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Nonaxisymmetric oscillations of rapidly rotating relativistic stars are studied using the Cowling

approximation. The oscillation spectra have been estimated by Fourier transforming the evolution

equations describing the perturbations. This is the first study of its kind and provides information on

the effect of fast rotation on the oscillation spectra while it offers the possibility of studying the complete

problem by including space-time perturbations. Our study includes both axisymmetric and nonaxisym-

metric perturbations and provides limits for the onset of the secular bar mode rotational instability. We

also present approximate formulas for the dependence of the oscillation spectrum from rotation. The

results suggest that it is possible to extract the relativistic star’s parameters from the observed gravitational

wave spectrum.
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I. INTRODUCTION

During their evolution, relativistic stars may undergo
oscillations which can become unstable under certain con-
ditions. Newly born neutron stars are expected to oscillate
wildly during their creation shortly after the supernovae
collapse [1]. They are expected also to oscillate if they are
members of binary systems and there is tidal interaction
[2,3] or mass and angular momentum transfer from a
companion star and also when they undergo phase transi-
tions [4,5] which might be responsible for the observed
glitches in pulsars. Rotation strongly affects these oscilla-
tions and perturbed stars can become unstable if they rotate
faster than some critical velocities. During these oscilla-
tory phases of their lives compact stars emit copious
amounts of gravitational waves which together with vis-
cosity tend to suppress the oscillations. The oscillations are
divided into different families according to the restoring
force [6,7]. If pressure is the main restoring force then
these modes are called (pressure) pmodes, buoyancy is the
restoring force of another class of oscillation modes, the g
modes while Coriolis force is the restoring force for the
inertial modes. Space-time induces another family of os-
cillations which couple only weakly to the fluid, these are
the so-called w modes [8]. There are more families of
modes if one assumes the presence of crust [6,9–11] or
magnetic fields [12]. For a complete description of the
relativistic star perturbation theory one may refer to
[7,13,14].

The study of stellar perturbations in the framework of
general relativity (GR) dates back to the mid-1960s with
the seminal works by Thorne and his collaborators [15–
18]. Since then the study of stellar oscillations and possible

instabilities was a field of intensive work in relativistic
astrophysics [10,19]. Moreover, during the last two deca-
des, these studies became even more important due to the
relations of the oscillations and instabilities to the emission
of gravitational waves and the possibility of getting infor-
mation about the stellar parameters (mass, radius, equation
of state) by the proper analysis of the oscillation spectrum
[20–26]. Still, all these studies were mainly dealing with
nonrotating stars, because the combination of rotation and
general relativity made both the analytic and numerical
studies extremely involved. This led to certain approxima-
tions in studying rotating stars in GR. The most obvious of
them include the so-called ‘‘slow rotation’’ and the
‘‘Cowling’’ approximation. Actually, both approximations
were known and have been used extensively in Newtonian
theory of stellar oscillations [27]. In the slow rotation
approximation one expands the perturbation equations in
terms of a small parameter " ¼ �=�K, where � is the
angular velocity of the star and �K stands for the ‘‘Kepler
angular velocity’’ which is the maximum velocity that can
be attained before the star splits apart due to rotation. In the
Cowling approximation one typically neglects the pertur-
bations of the Newtonian potential or the space-time in the
case of GR. This is quite a good approximation, both
qualitatively and quantitatively, for the higher order p
modes, for the g modes, and the inertial modes while it is
only qualitatively good for the f modes, see for example
[28]. Although, most of our understanding on the oscilla-
tions of relativistic stars is due to perturbative studies,
recently, it has become possible to study stellar oscillations
using evolutions of the nonlinear equations of motion for
the fluid [29–37]. Finally, differential rotation is another
key issue that is believed to play an important role in the
dynamics of nascent neutron stars. Actually, it is associated
with dynamical instabilities both for fast and slowly rotat-*gaertig@tat.physik.uni-tuebingen.de
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ing neutron stars [38,39] and affects the onset of secular
instabilities; still it has not yet been studied extensively
[40–42] and remains an open issue.

Since rotational instabilities are typically connected
with fast rotating stars, the study of oscillations of these
types of objects is of great importance . As a first step one
can drop the ‘‘slow-rotation’’ approximation but still main-
tain the Cowling approximation, i.e., to freeze the space-
time perturbations or in the best case to freeze the radiative
part of these perturbations. This was the approach used up
to now for most of the studies of the oscillations of fast
rotating relativistic stars either in perturbative approaches
[43,44] or in nonlinear (but axisymmetric) approaches
[35,45].

In this article, we present the first results of a new
approach based on 2D time evolution of the perturbation
equations which seems to be promising for the study of the
oscillations and instabilities of fast rotating neutron stars.
This is the first study of its kind, since earlier 2D perturba-
tive studies have been done either in Newtonian theory [46]
(see, also, [47] for a very recent work) or in reduction to the
eigenvalue problem [43,44,48]. The advantage of this
method is that it can be easily extended to include differ-
ential rotation or the perturbations of the space-time. On
the other hand, it provides a robust tool in studying the
onset of rotational instabilities in fast rotating neutron
stars, while as it has been demonstrated here, one can
easily get results for realistic equations of state, which is
vital for developing gravitational wave asteroseismology.
Finally, via this approach one may answer the question of
the existence or absence of a continuous spectrum for the
inertial modes as it has been suggested by the 1D studies in
the slow-rotation approximation [42,49–52].

In the next section, we describe in detail the derivation
of the perturbation equations and the conventions that we
have adopted. In Sec. III, we present the numerical tools
that have been developed in order to study the problem,
while Sec. IV describes the results for axisymmetric and
nonaxisymmetric perturbations. In the last section, we
discuss the results, their application to astrophysics, and
the possible extensions of this work.

