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Massive black hole binaries are key targets for the space based gravitational wave Laser Interferometer

Space Antenna (LISA). Several studies have investigated how LISA observations could be used to

constrain the parameters of these systems. Until recently, most of these studies have ignored the higher

harmonic corrections to the waveforms. Here we analyze the effects of the higher harmonics in more detail

by performing extensive Monte Carlo simulations. We pay particular attention to how the higher

harmonics impact parameter correlations, and show that the additional harmonics help mitigate the

impact of having two laser links fail, by allowing for an instantaneous measurement of the gravitational

wave polarization with a single interferometer channel. By looking at parameter correlations we are able

to explain why certain mass ratios provide dramatic improvements in certain parameter estimations, and

illustrate how the improved polarization measurement improves the prospects for single interferometer

operation.
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I. INTRODUCTION

Massive black hole binaries are expected to be some of
the brightest gravitational wave (GW) sources for the
planned Laser Interferometer Space Antenna (LISA) [1].
This joint ESA-NASA mission will search for GWs in the
band 10�5 � f=Hz � 1. While the event rates are uncer-
tain, it is likely that there will be at least a few events per
year. Massive black hole binaries are a very promising
source of GWs as we expect them to have integrated signal
to noise ratios (SNRs) in the hundreds to thousands. As
well as being very bright, there should be little confusion
with other sources (a problem which plagues galactic
binary extraction, and to a lesser extent the extreme mass
ratio inspiral sources).

There have been many studies looking at parameter
estimation for spinning and nonspinning binaries [2–10],
and, more recently, on the development of search algo-
rithms [11–15]. With the exception of Refs. [3–5], these
studies have focused on the contribution from the dominant
second harmonic of the orbital frequency, and have ne-
glected the influence of the additional harmonics that
appear at higher post-Newtonian (PN) order. The studies
that did consider the impact of these higher harmonic
corrections (HHCs) saw improvements in parameter esti-
mation, but only a few cases were considered. More ex-
tensive studies of the impact of HHCs have appeared in the
last year [16–18], and it has become apparent the effects
can vary significantly from source to source.

Our goal here is to consider a wider sample of systems,
and to elucidate the mechanism by which the HHCs affect
parameter estimation. Our most significant finding is that
HHCs greatly mitigate the effects of any hardware failures
that reduce the instrument to a single interferometry chan-
nel [19]. Indeed, when HHCs are included, the science

performance with a single channel is comparable to what
was found for two channels when HHCs are neglected.
We performed an extensive Monte Carlo simulation for

various redshifted chirp masses, with coalescence time
tc � 1 year, lumiosity distanceDL ¼ 10 Gpc and all other
parameters chosen at random. Results for other distances
can be obtained by multiplying our parameter uncertain-
ities by 10 Gpc=DL. As sky resolution is an important
quantity, we considered 20 000 different sky locations per
chirp mass and per mass ratio. Finally, for each chirp mass,
we run separate simulations for mass ratios of 1 and 10.
The paper is structured as follows. In Sec II we outline

the form of the gravitational waveform at the detector with
higher harmonics corrections. We also give a brief descrip-
tion of the low frequency approximation [2] for the LISA
response. Section III contains a brief outline of the main
tools used for parameter estimation. We finish this section
with an outline of the Monte Carlo simulations we carried
out. In Sec. IV we present results of our analysis on the
effect of the higher harmonic corrections for parameter
estimation using different redshifted chirp masses and
mass ratios. This is followed in Sec. V by an investigation
into what correlation breaking between parameters is re-
sponsible for the increase in parameter estimation. The
final main section, Sec. VI, deals with the effect of losing
interferometry links during the mission.

II. THE GRAVITATIONALWAVEFORM

In the low frequency approximation, we can think of
LISA as being composed of two orthogonal 90� detectors.
The strain of the gravitational wave (GW) in each channel
of the LISA detector with both polarizations is given by

hðtÞ ¼ hþð�ðtÞÞFþ þ h�ð�ðtÞÞF�; (1)
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where the phase shifted time parameter is

�ðtÞ ¼ t� R� sin� cosð�ðtÞ ��Þ: (2)

Here, R� ¼ 1 AU � 500 secs is the radial distance to the
detector guiding center, ð�;�Þ are the position angles of the
source in the sky, �ðtÞ ¼ 2�fmtþ �, fm ¼ 1=year is the
LISA modulation frequency and � gives the initial ecliptic
longitude of the guiding center. The GW polarizations up
to 2-PN order in amplitude corrections are defined by [20]

hþ;� ¼ 2Gm�

c2DL

x½Hð0Þ
þ;� þ x1=2Hð1=2Þ

þ;� þ xHð1Þ
þ;�

þ x3=2Hð3=2Þ
þ;� þ x2Hð2Þ

þ;��: (3)

Here m ¼ m1 þm2 is the total mass of the binary, � ¼
m1m2=m

2 is the reduced mass ratio and DL is the lumi-
nosity distance of the source. The invariant PN velocity

parameter is defined by x ¼ ðGm!=c3Þ2=3, where ! ¼
d�orb=dt is the 2-PN order orbital frequency for a circular
orbit and �orb ¼ ’orb

c ��orbðtÞ is the orbital phase which
is defined as

�orbðtÞ ¼ ’orb
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where the quantity � is related to the time to coalescence
of the wave, tc, by

�ðtÞ ¼ c3�

5Gm
ðtc � tÞ; (5)

and’orb
c is the orbital phase of the wave at coalescence. All

GW phases are then twice the orbital value. For the rest of
the paper, we will work with GW phases.

