWAVE BURSTS

The next type of possible GW sources are supernovae
explosions and stellar core collapses, compact binary sys-

FIG. 5 (color online). Main classical noises planned for the
Advanced LIGO interferometer. FIG. 6 (color online). Contour plot of sensitivity for standard

NS-NS binaries �NS=�
max
NS as a function of �, �. Point MAX

corresponds to the sensitivity maximum, points A–D to typical
suboptimal tunings shown in Fig. 7, point O to double (NS þ
bursts) optimal regime, and points P, Q, and R to triple (NS þ
bursts þ pulsar) suboptimal regimes.

TABLE II. Optimal (MAX), double-optimal (O), and triple-suboptimal (P,Q,R) parameter
values for standard NS binary, burst, and typical periodic (pulsar J0034-0534) sources.

NS Bursts NSþ Burstsþ Pulsar

MAX MAX O P Q R

� 2700 2900 3100 4600 6400 6600

� 1.10 0.57 0.80 0.52 1.19 1.39

� �1:00 �0:23 �0:44 �0:23 �0:85 �1:10
�2 0.84 0.74 0.79 0.80 0.94 0.97

�SRC 1.48 1.52 1.51 1.54 1.53 1.53

� ¼ � cos� 1200 2400 2200 4000 2400 1200

� ¼ � sin� 2400 1600 2200 2300 5900 6500

�NS=�
max
NS 1.0 0.988 0.995 0.989 0.91 0.84

�burst=�
max
burst 0.979 1.0 0.995 0.989 0.84 0.75

�puls=�
max
puls 0.21 0.26 0.25 0.30 0.40 0.50
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tem mergers [25], and other sources with not well-modeled
properties which are usually called GW bursts [16–18]. For
these sources, we use the simple model of a logarithmic-
flat signal spectrum over the range of frequencies from fl
to fh. By logarithmic-flat spectrum we mean that the

spectrum of the GW signal hðfÞ is proportional to f�1=2

that corresponds to a constant numerator in the expression
for SNR if integration is performed with respect to logf:

�2
burst /

Z fh

fl

jhðfÞj2df
Shð2�fÞ /

Z logfh

logfl

d logf

Shð2�fÞ :

This way of defining SNR for burst events seems reason-
able to characterize astrophysical signals with an unknown
spectrum structure so that contributions from frequency
(time) ranges of different order are equal (for example,
contributions from 10–100 Hz and 100–1000 Hz should be
the same).
In Fig. 8, function �burstð�;�Þ, calculated using the same

algorithm as in the previous (NS) case, and normalized by
its maximal value �max

burst, is shown. Similar to the previous

case, in Fig. 9 quantum noise spectral densities for the
optimal parameters set (point MAX in Fig. 8 and for four
suboptimal ones (points A—D) are plotted, and parameters
values for the point MAX are listed in Table II.
It follows from Fig. 8 that function �burstð�;�Þ also has

flat behavior within almost the same range of �, � as
�NSð�; �Þ. The main difference between the NS and burst
cases, invisible in Figs. 6 and 8, stems from the existence of
cutoff frequency (18) and from more steep frequency
dependence of the NS signal. As a result, the NS optimi-
zation procedure leads to smaller values of angle �þ �
that reduces quantum noise at low frequencies, while the
optimization with respect to GW bursts requires smaller
values of� that reduces quantum noise at high frequencies

FIG. 7 (color online). Quantum noise spectral densities opti-
mized for standard NS binary sources (point MAX in Fig. 6) and
four typical suboptimal spectral densities (points A–D in Fig. 6)
(see parameters in Table. III).

FIG. 8 (color online). Contour plot of burst sensitivity
�burst=�

max
burst as a function of �, �. Point MAX corresponds to

the sensitivity maximum, points A–D (see parameters in
Table. III) to typical suboptimal tunings shown in Fig. 9, point
O to double (NS þ bursts) optimal regime, and points P, Q, and
R to triple (NS þ bursts þ pulsar) suboptimal regimes.