II. THE PERTURBATION EQUATIONS

The study of oscillations of rotating neutron stars in-
volves the solution of the full nonlinear set of Einstein’s
equations of general relativity together with the equations
of motion for the fluid (we set G ¼ c ¼ 1 here)

G�� ¼ 8�T�� (1)

r�T
�� ¼ 0; (2)

where G�� is the Einstein tensor, describing the geometry

of space-time, and T�� is the energy-momentum tensor

that defines the functional form of energy momentum and
the stress of the fluid. Since it is very complicated, but not

impossible [35,45], to solve this system as such, we will
introduce some approximations in studying the problem.
First of all, we linearize Eqs. (1) and (2), which means

that we constrain our study to small perturbations around
the equilibrium. Second, we will work in the so-called
Cowling approximation, which means that we will neglect
all metric perturbations. This simplifies significantly the
equations one has to solve since the space-time is consid-
ered as ‘‘frozen,’’ and we only have to solve the linearized
version of (2). Under this assumption, Eq. (2) willNote that
we made changes to the punctuation in Eqs. (3, 4, 11, 17,
22, 24, 28, 29, 30). be written as

r�ð�T��Þ ¼ g��ð@��T�� ���
���T�� ���

���T��Þ ¼ 0;

(3)

where g�� is the metric describing neutron star’s space-
time, ��

�� are the Christoffel symbols, and �T�� is the

Eulerian perturbation of the energy-momentum tensor. We
assume that the matter has no viscosity or shear stresses,
i.e., that it can be described by a perfect fluid. Thus �T��

has the form

�T�� ¼ ð�þ pÞðu��u� þ u��u�Þ þ ð�pþ ��Þu�u�
þ �pg��; (4)

where � is the energy density, p is the pressure, u� is the

four velocity, and �u� are its perturbation. Energy density

and pressure are not independent quantities but are con-
nected via an equation of state (EOS), which we assume to
be polytropic, i.e.,

p ¼ K~�1þ1=N where � ¼ ~�þ Np: (5)

Here ~� is the rest-mass density, K the polytropic constant,
N the polytropic exponent, and � ¼ 1þ 1=N the poly-
tropic index. For barotropic oscillations, both the unper-
turbed background and the perturbations are described by
the same equation of state. In this case, the pressure
variation can be replaced by the corresponding energy-
density variation via �p ¼ c2s��, where cs is the speed of
sound

c2s ¼ @p

@�
: (6)

For polytropic EOS of the form (5) it is given by

c2s ¼ �p

�þ p
: (7)

Our background model is a compact relativistic star that
rotates uniformly up to its Kepler limit, i.e., the point were
it is torn apart by centrifugal forces. In this work, we will
adopt the metric in a comoving frame of reference as it is
described in [53]. In Lewis-Papapetrou coordinates
ð�; 	; ’; tÞ the metric reads
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ds2 ¼ e�2U½e2kðd�2 þ d	2Þ þW2d’2�
� e2Uðdtþ ad’Þ2; (8)

where all functions depend on � and 	 . In general, the
ð’; tÞ-metric component is proportional to the function a
and vanishes in the absence of rotation. Other properties of
the metric functions which will become important later are

lim
�!0

ja��2j<1 and lim
�!0

jW��1j<1: (9)

The utilization of a comoving frame of reference as im-
plemented in [53] has several important advantages. First
of all is the use of surface-fitted coordinates. Especially
when the star is rapidly rotating, deviations from spherical
symmetry become more and more evident. If one uses a
fixed spherical symmetric grid to describe the neutron star,
even if the boundary of the nonrotating configuration can
be aligned to a single grid line, this will fail once the star
rotates and gets deformed, so that the surface will lie
somewhere between different grid lines. This may cause
problems when implementing boundary conditions at the
surface. With surface-fitting coordinates, even the surface
of the most rapidly rotating configuration can be described
by a single parameter. Second, comoving coordinates re-
duce the complexity and length of the equations to solve
considerably. Let us briefly review how one would proceed
in a stationary frame: The first observation is, that there are
still dependent quantities in Eqs. (3) and (4). One would
write down the definition of the constant angular velocity

u’

ut
¼� and use the relationship g��u

�u� ¼�1

to get ut ¼ ð�gtt � 2�g’t ��2g’’Þ�1=2. This is how the

angular velocity enters the equations explicitly.
Furthermore, since also

g��ðu� þ �u�Þðu� þ �u�Þ ¼ �1; we have

�ut ¼ ���u’:

In this way, we can write both ut and �ut as functions of the
angular velocity. On the other hand, in a comoving frame
u’ ¼ 0 while the equation for �ut is trivial, i.e., �ut ¼ 0.
This reduces the equations governing linear perturbations
considerably as we will see now.

For nonrotating or slowly rotating stars where the back-
ground configuration was considered as spherical, the per-
turbation equations were decomposed into spherical
harmonics and the problem was typically reduced in solv-
ing the equations describing only the radial components of
the perturbations. But here we deal with fast rotating
neutron stars which are deformed due to rotation, this
means that it is no longer possible to decompose the
angular part of our perturbation quantities in spherical
harmonics as it was usually done for the nonrotating case
(see [15]) or in the slow-rotation approximation (for ex-
ample [54,55]). Instead we can only separate the azimuthal

dependence, and the perturbation functions that we use will
be written as

ð�þ pÞWeU�u� ¼ f1ð�; 	; tÞeim’

ð�þ pÞWeU�u	 ¼ f2ð�; 	; tÞeim’

ð�þ pÞ�u’ ¼ f3ð�; 	; tÞeim’

c2se
U�� ¼ Hð�; 	; tÞeim’:

(10)

The functions fi, i ¼ 1 . . . 3 are describing the time evo-
lution of the perturbed velocity components and H de-
scribes the corresponding change in energy density. All
these functions are in general complex valued (of course
not for the initial starting condition at t ¼ t0) and multi-
plied by a complex phase that prescribes the dependence
on the azimuthal angle’. This means, that we will get a set
of complex-valued partial differential equations and since
this is a linear system, the final solution is obtained by
taking the real part of these quantities. The substitution of
the perturbation functions (10) into Eq. (3), leads to the
following system of evolution equations:

@f1
@t

¼ �WeU
@H

@�
� e5U

W

@a

@�
f3 �W

c2s

@U

@�
eUH

@f2
@t

¼ �WeU
@H

@	
� e5U

W

@a

@	
f3 �W

c2s

@U

@	
eUH

@f3
@t

¼ im

F
ðac2se4Uf3 þW2HÞ þWac2se

3U�2k

F

�
@f1
@�

þ @f2
@	

�

� e3U�2k

F
W

@a

@�
f1 � e3U�2k

F
W

@a

@	
f2

@H

@t
¼ im

F
ðac2se4UH þ c2se

4Uf3Þ

þWc2se
3U�2k

F

�
@f1
@�

þ @f2
@	

�
� c2se

7U�2k

F

a

W

@a

@�
f1

� c2se
7U�2k

F

a

W

@a

@	
f2; (11)

where

F :¼ a2c2se
4U �W2: (12)

As we discussed earlier, there is no explicit dependence on
the angular velocity � in this system of equations.
The perturbation equations (11) are complemented by

boundary conditions which describe the behavior of the
perturbations on the boundaries of the numerical domain,
which are the rotation axis and the surface of the star. One
also has to discriminate between perturbation variables
with scalar and vectorial character to find the correct con-
ditions along the rotation axis. In our case, the energy-
density perturbation which is described by H and the 	
component of the perturbed four velocity �u	 , described
by f2 are clearly the scalar perturbations while f1 and f3
(describing velocity perturbations in a 	 ¼ const plane) are
the vectorial perturbations. Let us first look at the boundary
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conditions at the surface, since this is very easy in our
formulation. Since the perturbation functions on the left-
hand side of (10) drop to zero there, all our perturbation
quantities vanish. So on the surface of the neutron star we
have

f1jsurface ¼ f2jsurface ¼ f3jsurface ¼ Hjsurface ¼ 0: (13)

For the rotation axis we have to consider three different
cases, depending on the value of m and the nature of the
perturbation variable. Scalar perturbations have to be
unique along the axis for all values of m when varying
the azimuthal angle ’. Vectorial perturbations have to
change like cosð’Þ or sinð’Þ when varying ’. This means,
that only for m ¼ �1 they are allowed to have nonzero
values along the axis. If we then take into account again
Eqs. (9) and (10), we end up with the boundary conditions
for the rotational axis depicted in Table I.

III. NUMERICAL METHOD

As described already in the previous section, in this
study we adopted a comoving frame of reference, in which
the metric takes the form shown in Eq. (8). The numerical
method used to solve the equations governing the stellar
background for this special metric is described in detail in
[53]; here we will briefly summarize the parts which are
crucial for our work. Since the stationary background
model possesses rotational symmetry as well as symmetry
with respect to the equatorial plane, for the computation it
is sufficient to consider the physical domain

Dþ ¼ ½ð�; 	Þ; � � 0; 	 � 0�: (14)

By means of a coordinate transformation

T þ ¼ ½ð
; �Þ 2 ½0; 1� � ½0; 1�; ð� ¼ �ð
; �Þ; 	
¼ 	ð
; �ÞÞ 2 Dþ� (15)

the neutron star interior is mapped onto the unit square and
then, the equations are solved in this new coordinate sys-
tem with a spectral-methodscode.

For example, the distribution of the grid points is shown
in Fig. 1 for a resolution of 18� 18. Note, that the special
choice of collocation points guarantees that there will
never be any grid points directly on the boundaries. One
can also observe the typical clustering of the grid points
near the boundary, which is characteristic for spectral
methods. Also in this figure, some properties of the coor-

dinate transformationT þ are labeled. One can notice, that
the surface of the neutron star gets mapped onto 
 ¼ 1;
this is independent of the rotation rate, even for rapidly
rotating neutron stars this coordinate line always corre-
sponds to the stellar surface. Additionally, � ¼ 0 corre-
sponds to the rotation axis above the equatorial plane and
� ¼ 1 to the equatorial plane itself. As mentioned earlier,
since the background star is axisymmetric as well as sym-
metric with respect to the equatorial plane, this computa-
tional domain suffices in order to construct the background
model. Note also, since we have four boundaries in our
computational domain, but only three ‘‘physical’’ bounda-
ries (i.e., rotation axis, equatorial plane, and stellar sur-
face), one single point gets smeared into a coordinate line;
in our case, 
 ¼ 0 corresponds to the center of the star
(i.e., � ¼ 	 ¼ 0). The coordinates ð
; �Þ are similar to
their spherical coordinate’s counterparts ðr; �Þ in the sense
that moving from � ¼ 0 to � ¼ 1 on an arbitrary 
 ¼
const line means to start from a point at the rotation axis
and move somewhat ‘‘parallel’’ to the surface to a point at
the equatorial plane. Vice versa if one moves along an
arbitrary � ¼ const line, then one starts from the center
of the star to the surface. Figure 2 illustrates this for a
rapidly rotating stellar model with a ratio of polar coordi-
nate radius to equatorial coordinate radius of rp=re ¼ 0:6.

This compact star is rotating near its Kepler limit and
obviously is nonspherical. Nevertheless, as discussed
above, the surface of the stellar model is described by S ¼
½ð�ð1; �Þ; 	ð1; �ÞÞ; � 2 ½0; 1��.
For the linear perturbations under study, these coordi-

nates suffice and we used it with minor modifications.
Because of the equatorial symmetry of the background it
is sufficient to use Dþ [see (14)] as the domain of compu-
tation, but this is no longer true for general axisymmetric
perturbations. There are two ways to circumvent this. The
first is based on the fact, that every perturbation can be

TABLE I. Boundary condition for the perturbation variables
along the rotational axis.

m value f1jaxis f2jaxis f3jaxis Hjaxis
0 0 0 0 finite & continuous

�1 0 0 finite & continuous 0

else 0 0 0 0

FIG. 1. Layout of the numerical grid used in constructing the
stationary neutron star background model.
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decomposed into a symmetric and into an antisymmetric
part. To illustrate this, considerAþ ¼ ½x; x � 0� as a one-
dimensional computational domain and fðx; tÞ as an arbi-
trary perturbation with values in A� ¼ ½x; x < 0� too. If
x ¼ 0 corresponds to the axis of symmetry we have

fðx; tÞ ¼ fsðx; tÞ þ faðx; tÞ
with

fsðx; tÞ ¼ fðx; tÞ þ fð�x; tÞ
2

and

faðx; tÞ ¼ fðx; tÞ � fð�x; tÞ
2

:

The procedure for a time evolution of an arbitrary initial
perturbation fðx; t0Þ on A :¼ Aþ þA� would be to
decompose any initial perturbation into its symmetric and
antisymmetric parts, perform an evolution of these parts,
complement the solutions according to their symmetry
behavior for x < 0, and add the solutions up. Note that in
this case there are two different boundary conditions to
impose on the unknown function at x ¼ 0. For the sym-
metric part we have @xfsðx; tÞjx¼0 ¼ 0, for the antisym-
metric part we have fsðx; tÞjx¼0 ¼ 0. Note also, that in
order to study eigenmodes and compute their eigenfre-
quencies it is sufficient to restrict these studies on either
symmetric or antisymmetric perturbations; for this purpose
it is not necessary to consider arbitrary initial data.

Since the goal was to create a code that can handle
arbitrary perturbations, we chose the second option in
handling this problem, that is we extend our physical
domain to include also the region

D� ¼ ½ð�; 	Þ; � � 0; 	 < 0�: (16)

In practice we ‘‘glue’’ two copies ofDþ together along the
equatorial plane. Correspondingly the computational do-
main extents in the � dimension beyond � ¼ 1, i.e., the �

direction in analogy to spherical coordinates we discussed
earlier. Hence the extended domain is given by

T ¼ ½ð
; �Þ 2 ½0; 1� � ½0; 2�; ð� ¼ �ð
; �Þ; 	
¼ 	ð
; �ÞÞ 2 D :¼ ðDþ þD�Þ�: (17)

With this choice, there are no other boundary conditions to
impose than those described in Sec. II; the equatorial plane
now lies in the interior of the computational domain and its
boundaries are given by the center (
 ¼ 0), the surface
(
 ¼ 1), the part of the rotation axis above the equatorial
plane (� ¼ 0), and the corresponding part underneath the
equatorial plane (� ¼ 2). Of course one pays a price for
studying arbitrary perturbations: This grid is now twice as
large as before; this means for a 2D code an increase in
computation time by a factor of 4.
Special care has to be taken for the correct transforma-

tion behavior of our various background quantities which,
up to now, are only known in Dþ. In addition to simply
‘‘mirror’’ all necessary quantities along the equatorial
plane (i.e., along � ¼ 1), some derivatives need to be
multiplied by a factor of �1. Derivatives with respect to
� pose no problem; if ð
; �Þ denotes a grid point in Dþ
(i.e., � � 1) and g is an arbitrary background quantity, we
have

@g

@�

��������ð
;�Þ
¼ @g

@�

��������ð
;2��Þ
: (18)

This is no longer true when one uses derivatives with
respect to 	 ; in this case it is

@g

@	

��������ð
;�Þ
¼ � @g

@	

��������ð
;2��Þ
: (19)

Yet another transformation behavior has to do with the fact
that the equations we study [i.e., system (11)] are written in
ð�; 	Þ coordinates but we use as numerical domain our
extended ð
; �Þ system. For our perturbation variables we
have to switch between these systems. So in addition to all
background quantities and their derivatives with respect to
� and 	 , the transformation’s coefficients @
=@�, @
=@	 ,
@�=@�, and @�=@	 are also available in Dþ. With these
coefficients it is possible to compute for any perturbation
quantity f given on the numerical domain T the values of

@f

@�
¼ @f

@


@


@�
þ @f

@�

@�

@�

@f

@	
¼ @f

@


@


@	
þ @f

@�

@�

@	

(20)

we need to know for the right-hand sides of the evolution
equations (11). Equations (20) are obviously valid for the
background quantities as well and this helps in finding the
correct form of the transformation coefficients when going
from Dþ to D�. We know how the �- and 	 derivatives
[i.e., the left-hand sides of (20)] transform in D� as well
what happens to their 
 and � derivatives there. This leads
to

FIG. 2. Some � ¼ const (solid lines) and 
 ¼ const (dotted
lines) coordinate lines in the ð�; 	Þ coordinate system.
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@


@�

��������ð
;�Þ
¼ @


@�

��������ð
;2��Þ
and

@


@	

��������ð
;�Þ
¼ �@


@	

��������ð
;2��Þ
(21)

and

@�

@�

��������ð
;�Þ
¼ � @�

@�

��������ð
;2��Þ
and

@�

@	

��������ð
;�Þ
¼ @�

@	

��������ð
;2��Þ
:

(22)

We then use standard finite-differencing schemes and time
integrators to solve the system (11). However, the numeri-
cal evolution of the equations was unstable, i.e., after the
first few time steps, high frequency oscillations of expo-
nentially growing modes developed near the center of the
star (i.e., at 
 ¼ 0). This is most likely due to the presence
of a coordinate singularity at the origin but also because
some of the coefficients on the right-hand sides of our
evolution system get nearly singular when moving to the
center [compare the denominators of (11) with (9) and
(12)]. However, the occurrence of singular terms in general
does not necessarily lead to a failure of the numerical
scheme.

The solution to this problem was the utilization of addi-
tional viscous terms in the evolution equations. Since they
do not represent any physical effect in the initial setup of
the problem, they are commonly referred to as artificial
viscosity. Here, to each of the four equations we added a
Kreiss-Oliger-like term of the form (see [56] for details)

V ðfÞ ¼ 
ðDþ

D

�

 þDþ

� D
�
� Þf; (23)

where f is a perturbation variable, 
 ¼ const is the dis-
sipation coefficient, ð
; �Þ are the spatial coordinates, and
Dþ, D� are the standard forward- and backward-
difference operators. By using dissipation coefficients 
i,
i ¼ 1 . . . 4 ranging from 10�3–10�4 it becomes possible to
stabilize the time-evolution code against exponentially
growing instabilities.