In Eq. (3), the functionsHðnÞ
þ;� contain the PN corrections

to the amplitude and the extra phase harmonics. The re-
stricted PN waveform corresponds to keeping just the

Hð0Þ
þ;� terms. We should note here that contained in the

half integer HðnÞ
þ;� terms is a factor �m ¼ m1 �m2. This

term has the effect of killing all the odd phase harmonics in
the equal mass case. We can also see the extra frequency
harmonics arising due to the xn terms.

Using the Wilkinson Microwave Anisotropy Probe val-
ues of ð�R;�M;��Þ ¼ ð4:9� 10�5; 0:27; 0:73Þ and a
Hubble’s constant of H0 ¼ 71 km=s=Mpc, the relation
between redshift, z, and luminosity distance, DL, is given
by

DL ¼ cð1þ zÞ
H0

Z z

0
dz0½�Rð1þ z0Þ4

þ�Mð1þ z0Þ3 þ����1=2: (6)

The functions Fþ;� are the beam pattern functions of the
detector given in the low frequency approximation by

Fþðt; ; �;�; 	Þ ¼ 1

2
½cosð2 ÞDþðt;�;�; 	Þ

� sinð2 ÞD�ðt; �;�; 	Þ�; (7)

F�ðt; ; �;�; 	Þ ¼ 1

2
½sinð2 ÞDþðt;�;�; 	Þ

þ cosð2 ÞD�ðt;�;�; 	Þ�; (8)

where  is the polarization angle of the wave and 	 ¼ 0 or
�=4 defines the two-arm combination of LISA from which
the strain is coming. The detector pattern functions are
given by [21]

DþðtÞ ¼
ffiffiffi
3

p
64

½�36sin2ð�Þ sinð2�ðtÞ � 2	Þ
þ ð3þ cosð2�ÞÞðcosð2�Þ
� f9 sinð2	Þ � sinð4�ðtÞ � 2	Þg þ sinð2�Þ
� fcosð4�ðtÞ � 2	Þ � 9 cosð2	ÞgÞ
� 4

ffiffiffi
3

p
sinð2�Þðsinð3�ðtÞ � 2	��Þ

� 3 sinð�ðtÞ � 2	þ�ÞÞ�; (9)

D�ðtÞ ¼ 1

16
½ ffiffiffi

3
p

cosð�Þð9 cosð2	� 2�Þ
� cosð4�ðtÞ � 2	� 2�ÞÞ � 6 sinð�Þðcosð3�ðtÞ
� 2	��Þ þ 3 cosð�ðtÞ � 2	þ�ÞÞ�: (10)

For two Schwarzschild black holes, the above equations
governing the evolution of the phase break down even
before we reach the last stable circular orbit at R ¼ 6M.
Because of this, we terminate the waveforms at R ¼ 7M.
The low frequency approximation is an extremely good

fit to the full detector response at frequencies of & 3 mHz
[21]. In this case the two-channel formalism originally
derived by Cutler [2] corresponds to the construction of
optimal orthogonal time delay interferometry variables
fA; Eg using the unequal-arm Michelson time delay inter-
ferometry variables fX; Y; Zg according to

A ¼ X; E ¼ ðX þ 2YÞ= ffiffiffi
3

p
: (11)

In later sections we will refer to the one-channel case as X
and the two-channel as AE.

III. ESTIMATING PARAMETER ERRORS USING
THE FISHER MATRIX.

One of the main tools used in the GW community for the
estimation of parameter errors is the Fisher information
matrix (FIM). In the high SNR limit, the inverse of the FIM
gives the variance-covariance matrix. The square root of
the diagonal elements of the inverse FIM gives a 1-
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estimation of the error in our parameter estimation. For
LISA, it has been shown in a number of cases that the FIM
is a good parameter error estimator when compared with
Markov chain Monte Carlo techniques. For this particular
problem, the parameter set we chose to work with is 	� ¼
flnðMcÞ; lnð�Þ; lnðtcÞ; cos�;�; lnðDLÞ; cos�; ’c;  g, where

