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1. Introduction

The discovery of electron spin is one of the most interesting stories in the history of Quantum
Mechanics; told e.g. in van der Waerden’s contribution to the Pauli Memorial Volume (Fierz &
Weisskopf, 1960, pp. 199-244), in Tomonaga’s book (1997), and also in various first-hand reports
(Goudsmit, 1976; Pais, 1989; Uhlenbeck, 1976). This story also bears fascinating relations to the
history of understanding Special Relativity. One such relation is given by Thomas’ discovery of what
we now call “Thomas precession” (Thomas, 1926, 1927), which explained for the first time the correct
magnitude of spin-orbit coupling and hence the correct magnitude of the fine-structure split of
spectral lines, and whose mathematical origin can be traced to precisely that point which marks the
central difference between the Galilei and the Lorentz group (this is, e.g., explained in detail in
Sections 4.3-4.6 of Giulini, 2006). In the present paper I will dwell a little on another such connection
to Special Relativity.

As is widely appreciated, Wolfgang Pauli is a central figure, perhaps the most central figure, in the
story of spin. Being the inventor of the idea of an inner (quantum mechanical) degree of freedom of
the electron, he was at the same time the strongest opponent to attempts to relate it to any kind of
interpretation in terms of kinematical concepts that derive from the picture of an extended material
object in a state of rotation. To my knowledge, Pauli’s hypothesis of this new intrinsic feature of the
electron, which he cautiously called “a classical non-describable two valuedness”, was the first
instance where a quantum-mechanical degree of freedom was claimed to exist without a
corresponding classical one. This seems to be an early attempt to walk without the crutches of
some ‘“correspondence principle”. Even though the ensuing developments seem to have re-
installed—mentally at least—the more classical notion of a spinning electron through the ideas
of Ralph Kronig (compare Section 4 of van der Waerden’s contribution to Fierz & Weisskopf, 1960,
pp. 209-216) and, a little later, Goudsmit and Uhlenbeck (1925, 1926),! Pauli was never convinced,
despite the fact that he lost the battle against Thomas? and declared “total surrender” in a letter to
Bohr written on March 12, 1926 (WPSC, 1979-2005, Vol. [, Doc. 127, 310pp.). For Pauli the spin of the
electron remained an abstract property which receives its ultimate and irreducible explanation in
terms of group theory, as applied to the subgroup® of spatial rotations (or its double cover) within the
full symmetry group of space-time, may it be the Galilei or the Lorentz group (or their double
cover). In this respect, Pauli’s, 1946 Nobel Lecture contains the following instructive passage (here
and throughout this paper I enclose my annotations to quotes within square brackets):

Although at first I strongly doubted the correctness of this idea [of the electron spin in the sense of
Kronig, Goudsmit and Uhlenbeck] because of its classical-mechanical character, I was finally
converted to it by Thomas’ calculations on the magnitude of doublet splitting. On the other hand,
my earlier doubts as well as the cautions expression “classically non-describable two-valuedness”

! Van der Waerden states that Goudsmit and Uhlenbeck conceived the idea of the spinning electron independently of
Kronig, even though he also reports that after Kronig first told his idea to Pauli, who did not approve, in Tiibingen on January 8,
1925 he went straight to Copenhagen to “discuss the problem with Heisenberg, Kramers and others”, who did not approve
either (Fierz & Weisskopf, 1960, p. 212). Hence, in principle, Kronig’s idea could well have transpired to Goudsmit and
Uhlenbeck prior to their publication, though there seems to be no evidence for that. In contrast, already in the spring of 1926
Kronig published two critical notes (Kronig, 1926a,1926b) in which he much stressed the problems with Goudsmit’s and
Uhlenbeck’s idea (sic!). He concluded (Kronig, 1926a) by saying: “The new hypothesis, therefore, appears rather to effect the
removal of the family ghost from the basement to the sub-basement, instead of expelling it definitely from the house.” In later
recollections he gently brings himself back into the game, like in his contribution to the Pauli memorial volume (Fierz &
Weisskopf, 1960, pp. 5-39), but also emphasises his awareness of the critical aspects, as, e.g., in a letter to van der Waerden
(Fierz & Weisskopf, 1960, p. 212).

2 At this point Frenkel’s remarkable contribution (1926) should also be mentioned, which definitely improves on Thomas’
presentation and which was motivated by Pauli sending Frenkel Thomas’ manuscript, as Frenkel acknowledges in [footnote 1,
p. 244] (Frenkel, 1926). A more modern account of Frenkel’s work is given by Ternov & Bordovitsyn (1980).

3 It is more correct to speak of the conjugacy class of subgroups of spatial rotations, since there is no (and cannot be) a
single distinguished subgroup group of “spatial” rotations in Special Relativity.

4 Half-integer spin representations only arise either as proper ray-representations (sometimes called “double-valued”
representations) of spatial rotations SO(3) or as faithful true representations (i.e. “single-valued”) of its double-cover group
SU(2), which are subgroups of the Galilei and Lorentz groups or their double-cover groups, respectively.
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Fig. 1. Part of a letter by L.H. Thomas to S. Goudsmit dated March 25th 1926, taken from Goudsmit (1971).

experienced a certain verification during later developments, since Bohr was able to show on the
basis of wave mechanics that the electron spin cannot be measured by classically describable
experiments (as, for instance, deflection of molecular beams in external electromagnetic fields)
and must therefore be considered as an essential quantum-mechanical property of the electron.®
(Pauli, 1946, p. 30)

This should clearly not be misunderstood as saying that under the impression of Thomas’
calculations Pauli accepted spin in its “classical-mechanical” interpretation. In fact, he kept on
arguing fiercely against what in a letter to Sommerfeld from December 1924 he called “model
prejudices” (WPSC, 1979-2005, Vol. I, Doc. 72, p. 182) and did not refrain from ridiculing the
upcoming idea of spin from the very first moment (cf. Fig. 1). What Pauli accepted was the idea of the
electron possessing an intrinsic magnetic moment and angular momentum, the latter being

5 At this point Pauli refers to the reports of the Sixth Physics Solvay Conference 1932. In his handbook article on wave
mechanics, Pauli (1990, p. 165) is more explicit: The spin-moment of the electron can never be measured in clean separation from
the orbital moment by those experiments to which the classical notion of particle-orbit applies. (German original: “Das
Spinmoment des Elektrons kann niemals, vom Bahnmoment eindeutig getrennt, durch solche Versuche bestimmt werden, auf
die der klassische Begriff der Partikelbahn anwendbar ist.”) However, this general statement seems to be based entirely on its
validity in specific situations, like those discussed by Mott (1929, Appendix, pp. 440-442). A closer examination shows that
the envisaged theorem of Bohr and Pauli is physically unwarranted in the generality in which it is presented above. This can,
for example, be illustrated by the possibility to create macroscopically separated beams of polarised (anti)protons in a storage
ring via the Stern—Gerlach effect (Rossmanith, 1988). Other examples to the same effect of Gedanken- and real experiments are
discussed by Dehmelt (1988).
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interpreted exclusively in a formal fashion through its connection with the generators of the subgroup
of rotations within the Lorentz group, much like we nowadays view it in modern relativistic field
theory. To some extent it seems fair to say that, in this case, Pauli was a pioneer of the modern view
according to which abstractconcepts based on symmetry-principles are seen as primary, whereas
their concrete interpretation in terms of localised material structures, to which e.g. the kinematical
concept of “rotation” in the proper sense applies, is secondary and sometimes even dispensable. But
one should not forget that this process of emancipation was already going on in connection with the
notion of classical fields, as Einstein used to emphasise, e.g., in his 1920 Leiden address “Ether and
the Theory of Relativity”® (CPAE, 1987-2005, Vol. 7, Doc. 38, pp. 308-320). We will come back to this
point below.”

