Supporting Information

Scott et al. 10.1073/pnas.0813386106

SI Methods

Assessment of Stratification. In each set of study samples we performed principal components (PC) analysis based on the sample genotypes (1) in unrelated individuals.

NIMH/Pritzker. We chose every 5th genotyped SNP in the genome for the PC analysis in 1,478 unrelated individuals, choosing 1 person per sibling pair. We assigned the non-included relatives the PC values of the included relative. We excluded 6 individuals with PC >6 SD from the mean of 1 or more of the top 10 PCs.

GSK. We chose SNPs for PC analysis after removing SNPs located in 4 regions of high LD (2) Within windows of 1,500 SNPs, we selected SNPs with pairwise $r^2 < 0.2$. We used the Tracy-Widom test (as described in ref. 2) to assess the significance of the PCs and retained 16 PCs with P value<.05. 26 samples had a PC >6 SD from the mean and were excluded. We repeated the PC analysis with the remaining samples and obtained 7 significant PCs.

WTCCC. We chose every 5th genotyped SNP in the genome for the PC analysis. 120 individuals differed by >6 SD from the mean of a PC (110 from the first PC with 17 case and 93 controls). We retained these individuals to mirror the analysis used by the WTCCC (3).

GWA Analysis. We eliminated 694 SNPs with allele frequency differences >.2 for any pair of studies. We analyzed the observed allele counts or imputed allele dosages using logistic regression assuming an additive genetic model, with covariates as described below, and then repeated the GWA analysis without PCs.

NIMH/Pritzker. We included the 10 most significant PCs as covariates. To account for the presence of case siblings, we used a sandwich estimator (4) to adjust the estimated variances. By clustering on the sibships, the sandwich estimator provides consistent estimates of the variances for the parameters of interest. We also analyzed the data without PC using the sandwich estimator and a method proposed by Bourgain et al. (5). The Bourgain method uses χ^2 test statistic that takes account of the familial relationship in the association test; however, the method cannot adjust for covariates.

GSK. We included recruitment site and the 7 significant PCs as covariates. We analyzed the full sample and we also analyzed a reduced sample removing the 261 London cases in the WTCCC sample.

WTCCC. We compared the BP cases to the extended reference set as our primary analysis. We also tested for marker association comparing the WTCCC NBS controls to the combined 6 sets of non-BP cases. Because of strong signals in this latter analysis in the HLA region on chromosome 6 from 27.2 to 34.0 Mb, we excluded the 5,571 autoimmune disease cases (type 1 diabetes, Crohn's disease, rheumatoid arthritis) from the primary GWA analysis of this region. We included the top 10 PCs as covariates.

Meta-analysis of GWA Samples. We performed a fixed effects meta-analysis using the OR and 95% confidence intervals to combine the association evidence from the study-specific GWA analyses. We used association results for experimentally derived genotypes when available, and for imputed genotypes otherwise.

2,366,197 autosomal SNPs passed QC and had MAF \geq .01 in all 3 samples; 75,477 were genotyped in all 3 samples, 412,455 in 2, 312,438 in 1, and 1,565,827 in no samples. Association results were oriented relative to the forward strand of the reference genome (dbSNP125). We adjusted for the genomic control values in each study separately for genotyped and imputed SNPs by increasing the standard error of the OR estimate to correspond to the genomic control P value. Evidence for heterogeneity between ORs was assessed using Cochrans's Q statistic and I² (6).

Assessment of Independence of Associated SNPs in Selected Regions.

In our 3 regions of strongest association in the 3-study metaanalysis, we tested whether the most strongly associated SNP in the region could account for the association signals at nearby SNPs by including the most strongly associated SNP as a covariate in the logistic regression for each study. Adjusted association results were then combined using fixed effects metaanalysis as described above.