Mc ¼ m�3=5 is the chirp mass, � ¼ m� is the reduced
mass and all other parameters have been previously de-
fined. It has been customary to divide this parameter set
into intrinsic (parameters that affect the dynamics of the
system) and extrinsic parameters (those that are more
relative to the detector). In the parameter set defined above,
we consider the final four parameters to be extrinsic. The
Fisher matrix is thus defined by

�ij ¼
�
@h

@	i

��������
@h

@	j

�
; (12)

where h ¼ ~hðfÞ is an un-normalized template and the
angular brackets denote the inner product

hhjsi ¼ 2
Z 1

0

df

SnðfÞ ½
~hðfÞ~s�ðfÞ þ ~h�ðfÞ~sðfÞ�; (13)

where a tilde denotes a Fourier transform and an asterisk
denotes a complex conjugate. The quantity SnðfÞ ¼
Sinstrn ðfÞ þ Sconfn ðfÞ is the one-sided noise spectral density
of the detector, which is a combination of instrumental and
galactic confusion noise. For the instrumental noise we use
the expression given by [22]

Sinstrn ðfÞ ¼ 1

4L2

	
2S

pos
n ðfÞ

�
2þ cos2

�
f

f�

��

þ 8Saccn ðfÞ
�
1þ cos2

�
f

f�

��

�
�

1

ð2�fÞ4 þ
ð2�10�4Þ2
ð2�fÞ6

�

; (14)

where L ¼ 5� 106 km is the arm length for LISA,
S
pos
n ðfÞ ¼ 4� 10�22 m2=Hz and Saccn ðfÞ ¼ 9�

10�30 m2=s4=Hz are the position and acceleration noise,
respectively. The quantity f� ¼ 1=ð2�LÞ is the mean trans-
fer frequency for the LISA arm. Notice that the final term
in the expression has the effect of reddening the noise
below 10�4 Hz to account for the fact that we may not
be able to achieve the desired noise spectral density as we
approach 10�5 Hz. For the galactic confusion we use the
following confusion noise estimate derived from a
Nelemans, Yungelson, Zwart galactic foreground model
[23,24]:

Sconfn ðfÞ ¼

8>>><
>>>:

10�44:62f�2:3 10�4 < f � 10�3

10�50:92f�4:4 10�3 < f � 10�2:7

10�62:8f�8:8 10�2:7 < f � 10�2:4

10�89:68f�20 10�2:4 < f � 10�2;

(15)

where the confusion noise has units of Hz�1. When two

channels are available, the total FIM is the sum of the FIM
in each channel, i.e. �ij ¼ �Iij þ �IIij .

For this study the Fisher matrix is calculated numeri-
cally, where the derivatives of the waveforms are calcu-
lated using the central difference equation

@h

@	

¼ hð	
 þ�	
Þ � hð	
 � �	
Þ

2�	

; (16)

for all parameters other than Mc and � in the equal mass
case. The central difference equation is unapplicable for
these two parameters when we have equal masses, as it is a
degenerate space. Certain shifts in one parameter, while
holding the other constant, leads to unastrophysical indi-
vidual masses. Therefore, in the equal mass case, for Mc

and � we use

@h

@Mc

¼ hðMc þ�McÞ � hðMcÞ
�Mc

; (17)

and

@h

@�
¼ hð�Þ � hð�� ��Þ

��
: (18)

For all other cases, we revert to the central difference
formula.
One of the quantities that we are most interested in

investigating is the error box on the sky for a particular
source. We therefore define the positional error on the sky
as

�� ¼ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
������ � ð���Þ2

q
; (19)

where the elements of the variance-covariance matrix are
given by

�ij ¼ h�	i�	ji ¼ ð�ijÞ�1; (20)

and the three main quantities in the sky resolution expres-
sion are given by

��� ¼ h�cos��cos�i; (21)

��� ¼ h����i; (22)

and

��� ¼ h�cos���i: (23)

Finally, we also quote the optimal SNR for each source.
In each individual detector this is defined by

�2
i ¼ hhijhii: (24)

When we use both LISA detectors, the total SNR is given
by

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
I þ �2

II

q
: (25)

For the Monte Carlo simulation, we used 2� 104 points,
where the redshifted chirp mass, mass ratio, time to co-
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alescence and luminosity distance were held constant and
all other parameters were varied. To investigate as many
cases as possible, we chose chirp masses of McðzÞ ¼
f108; 107; 106; 105; 104gM	. For each chirp mass, we ran
a Monte Carlo for mass ratios of 1 and 10. In all cases, the
sources were put at a constant distance of 10 Gpc. We
assume the time of observation is 1 yr, and the time to
coalescence in each case is 0.999 years. To be consistent,
we chose not to evolve our templates beyond 5 mHz as we
know that we cannot trust the low frequency approxima-
tion beyond this value. For cases where coalescence is seen
(i.e. the coalescence frequency of the maximum harmonic
is less than 5 mHz), the templates were terminated once the
distance between the bodies reached 7M.