Besides being sceptical in general, Pauli once also made a specific remark as to the inadequateness
of classical electron models; that was three years after Thomas’ note, in a footnote in the addendum
to his survey article “General Foundations of the Quantum Theory of Atomic Structure”,® that
appeared 1929 as chapter 29 in “Miiller-Pouillets Lehrbuch der Physik”. There he said:

Emphasising the kinematical aspects one also speaks of the “rotating electron” (English
“spin-electron”). However, we do not regard the conception of a rotating material structure to
be essential, and it does not even recommend itself for reasons of superluminal velocities one
then has to accept. (CSPWP, 1964, Vol. 1, pp. 721-722, footnote 2)

Interestingly, this is precisely the objection that, according to Goudsmit’s (1971) recollections,
Lorentz put forward when presented with Goudsmit’s and Uhlenbeck’s idea by Uhlenbeck, and which
impressed Uhlenbeck so much that he asked Ehrenfest for help in withdrawing the already
submitted paper (Goudsmit, 1971). He did not succeed, but the printed version contains at least a
footnote pointing out that difficulty:

The electron must now assume the property (a) [a g-factor of 2], which Lanpk attributed to the
atom’s core, and which is hitherto not understood. The quantitative details may well depend on
the choice of model for the electron. [...] Note that upon quantisation of that rotational motion [of
the spherical hollow electron], the equatorial velocity will greatly exceed the velocity of light.
(Goudsmit & Uhlenbeck, 1925, p. 954)

This clearly says that a classical electron model cannot reproduce the observable quantities, mass,
charge, angular momentum, and magnetic moment, without running into severe contradictions with
Special Relativity.® The electron model they had in mind was that developed by Abraham in his 1903
classic paper on the “Principles of Electron Dynamics” (Abraham, 1903) (cited in [footnote 2 on
p. 954] Goudsmit & Uhlenbeck, 1925). Interestingly, one of the first ones to spread this criticism was
Kronig, who in (Kronig, 1926a) asserts that “the internal velocities would have to be exceedingly
close to that of light” and again that “the velocities of spin would have to be exceedingly high if
classical concepts could still be applied to the case in question” in Kronig (1926b, p. 329). Much later,
in his letter to van der Waerden that we already mentioned, he again stresses as one of the primary
difficulties with this idea “the necessity to assume, for the rotating charge of an electron of classical
size, velocities surpassing the velocity of light” (Fierz & Weisskopf, 1960, p. 212). Since then it has
become standard textbook wisdom that classical electron models necessarily suffer from such
defects (cf. Born, 1989, p. 155) and that, even in quantum mechanics, “the idea of the rotating
electron is not be taken literally”, as Born (1989, p. 188) once put it. Modern references iterate this
almost verbatim:

6 German original: Ather und Relativititstheorie.

7 The case of a classical electromagnetic field is of particular interest insofar as the suggestive picture provided by
Faraday’s lines of force, which is undoubtedly helpful in many cases, also provokes to view these lines as objects in space, like
ropes under tension, which can be attributed a variable state of motion. But this turns out to be a fatal misconception.

8 German original: Allgemeine Grundlagen der Quantentheorie des Atombaues.

9 The phrase “upon quantisation” in the above quotation is to be understood quantitatively, i.e. as “upon requiring the
spin angular-momentum to be of magnitude #/2 and the magnetic moment to be one magneton (g = 2)".
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The term “electron spin” is not to be taken literally in the classical sense as a description
of the origin of the magnetic moment described above. To be sure, a spinning sphere
of charge can produce a magnetic moment, but the magnitude of the magnetic moment
obtained above cannot be reasonably modelled by considering the electron as a spinning
sphere.

(Taken from (http://hyperphysics.phy-astr.gsu.edu/hbase/spin.html))

In this contribution I wish to scrutinise the last statement. This is not done in an attempt
to regain respect for classical electron models for modern physics, but rather to illuminate
in some detail a specific and interesting case of the (well known) general fact that progress
is often driven by a strange mixture of good and bad arguments, which hardly anybody
cares to separate once progress is seen to advance in the “right direction”. Also, the issues
connected with an inner rotational motion of the electron are hardly mentioned in the
otherwise very detailed discussion of classical electron theories in the history-of-physics literature;
compare, e.g., Miller (1973) and Janssen and Mecklenburg (2006). Last but not least, the present
investigation once more emphasises the importance of special-relativistic effects due to
stresses, which are not necessarily connected with large velocities, at least in a phenomenological
description of matter. But before giving a self-contained account, I wish to recall Pauli’s
classic paper of December 1924, where he introduced his famous “classically non-describable
two-valuedness”.

2. A classically non-describable two-valuedness
2.1. Preliminaries

We begin by recalling the notion of gyromagnetic ratio. Consider a (not necessarily continuous)
distribution of mass and charge in the context of pre-Special-Relativistic physics, like, e.g., a charged
fluid or a finite number of point particles. Let V(X) denote the corresponding velocity field with
respect to an inertial frame and p, and p, the density distributions of electric charge and mass
corresponding to the total charge q and mass mg respectively. The total angular momentum is given
by (x denotes the antisymmetric vector product)

J= [ dxpnto6 6. (1)

The electric current distribution, f(&')::qu(Sé), is the source of a magnetic field which at large
distances can be approximated by a sum of multipole components of increasingly rapid fall-off for
large distances from the source. The lowest possible such component is the dipole. It has the slowest
fall-off (namely 1/r3) and is therefore the dominant one at large distances. (A monopole contribution

is absent due to the lack of magnetic charges.) The dipole field is given by!®
o o (ug\ 37 - M) — M
Baipole (X):= (4—n) R B

where r:=||X||, fi:=X/r and where M denotes the magnetic dipole moment of the current distribution,
which is often (we shall follow this) just called the magnetic moment:

, (2)

o1 I TR
M:=§_/ X pgR)E x V(R)). 2

Note the similarity in structure to (1), except for the additional factor of 1 in front of (3).

10 We use SI units throughout so that the electric and magnetic constants ¢ and u, will appear explicitly. Note that
g0t = 1/¢® and that g = 4n x 1077 kgm C 2 exactly, where C stands for “Coulomb”, the unit of charge.
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The gyromagnetic ratio of a stationary mass and charge current-distribution, Ry, is defined to be
the ratio of the moduli of M and J:

M
Rg= 120, (4)
Wil
We further define a dimensionless quantity g, called the gyromagnetic factor, by
Ry=g -1 (5)

2mg°

These notions continue to make sense in non-stationary situations if M and J are slowly changing
(compared to other timescales set by the given problem), or in (quasi) periodic situations if M and J
are replaced by their time averages, or in mixtures of those cases where, e.g., ] is slowly changing and
M rapidly precesses around J (as in the case discussed below).