FIG. 9 (color online). Quantum noise spectral densities opti-
mized for burst sources (point MAX in Fig. 8) and four typical
suboptimal spectral densities (points A–D in Fig. 8 with parame-
ters given in Table. III).

TABLE III. Optical parameters for the SRI having quantum
noise plotted in Figs. 6 and 9.

NS Bursts

A B C D A B C D

� 3161 7559 1487 1700 3057 6182 2010 1438

� �0:47 0.75 1.41 0.33 �0:70 0.49 1.24 0.20

� 0.97 �0:49 1.49 0.18 0.47 �0:29 �0:57 0.03

�2 0.85 0.97 0.73 0.75 0.84 0.95 0.77 0.73

�SRC 1.55 1.54 0.09 0.06 1.55 1.54 0.03 0.10
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(compare Figs. 7 and 9 and the corresponding columns in
Table II).

However, this difference is quite subtle, and it is evident
that regimes have to exist which provide good sensitivity
for both these types of GW sources simultaneously. In
order to find them, we calculate values of �, �, and �,
which maximize the combined normalized sensitivity

GNSþburstð
Þ ¼ 


�
�NS

�max
NS

�
2 þ ð1� 
Þ

�
�burst

�max
burst

�
2
; (21)

where 
 is a Lagrange multiplier which varies in the range
½0; 1�.

The result is shown in Fig. 10, where a parametric plot of
�burstð
Þ=�max

burst against �NSð
Þ=�max
NS is presented. The left-

most point on this plot corresponds to 
 ¼ 1, and the

rightmost one to 
 ¼ 0. It follows from this calculation
that the tuning exists where values of �NS and �burst de-
crease both only by � 0:5% compared to their maximal
values:

�NS

�max
NS

� �burst

�max
burst

� 0:995: (22)

The corresponding values of parameters �, �, and � are
listed in column O of Table II. This point on the plane
f�; �g, marked as O, is shown also in Figs. 6 and 8.
In Fig. 11 the plot of quantum noise spectral density for

this regime is presented together with plots of previously
calculated optimal spectral densities for NS and burst
sources. Note that all three curves are virtually indistin-
guishable at low and medium frequencies (f & 600 Hz),
and the ones for bursts and combined NSþ bursts are
almost the same over all frequency ranges of interest.

V. HIGH-FREQUENCY PERIODICAL SOURCES
OF GWS

High-frequency periodical sources of GWs, namely,
millisecond pulsars, can be treated as very narrow-band
almost monochromatic sources with well-defined central
frequency 2fpuls [26]. For these sources, the detection

range and the SNR are simply proportional to an inverted
square root of the noise spectral density at given frequency
2fpuls,

rpuls / �puls / 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Shð4�fpulsÞ

q : (23)

Direct optimization of quantum noise in this case gives
spectral density with very narrow and deep minimum at
frequency 2fpuls, which is evidently nonoptimal for the NS

and burst sources considered above. Moreover, technical
noise makes it useless to have very deep minima in quan-
tum noise spectral density, limiting �puls by the value of

�max
puls /

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Shtechð4�fpulsÞ

q : (24)

Therefore, we optimize the following ‘‘triple-purpose’’
function:

GNSþburstþpulsð
;	Þ ¼
�

1

GNSþburstð
Þ þ	

��max
puls

�puls

�
2
��1

;

(25)

where 0 	 
 	 1 and 	> 0 are Lagrange multipliers. We
took pulsar J0034-0534 [27] as an example of millisecond
pulsars, presumably emitting narrow-band high-frequency
GWs. Its barycentric rotational frequency is equal to f0 �
532:7 Hz and the frequency of emitted GWs should be then
fGW ¼ 2f0 � 1065:4 Hz. Among the high-frequency pul-
sars, the distance to this one is significantly smaller com-

FIG. 10 (color online). Parametric plot of �burstð
Þ=�max
burst

against �NSð
Þ=�max
NS .