IV. THE EFFECT OF HIGHER HARMONIC
CORRECTIONS ON PARAMETER ESTIMATION

For clarity, we will treat the equal and unequal mass
results separately. In both cases, we focus on the most
interesting parameters from an astronomical point of
view. We focus on the two mass parameters, the time of
coalescence, the luminosity distance and the sky resolu-
tion. For completeness, we also include information on the
signal to noise ratios. We should also point out that due to
the large tails in the distributions, median values are more
informative than mean values.

A. Equal mass binaries

In Fig. 1 we plot the median results from the
Monte Carlo simulation, for equal mass binaries, as a
function of redshifted chirp mass. We can see that at
10 Gpc, we should be able to see sources with redshifted
chirp masses of 108M	, both with and without the extra
corrections. The HHCs give median improvements of fac-
tors of 26 in chirp mass, 194 in reduced mass, 17 in time to
coalescence and 12 in sky resolution. However, we should
adapt a cautionary air about these sources. While they are
detectable, it does not look like we will be able to say much
about parameter estimation. Two of the most important
quantities for astronomical observations are sky position
and distance. For these particular sources, the distance to
the source is unresolvable. The factor of 12 improvement
in sky resolution minimizes the error from all sky to 1 sr.
Again we should point out that these are median values, so
there will be a small subset of the results which will give
bigger improvements in the position and distance. But even
then, it may not be good enough for astronomical purposes.
So it is more realistic in this scenario to focus on the

lower mass systems for parameter estimation. In this case
we obtain more modest results, except in the case of the
reduced mass. From the Monte Carlo we obtain HHC
improvements in chirp mass of about 3.5 at 107M	 down
to approximately 1.7 at 104M	. For coalescence time we
obtain improvements of 2.7 at high mass to 1 at low mass
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FIG. 1 (color online). A comparison of parameter extraction for equal mass binaries using restricted (dark solid line) and higher
harmonic corrected (light solid line) waveforms, as a function of redshifted chirp mass and at a distance of 10 Gpc. The values quoted
are median values from a 2� 104 point Monte Carlo simulation. Also plotted are the median results for an almost equal mass case
(dashed lines) where m1=m2 ¼ 1:22.
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and an improvement in sky resolution of 5.3 at high mass to
1.3 at low mass. The smallest improvement comes for
luminosity distance with 1.3 at 107M	 to 1 at 104M	.
However, the biggest improvement is for the reduced
mass. Here we get a factor of 28 improvement at high
mass, increasing to a factor of 73 at low mass. We will
explain this fantastic result in the next section when we
look at correlation breaking between the parameters. It is
clear from the plot that the biggest gain from using the
HHC waveforms is in the redshifted chirp mass range of
107 � Mc=M	 � 5� 105. Below this value, the higher
harmonics are now out of band at high frequencies. This

leaves only the Hð1=2Þ
þ;� correction in band. From the cell

where we display SNR, we can see that this first correction
has the effect of subtracting SNR. The result that the HHC
waveform has greater SNR at high mass and lower SNR at
low mass is well known.

As it is unlikely that nature will ever give us exactly
equal mass binaries, we also show results for an almost
equal mass case in Fig. 1. These curves (represented by the
dashed lines) are for the case wherem1 ¼ 0:55m andm2 ¼
0:45m, thus giving a mass difference of �m ¼ 0:1m in the
odd harmonics. We can extract a number of things from
these results. It is clear that the system is massive enough
that the Mc ¼ 108M	 reaches a high enough frequency
that this case is still visible. The fact that �m is now finite
changes the results of the equal mass case slightly. The
most obvious consequence is that we start to lose resolu-

tion in � as we move to lower masses. The second most
obvious consequence is that the extra harmonics actually
improve the parameter estimation for systems greater than
Mc ¼ 107M	. In the Mc ¼ 108M	 case, we can see a
factor of 2 improvement in chirp mass and luminosity
distance, and an order of magnitude improvement in time
of coalescence and sky resolution over the equal mass case.
But we can see that there is no improvement in reduced
mass. AtMc ¼ 107M	 there is no real improvement in the
chirp mass or time to coalescence, but we can see that the
parameter estimation has improved for the distance and sky
resolution. As we go to lower masses, it is clear that for
most of the parameters, the median errors start to increase.
This is again due to the fact that at lower masses only the
first and third harmonic corrections are visible and these
harmonics have a negative contribution to the estimation of
parameters.