An important special case is given if charge and mass distributions are strictly proportional to
each other, i.e., p4(X) = 2pp(X), where 1 is independent of X. Then we have

Re=s1 S g=1. (6)
2my

In particular, this would be the case if charge and mass carriers were point particles of the same
charge-to-mass ratio, like N particles of one sort, where

o= 9N 505 _ % o= M0 505 3
pa® =5 D 0®=%) and pp®) =" > IVE-X). 7)
i=1 i=1

After these preliminaries we now turn to Pauli’s paper.

2.2. Pauli’s paper of December 1924

On December 2, 1924, Pauli submitted a paper entitled “On the influence of the velocity
dependence of the electron mass upon the Zeeman effect”!! (CSPWP, 1964, Vol. 2, pp. 201-213) to the
Zeitschrift fiir Physik. In that paper he starts with the general observation that for a point particle of
rest-mass mg and charge g, moving in a bound state within a spherically symmetric potential, the
velocity dependence of mass,

mzmo/Mv (8)

affects the gyromagnetic ratio. Here B:=v/c, where v:=|V|. The application he aims for is the
anomalous Zeeman effect for weak magnetic fields, a topic on which he had already written an
earlier paper, entitled “On the Rules of the Anomalous Zeeman Effect”'?> (CSPWP, 1964, Vol. 2,
pp. 151-160), in which he pointed out certain connections between the weak-field case and the
theoretically simpler case of a strong magnetic field. Note that “weak” and “strong” here refers to the
standard set by the inner magnetic field caused by the electrons orbital motion, so that “weak” here
means that the Zeeman split is small compared to the fine structure.

Since the charge is performing a quasi periodic motion,'* its magnetic moment due to its orbital
motion is given by the time average (I will denote the time average of a quantity X by (X))

(M) = q (% x V) /2. 9)

' German original: Uber den EinfluR der Geschwindigkeitsabhingigkeit der Elektronenmasse auf den Zeemaneffekt.

12 German original: Uber die GesetzmiRigkeiten des anomalen Zeemaneffekts.

13 Due to special-relativistic corrections, the bound orbits of a point charge in a Coulomb field are not closed. The leading
order perturbation of the ellipse that one obtains in the Newtonian approximation is a prograde precession of its line of
apsides.
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On the other hand, its angular momentum is given by

j:m(zxm:mo@xm/\/uﬁz. (10)

It is constant if no external field is applied and slowly precessing around the magnetic field direction
if such a field is sufficiently weak, thereby keeping a constant modulus. Hence we can write

<XXV>=mio<ﬁ>, (1)

where the averaging period is taken to be long compared to the orbital period of the charge, but short
compared to the precession period of J if an external magnetic field is applied. This gives

MO Iq]
—— = 7, 12
v 2mo’ (12)

where'#

y::<ﬂ>. (13)

More specifically, Pauli applies this to the case on an electron in the Coulomb field of a nucleus.
Hence m, from now on denotes the electron mass. Its charge is ¢ = —e, and the charge of the nucleus
is Ze. Using the virial theorem, he then gives a very simple derivation of

y =1+ W/moc?, (14)

where W denotes the electron’s total energy (kinetic plus potential). For the quantised one-electron
problem, an explicit expression for W in terns of the azimuthal quantum number k (j + 1 in modern
notation, where j is the quantum number of orbital angular-momentum) and the principal quantum
number n (n = n, + k, where n, is the radial quantum number) was known since Sommerfeld’s (1916)
explanation of fine structure; compare, e.g., [formula (17), p. 53] Sommerfeld (1916). Hence Pauli
could further write

252 -1/2 22
Y= {1+ - 22 } ~ —0(2—22. (15)
n—k+ Vk* — o222y n

where the approximation refers to small values of o2Z? and where x:=e? /4neohc ~ 137 is the fine-
structure constant. For higher Z one obtains significant deviations from the classical value y = 1. For
example, Z = 80 gives g = 0.812.

The relativistic correction factor y affects the angular frequency!® with which the magnetic
moment created by the electron’s orbital motion will precess in a magnetic field of strength B. This
angular frequency is now given by ywg, where wg is the Larmor (angular) frequency:

0 =8y (16)
Here we explicitly wrote down the gyromagnetic ratio, g,, of the electron’s orbital motion even
though g, = 1, just to keep track of its appearance. The energy for the interaction of the electron with
the magnetic field now likewise receives a factor of y.

Pauli now applies all this to the “core model” for atoms with a single valence electron.'® According
to the simplest version of this model, the total angular momentum, J, and the total magnetic
moment, M, are the vector sums of the angular and magnetic momenta of the core (indicated here by

14 This is Pauli’s notation. Do not confuse this y with the Lorentz factor 1/4/1 — 2, which nowadays is usually abbreviated
by 7, though not in the present paper.

15 We will translate all proper frequencies in Pauli’s paper into angular frequencies. Hence there are differences in factors
of 2. This is also related to our usage of #:=h/2x rather than h (Planck’s constant).

16 Instead of the more modern expression “valence electron” Pauli speaks of “light electron” (German original:
Lichtelektron). Sometimes the term “radiating electron” is also used, e.g., by Tomonaga (1997).
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a subscript c) and the valence electron (indicated here by a subscript e):
j:jc +jev (]73)

M = M, + Me.. (17b)

The relations between the core’s and electron’s magnetic momenta on one side, and their angular
momenta on the other, are of the form

o ege 2
Me=5 5 e (18a)
o e 7
Me =5 Je. (18b)

The point is now that M is not a multlple of 1fge;égc Assuming a constant J for the time being,
this means that M will precess around J. Hence M is the sum of a time independent part, MH parallel
to] and a rotating part, M, perpendicular to J. The time average of M, vanishes so that the effective
magnetic moment is just given by MH. Using (17) and (18), and resolving scalar products into sums
and differences of squares,’we get

A jM T e ge(j'je)+gc(j'jc)"
MH = "2 ] =Tm1—2]
_ e gP -+ P+ e PJi—Je s
- 2m0 2]2 .] - 2m0 &e +(gc _ge) 2]2 ] (19)

Setting again g, = 1, the expression in curly brackets gives the gyromagnetic factor of the total
system with respect to the effective magnetic moment. Its quantum analog is obtained by replacing
J*> = JJ+ 1) and correspondingly for J? and J2, which is then called the Landé factor'® g;. Hence

DD 4+ D =JulJe+ 1)
1) (20)

All this is still right to a good approximation if J is not constant, but if its frequency of precession
around the direction of the (homogeneous) external field is much smaller than the precession
frequency of M around J, which is the case for sufficiently small external field strength.

Basically through the work of Landé it was known that g. = 2 fitted the observed multiplets of
alkalies and also earth alkalies quite well. This value clearly had to be considered anomalous, since
the magnetic moment and angular momentum of the core were due to the orbital motions of the
electrons inside the core, which inevitably would lead to g. = 1, as explained in Section 2.1. This was
a great difficulty for the core model at the time, which was generally referred to as the “magneto-
mechanical anomaly”. Pauli pointed out that one could either say that the physical value of the core’s
gyromagnetic factor is twice the normal value, or, alternatively, that it is obtained by adding 1 to the
normal value.