SI Results

Evaluation of the Sandwich Estimator in the Case-Control Analysis of NIMH/Pritzker Sample and Comparison of Results of Analysis with 1 or 2 Siblings per Family. We compared the NIMH/Pritzker BP association results using the sandwich estimator (4) but without covariates to those using Bourgain's method (5). The Pearson correlation coefficient was 0.9994 between the logarithm (base 10) of the *P* values from the 2 approaches. We also compared the analysis of the full NIMH/Pritzker sample to one with a single sibling per family. The correlation coefficient was .87 and the results were randomly distributed around the expected diagonal line. These results suggest that inclusion of siblings in the case-control analysis was appropriately accounted for with the use of the sandwich estimator.

GWA Sample Overlap. The sample sets analyzed in the 3-study meta-analysis overlap those from other BP GWAS. 484 of the NIMH controls were included in the Ferreira et al. study (7). In our meta-analysis, for WTCCC controls we used the NBS sample and the expanded control set that included the WTCCC non-BP cases. WTCCC (3) and Ferreira et al. (7) primary analyses included as controls only the NBS and 1958 Birth Cohort controls, while their secondary analyses included the expanded control set. Our 3-sample meta-analysis set contains 1,833 cases and 992 controls independent of those in the Ferreira et al. (7) analyses. Many of the cases and controls in the pool-based GWAS (8) overlap with our NIMH/Pritzker samples. Finally, 437 cases and 357 controls from our NIMH/Pritzker sample are included in the GAIN GWAS (Nicholas Schork, personal communication).

SI ACKNOWLEDGMENTS. We thank Pablo Gejman for collection of the National Institute of Mental Health (NIMH) Bipolar Disorder Genetics Initiative control samples. Data and biomaterials for bipolar cases were collected as part of 10 projects that participated in the National Institute of Mental Health (NIMH) Bipolar Disorder Genetics Initiative. From 1999–03, the Principal Investigators and Co-Investigators were: Indiana University, Indianapolis, IN, R01 MH59545, John Nurnberger, M.D., Ph.D., Marvin J. Miller, M.D., Elizabeth S. Bowman, M.D., N. Leela Rau, M.D., P. Ryan Moe, M.D., Nalini Samavedy, M.D., Rif El-Mallakh, M.D. (at University of Louisville), Husseini Manji, M.D. (at Wayne State University), Debra A. Glitz, M.D. (at Wayne State University), Eric T. Meyer, M.S., Carrie Smiley, R.N., Tatiana Foroud, Ph.D., Leah Flury, M.S., Danielle M. Dick, Ph.D., Howard Edenberg, Ph.D.; Washington University, St. Louis, MO, R01 MH059534, John Rice, Ph.D. Theodore Reich, M.D., Allison Goate, Ph.D., Laura Bierut, M.D.; Johns Hopkins University, Baltimore, MD, R01 MH59533, Melvin McInnis M.D., J. Raymond DePaulo, Jr., M.D., Dean F. MacKinnon, M.D., Francis M. Mondimore, M.D., James B. Potash, M.D., Peter P. Zandi, Ph.D, Dimitrios Avramopoulos, and Jennifer Payne; University of Pennsylvania, PA, R01 MH59553, Wade Berrettini M.D., Ph.D.; University of California at Irvine, CA, R01 MH60068, William Byerley M.D., and Mark Vawter M.D.; University of Iowa, IA, R01 MH059548, William Coryell M.D., and Raymond Crowe M.D.; University of Chicago, IL, R01 MH59535, Eliot Gershon, M.D., Judith Badner Ph.D., Francis McMahon M.D., Chunyu Liu Ph.D., Alan Sanders M.D., Maria Caserta, Steven Dinwiddie M.D., Tu Nguyen, Donna

Harakal; University of California at San Diego, CA, R01 MH59567, John Kelsoe, M.D., Rebecca McKinney, B.A.; Rush University, IL, R01 MH059556, William Scheftner M.D., Howard M. Kravitz, D.O., M.P.H., Diana Marta, B.S., Annette Vaughn-Brown, M.S.N., R.N., and Lauri Bederow, M.A.; NIMH Intramural Research Program, Bethesda, MD, 1201MH002810–01, Francis J. McMahon, M.D., Layla Kassem, PsyD., Sevilla Detera-Wadleigh, Ph.D., Lisa Austin, Ph.D., Dennis L. Murphy, M.D. A full list of investigators who contributed to generation of the WTCCC data are available at www.wtccc.org.uk. Funding for the WTCCC was provided by the Wellcome Trust under award 076113.