B. Unequal mass binaries

In Fig. 2 we plot the same values for the mass ratio 10
scenario. In this case we are not able to detect binaries with
a redshifted chirp mass of 108M	, even with the inclusion
of HHCs. For unequal mass binaries, the effect of the
HHCs is somewhat less dramatic for the mass parameters.
In fact we can see that we only have improvements in
parameter estimation above 106M	. Once again, between
107M	 and 104M	, we have improvement factors of ap-
proximately 3 to 1 for both chirp mass and reduced mass.
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FIG. 2 (color online). A comparison of parameter extraction for binaries with a mass ratio of 10 using restricted (dark solid line) and
higher harmonic corrected (dashed line) waveforms, as a function of redshifted chirp mass and at a distance of 10 Gpc. The values
quoted are median values from a 2� 104 point Monte Carlo simulation. Note in this case that a system with Mc ¼ 108M	 is not
visible.
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However, for tc,�� andDL, there is an obvious advantage
to having the HHCs. While the improvement is not great
(4
 1), we do see a gain in the time to coalescence
estimate. The improvements for luminosity distance are
between 3.5 and 1.5, but the greatest improvement is for
the sky resolution with median factors of 24 at 107M	 and
1.5 at 104M	. What is important in this case is that for both
of these parameters, the improvement stretches to pretty
much all lower masses. In terms of SNR, we see the same
pattern as before. At higher masses the HHC waveforms
have a slightly higher SNR, whereas the opposite is true at
low mass.

We should say a few words here about why the HHCs
are having an effect. This was outlined in Refs. [4,5], but
we feel it is useful to reiterate it here. We have seen that our
measured signal is a function of nine parameters. The three
most important, and hence easiest to measure, parameters
are fMc;�; tcg. We can see from Eq. (4) that the waveform
phase and from ! ¼ d�=dt that the frequency and all its
derivatives are determined with these three parameters. To
get good a good estimate for sky position we rely on two
effects: first, the Doppler shift which is a function of f�;�g
and the beam pattern functions which are a function of
f�;�;  g. For a system like the inspiral of a massive black
hole binary, in effect each detector measures an amplitude
and a phase. Because the waveforms are long-lived in the
detector, we are able to measure the frequency and its
derivatives to high accuracy. This allows us to measure
fMc;�; tcg quite accurately, but still leaves six unknowns
f�;�;  ; �; ’c; lnðDLÞg.

In a two-detector system with no HHCs, each detector
measures a phase and an amplitude, giving, in effect, four
observables with six unknowns. However, the introduction
of the HHCs rectifies this. In the equal mass case, we stated
that all harmonics which are a function of �m ¼ m1 �m2

are null. This means that if we include all harmonic cor-

rections up to Hð2Þ
þ;�, we still retain three harmonics, giving

us three phases and three amplitudes in each detector. This
gives us 12 observables in total for six unknowns. For the
unequal mass case, we now end up with 24 observables for
six unknowns. We can see the effect of having the extra
observables by noting that the parameter estimation is
always better in the unequal mass case.

V. CORRELATION BREAKING DUE TO THE
CORRECTED WAVEFORMS

In the previous section we demonstrated that the HHCs
lead to smaller predicted errors in the estimation of pa-
rameters, especially in the higher mass range. While we
would expect an improvement due to the fact that the HHC
waveforms extend to higher frequencies, this still does not
answer the question of what exactly is causing the im-
provement. To try to give a more definitive reason, we look
at correlation breaking between parameters.

We stated earlier that the inverse of the FIM, �ij, is the

variance-covariance matrix �ij. Rather than working with
this, it is more informative to work with the matrix of
standard deviations and correlation coefficients defined by

Dij ¼
� ffiffiffiffiffiffiffi

�ij
p

i ¼ j
�ij=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ii�jj

p
i � j:

(26)

In this matrix, the diagonal elements range between 1 and
1, where 1 is perfect correlation, �1 is perfect anticorre-
lation and 0 represents no correlation. For supermassive
black holes there is some degree of correlation between
most of the parameters. However, in most cases the corre-
lations are mild. As we are concerned with any correlation
breaking between the strongly correlated parameters, we
will focus on parameter correlations with an absolute value
of >0:5. As we have seen that the HHCs have a greater
effect on the higher mass binaries, for this exercise we will
only concern ourselves with theMc ¼ 107M	 case. Again,
we will treat the equal and unequal mass cases separately.

A. Equal mass binaries

In Fig. 3 we plot the strongly correlated parameter
breaking for the case of equal mass binaries. The dark
lines represent the restricted waveforms, while the light
lines denote the HHC waveforms. As was shown in
Refs. [11,12,25], there is a strong correlation between
fMc;�; tcg in the restricted PN case. What was not clear
in these previous works is the fact that these three parame-
ters are also quite highly correlated with the azimuthal sky
angle �. On the other hand, it turns out that cos� is highly
correlated with the three extrinsic parameters
fcos�; DL; ’cg. Finally in the restricted case, one of the
other parameters of interest is the polarization angle  
which is correlated mostly with fcos�; ’cg.
If we now focus on the light curves, we can see the effect