These two ways of looking at the anomaly suggested two different ways to account for the
relativistic correction, which should only affect that part of the magnetic moment that is due to
the orbital motion of the inner electrons, that is, the “normal” part of g.. Hence Pauli considered the
following two possibilities for a relativistic correction of g., corresponding to the two views just
outlined:

gi=1+(g —

g =21—-g.=2-y or g.=1+1—>g.=1+. (21)

Then comes his final observation, that neither of these corrections are compatible with
experimental results on high-Z elements by Runge, Paschen and Back, which, like the low-Z
experiments, resulted in compatibility with (20) only if g. = 2. In a footnote Pauli thanked Landé and

7 Like, e.g., J-Jo = =3 —J* = —JD) = =G = =]
18 For more historical background information on Landé’s impressive work on the anomalous Zeeman effect we refer to
the comprehensive studies by Forman (1968, 1970).
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Back for reassuring him that the accuracy of these measurements where about 1%. Pauli summarises
his findings as follows:

If one wishes to keep the hypothesis that the magneto-mechanical anomaly is also based in closed
electron groups and, in particular, the K shell, then it is not sufficient to assume a doubling of the
ratio of the group’s magnetic moment to its angular momentum relative to its classical value. In
addition, one also needs to assume a compensation of the relativistic correction. (CSPWP, 1964,
Vol. 2, p. 211)

After some further discussion, in which he stresses once more the strangeness'® that lies in g, = 2, he
launches the following hypothesis, which forms the main result of his paper:

The closed electron configurations shall not contribute to the magnetic moment and angular
momentum of the atom. In particular, for the alkalies, the angular momenta of, and energy
changes suffered by, the atom in an external magnetic field shall be viewed exclusively as an
effect of the light-electron, which is also regarded as the location [“der Sitz”] of the magneto-
mechanical anomaly. The doublet structure of the alkali spectra, as well as the violation of the
Larmor theorem, is, according to this viewpoint, a result of a peculiar, classically indescribable
disposition of two-valuedness of the quantum-theoretic properties of the light-electron. (CSPWP,
1964, Vol. 2, p. 213)

Note that this hypothesis replaces the atom’s core as carrier of angular momentum by the valence
electron. This means that (17), (18) and (20) are still valid, except that the subscript c (for “core”) is
now replaced by the subscript s (for “spin”, anticipating its later interpretation), so that we now have
a coupling of the electron’s orbital angular momentum (subscript e) to its intrinsic angular
momentum (subscript s). In (20), with g, replaced by g, one needs to set g, = 2 in order to fit the
data. But now, as long as no attempt is made to relate the intrinsic angular momentum and magnetic
moment of the electron to a common origin, there is no immediate urge left to regard this value as
anomalous. Also, the problem in connection with the relativistic corrections (21) now simply
disappeared, since it was based on the assumption that J. and M. were due to orbital motions of
inner (and hence fast) electrons, whereas in the new interpretation only J, and M, are due to orbital
motion of the outer (and hence slow) valence electron.

It is understandable that this hypothesis was nevertheless felt by some to lack precisely that kind
of “explanation” that Pauli deliberately stayed away from: a common dynamical origin of the
electron’s inner angular momentum and magnetic moment. From here the “story of spin” takes its
course, leading to the hypothesis of the rotating electron, first conceived by Kronig and a little later
by Goudsmit and Uhlenbeck, and finally to its implementation into Quantum Mechanics by Pauli
(1927) (“Pauli Equation” for the non-relativistic case) and Dirac (1928) (fully Lorentz invariant “Dirac
Equation”). Since then many myths surrounding spin built up, like that the concept of spin, and in
particular the value g = 2, was irreconcilable with classical (i.e. non-quantum) physics and that only
the Dirac equation naturally predicted g = 2. As for the latter statement, it is well known that the
principle of minimal coupling applied to the Pauli equation leads just as natural to g = 2 as in case of
the Dirac equation (compare Feynman, 1961, p. 37; Galindo & Sanchez del Rio, 1961). Also, the very
concept of spin has as natural a home in classical physics as in quantum physics if one starts from
equally general and corresponding group-theoretic considerations.?°

19 For example: how can one understand the sudden doubling that the gyromagnetic factor of an outer electron must
suffer when joining the core?

20 The spaces of states in quantum and classical mechanics are Hilbert spaces and symplectic manifolds, respectively. An
elementary system is characterised in Quantum Mechanics by the requirement that the group of space-time symmetries act
unitarily and irreducibly on its space of states. The corresponding requirement in Classical Mechanics is that the group action
be symplectic and transitive (Bacry, 1967). The classification of homogeneous (with respect to the space-time symmetry
group, be it the Galilei or Lorentz group) symplectic manifolds (Arens, 1971; Guillemin & Sternberg, 1990) leads then as natural
to a classical concept of spin as the classification of unitary irreducible (ray-) representations leads to the quantum-
mechanical spin concept. The mentioned classical structures are related to the quantum structures by various concepts of
“quantisation” like “geometric quantisation”. Compare (Woodhouse, 1991), in particular Chapter 6 on elementary systems.
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For the rest of this contribution I wish to concentrate on the particular side aspect already
outlined in the Introduction. Let me repeat the question: In what sense do the actual values of the
electron parameters, mass, charge, intrinsic angular-momentum, and gyromagnetic factor, resist
classical modelling in the framework of Special Relativity?

3. Simple models of the electron

In this section we will give a self-contained summary of the basic features of simple electron
models. The first model corresponds to that developed by Abraham (1903), which was mentioned by
Goudsmit and Uhlenbeck as already explained.?! We will see that this model can only account for
g factors in the interval between 3 and 1! if superluminal speeds along the equator are to be avoided.
We also critically discuss the assumption made by Goudsmit and Uhlenbeck that this (i.e. Abraham’s)
model predicts g = 2. Since this model neglects the stresses that are necessary to prevent the charge
distribution from exploding, we also discuss a second model in which such stresses (corresponding to
a negative pressure in the electron’s interior) are taken into account, at least in some slow-rotation
approximation. This model, too, has been discussed in the literature before (Cohen & Mustafa, 1986).
Here it is interesting to see that due to those stresses significantly higher values of g are possible,
though not for small charges as we will also show.?? Finally, we discuss the restriction imposed by the
condition of energy dominance, which basically says that the speed of sound of the stress-supporting
material should not exceed the speed of light. This sets an upper bound on g given by . Note that all
these statements are made only in the realm where the slow-rotation approximation is valld. [ do not
know of any fully special-relativistic treatment on which generalisations of these statements could be
based. In that sense, the general answer to our main question posed above is still lacking.

3.1. A purely electromagnetic electron

Consider a homogeneous charge distribution, p, of total charge Q on a sphere of radius R centred at
the origin (again we write r:=||X|| and ri:=X/r):

p®) = —= 5(r — R). (22)

For the moment we shall neglect the rest-mass of the matter that sits at r = R and also the stresses it
must support in order to keep the charge distribution in place. The charge is the source of the scalar
potential

1 f R,
o) = R Q{ orr< (23)

47180 X=X 4rnegR | R/r for r>R,
with corresponding electric field

Q {6 for r<R,

ER)=—— 24
@ 4neoR? | 1 for r>R. (24)
Let now the charge distribution rotate rigidly with constant angular velocity @. This gives rise to a

current density

J®) = (@ x %) p®) = R), (25)

21 Since we are mainly concerned with the spin aspects, we will ignore the differences between Abraham’s and, say,
Lorentz’ model (rigid versus deformable), which become important as soon as translational motions are considered. We
mention Abraham not for any preference for his “rigid” model, but for the reason that he considered rotational motion
explicitly. Its interaction with the translational motion was further worked out in detail by Schwarzschild (1903), but this is
not important here.