As already described earlier in Sec. II, after a successful
simulation, the real part of the complex solution is taken
and a discrete Fourier transformation at several points
inside the star is performed on these data to extract the
oscillation frequencies. If N is the number of points in this
time series and �t is the temporal resolution, the corre-
sponding frequency resolution and the Nyquist frequency
(i.e., the maximum frequency that can be resolved) are
given by

�f ¼ 1

N�t
and fc ¼ 1

2�t
: (24)

Since an explicit numerical scheme has been used for time
evolution, there are certain restrictions on the absolute
value of �t. The time step cannot be arbitrarily large and
depends on the spatial resolution of our grid (CFL crite-
rion). For most of the simulations, a time step of the order

of �t � 10�6 sec and N � 104 was used. The total evo-
lution time then is tmax � 30–40 ms with �f � 15–30 Hz
and fc � 8–12 kHz; details are following in Sec. IV.

IV. RESULTS

For a spherical symmetric background and even in the
slow-rotation approximation, the angular dependence of a
mode is often described in terms of spherical harmonics
Ylm. If the perturbation changes like ð�1Þl when applying
the transformation r ! �r it is called an even or polar
mode while odd or axial modes behave like ð�1Þlþ1. In the
axisymmetric case (i.e., for m ¼ 0) all these modes are
stable while nonaxisymmetric perturbations may become
unstable to the CFS instability [57,58].

A. Axisymmetric case

Axisymmetric perturbations, due to their simplicity have
been studied in detail with perturbative methods but mainly
via evolution of nonlinear equations.

1. Polar perturbations

The results of this approach will be compared with the
nonlinear results published in [31]. There, a relativistic
hydrodynamics code is used to study stellar oscillations
in the Cowling approximation. The background models are
commonly referred to as BU; they are uniformly rotating
neutron stars with a polytropic equation of state with � ¼
2, K ¼ 100, and fixed central rest-mass density �c ¼
1:28� 10�3 in units where G ¼ c ¼ M� ¼ 1. In the non-
rotating case, this leads to a stellar model with a gravita-
tional mass ofM0 ¼ 1:4M� and a circumferential radius of
R ¼ 14:15 km. The applied initial perturbations were de-
composed into spherical harmonics and for l ¼ 0 a density
perturbation of the form

�� ¼ A�c sin

�
�r

rsð�Þ
�

(25)

is used as initial data. Here A is the perturbation amplitude,
ðr; �Þ denote spherical coordinates, and rsð�Þ is the coor-
dinate radius of the star (which is not independent of �
when the star is rotating) in this spherical system. In our
simulations, we mainly use a 18� 18 spectral grid to
compute the background (this already gives a very accurate
stellar model with an accuracy of 10�10) and interpolate to
our computational domain, which can have practically any
arbitrary resolution; mainly we use 50� 40, 100� 80, or
200� 160 grid points.
Fig. 3 shows in the left panel a 12 msec-long section of a

simulation with initial data described by (25) and a non-
rotating background model on a 50� 40 grid. The right
panel depicts the logarithm of the one-sided power spectral
density of the complete time series with a frequency reso-
lution of �f ¼ 20 Hz; the data for this figure were ex-
tracted from the spatial position ð
; �Þ ¼ ð0:5; 0:5Þ.

ERICH GAERTIG AND KOSTAS D. KOKKOTAS PHYSICAL REVIEW D 78, 064063 (2008)

064063-6



In the frequency plot one can see several peaks, some of
them are already labeled; the vertical lines are the equiva-
lent frequencies one can find in [31]. The strongest and one
of the sharpest peaks is the one at f ¼ 2:705 kHz and
belongs to the fundamental quasiradial oscillation mode
(F mode) with no nodes of the corresponding eigenfunc-
tion in the radial direction. Alongside with this oscillation
some other modes were excited as well, most notably
several overtones of the F mode labeled H1, H2, and H3

which have one, two, or three nodes of their eigenfunctions
in the radial direction.

Additionally, to the estimation of the mode frequencies
from a given time evolution via a Fourier transform we
implemented a method to retrieve their corresponding
eigenfunctions. The amplitude of the eigenfunction at a
given point directly correlates to the strength of the corre-
sponding peak in the power spectral density at this particu-
lar point. In order to extract the eigenfunction of a specific
oscillation mode one has to iterate over the computational
domain, taking Fourier transforms at many grid points and

monitor the variation in amplitude of the mode peak one
wants to study. This eigenfunction can then be used as an
improvement to the first trial eigenfunction and can be put
back as initial data for another simulation. Usually this
procedure, which is called mode recycling, when applied
repeatedly, will enhance and sharpen the mode that is
recycled and will suppress additional modes that are
excited.
In Fig. 4 the absolute values of the eigenfunctions cor-

responding to the oscillation modes labeled in the previous
figure were extracted using this technique. As already
discussed earlier it is ð
; �Þ 2 ½0; 1� � ½0; 2� and � ¼ 1
describes the equatorial plane.
One can see that �u	 ¼ 0 along the equatorial plane and

also that the number of radial nodes increases along the
sequence F, H1, H2, H3.
The second strongest peak in Fig. 3 at f ¼ 1:929 kHz (it

is already roughly 2 orders of magnitude lower than the
F-mode peak) does not belong to a quasiradial oscillation.
Instead, the extracted eigenfunction shows an angular de-

FIG. 3. Left panel: Time evolution of the 	 component of the perturbed four velocity for an axisymmetric pressure perturbation.
Right panel: The corresponding Fourier transform of the �u	 time series. The fundamental radial mode together with a few overtones

are apparent.

FIG. 4. Top Row: The amplitude of the eigenfunctions for the F and H1 mode. Bottom Row: The amplitude of the eigenfuctions for
the H2 and H3 mode.
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pendence that is in agreement with an axisymmetric quad-
rupolar perturbation. By extracting the eigenfunction for
the pressure perturbation of this mode one gets a useful
initial perturbation for extracting nonradial modes and
eigenfunctions. The result of such a simulation is depicted
in Fig. 5.