- 1. Price AL, et al (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909.
- Patterson N, Price AL, Reich D (2006) Population structure and eigenanalysis. PLoS Genet 2:2074–2093.
- Wellcome Trust Case Control Consortium (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447:661–678.
- White H (1982) Maximum likelihood estimation of misspecified model. *Econometrica* 50:1–25.
- 5. Bourgain C, et al. (2003) Novel case-control test in a founder population identifies P-selectin as an atopy-susceptibility locus. *Am J Hum Genet* 73:612–626.

- Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. Br Med J 327:557–560.
- 7. Ferreira MA, et al. (2008) Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nat Genet 40:1056–1058.
- Baum AE, et al. (2008) A genome-wide association study implicates diacylglycerol kinase eta (DGKH) and several other genes in the etiology of bipolar disorder. Mol Psychiatry 13:197–207.

Fig. S1. Quantile-quantile plots of observed vs. expected $-\log_{10} P$ values for BP association including principal components as covariates. (*A*, *C*, *E* and *G*) Without correction for genomic control. (*B*, *D*, *E*, and *G*) With correction for genomic control. (*A* and *B*) NIMH/Pritzker. (*C* and *D*) GSK complete sample. (*E* and *F*) GSK reduced sample. (*G* and *H*) WTCCC (extended reference set).

<

Fig. S1 (continued).

Fig. S2. Quantile-quantile plots of observed vs. expected -log₁₀ P values for BP association meta-analysis including principal components as covariates. (A) NIMH/Pritzker and GSK (complete sample). (B) NIMH/Pritzker, GSK (reduced sample), and WTCCC.

<

Fig. S3. Plots of $-\log_{10} P$ values for BP meta-analysis including principal components as covariates. (A) NIMH/Pritzker and GSK (complete sample). (B) NIMH/Pritzker, GSK (reduced sample), and WTCCC. The dotted line corresponds to a genome-wide significance threshold $P = 5 \times 10^{-8}$.

Fig. S4. Plot of $-\log_{10} P$ values for NIMH/Pritzker and GSK (complete sample) (*A* and *B*) and NIMH/Pritzker, GSK (reduced sample), and WTCCC BP-association meta-analysis for chromosomal regions with *P* values $<10^{-6}$ in NIMH/Pritzker and GSK (complete sample) meta-analysis (*C*). *B* and *C* show the same chromosome 1 region. Estimated recombination rates (from Hap Map) are plotted in cyan. Stronger red intensity indicates higher r^2 with the most significant SNP (purple diamond). The most strongly associated SNP in the other panel is shown in green. SNPs genotyped in all 2 or 3 samples are denoted by a thick black circle. refFLAT annotated genes are shown in *A*–*C Lower*.

<

Fig. S5. Plot of $-\log_{10} P$ values for NIMH/Pritzker, GSK (reduced sample), and WTCCC BP association meta-analysis of individual study results conditioned on most strongly associated regional SNP. For each study and region, SNPs were analyzed using a logistic regression model containing the most strongly associated SNP. (*A*) rs17418283. (*B*) rs10426779. (*C*) rs472913. Estimated recombination rates (from Hap Map) are plotted in cyan. Stronger red intensity indicates higher r^2 with the most strongly associated SNP (purple diamond). SNPs genotyped in all 3 samples are denoted by a thick black circle. refFLAT annotated genes are shown in *A*–*C Lower*. A decrease in the $-\log_{10} P$ value from Fig. 1 indicates that the association signal of the surrounding SNPs can be explained, at least in part, by the most strongly associated SNP. Inclusion of a different nearby strongly associated SNP would have resulted in a similar picture.