22 This is another example of a special-relativistic effect which has nothing to do with large velocities.
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which, in turn, is the source of a vector potential according to

AR = z%.z/ | ||?<j (2’” & = 1H207?R B x {;'(R/rﬁ ?gf :j; (26)
Hence, in the rotating case, there is an additional magnetic field in addition to the electric field (24):
U1 /3
B :ﬁ{(z;\;(/:.l\%)—M)/r3 :Z; :ii (27)
where
M:=1QR* &. (28)

For r <R this is a constant field in @ direction. For r >R it is a pure dipole field (i.e. all higher multipole
components vanish) with moment (28).

3.1.1. Energy
The general expression for the energy of the electromagnetic field is?*

(1) = 1 3
5_432<L0E ®+/loB (x))dx. (29)

For the case at hand, the electric and magnetic contributions to the energy are, respectively, given by

Q? (0 fromr<R, 30
ée:SncoR 1 fromr>R, (30a)
2 from r<R

o _ MO pr2/,p3)3 i

ém_4nM /R {% from r>R (30b)
The total magnetic contribution can be written as

. _ Mo p3_ 1,9

Em =7 M*/R =5 1o, (31)
where

—H0 g2

I= 187 Q°R (32)

may be called the electromagnetic moment of inertia (Abraham, 1903). It has no mechanical
interpretation in terms of a rigid rotation of the electrostatic energy distribution (see below)!
The total electromagnetic energy can now be written as

2
2
é“:é“e+£’m=%ﬂ{l+§/j’2}, (33)

where we used ¢y = 1/c? and set f:=Rw/c. The ratio of magnetic (“kinetic”) to total energy is then
given by

Im_ B
=5 2 (34)
& %4_/32

which is a strictly monotonic function of 8 bounded above by 1 (as it should be). However, if we
require f<1, the upper bound is .

23 From now on we shall denote the modulus of a vector simply by its core symbol, i.e., |E|| = E, etc.
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3.1.2. Angular momentum
The momentum density of the electromagnetic field vanishes for r<R and is given by

B = 5525 QUM x ii)/r° (35)

for r>R (1/c? times “Poynting vector”). The angular-momentum density also vanishes for r <R. For

r>R it is given by

)
=l .

Hence the total linear momentum vanishes, whereas the total angular momentum is given by

(36)

e v}
@ =X x B = 7655 Q

< P
]._/r>R€(x)d x=1I® (37)

with the same I (moment of inertia) as in (32).

3.1.3. The gyromagnetic factor
The gyromagnetic ratio now follows from expressions (28) for M and (37) for J:

M_6zR__Q

—=—a=g5-, 38

J " hQ %2m (38)
where m denotes the total mass, which is here given by

2
g2t Q 20

m=&/c T {1 +9/)’ } (39)
Hence g can be solved for

g=3{1+35, (40)
so that

3<g<i if 0<p<1. (41)

Even with that simple model we do get quite close to g = 2.

3.14. Predicting g = 2?

It is sometimes stated that Abraham’s model somehow “predicts” g = 2 (e.g. by Pais, 1989, p. 39 or
by Pfister & King, 2003, p. 206), though this is not at all obvious from Abraham’s own (1903) account.
My interpretation for how such a “prediction” could come about can be given in terms of the present
special-relativistic model.?* It rests on an (inconsistent) combination of the following two
observations. First, if we Lorentz transform the purely electric field (24) into constant translational
motion with velocity w, we obtain a new electric and also a non-vanishing magnetic field. The
integrated Poynting vector then gives the total electromagnetic momentum of the charged shell at
speed w:

ng NG Tevv\;/cf “
where
QZ
Me:=Ee/C? = g—i R (43)

24 Here we ignore Abraham’s rigidity condition which would complicate the formulae without changing the argument
proper. Also recall footnote 21.
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The infamous factor % results from the contribution of the (unbalanced) electromagnetic stresses.?’ In
this way one is led to assign to the electron a dynamically measurable rest-mass of m = $m, if one
neglects the rotational energy. Second, we may ask how fast the electron is to spin for (39) to just give
m = £m, (rest energy of the spinning electron). The immediate answer is, that this is just the case if
and only if 1+ f—,ﬁz = 4, which in view of (40) is equivalent to g = 2.

It is now obvious how this argument rests on the conflation of two different notions of mass. The
factor 2 will consistently be dealt with by taking into account the stresses that balance electrostatic
repulsion, not by trying to account for it in letting the electron spin fast enough.

3.2. A side remark on the kinematics of Faraday lines

In the Introduction we stressed that the emancipation of the notion of angular momentum from
the usual kinematical notion of rotation in space had already begun in classical field theory. More
precisely this applies to Maxwell’s theory, in which the notion of a field differs from that of, say,
hydrodynamics in that it is not thought of as being attached to a material carrier. This has
consequences if we wish to apply kinematical states of motion to the field itself.

At first sight, Faraday’s picture of lines of force in space suggests to view them as material entities,
capable of assuming different kinematical states of motion. If so, the time-dependence of the
electromagnetic field might then be interpreted as, and possibly explained by, the motions of such
lines (given by some yet unknown equations of motion, of which the Maxwell equations might turn
out to be some coarse grained version). That this is not possible has been stressed by Einstein in his
1920 Leiden address “Ether and the Theory of Relativity”, where he writes

If one wishes to represent these lines of force as something material in the usual sense, one is
tempted to interpret dynamical processes [of the em. field] as motions of these lines of force, so
that each such line can be followed in time. It is, however, well known that such an interpretation
leads to contradictions.

In general we have to say that it is possible to envisage extended physical objects to which the
notion of motion [in space] does not apply. (CPAE, 1987-2005, Vol. 7, Doc. 38, p. 315)

The reason why we mention this is that the notion of an “electromagnetic moment of inertia”,
introduced in (32), nicely illustrates this point. Assume that the electrostatic energy density p, of the
Coulomb field of charge Q corresponded to a mass density according to a local version of E = mc?, i.e.,

QZ

pn®r=po®)/* = (352 ) 7 (44)

If the electrostatic energy is now thought of as being attached to the somehow individuated lines of
force, a moment of inertia for the shell R<r<R would result, given by

/ ' ) : 2 /
IR = /R<r<R, pm(®) (rsin 0)2 d°x = (ﬁ) 0%(R -R). (45)

But this diverges as R' — oo, in contrast to (32), showing that we may not think of the energy
distribution of the electromagnetic field as rigidly rotating in the ordinary sense.