of introducing the higher harmonic. The most surprising
thing we can immediately see is that for fMc;�g, rather
than breaking the correlation, the HHCs actually make the
reduced mass perfectly correlated with the chirp mass. In
fact, the Fisher elements for these two parameters are
numerically equivalent in the equal mass case. As the chirp
mass is already well resolved, even in the restricted wave-
form case, this perfect correlation explains the huge in-
crease in precision for the reduced mass in Fig. 1. Going
back to the top two cells in this figure, we can see that the
error curves for both parameters are almost identical.
So while there is an increase in correlation for fMc;�g,

we can see that there is a huge correlation breaking for all
the other intrinsic parameters upon introduction of the
HHCs. We can see that both Mc and � decouple from tc,
with median absolute correlations dropping from (0.46,
0.78) to (0.18, 0.18), respectively. In terms of the improve-
ment in sky resolution, it looks like there is a combined
effect from the higher harmonics.
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FIG. 3 (color online). Main correlation breaking for equal mass binaries with a chirp mass of 107M	 due to the inclusion of higher
harmonic corrections. The restricted waveform correlations are given by the dark line and the HHC correlations are given by the lighter
line.
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The first is that the azimuthal sky parameter� decouples
from ftc; �g with correlations dropping from (0.55, 0.56) to
(0.24, 0.08), respectively. Second, the polar angle cos�
decouples from fcos�; ’cg. Here the correlations decrease
from (0.66, 0.58) to (0.49, 0.48). Finally we see the same
thing happening with the polarization angle  with corre-
lation decreasing from (0.55, 0.81) to (0.32, 0.66), respec-
tively. We believe these various breakings of correlation
between fcos�;�;  g and the other parameters are the main
reason for the increase in sky resolution.

B. Unequal mass binaries

In Fig. 4 we plot the same thing for the unequal mass
case. Here we find a similar story to the equal mass case.
The main difference is that in this case we do observe some
slight correlation breaking between Mc and � with the
correlation reducing from 0.94 to 0.87. This also explains
why the parameter estimation for reduced mass deterio-
rates in the almost equal mass case. Once again, the main
intrinsic correlations are between fMc;�; tc; �g. First, both
Mc and � decouple from tc with correlations dropping
from (0.83, 0.96) to (0.24, 0.22), respectively. This is
accompanied by correlation breaking between fMc;�; tcg
and � with respective correlations of (0.83, 0.97, 0.98)
dropping to (0.4, 0.68, 0.54).

Again we see a drop in correlation between cos� and
fcos�;DL;’cg with values changing from (0.53, 0.8, 0.46)
to (0.19, 0.42, 0.19). And finally, as in the equal mass case,

we also observe some correlation breaking between  and
fcos�; ’cg with correlations being reduced from (0.52,
0.79) to (0.28, 0.68), respectively.

VI. A ONE- VERSUS TWO-CHANNEL LISA, WITH
HIGHER HARMONIC CORRECTIONS

The final issue we look at is the advantage of using HHC
waveforms if there is a problem with LISA and we lose two
detector links. While the goal is always to have six links
working, the question stands: can we still do astronomy
with a broken detector? In the following text we will refer
to one-channel restricted results as X0, two-channel re-
stricted as AE0, one-channel HHC as X2 and two-channel
HHC results as AE2. There are two results we can present
here, before making distinctions between equal and un-
equal masses. The first is that a full LISA is always going
to perform better, and the second is that there is in general

an improvement in SNR of 
 ffiffiffi
2

p
in going from a one- to a

two-channel LISA regardless of the waveform type.

A. Equal mass binaries

In Fig. 5, we repeat the results of Fig. 1, this time with
the inclusion of parameter estimation just using one LISA
channel. We can see that in all cases losing one LISA
channel and just having the X0 output would seriously
hamper our ability to carry out parameter estimation for
all parameters. For theMc ¼ 108M	 case, while the signal
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would be just about detectable over a galaxy with a median
SNR of 12.6, we could say nothing about fMc;�;��; DLg
and would have an enormous error in time to coalescence
prediction. As we go to the Mc ¼ 107M	 case, the gap
between the X0 and AE0 results has narrowed for
fMc;�; tcg with a factor of 
2 in error. However for sky
resolution and luminosity distance there is a loss of infor-
mation of factors of 27 and 4.5, respectively. This is again
due to the fact that in one channel, we would only measure
one phase and one amplitude, giving two observables for
the six unknowns f�;�;  ; �; ’c; lnðDLÞg.

With the introduction of the HHC waveforms, it is clear,
as we can see from the plots, that for a chirp mass of *
2� 106M	 we can do as well, if not better, using the X2

output as we can using the AE0 channels. Again at Mc ¼
108M	, the sky position and luminosity distance are un-
resolvable using the X2 channel only. However, for chirp
mass, reduced mass and coalescence time we actually
improve the error estimate by factors of almost 10, 57
and 4, respectively, over the AE0 channels. At around
Mc ¼ 107M	 we see the real power of including the
HHCs. Except for luminosity distance, where there is a
slight increase in error, the performance of the X2 channel
equals or exceeds the AE0 channels. In fact, we see im-
provement factors of 2 in chirp mass and 16 in reduced
mass when we use just the X2 channel. We can justify this
increase in performance by examining the observable
count. We stated earlier that the AE0 combination mea-

sures two phases and two amplitudes, giving four observ-
ables for six unknowns. Once we introduce the HHCs in
the equal mass case, we now have three amplitudes and
three phases, giving us the six observables we need for the
six unknowns.