Table S1A. NIMH/Pritzker and GS	(complete sample)	bipolar meta-analysis	s association results: loci with	$P < 10^{-5}$
---------------------------------	-------------------	-----------------------	----------------------------------	---------------

			Risk/	Control risk	NIMH/Pritzker		GSK		Meta		Heterogeneity	
SNP	Chr	Position* bp	nonrisk allele	allele freq†	OR (95% CI)	Р	OR (95% CI)	Р	OR (95% CI)	Р	I², %	Р
rs2813164	1	195,153,065	G/A	0.28	1.39	$2.1 imes 10^{-5}$	1.24	0.0048	1.31	$8.3 imes 10^{-7}$	9	0.30
rs7593459	2	49,607,351	T/A	0.40	1.27	0.0019	1.31 (1.14–1.51)	0.00014	1.29	$1.6 imes10^{-6}$	0	0.76
rs12998006	2	211,494,512	T/C	0.72	1.27 (1.07–1.5)	0.0061	1.42	$1.3 imes10^{-5}$	1.35 (1.2–1.51)	$7.6 imes10^{-7}$	0	0.33
rs11711888	3	62,132,251	A/G	0.96	3.31 (1.84–5.96)	$6.7 imes10^{-5}$	2.20 (1.24–3.91)	0.0071	2.69 (1.77–4.08)	$3.5 imes10^{-6}$	0	0.33
rs10246960	7	12,478,653	T/C	0.14	1.41 (1.16–1.71)	0.00061	1.33 (1.1–1.61)	0.0034	1.37 (1.19–1.57)	$9.6 imes10^{-6}$	0	0.68
rs7867133	9	72,037,564	A/G	0.72	1.23 (1.04–1.44)	0.013	1.39 (1.19–1.63)	$3.3 imes10^{-5}$	1.31 (1.17–1.47)	$3.9 imes10^{-6}$	20	0.26
rs17498325	16	63,499,388	G/A	0.82	1.42 (1.09–1.87)	0.010	1.46 (1.2–1.79)	0.00021	1.45 (1.23–1.71)	$9.1 imes10^{-6}$	0	0.88

PNAS PNAS

*NBCI Build 35-bp position. ⁺Weighted average of control risk allele frequency for NIMH/Pritzker and GSK (complete sample).

Table S1B. Comparison of NIMH/Pritzker and GSK (complete sample) bipolar meta-analysis to WTCCC association results: loci with $P < 10^{-5}$

		Position*	Risk/ nonrisk	Risk/ nonrisk	Control risk allele	Meta NIMH/Pritzker and GSK (complete sample)		WTCCC	2	Meta NIMH/Pritzker, GSK (reduced sample), and WTCCC	
SNP	Chr	bp	allele	freq [†]	OR (95% CI)	Р	OR (95% CI)	Р	OR (95% CI)	Р	
rs2813164	1	195,153,065	G/A	0.28	1.31 (1.18–1.46)	$8.3 imes 10^{-7}$	1.01 (0.93–1.09)	0.82	1.11 (1.03–1.18)	0.0030	
rs7593459	2	49,607,351	T/A	0.40	1.29 (1.16–1.44)	1. × 0 ⁻⁶	1.00 (0.93–1.08)	0.97	1.08 (1.02–1.16)	0.012	
rs12998006	2	211,494,512	T/C	0.72	1.35 (1.20–1.51)	$7.6 imes10^{-7}$	1.07 (0.97–1.17)	0.16	1.16 (1.08–1.26)	0.00013	
rs11711888	3	62,132,251	A/G	0.96	2.69 (1.77–4.08)	$3.5 imes10^{-6}$	1.08 (0.82–1.43)	0.58	1.45 (1.13–1.85)	0.0035	
rs10246960	7	12,478,653	T/C	0.14	1.37 (1.19–1.57)	$9.6 imes10^{-6}$	1.06 (0.97–1.17)	0.21	1.15 (1.06–1.25)	0.0012	
rs7867133	9	72,037,564	A/G	0.72	1.31 (1.17–1.47)	$3.9 imes10^{-6}$	1.01 (0.93–1.09)	0.84	1.11 (1.04–1.19)	0.0032	
rs17498325	16	63,499,388	G/A	0.82	1.45 (1.23–1.71)	$9.1 imes10^{-6}$	1.04 (0.94–1.15)	0.41	1.15 (1.05–1.26)	0.0036	

GSK reduced sample: Excluding 261 BP cases also present in WTCCC sample. *NBCI Build 35-bp position.