25 Generally speaking, the factor $ marks the discrepancy between two definitions of “electromagnetic mass”, one through
the electromagnetic momentum, the other, called m, above, through the electrostatic energy. This discrepancy is nothing to
get terribly excited about and simply a consequence of the non-conservation of the electromagnetic energy-momentum
tensor, i.e., V, T4, #0, a result of which is that the (unbalanced) electromagnetic stresses contribute to the electromagnetic
momentum another third of the expression p = mew/\/1 — w2 /c? that one naively obtains from just formally transforming
total energy and momentum as time and space components respectively of a four vector. Much discussion in the literature was
provoked by getting confused whether this state of affairs had anything to do with Lorentz non-covariance. See, e.g., Campos &
Jiménez (1986) for a good account and references.
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3.3. An electron model with Poincaré stresses

In this section we will modify the previous model for the electron in the following three aspects:

1. The infinitesimally thin spherical shell is given a small rest-mass of constant surface density
mg/4nR?.

2. Stresses in the shell are taken into account which keep the electron from exploding. They are
called “Poincaré stresses” since Poincaré was the first in 1906 to discuss the dynamical need of
balancing stresses (Miller, 1973; Poincaré, 1906).

3. The rotational velocity is small, so that (Rw/c)" terms are neglected for n>2.

3.3.1. Poincaré stress

The second modification needs further explanation. If we view the surface r =R as a kind of
elastic membrane, there will be tangential stresses in the surface of that membrane that keep the
charged membrane from exploding. In the present approximation, which keeps only linear terms in
w, these stresses need only balance the electrostatic repulsion, which is constant over the surface
r = R. In quadratic order the stresses would, in addition, need to balance the latitude dependent
centrifugal forces, which we neglect here.

To calculate the surface stress that is needed to balance electrostatic repulsion we recall
expression (30a) for the electrostatic energy as function of radius R:

@

e = e (46)
Varying R gives us the differential of work that we need to supply in order to change the volume
through a variation of R. Equating this to —pdV = —p 4=R? dR gives the pressure inside the electron:

1) Q°
P~ () e o
Now, imagine the sphere r = R being cut into two hemispheres along a great circle. The pressure tries
to separate these hemispheres by acting on each with a total force of strength pzR? in diametrically
opposite directions.?® This force is distributed uniformly along the cut (the great circle), whose length
is 2nR. Hence the force per length is just pR/2. The surface stress, o (force per length) that is needed to
prevent the electron from exploding is just the negative of that. Using (47), we therefore get

1 Q?
c=- — . 48
<4n80> 16xR? (48)
3.3.2. Energy-momentum tensor
The energy-momentum tensor now receives a contribution that accounts for the presence of the
surface stress (48) that acts tangential to the surface r = R in the local rest frame corresponding to each
surface element of the rotating sphere. The four-velocity of each surface element is given by?’

U=20 +wd,, (49)

which is normalised (g(u, u) = c2) up to terms w? (which we neglect). Recall that the space-time
metric of Minkowski space in spatial polar coordinates is (we use the “mostly plus” convention
for the signature)

g=-cdt® dt +dredr+r*do®do+r?sin’ 0de ® de. (50)

26 This follows immediately from the general fact that the total force along a given direction that a constant pressure
exerts on a surface is given by the pressure times the area of the planar projection of that surface perpendicular to the given
direction. Alternatively, it may be verified directly through integrating the element of force in polar direction (i.e.
perpendicular to the surface spanned by the great circle), dF = (p cos 0) (R? sin 6 d0 de), over a hemisphere.

27 1 use space-time coordinates (t,r, 0, p) where the latter three are standard spherical polar coordinates. I also employ the
notation 0,:=0/0x" for the chart-induced vector fields, so that, e.g., 9,,:=0/0¢.



D. Giulini / Studies in History and Philosophy of Modern Physics 39 (2008) 557-578 571

The energy-momentum tensor has now three contributions, corresponding to the matter of the shell
(subscript m), the Poincaré stresses within the shell (subscript ¢), and the electromagnetic field
(subscript em):

T=Tn+Ty; +Tem. (51a)

The first two comprise the shell’s contribution and are given by

mo .
Tn = (r—Rueu, 51b
m= ( ) (51b)
1 Q?
T, = — ——36(r—R)P. 51c
(47f80)16nR3 ¢ ) (51¢)

Here P is the orthogonal projector onto the two-dimensional subspace orthogonal to u and d,, which
is the subspace tangential to the sphere in each of its local rest frames. It can be written explicitly in
terms of local orthonormal two legs, n; and n,, spanning these local two planes. For example, we may
take ny:=(1/r)dy and write (since n, must be orthogonal to 8, and 9y) n, = ad; + bd,, where the
coefficients a, b follow from g(u,n,) = 0 and normality. This gives

P=n®n +n,ny, (52a)
where

1 b

nm :ﬁ 69, (52 )

ny:=c"2wrsin 08, + (rsin 6)7'3,. (52¢)

Note that g(nqy,ny) = g(ny,nz) = 1 and g(ny,ny) = 0. Eq. (52a) may therefore be written in the form
(again neglecting w? terms)

P =128, ®0 + (rsin0) 23, ® 3, + ¢ 2w(d ® d, + d, ® dy). (53)

For us the crucial term will be the last one, which is off-diagonal, since it will contribute to the total
angular momentum. More precisely, we will need to invoke the integral of (o;-P-9,) (the dot (-
refers to the inner product with respect to the Minkowski metric) over the sphere r = R:

/(at P-2,)R?sin0dody /C*Z 08E,, R2sin0d0dp = —83—an4, (54)

where we used g,,:=g(0, ;) = —c? and 8,0=80,,0,) = R?sin? 0 from (50).

3.3.3. A note on linear momentum and von Laue’s theorem
The addition of the stress part has the effect that the total energy-momentum tensor is now
conserved (here in the slow-rotation approximation):

v, T — 0, (55)

as one may explicitly check. Note that since we use curvilinear coordinates here we need to invoke
the covariant derivative.?® Indeed, writing the shell’s energy-momentum tensor as Ts:=Ty, + T, it is
not difficult to show that v, T4" is zero for v+, and for v = r is given by p é(r — R) with p as in (47). But
this clearly equals —V, T4, since, according to Maxwell’s equations, this quantity equals minus the
electromagnetic force density on the charge distribution, which is obviously —p é(r — R). In fact, this
is precisely the interpretation that we used to determine p in the first place.

The conservation equation (55) generally ensures that total energy and total momentum form,
respectively, the time and space components of a four vector. Let us now show explicitly that T,
removes the factor $ in the calculation of the linear momentum when the system is boosted in, say,

8 We havev, T" = 9,T" + I', T + I',T", where I'},;:=1g"(~3,8,; + 0,8, + 8,8,,), with g,, taken from (50). The I"’s are

J7x

most easily computed directly from the geodesic equation.
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the z-direction. To do this we need to calculate the integral of 9, - T, - 9, over all of space and show
that it precisely cancels the corresponding integral of the electromagnetic part, i.e. the integral over
0z - Tem - 0z. Noting that g(dy,0;) = rsin 0, we have

/alV(aZ T, - 8,) = / drd0de(c 8(r — R)r*sin® 0) = i—”aRZ = —%m@e, (56)

whereas the tracelessness of T.;; together with isotropy immediately imply

1 1
/dV(az Tom - 3y) =§/c1vC—2(at Ton -0) = 5. (57)

That the sum of (56) and (57) vanishes is a consequence of Laue’s theorem, which basically states
that the integral over all of space of the space-space components of a time-independent conserved
energy-momentum tensor vanish. Here this was achieved by including stresses, which subtracted
one-third of the electromagnetic linear momentum.?® Similarly, the stresses will also subtract from
the electromagnetic angular momentum, this time even the larger portion of three quarters of it.
Moreover, since the magnetic moment is the same as before, the stresses will have the tendency to
increase the gyromagnetic ratio. This we will see next in more detail.