B. Unequal mass binaries

We present the same results for the unequal mass case in
Fig. 6. As in the equal mass case, we see some similar
patterns. In all cases an X0 channel alone will seriously
affect our ability to do GWastronomy, with the main effect
coming in sky resolution and luminosity distance estima-
tions. We can see that the errors for these two parameters
change by at least an order of magnitude, while there is a
loss of almost an order of magnitude for the mass parame-
ters. For the X2 channel case, we again see that at Mc *
2� 106M	 the one channel with HHCs does as well if not
better than the AE0 channels. As is expected, the improve-
ment in the masses is not as pronounced in the unequal
mass case, but we still see improvements at the highest
mass. The major result in this case is that an X2 channel
will outperform the AE0 cases down to a redshifted chirp
mass of 
105M	.
It is interesting to examine the effects of the HHCs in the

one-detector case in a deeper manner. To do so, we will
focus on the case of a system with a redshifted chirp mass
of 107M	 and a mass ratio of 10. As usual, the source is at
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10 Gpc and is coalescing just inside the observation time.
The first thing we can look at is the observables count. In
this case, the extra harmonics allow us to measure six
phases and six amplitudes giving us 12 observables for
six unknowns. In fact, it is now clear that just adding the

Hð1=2Þ
þ;� terms is enough to outperform the AE0 channels, as

with this model we would have three phases and three
amplitudes, giving us the six observables needed for the
six unknowns. We should note however, that for the equal
mass system we would need to go to higher harmonic
orders due to the null harmonic terms.

In Table I we present the median errors for a
Monte Carlo simulation of 2� 104 systems. We can see
from having the extra observables how the X2 channel fares
against the X0 channel, and, more importantly, the AE0

channels. As long as we include the HHCs, a one-detector
LISA would still measure fMc;�; tc; cos�;  ; lnðDLÞg fac-
tors of (1.5, 1.7, 1.9, 1.5, 1.3, 1.4) times better than a two-
detector LISA without. We should point out here that one
of the most important improvements comes in the mea-
surement of the polarization angle  . In Fig. 7 we plot
histograms for the error in the estimation of  with and
without HHCs. We can see that having the extra HHCs
allows us to make an instantaneous measurement of  
which is important, first, in determining the binaries’ prin-
cipal polarization axis around the line of sight and, second,
in the overall amplitude of the detector response.

The final thing we will investigate is the correlations
between the parameters. It is interesting to trace the evo-
lution in correlations to see the effects of the inclusion of
HHCs and then the inclusion of a second channel. In Fig. 8,
we display some of the main correlation breaking with a
single detector. In Table II we tabulate the correlations in
both the one-detector case with and without HHCs and in
the two-detector case with HHCs. As displayed in previous
sections, the parameters fMc;�; tc; �g are all highly corre-
lated with each other. However, the introduction of the
HHCs again causes a decoupling between these parame-
ters. As well as that we also notice a decoupling between
cos� and DL and, importantly, between � and  . It would

seem that the decoupling of�with four other parameters is
responsible for the improvement in sky resolution at high
masses.
When we move to the two-detector case with HHCs, we

can see that the extra channel now serves to refine the
parameter estimation. This is due to a slight further de-
crease in some of the parameter correlations. While we
have not shown the results here, the introduction of a
second channel only causes a slight decrease in the break-
ing of correlations. It is clear that it is the HHCs that are
having the main effect.

VII. CONCLUSION

In this work we have looked at the effect of including
higher harmonic corrections to the restricted PN wave-
forms in the LISA context. By carrying out an extensive
Monte Carlo simulation for various redshifted chirp masses
and mass ratios, we have tried to cover as many scenarios

TABLE I. Median errors for a source with a redshifted chirp mass of 107M	 and a mass ratio of 10 at a distance of 10 Gpc. For each
parameter we show the one-channel LISA correlations without HHCs, X0, one-channel LISA correlations with HHCs, X2, two-channel
LISA correlations without HHCs, AE0, and two-channel LISA correlations with HHCs, AE2, errors. The last four rows show the ratios
of the median error values for various channel combinations. The errors for the angular variables are in radians.