As one can easily notice, the 2f mode is the dominant
oscillation while the first ðl ¼ 2; m ¼ 0Þ overtone, the 2p1

mode, has been also considerably enhanced. In this simu-
lation, both modes are stronger than their l ¼ 0 counter-
parts and several other modes which were not clearly
visible in the first run (compare to Fig. 3) become notice-
able. The corresponding values taken from [31] for com-
parison are indicated by solid vertical lines in the power
spectral density plot. Here we notice larger deviations than
in the previous radial case but they are smaller than 5%.

One can increase the rotation rate of the BU model and
estimate how the various frequencies will change when the
neutron star rotates faster and faster. We did this calcula-
tion for three resolutions starting from 50� 40 and dou-
bling it twice. The results for the already discussed l ¼ 0
modes at the highest resolution (i.e., 200� 160) and with
�f ¼ 20 Hz are summarized in Table II.

In Table III the oscillation frequencies of the 2f and the
2p1 mode are shown for various rotation rates. In general,

these results are in good agreement with published values;
their absolute differences never exceed the 5% level. By
increasing the resolution, the most significant improve-

ment has been observed when doubling the low 50� 40
resolution. For some modes the change of the frequency in
these two resolutions is rather dramatic compared to the
change when improving from the medium to the high
resolution. We take this as an indication that for most
purposes a resolution of 100� 80 grid points suffices to
get already quite accurate results. We also did convergence
checks on the two strongest modes for l ¼ 0 and l ¼ 2 at
our three basic resolutions and an additional one with 75�
60 grid points. The iterated Crank-Nicholson scheme,
which is used for time evolution here, is first order accurate
in time and second order accurate in space. By increasing
the number of grid points, one expects to observe a qua-
dratic convergence in the perturbation functions and this
was indeed the case. Figure 6 shows how the frequencies of
the F, H1,

2f, and 2p1 mode change as functions of the
rotation rate and resolution; there the line connecting
circles are the values taken from [31]. Especially the
frequencies for the first p mode corresponding to l ¼ 2
agree very well with them; also the other modes show a
similar behavior.

2. Axial perturbations

The axial perturbations of the fluid correspond to the
inertial modes, in this case small axial deviations from
equilibrium are restored by the Coriolis force. These
modes are degenerate at zero frequency but have nonzero

TABLE II. Frequencies of the axisymmetric modes F, H1, H2,
and H3 for the BU model at different rotation rates.

� (kHz) F (kHz) H1 (kHz) H2 (kHz) H3 (kHz)

0.0 2.679 4.561 6.380 8.178

2.182 2.638 4.466 6.255 8.035

3.062 2.605 4.435 6.253 8.058

3.712 2.570 4.409 6.275 8.111

4.229 2.539 4.410 6.310 8.156

4.647 2.500 4.400 6.330 8.237

4.976 2.484 4.392 6.356 8.334

5.213 2.456 4.390 6.370 8.405

5.344 2.426 4.394 6.380 8.411

FIG. 5. The shape of the recovered pressure eigenfunction used for a mode recycling run and Fourier transform of the u	 time series
with the pressure eigenfunction as initial data.

TABLE III. Frequencies of the axisymmetric quadrupolar
modes 2f and 2p1 for the BU model at different rotation rates.

� (kHz) 2f (kHz) 2p1 (kHz)

0.0 1.890 4.130

2.182 1.890 4.065

3.062 1.906 3.970

3.712 1.895 3.838

4.229 1.875 3.674

4.647 1.844 3.487

4.976 1.794 3.275

5.213 1.703 3.056

5.344 1.613 2.426
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frequency once rotation sets in. We were able to identify
some inertial modes and to compare our results with the
corresponding studies in [33]. In contrast to the Cowling
approximation we use here, they developed a full general-
relativistic hydrodynamics code under the assumption of a
conformally flat three metric and tested it on nonlinear
axisymmetric pulsations of rotating relativistic stars.
Nevertheless, as we show, the results of the two calcula-
tions agree quite well.

Figure 7 shows the power spectral density of the u’
velocity component of a simulation with a BU3 back-
ground model (in the notation of [33]). This neutron star

has a ratio of polar coordinate radius to equatorial coor-
dinate radius of rp=re ¼ 0:85 and rotates with an angular

velocity � ¼ 3:71 kHz. We chose to monitor the ’ com-
ponent of the velocity since this is the quantity where the
inertial mode signature is typically well pronounced. The
three vertical lines in the low frequency part of the plot
denote the values of the i�2, i1, and i2 mode frequency
according to [33]; on the right side one can identify the
frequency peaks of the 2f and the F mode from Tables II
and III.
One can see that there is quite a good agreement be-

tween our results and the literature values for this specific
model and rotation rate; there is a greater deviation from
the results in [33] for the lowest frequency inertial mode
i�2. In general, the i2 mode is the strongest inertial mode in
our simulation and if one compares the various r-mode
frequencies for different angular velocities, we find the
best matching results for the i1 and i2 mode and still a
very good match for the i�2 frequencies. This is depicted in
Fig. 8.
So although we are using the Cowling approximation

and not a full relativistic treatment, we can confirm the
dependence of the three inertial modes i1, i2, and i�2 on the
rotation rate described in the literature; a summary of our
results is given in Table IV.

B. Nonaxisymmetric case

We will now turn to the study of nonaxisymmetric
oscillations on rotating compact objects with emphasis
on the m ¼ 2 perturbations. In addition to the equation
of state for the BU model series we used in the previous

FIG. 6. Top Row: The change in frequencies of the F and H1 mode for three different resolutions. Bottom Row: The corresponding
changes of the 2f and 2p1 mode.

FIG. 7. Fourier transform of u’ from a time series with BU3 as
the background model. The three vertical lines are from left to
right the i�2, i1, and i2 inertial mode frequencies listed in [33].
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section mostly for code testing purposes, here we will
apply two more equations of state. We use the polytropic
parameters for EOS A and EOS II from [26]; more
specifically we have � ¼ 2:46 and K ¼ 0:009 36 for
EOS A and � ¼ 2:34 and K ¼ 0:0195 for EOS II. These
values are given in geometric units (G ¼ M� ¼ 1) and
with km as length scale. Figure 9 shows mass-radius dia-
grams for all the EOS we are using in this paper. The black
dots on every of these three curves are the actual models
used in the simulations. The BU model is a ‘‘standard’’
compact object with a mass of M ¼ 1:4M� and a circum-
ferential radius of R ¼ 14:15 km as one can see from the
figure. In contrast to this the two other configurations we
chose are very close to their maximum mass limit; in
particular, our background model for EOS A has a mass
of M ¼ 1:61M� and a radius of R ¼ 9:51 km while the
EOS II model has a mass of M ¼ 1:91M� and a radius of
R ¼ 11:68 km. They are therefore more compact and their
Kepler limit is much higher than for the BU model; we will
see what this means for the nonaxisymmetric mode fre-
quencies in the following discussion.