3.3.4. Angular momentum
The total angular momentum represented by (51) is calculated by the general formula

1
J== [T 0 @x=Jn-+), +len (582)

The matter part, J,,, corresponding to (51b), yields the standard expression for a mass-shell of
uniform density:

Jm = 3mowR%. (58b)

The electromagnetic part is the same as that already calculated, since the electromagnetic field is the
same. Therefore we just read off (37) and (32) that

Jom = 2-2meoR?. (58¢)
Finally, using (54), the contribution of the stresses can also be written down:
Jo =3 2meoR? = 3o (58d)

Adding the last two contributions shows that the inclusion of stresses amounts to reducing the
electromagnetic contribution from the value given by (58b) to a quarter of that value:

.]em +.]r1 :]em - %.]em = zlljenr (586)

In total we have
J=(mo +1ime)2oR>. (58f)

To linear order in w the kinetic energy does not contribute to the overall mass, m, which is therefore
simply given by the sum of the bare and the electrostatic mass

m = mo + M. (58f)

29 The requirement on the stress part T, to be such that the total energy and momentum derived from Ten, + T, should
transform as a four vector clearly still leaves much freedom in the choice of T,. The choice made here is such that the total rest
energy equals the electrostatic self-energy. But other values for the rest energy (like, e.g., 4 of the electrostatic contribution)
would also have been possible. In particular, the “covariantisation through stresses” does not as such prefer any of the
“electromagnetic masses” mentioned above (footnote 25), as has also been demonstrated in an elegant and manifestly
covariant fashion by Schwinger (1983).
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Using this to eliminate m, in (58f) gives

J= (M) @ me2>. (58f)

3.3.5. The gyromagnetic factor
Since the electromagnetic field is exactly as in the previous model, the magnetic moment in the
present case is that given by (28). The gyromagnetic factor is defined through

M Q
T —gﬂ, (61)
which leads to
6
&=115me/m’ (62)

This allows for a range of g given by
1<g<6, (63)

where g = 1 corresponds to m = my, i.e., no electromagnetic contribution and g = 6 corresponds to
mg = 0, i.e., all mass is of electromagnetic origin. The interval (63) looks striking, given the modern
experimental values for the electron and the proton:

Selectron = 2.0023193043622  and  gpyoron = 5.585694713. (64)

However, we have not yet discussed the restrictions imposed by our slow-rotation assumption. This
we shall do next.

3.3.6. Restrictions by slow rotation

Our model depends on the four independent parameters, P = (myg, Q, R, w). On the other hand, there
are four independent physical observables, O = (m,Q,g,]) (M is dependent through (61)). Our model
provides us with a functional dependence expressing the observables as functions of the parameters:
O = O(P). Since Q is already an observable, it remains to display m,g,] in terms of the parameters:

2
m(mo, Q,R) = mo + g—OQ—::mo + me(Q,R), (65a)
n R
mo,Q,R) = 6 (65b)
80mo. Q. R) = 5 e O R
J(mo, Q. R, w) = (Mg +ime(Q,R)) 3R> (65¢)

These relations can be inverted so as to allow the calculation of the values of the parameters from the
values of the observables. If we choose to display 8:=Rw/c rather than w, this gives

_mb-8
mo(m,g) =m “5g (66a)
_ _6g-1
Me(M,g) =m—mg=m T 5g (66b)
> T 8nm, 8mm6(g—1)’
-1
o @] -1
80,Q.8) =2J {4”805} —5 (66d)

where the last equation (66d) follows from (65c) using (66a)-(66c¢). It is of particular interest to us
since it allows to easily express the slow-rotation assumption < 1. For this it will be convenient to
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measure Q in units of the elementary charge e and J in units of #/2. Hence we write

Q=nge and 2J=nmnjh. (66d)
Then, using that the fine-structure constant in SI units reads o = e?/(4neoch) ~ 4 we get
p="U 196D (66d)
ng 5

This nicely shows that the slow-rotation approximation constrains the given combination of angular
momentum, charge, and gyromagnetic factor. In particular, any gyromagnetic factor up to g = 6 can be
so obtained, given that the charge is sufficiently large. If we set g = 2 and n; = 1 (corresponding to the
electron’s values), we get

N> /(g — 1)247 ~ 16. (66d)

This means that indeed we cannot cover the electron values with the present model while keeping the
slow-rotation approximation, though this model seems to be able to accommodate values of g up to 6
if the charge is sufficiently high. However, we did not check whether the assumption that the matter of
the shell provided the stabilising stresses is in any way violating general conditions to be imposed on
any energy-momentum tensor. This we shall do next.

3.3.7. Restrictions by energy dominance

Energy dominance essentially requires the velocity of sound in the stress-supporting material to
be superluminal. It is conceivable that for certain values of the physical quantities (m,Q,g,]) the
stresses would become unphysically high. To check that, at least for the condition of energy
dominance, we first note from (51c) and (43) that the stress part of the energy-momentum tensor
can be written in the form

1 m
T, =— 547:1;2 c28(r — R)P. (70)

Hence the ratio between the stress within the shell (in any direction given by the unit spacelike
vector n tangent to the shell, so that n-P-n = 1) and its energy density, as measured by a locally
co-rotating observer, is given by

_ me _3(g_l)
T 2myg 6-g

n-T-n
u-T-u

, (71)

where we used (66a) and (66b) in the last step. The condition of energy dominance now requires this
quantity to be bounded above by 1, so that

3g-1 9
6-g <1 <=>g<Z. (72)

Interestingly this depends on g only. Hence we get, after all, an upper bound for g, though from the
condition of energy dominance, i.e. a subluminal speed of sound in the shell material, and not from
the condition of a subluminal rotational speed.

3.3.8. The size of the electron
What is the size of the electron? According to (66c¢), its radius comes out to be
__ 1 e5
" 4megc2 2m 3’7
where we set Q = —e and g = 2. On the other hand, in Quantum Mechanics, the Compton wavelength
of the electron is
. 2mh
A=—)
mc

(73)

(74)
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so that their quotient is just

R 5 ~ —3
This might first look as if the classical electron is really small, at least compared to its Compton
wavelength. However, in absolute terms we have (fm stands for the length scale “Fermi”)

R~2x107"m = 2fm, (76)

which is very large compared to the scale of 10~ fm at which modern high-energy experiments have
probed the electron’s structure, so far without any indication for substructures. At that scale the
model discussed here is certainly not capable of producing any reasonable values for the electron
parameters, since the electrostatic mass (and hence the total mass, if we assume the weak energy-
condition, mg > 0, for the shell matter) comes out much too large and the angular momentum much
too small (assuming f<1).