PNAS PNAS

[†]Weighted average of control risk allele frequency for NIMH/Pritzker, GSK (reduced sample), and WTCCC.

Table S2. NIMH/Pritzker, GSK (reduced sample), and WTCCC bipolar meta-analysis association results: loci with $P < 10^{-5}$

			Risk/	Control risk	NIMH/P	ritzker	GS	бΚ	WT	ccc	Me	eta	Hetero	ogeneity
SNP	Chr	Position* bp	nonrisk allele	allele freq†	OR (95% CI)	Р	OR (95% CI)	Р	OR (95% CI)	Р	OR (95% CI)	Р	I², %	Р
rs472913	1	60,807,579	C/G	0.50	1.12 (0.97–1.29)	0.11	1.17 (1.00–1.36)	0.051	1.20 [‡] (1.11–1.28)	$6.3 imes10^{-7}$	1.18 (1.11–1.25)	$2.0 imes10^{-7}$	0	0.72
rs12568099	1	195,482,079	T/C	0.98	1.48 (0.90–2.42)	0.12	2.17 (1.26–3.77)	0.0054	1.49 (1.20–1.85)	0.00031	1.56 (1.28–1.9)	$9.8 imes10^{-6}$	0	0.44
rs13409348	2	79,451,643	G/C	0.24	1.12 (0.95–1.32)	0.18	1.20 (1.00–1.43)	0.045	1.22 (1.12–1.33)	$7.1 imes10^{-6}$	1.20 (1.11–1.29)	$2.7 imes10^{-6}$	0	0.67
rs6733011	2	98,924,020	G/A	0.46	1.11 (0.95–1.29)	0.19	1.13 (0.96–1.32)	0.14	1.20 (1.11–1.29)	$1.9 imes10^{-6}$	1.17 (1.1–1.25)	$2.6 imes10^{-6}$	0	0.59
rs1042779	3	52,796,051	A/G	0.63	1.20 (1.04–1.38)	0.015	1.31 (1.11–1.54)	0.0012	1.16 (1.07–1.25)	0.00012	1.19 (1.11–1.27)	$1.8 imes10^{-7}$	0	0.40
rs7427021	3	165,244,666	G/A	0.56	1.05 (0.91–1.23)	0.49	1.25 (1.06–1.47)	0.0089	1.17 (1.09–1.26)	$1.5 imes10^{-5}$	1.16 (1.09–1.24)	$4.9 imes10^{-6}$	14	0.31
rs2537859	4	55,323,746	T/C	0.60	1.05 (0.91–1.20)	0.53	1.41 (1.21–1.65)	$1.1 imes 10^{-5}$	1.14 (1.06–1.23)	0.00071	1.16 (1.09–1.24)	$4.2 imes 10^{-6}$	76	0.014
rs17418283	5	94,180,344	C/T	0.28	1.09 (0.93–1.28)	0.31	1.19 (1.01–1.41)	0.038	1.25 (1.15–1.36)	$9.7 imes10^{-8}$	1.21 (1.13–1.3)	$1.3 imes10^{-7}$	15	0.31
rs17169582	5	135,343,067	G/A	0.91	1.21 (0.94–1.55)	0.14	1.11 (0.86–1.43)	0.42	1.30 (1.16–1.46)	$7.5 imes10^{-6}$	1.26 (1.14–1.39)	$9.8 imes10^{-6}$	0	0.50
rs6901299	6	123,817,025	G/A	0.85	1.05 (0.86–1.27)	0.66	1.18 (0.95–1.46)	0.12	1.26 (1.15–1.39)	$2.0 imes10^{-6}$	1.21 (1.11–1.31)	$9.7 imes10^{-6}$	35	0.21
rs6990255	8	34,246,490	T/C	0.95	1.41 (1.00–2.00)	0.048	1.28 (0.91–1.81)	0.16	1.33 [‡] (1.16–1.51)	$5.7 imes10^{-5}$	1.33 (1.18–1.51)	$5.8 imes0^{-6}$	0	0.92
rs2905072	9	132,874,589	A/G	0.77	1.43 (1.20–1.70)	$5.8 imes10^{-5}$	1.14 (0.95–1.38)	0.16	1.16 (1.05–1.28)	0.0043	1.21 (1.11–1.32)	$6.4 imes10^{-6}$	56	0.10
rs2242663	11	66,091,884	T/C	0.25	1.29 (1.09–1.53)	0.0028	1.32 (1.10–1.59)	0.0024	1.15 (1.05–1.25)	0.0015	1.20 (1.11–1.29)	$1.3 imes10^{-6}$	33	0.23
rs6494849	15	68,267,668	A/C	0.12	1.24 (1.00–1.54)	0.049	1.11 (0.88–1.38)	0.38	1.26 (1.14–1.40)	$1.0 imes10^{-5}$	1.23 (1.13–1.35)	$6.5 imes10^{-6}$	0	0.57
rs1035050	17	44,919,011	T/C	0.40	1.16 (1.01–1.34)	0.038	1.12 (0.96–1.31)	0.13	1.19 (1.09–1.29)	$6.9 imes10^{-5}$	1.17 (1.09–1.25)	$9.0 imes10^{-6}$	0	0.84
rs7250872	19	1,762,603	T/C	0.69	1.18 (1.01–1.37)	0.035	1.33 (1.14–1.56)	0.00043	1.18 (1.06–1.30)	0.0024	1.21 (1.12–1.31)	$1.7 imes10^{-6}$	0	0.41