lnðMcÞ lnð�Þ lnðtcÞ cos� � cos� lnðDLÞ  ’c

�X0 8:3� 10�4 7:26� 10�3 4:1� 10�5 0.269 2.089 0.118 0.412 0.429 2.06

�X2 3:2� 10�4 2:23� 10�3 1:2� 10�5 0.029 0.315 0.078 0.095 0.077 0.81

�AE0 4:73� 10�4 3:83� 10�3 2:3� 10�5 0.043 0.06 0.048 0.12 0.11 0.3

�AE2 1:65� 10�4 1:12� 10�3 6:1� 10�6 0.0203 0.037 0.009 0.028 0.029 0.169

X0=X2 2.59 3.26 3.3 9.44 6.63 1.51 4.35 5.57 2.54

AE0=AE2 2.89 3.42 3.8 2.1 1.62 5.33 4.3 3.8 1.78

X0=AE0 1.76 1.89 1.74 6.26 34.8 2.46 3.4 3.9 6.85

X2=AE2 1.8 1.99 2.0 1.4 8.5 8.67 3.34 2.6 4.79
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FIG. 7 (color online). Histograms for the error in the polariza-
tion angle  for restricted (dark) and corrected (light) waveforms
using a single LISA detector, for systems with a redshifted chirp
mass of 107M	, a mass ratio of 10, at a distance of 10 Gpc.
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TABLE II. Absolute median values of the correlation matrix for a source with a redshifted chirp mass of 107M	 and a mass ratio of
10 at a distance of 10 Gpc. For each parameter we show the one-channel LISA correlations without HHCs, X0, one-channel LISA
correlations with HHCs, X2, and two-channel LISA correlations with HHCs, AE2.

lnð�Þ lnðtcÞ cos� �  cos� lnðDLÞ ’c

lnðMcÞ X0 0.94 0.84 0.22 0.69 0.17 0.19 0.18 0.17

X2 0.89 0.32 0.10 0.42 0.16 0.22 0.18 0.15

AE2 0.87 0.24 0.07 0.40 0.08 0.09 0.09 0.06

lnð�Þ X0 � � � 0.98 0.29 0.85 0.23 0.24 0.23 0.21

X2 � � � 0.36 0.14 0.68 0.18 0.28 0.21 0.18

AE2 � � � 0.22 0.11 0.68 0.10 0.13 0.12 0.08

lnðtcÞ X0 � � � � � � 0.25 0.84 0.22 0.22 0.20 0.18

X2 � � � � � � 0.17 0.48 0.23 0.25 0.24 0.28

AE2 � � � � � � 0.16 0.54 0.16 0.13 0.17 0.15

cos� X0 � � � � � � � � � 0.26 0.22 0.33 0.93 0.40

X2 � � � � � � � � � 0.15 0.06 0.06 0.27 0.07

AE2 � � � � � � � � � 0.12 0.13 0.19 0.42 0.19

� X0 � � � � � � � � � � � � 0.60 0.28 0.21 0.30

X2 � � � � � � � � � � � � 0.16 0.12 0.11 0.10

AE2 � � � � � � � � � � � � 0.24 0.11 0.10 0.09

 X0 � � � � � � � � � � � � � � � 0.36 0.28 0.50

X2 � � � � � � � � � � � � � � � 0.43 0.57 0.20

AE2 � � � � � � � � � � � � � � � 0.28 0.45 0.09

cos� X0 � � � � � � � � � � � � � � � � � � 0.42 0.27

X2 � � � � � � � � � � � � � � � � � � 0.57 0.20

AE2 � � � � � � � � � � � � � � � � � � 0.45 0.09

lnðDLÞ X0 � � � � � � � � � � � � � � � � � � � � � 0.47

X2 � � � � � � � � � � � � � � � � � � � � � 0.63

AE2 � � � � � � � � � � � � � � � � � � � � � 0.58
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as possible. As was already known, the corrected wave-
forms bring previously invisible sources into the LISA

bandwidth. We have shown, however, that in general while
we will be able to detect these sources, we will not be able
to say anything useful for any electromagnetic follow-up.

For equal mass binaries, due to a combination of correla-
tion breaking and the reduced mass becoming perfectly
correlated with the chirp mass, there is a significant im-
provement in mass estimation using the corrected wave-
forms. We have found that while there are systems where

improvements in sky resolution and luminosity distance

are huge, the median improvements are not as dramatic as
some individual sources. The same is true in the unequal
mass case, although here there is an order of magnitude
improvement in sky resolution. We have also shown that

the overall effect of the HHCs is providing enough observ-
ables to account for the number of unknown parameters.

We finally have looked at the more interesting case

where the LISA output was reduced to one channel. We

have shown here that for supermassive and some massive
systems, we can actually do better with a one-channel
LISA with HHCs than we can with a full LISA with no
harmonic corrections. As the HHCs again provide enough
observables to solve for the unknown parameters, this
allows us to improve mass measurementand sky resolution
and make instantaneous measurements of the polarization
 . While a second channel always improves the parameter
extraction, it is clear that the HHCs are the main source of
correlation breaking and improvement in parameter esti-
mation. This is an important result as it shows that while
we would always like a full LISA, not all would be lost if
we were forced to work with a single channel detector.
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