1. Polar perturbations

The procedure for the excitation of modes is similar to
the one in the axisymmetric case. Similar to the approach
taken in [31] we chose a l ¼ 2-velocity perturbation of the

form

�u� ¼ A sin

�
�r

rsð�Þ
�
sin� cos� (26)

with the same meaning of A and rsð�Þ as in (25). Since we
are working in cylindrical coordinates, we have to decom-
pose this perturbation into its � and 	 component before we
can insert it in our simulation. Figure 10 shows a series of
power spectral density plots for the BU model at different
rotation rates. The frontmost spectrum shows the f-mode
peak for a nonrotating star while the last one has been
extracted for a star with a ratio of polar coordinate radius to
equatorial coordinate radius of rp=re ¼ 0:9. In the non-

rotating case the f-mode frequency is degenerate, i.e., it
shows only one peak for the m ¼ 2 (counterrotating) and
the m ¼ �2 (corotating) modes. This degeneracy is bro-
ken as soon as rotation sets in; for � � 0 this peak splits
into two peaks and breaks the symmetry between counter
and corotating modes. The very same behavior can be
observed for other modes as well.
In the following discussion, we will focus on the funda-

mental mode although this particular mode suffers most of

FIG. 8 (color online). A comparison between the values in [33] and our results for the i1, i2, and i�2 inertial mode. Our simulations
were performed with 200� 160 grid points.

TABLE IV. Frequencies of the three inertial modes i1, i2, i�2

for the BU model at different rotation rates.

Model � (kHz) i1 (kHz) i2 (kHz) i�2 (kHz)

BU0 0.0 0.0 0.0 0.0

BU1 2.182 0.266 0.373 0.202

BU2 3.062 0.399 0.528 0.285

BU3 3.712 0.521 0.651 0.372

BU4 4.229 0.602 0.750 0.432

BU5 4.647 0.657 0.836 0.497

BU6 4.976 0.721 0.924 0.539

BU7 5.213 0.776 0.971 0.584

BU8 5.344 0.790 1.001 0.619

BU9 5.361 0.806 1.009 0.685

EOS BU
EOS II
EOS A

FIG. 9. Mass-radius relations for the EOS used to study non-
axisymmetric perturbations; the black dots denote our actual
models.
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all from the Cowling approximation (compare [31] with
[33] or see [28] for an early Newtonian calculation).
However in this paper, we are interested in the evolution
of the f-mode frequency with increasing angular velocity.
While the absolute values may be incorrect by a factor of
20%–30%, we still should be able to make some state-
ments about the characteristic behavior of the f-mode
frequency dependence on the equations of state.
Figure 11 shows our results for the models depicted in
Fig. 9. In contrast to previous figures, we now plot the
oscillation frequencies against the rotation frequency
which is given by � ¼ �=2�. As one can see, the various
models have quite a different range of f-mode frequencies.
The BU model, which is the less compact, also has the
lowest fundamental frequency. Because of the model pa-
rameters the Kepler limit for this particular neutron star is
reached already at �K ¼ 853 Hz. The models for the other
equations of state are more compact and therefore allow for
higher rotation rates, which can be as high as � ¼
1:758 kHz for EOS A. For each of the three EOS the m ¼
2 branches are those in Fig. 11 with the higher frequencies

and we will see in a second how we have been able to
determine this. The frequency of the fundamental mode
scales with the compactness of the star, higher compact-
ness means higher frequency; a property we can directly
validate from the left panel of Fig. 11.
The right panel shows a different representation of the

same picture where we plot for each model the normalized
mode frequency 
=
0 against the normalized rotation
frequency �=�K where 
0 is the mode frequency in the
nonrotating limit and �K labels the Kepler limit for the
rotation frequency. It is quite remarkable that although the
models used in these simulations have very different pa-
rameters their normalized f-mode frequencies change
nearly in the same manner when rotation is increased. It
is only in the regime close to the Kepler limit where
deviations for the various models become evident. For all
rotation parameters we can write





0
¼ 1:0þ Cð1Þ

lm

�
�

�K

�
þ Cð2Þ

lm

�
�

�K

�
2

(27)

independent of the specific EOS. To determine the coef-
ficients Clm, we made least-square fittings of all of the data
points we obtained from the various simulations. In par-

ticular, we find Cð1Þ
22 ¼ �0:25� 0:02 and Cð2Þ

22 ¼ �0:38�
0:02 for the m ¼ 2 solution and Cð1Þ

2�2 ¼ 0:48� 0:03 and

Cð2Þ
2�2 ¼ �0:55� 0:04 in the m ¼ �2 case.

However, one should keep in mind that the results
presented up to now are all derived in the corotating frame
since this is the natural coordinate system in which our
equations were formulated (see Sec. III). The only coor-
dinate that changes when going to a stationary coordinate
system is the azimuthal angle’ and the relation connecting
these two coordinates simply is

’corot ¼ ’stat ��t: (28)

Because of the decomposition (10) of our perturbation
variables and the harmonic Fourier transformation, we
are performing on our numerically obtained time series,
we are effectively decomposing our time-evolution quan-
tities like

FIG. 10. Power spectral density of them ¼ 2 f mode for initial
data provided by (26). The splitting in the spectrum becomes
apparent for increasing angular velocities.