GSK reduced sample: Excluding 261 BP cases also present in WTCCC sample.

*NBCI Build 35-bp position.

PNAS PNAS

[†]Weighted average of control risk allele frequency for NIMH/Pritzker, GSK (reduced sample), and WTCCC. [‡]Designated as strong or moderate association in WTCCC (2007) supplementary table 7A and/or 9.

Table S3. Genes in regions with SNPs with $P < 10^{-6}$ in the three study meta-analysis

Chr	Starting position basepair*	Ending position Basepair*	Gene symbol	Gene name
3	52 084 309	52 163 460	WDR51A	WD repeat domain 514
2	52,004,505	52,105,400	ALASI	aminolevulinate delta, svnthase 1
3	52,207,133	52,225,505	TI R9	toll-like recentor 9
3	52 237 666	52 248 223	TW/F2	twinfilin actin-binding protein homolog 2 (Drosophila)
3	52 255 264	52 259 655	PPM1M	protein phosphatase 1M (PP2C domain containing)
3	52,263,477	52,287,699	WDR82	WD repeat domain 82
3	52,296,911	52.302.532	GLYCTK	glycerate kinase
3	52.325.374	52,409,552	DNAH1	dynein, axonemal, heavy chain 1
3	52,410,066	52,419,049	BAP1	BRCA1 associated protein-1 (ubiquitin carboxy-terminal hydrolase)
3	52,419,566	52,432,696	PHF7	PHD finger protein 7
3	52,442,307	52,454,083	SEMA3G	sema domain, immunoglobulin domain (Ig), short basic domain, secreted, (semaphorin) 3G
3	52,460,147	52,463,097	TNNC1	troponin C type 1 (slow)
3	52,464,563	52,502,128	NISCH	nischarin
3	52,504,395	52,533,549	STAB1	stabilin 1
3	52,533,424	52,544,133	NT5DC2	5'-nucleotidase domain containing 2
3	52,545,660	52,549,626	LOC440957	similar to CG32736-PA
3	52,554,407	52,694,906	PBRM1	polybromo 1
3	52,694,975	52,703,548	GNL3	guanine nucleotide binding protein-like 3 (nucleolar)
3	52,703,544	52,715,088	GLT8D1	glycosyltransferase 8 domain containing 1
3	52,714,896	52,717,237	SPCS1	signal peptidase complex subunit 1 homolog (S. cerevisiae)
3	52,719,840	52,779,991	NEK4	NIMA (never in mitosis gene a)-related kinase 4
3	52,786,647	52,801,117	ITIH1	inter-alpha (globulin) inhibitor H1
3	52,803,823	52,818,065	ITIH3	inter-alpha (globulin) inhibitor H3
3	52,822,046	52,839,734	ITIH4	inter-alpha (globulin) inhibitor H4 (plasma Kallikrein-sensitive glycoprotein)
3	52,842,176	52,844,260	MUSTN1	musculoskeletal, embryonic nuclear protein 1
3	52,848,937	52,906,587	TMEM110	transmembrane protein 110
3	52,913,667	53,055,110	SFMBT1	Scm-like with four mbt domains 1
3	53,099,850	53,139,503	RFT1	RFT1 homolog (S. cerevisiae)
3	53,170,262	53,201,771	PRKCD	protein kinase C, delta
5	93,880,673	93,980,065	C5orf36	chromosome 5 open reading frame 36
5	93,980,146	94,057,329	ANKRD32	ankyrin repeat domain 32
5	94,068,956	94,646,035	MCTP1	multiple C2 domains, transmembrane 1
5	94,752,803	94,811,900	FAM81B	family with sequence similarity 81, member B
5	94,825,879	94,916,438	TTC37	tetratricopeptide repeat domain 37