FIG. 11 (color online). Quantum noise spectral densities opti-
mized for NS sources (point MAX in Fig. 6), burst sources (point
MAX in Fig. 8) and for both of them (point O in Figs. 6 and 8).
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pared to other ones (0.98 kpc) and therefore is one of the
most probable candidates for GW detection.

The calculation results are presented in Fig. 10 as para-
metric plots of �NSð	Þ=�max

NS and �burstð	Þ=�max
burst against

�pulsð	Þ=�max
puls . It follows from these plots that, despite the

two-dimensional character (two Lagrange parameters 

and 	) of the optimization procedure, the results are
virtually one dimensional, because only a very small
trade-off between values of �NS and �burst is possible (the
lines in both planes of Fig. 12 almost coincide).

In Fig. 13 quantum noises for four characteristic regimes
with optimal GNSþburstþpuls are plotted. These plots dem-

onstrate how the optimization algorithm increases the sen-
sitivity at the given frequency 2fpuls. The starting point O

corresponds to the obtained parameters set in Sec. V, opti-

mized for NS and bursts signals; see Figs. 6 and 8. First, the
optimization algorithm tries to suppress the quantum noise
in the high-frequency range (f * 103 Hz) by increasing �
and decreasing �, see point P in these plots. At this stage, a
noticeable gain in pulsars sensitivity (� 1:5) can be ob-
tained with a negligibly small (� 1%) sensitivity loss for
NS and burst sources (see Table II). Then, the optimization
algorithm starts to ‘‘grow’’ local minimum at frequency
2fpuls, by increasing back � in such a way that � ¼
� sin� ! 4�fpuls, see points Q and R. At this stage �NS

and �burst start to decrease noticeably (by tens of percent).
However, �puls increases several times at this stage.

VI. CONCLUSION

The results of this paper rely heavily on the estimates of
the technical noise predicted for Advanced LIGO. These
estimates almost definitely will be subject to change during
the next few years, however, it is improbable that technical
noise estimates will change significantly. Therefore, all
specific values obtained here should not be considered as
final ones.
The main result of this paper is not these values, but the

conclusion that regimes of the signal-recycled interferome-
ter exist which can provide good sensitivity for both binary
inspiraling and burst gravitational wave sources. More-
over, triple-purpose regimes are also possible, which pro-
vide significant sensitivity gain for high-frequency peri-
odical sources (millisecond pulsar) with only minor
sensitivity degradation for binary inspiraling and burst
GW sources.
Calculations presented in this paper show that in order to

obtain good sensitivity for binary, burst, and, to some
extent, high-frequency periodic sources, it is necessary to
use large values of interferometer bandwidth �� ð2–4Þ �
103 s�1 
 2� �100 s�1 with significant positive detun-

FIG. 12 (color online). Parametric plots of �NSð	Þ=�max
NS (left panel) and �burstð	Þ=�max

burst (right panel) against �pulsð
Þ=�max
puls for two

optimization regimes: with priority to �NS (
 ¼ 1) and to �burst (
 ¼ 0).

FIG. 13 (color online). Typical quantum noise spectral den-
sities produced by the triple (NS þ bursts þ pulsars) optimiza-
tion procedure.
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ings �� 2� 103 s�1; see Table II. These tunings give a
smooth broadband shape of quantum noise curves, dictated
by the technical noises, especially by the mirrors thermal
noise which has very flat frequency dependence in the GW
signals spectral range.