One might ask whether the inclusion of gravity will substantially change the situation. For
example, one would expect the gravitational binding to reduce the electrostatic self-energy. An
obvious and answerable question is whether the electron could be a Black Hole? What is particularly
intriguing about spinning and charged Black Holes in General Relativity is that their gyromagnetic
factor is g = 2, always and exactly!3° and Garfinkle and Traschen (1990) for instructive discussions as
to what makes g = 2 also a special value in General Relativity. For a mass M of about 1073’ kg to
be a Black Hole it must be confined to a region smaller than the Schwarzschild radius
Ry =2GM/c* ~ 10>’ m, which is almost 40 orders of magnitude below the scale to which the
electron structure has been probed and found featureless. Hence, leaving alone Quantum Theory, it is
certainly a vast speculation to presume the electron to be a Black Hole. But would it also be
inconsistent from the point of view of General Relativity? The Kerr-Newman family of solutions for
the Einstein—-Maxwell equations allow any parameter values for mass (except that it must be
positive), charge, and angular momentum. As already stated, g = 2 automatically. Hence there is also
a solution whose parameter values are those of the electron. However, only for certain restricted
ranges of parameter values do these solutions represent Black Holes, that is, possess event horizons
that cover the interior singularity; otherwise they contain naked singularities.

More precisely, one measures the mass M, angular momentum per unit mass A, and charge Q of a
Kerr-Newman solution in geometric units, so that each of these quantities acquires the dimension of
length. If we denote these quantities in geometric units by the corresponding lower case letters, m, a,
and g, respectively, we have

G
m=M 2 (77a)
A
a=", (77b)
G
9=0\/ = (77¢)
The necessary and sufficient condition for an event horizon to exist is now given by
an 2 q\2
(E) + (E) <1. (77¢)
The relevant quantities to look at are therefore the dimensionless ratios>!
a A c _ Am?sT) 18
m=Mc ~ WXS.SX]O , (79a)

30 1t is known that g = 2 is already a preferred value in special-relativistic electrodynamics (Bargmann, Michel, & Telegdi,
1959), a fact on which modern precision measurements of g — 2 rest. See Pfister & King (2003).
31 We write P[X] to denote the number that gives the physical quantity P in units of X.
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qg_Q Jjwme _ QO 10
m=M Varc ~ Mkg <10 (79b)

Now, if we insert the parameter values for the electron®? (we take for Q the modulus e of the electron
charge) we arrive at the preposterous values

a

= (5 x 102)(5.5 x 10'®) =~ 2.5 x 10*, (80a)
4 ~ (16x10")x10° ~ 16x10%, (80b)
Melectron

so that we are indeed very far from a Black Hole. Classically one would reject the solution for the
reason of having a naked singularity. But note that this does not exclude the possibility that this
exterior solution is valid up to some finite radius, and is then continued by another solution that
takes into account matter sources other than just the electromagnetic field.>*

4. Summary

Understanding the generation of new ideas and the mechanisms that led to their acceptance is a
common central concern of historians of science, philosophers of science, and the working scientists
themselves. The latter might even foster the hope that important lessons can be learnt for the future.
In any case, it seems to me that from all perspectives it is equally natural to ask whether a specific
argument is actually true or just put forward for persuasive reasons.

Within the history of Quantum Mechanics the history of spin is, in my opinion, of particular
interest, since it marks the first instance where a genuine quantum degree of freedom without a
classically corresponding one were postulated to exist. If this were the general situation, our
understanding of a quantum theory as the quantisation of a classical theory cannot be fundamentally
correct.>* On the other hand, modern theories of quantisation can explain the quantum theory of a
spinning particle as the result of a quantisation applied to some classical theory, in which the notion
of spin is already present.> Hence, from a modern perspective, it is simply not true that spin has no
classical counterpart. That verdict (that is has no classical counterpart), which is still often heard
and/or read,® is based on a narrow concept of “classical system”, which has been overcome in
modern formulations, as was already mentioned in footnote 20 to which I refer at this point. From
that point of view, spin is no less natural in classical physics than in Quantum Theory, which has now
become the standard attitude in good textbooks on analytical mechanics, e.g. Souriau (1997) and

32 We have A= S/M with S= %h (modulus of electron spin) and use the approximate values #(J x s)~ 10734,
M(kg) =10°, and Q(C) = 1.6 x 1071°.

33 Even in mesoscopic situations a<m means a very small angular momentum indeed. Recall that in Newtonian
approximation the angular momentum of a homogeneous massive ball of radius R is 2MR?>w/5, so that a/m<1 translates to
the following inequality for the spin period T = 27 /w:

4n R R _ R*(m) 19

T>5 cm™ Mikg * 1°
which for a ball of radius 1 m and mass 10> kg sets an upper bound for Tof 3 x 10° years! In fact, (81) is violated by all planets
in our solar system.

34 | take this to be an important and very fundamental point. Perhaps with the exception of Axiomatic Local Quantum
Field Theory, any quantum theory is in some sense the quantisation of a classical theory. Modern mathematical theories of
“quantisation” understand that term as “deformation” (in a precise mathematical sense) of the algebra of observables over
classical phase space; cf. Waldmann (2007).

35 Namely in the sense that it has a corresponding classical state space given by a two-sphere, which is a symplectic
manifold. However, this state space is not the phase space (i.e. cotangent bundle) over some space of classical configurations,
so that one might feel hesitant to call it a classical degree of freedom.

36 Even in critical historical accounts, e.g.: “Indeed, there were unexpected results from quantum theory such
as the fact that the electron has a fourth degree of freedom, namely, a spin which has no counterpart in a classical theory”
(Miller, 1973, p. 319).

s, (81)
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Guillemin and Sternberg (1990) as well as in attempts to formulate theories of quantisation
(Woodhouse, 1991; Waldmann, 2007).

In the present contribution I concentrated on another aspect, namely whether it is actually true
that classical models for the electron (as they were already, or could have been, established around
1925) are not capable to account for the actual values of the four electron parameters: mass, charge,
angular momentum, and the gyromagnetic factor. This criticism was put forward from the very
beginning (Lorentz) and was often repeated thereafter. It turns out that this argument is not as clear
cut as usually implied. In particular, g =2 is by no means incompatible with classical physics.
Unfortunately, explicit calculations seem to have been carried out only in a simplifying slow-rotation
approximation, in which the Poincaré stresses may be taken uniform over the charged shell. In the
regime of validity of this approximation g = 2 is attainable, but not for small charges. I do not think it
is known whether and, if so, how an exact treatment improves on the situation. In that sense, the
answer to the question posed above is not known. An exact treatment would have to account for the
centrifugal forces that act on the rotating shell in a latitude dependent way. As a result, the Poincaré
stresses cannot retain the simple (constant) form as in (51c) but must now also be latitude
dependent. In particular, they must be equal in sign but larger in magnitude than given in (48) since
now they need in addition to balance the outward pushing centrifugal forces. On one hand, this
suggests that their effect is a still further reduction of angular momentum for fixed magnetic
moment, resulting in still larger values for g. On the other hand, fast rotational velocities result in an
increase of the inertial mass according to (8) and hence an increase of angular momentum, though by
the same token also an increase in the centrifugal force and hence an increase in stress. How the
account of these different effects finally turns out to be is unclear (to me) without a detailed
calculation. It would be of interest to return to this issue in the future.
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