EOS BU
EOS A
EOS II

EOS BU
EOS A
EOS II

FIG. 11 (color online). The f mode frequencies for the three models in consideration; in the left panel they are normalized with the
corresponding Kepler rotation frequency �K.
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f	 ei
teim’ ¼ eið
tþm’Þ: (29)

To track a specific constant phase in time, one therefore has
to move on by an angle

’corot
0 ¼ �


m
t0

after a time t0. This means that in this case modes with a
positive m are moving retrograde while waves with a
negative m travel prograde in the comoving frame. We
now insert (28) into (29) to obtain a relationship between
the mode frequencies in the comoving and stationary frame
and arrive at


stat ¼ 
corot �m�: (30)

For axisymmetric perturbations (i.e., m ¼ 0) the two fre-
quencies are identical; this is why we did not start this
discussion already in Sec. IVA. To track a surface of
constant phase in the stationary frame, a similar calculation
like the one above yields

’stat
0 ¼ �ð
corot �m�Þ

m
t0:

This means that if the frequency 
corot is larger than m�,
then the mode is also travelling in a retrograde direction in
the stationary system. For 
corot ¼ m�, the frequency
becomes degenerate in this system while for 
corot <m�
a mode travelling retrograde in the comoving frame is seen
prograde in the stationary coordinate system. Figure 12
shows our results for the stationary frame.

When we analyze the various Fourier spectra in the
stationary frame, we can actually see that for every one
of the three EOS, the high frequency branches in Fig. 11
are shifted towards lower frequencies; together with
Eq. (30) it means that these branches can be identified
with the m ¼ 2 solutions and vice versa. This is how we
can identify the different sections of the curves. Them ¼ 2
solutions of all models actually reach the point where 
 is
zero; for the model BU this happens just at the Kepler limit,
for the other models which are more compact this occurs
even earlier. Beyond this point, the f mode is seen retro-
grade in the comoving frame but prograde in the stationary

coordinate system. In this case, the mode becomes CFS
unstable and it can be an excellent source for gravitational
waves. Finally, the normalized picture on the right panel
now differs significantly from the corresponding picture in
the corotating frame. This is due to the fact that the trans-
formation from one system to the other introduces extra
terms which are obviously model dependent.

2. Axial perturbations

Nonaxisymmetric axial perturbations, also known as r
modes, are known to be generically unstable to the CFS
instability at all rotation rates. This is an exciting class of
stellar oscillations with many possible applications in as-
trophysics and gravitational wave research [13].
We also did a couple of simulations to specifically excite

the l ¼ 2, m ¼ 2 inertial mode and were successful. In the
Newtonian framework, the fundamental r mode is of
purely axial parity and thus does not mix with high order
polar terms, see [59]. It also has been shown in [60] that the
contribution of higher order terms introduced by the fully
general-relativistic treatment can be neglected in the case
of slow rotation. As for the polar nonaxisymmetric oscil-
lations, we start with a perturbation of the � component of
the four velocity and expect a dependence 	1=r sinð�Þ of
�u�, see also [61]. Typically, several mode recycling runs
are needed to get a sharp and clean signal in the power
spectral density. Also, due to the low frequencies of inertial
modes especially at small rotation rates, one needs much
longer evolution times than for pressure driven modes. We
chose to cancel the time evolution after roughly 50 ms to
extract the eigenfrequencies. The numerical code is still
stable there and can in principle evolve the initial data for a
longer time interval, leading to a more accurate frequency
determination. However, we found that an evolution time
of about 50 ms and a spatial resolution of 200� 160 grid
points is already quite good for a first estimation; there is
only a marginal change when using longer integration
intervals. We compare our code with results for a BU6
star rotating at 93% of its maximum speed as described in
[62] where a nonlinear general-relativistic code has been
used to study the saturation amplitude of r modes.
Figure 13 gives a summary of the results.

EOS BU
EOS A
EOS II

EOS BU
EOS A
EOS II

FIG. 12 (color online). Same as in Fig. 11, but now in the stationary frame.
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Bymeans of repeated mode recycling, the fundamental r
mode can be significantly enhanced as depicted in the
power spectral density (PSD) plot of Fig. 13. We also
checked the angular dependence of the extracted eigen-
function. Since �u� should be 	 sinð�Þ, the � and 	
components of the perturbed four velocity are modified
by an additional factor of cosð�Þ and sinð�Þ, respectively.
Keep in mind that the grid variable � which takes values
from 1 to 2 can be thought of similar to the polar angle � in
spherical coordinates; see the discussion of Fig. 1 in this
paper. Then it is clear that the eigenfunction for �u� and

�u	 depicted in the bottom row of Fig. 13 shows indeed the

expected behavior. The fundamental r mode has a fre-
quency of fc ¼ 518 Hz in the comoving frame which
translates to a frequency of fi ¼ 1:066 kHz in the inertial
frame. This is in excellent agreement with [62] where they
found it at fi ¼ 1:03 kHz and also with [63] where they
saw the mode at fi ¼ 1:05 kHz; nonlinear effects in the
simulations of [62] may explain the larger discrepancy
there.

V. CONCLUSIONS

In this work, we present a study of the oscillation
properties of fast rotating relativistic stars for both axisym-
metric and nonaxisymmetric perturbations. The study was
based on the Cowling approximation using a 2D version of
the perturbation equations. The results for axisymmetric

perturbations are in excellent agreement with earlier ones
while the nonaxisymmetric results are the first of their kind
in the literature. We demonstrated the neutral points for the
onset of the CFS instability and suggested possible normal-
izations which can be used in order to extract the parame-
ters of the rotating star.
The method presented here (evolution of the 2D line-

arized equations) can be extended by including the pertur-
bations of the space-time. This will offer the possibility in
testing the earlier results [64] for the onset of the secular
instability in fast rotating stars. Moreover, the dependence
of oscillation frequencies on rotation will be based on the
exact results and will not rely on the Cowling approxima-
tion. Finally, the effect of differential rotation on the spec-
tra can be studied both for testing earlier, mainly
Newtonian, results [43,65], but more importantly in finding
the correct dependence of the frequencies on rotation as
well as the neutral points for the onset of the secular
instabilities. This is actually an important step since newly
born neutron stars are expected to rotate differentially at
least during the stages that they will be in an oscillatory
phase or even when they are secularly unstable.
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