ACKNOWLEDGMENTS

The work of F. K. was supported in part by the NSF and
Caltech Grant No. PHY-0353775. The work of I. K. and
D. S. was supported by the Russian Government Grant
No. NSh-5178.2006.2. The work of S. D. was supported
by the Alexander von Humboldt Foundation. The authors
are grateful to Yanbei Chen for extremely useful sugges-

tions and invaluable counseling, to Linqing Wen, Haixing
Miao, Helge Müller-Ebhardt, Henning Rehbein, and
Kentaro Somiya for fruitful discussions and friendly en-
couragement. Special thanks to Rana Adhikari and all
AdvLIGO Lab members for sharing their invaluable
knowledge of specific features of real interferometers and
many useful comments and suggestions that allowed us to
improve this paper dramatically. The authors also would
like to thank MPI für Gravitationsphysik (AEI) both in
Golm and in Hannover represented by directors Professor
Dr. B. Schutz and Professor Dr. K. Danzmann for out-
standing hospitality and cordial reception.

[1] S. J. Waldman (LIGO Science Collaboration), Classical
Quantum Gravity 23, S653 (2006).

[2] F. Acernese et al., Classical Quantum Gravity 23, S635
(2006).

[3] S. Hild (LIGO Scientific Collaboration), Classical
Quantum Gravity 23, S643 (2006).

[4] M. Ando and TAMA Collaboration, Classical Quantum
Gravity 22, S881 (2005).

[5] Albert Lazzarini, update from LIGO Laboratory, LIGO
Document No. G070649-00-M, 2007.

[6] B. J. Meers, Phys. Rev. D 38, 2317 (1988).
[7] A. Buonanno and Y. Chen, Phys. Rev. D 65, 042001

(2002).
[8] V. B. Braginsky, A. B. Manukin, and M.Y. Tikhonov, Sov.

Phys. JETP 58, 1550 (1970).
[9] V. B. Braginsky and F. Ya. Khalili, Phys. Lett. A 257, 241

(1999).
[10] F. Ya. Khalili, Phys. Lett. A 288, 251 (2001).
[11] I. A. Bilenko and A.A. Samoylenko, Moscow Univ. Phys.

Bull. 3, 39 (2003).
[12] A. Buonanno and Y. Chen, Phys. Rev. D 64, 042006

(2001).
[13] A. Buonanno and Y. Chen, Phys. Rev. D 67, 062002

(2003).
[14] V. I. Lazebny and S. P. Vyatchanin, Phys. Lett. A 344, 7

(2005).

[15] F. Ya. Khalili, V. I. Lazebny, and S. P. Vyatchanin, Phys.
Rev. D 73, 062002 (2006).

[16] B. Abbott et al., Phys. Rev. D 69, 102001 (2004).
[17] B. Abbott et al., Phys. Rev. D 72, 122004 (2005).
[18] B. Abbott et al. (LIGO Scientific Collaboration), Classical

Quantum Gravity 24, 5343 (2007).
[19] R. Abbott et al., LIGO Technical Note LIGO-T070247-

01-I, 2008.
[20] V. B. Braginsky and F.Ya. Khalili, Quantum Measurement

(Cambridge University Press, Cambridge, England, 1992).
[21] L. R. Yungelson and K.A. Postnov, Living Rev. Relativity

9, 6 (2006), http://www.livingreviews.org/lrr-2006-6.
[22] E. E. Flanagan and S. A. Hughes, Phys. Rev. D 57, 4535

(1998).
[23] T. Damour, B. R. Iyer, and B. S. Sathyaprakash, Phys. Rev.

D 62, 084036 (2000).
[24] BENCH software, http://ilog.ligo-wa.caltech.edu:7285/

advligo/Bench/.
[25] J. G. Baker, J. Centrella, D.-I. Choi, M. Koppitz, and J. van

Meter, Phys. Rev. D 73, 104002 (2006).
[26] P. Jaranowski, A. Królak, and B. F. Schutz, Phys. Rev. D

58, 063001 (1998).
[27] The Australia National Telescope Facility (ATNF) Pulsar

Catalogue, http://www.atnf.csiro.au/research/pulsar/
psrcat/.

KONDRASHOV et al. PHYSICAL REVIEW D 78, 062004 (2008)

062004-10