*NBCI Build 35-bp position.

Table S4A. NIMH/Pritzker imputation quality and bipolar association analysis results with and without principal components (PCs)

SNP			PCs		No PCs	
	Chr	Imputation Quality r^2	OR (95% CI)	Р	OR (95% CI)	Р
rs472913	1	0.95	1.12 (0.97–1.29)	0.11	1.13 (0.99–1.30)	0.079
rs1042779	3	Genotyped	1.20 (1.04–1.38)	0.015	1.22 (1.06–1.41)	0.0067
rs17418283	5	0.89	1.09 (0.93–1.28)	0.31	1.08 (0.92–1.27)	0.32

Table S4B. GSK (reduced sample) imputation quality and bipolar association analysis results with and without principal components (PCs)

SNP			PCs		No PCs	
	Chr	Imputation quality r^2	OR (95% CI)	Р	OR (95% CI)	Р
rs472913	1	0.97	1.17 (1.00–1.36)	0.051	1.19 (1.02–1.38)	0.027
rs1042779	3	Genotyped	1.31 (1.11–1.54)	0.0012	1.35 (1.15–1.58)	0.00026
rs17418283	5	0.98	1.19 (1.01–1.40)	0.038	1.18 (1.00–1.40)	0.044

Reduced sample: Excluding 261 BP cases also present in WTCCC sample.

Table S4C. WTCCC imputation quality and association analysis results with and without principal components (PCs)

			BP	BP vs extended reference set					NBS vs non-BP cases PCs	
Imput		Imputation	PCs		No PCs		PCs			
SNP	Chr	quality r ²	OR (95% CI)	Р	OR (95% CI)	Р	OR (95% CI)	Р	OR (95% CI)	Р
rs472913	1	0.95	1.20* (1.11–1.28)	$6.3 imes10^{-7}$	1.20 (1.12–1.29)	$3.4 imes10^{-7}$	1.17 (1.06–1.29)	0.0020	1.01 (0.94–1.10)	0.75
rs1042779	3	0.97	1.16 (1.07–1.25)	0.00012	1.16 (1.08–1.25)	$6.0 imes10^{-5}$	1.17 (1.06–1.30)	0.0024	1.02 (0.94–1.11)	0.56
rs17418283	5	0.84	1.25 (1.15–1.36)	$9.7 imes10^{-8}$	1.24 (1.15–1.35)	$1.8 imes10^{-7}$	1.11 (0.99–1.25)	0.076	1.14 (1.04–1.25)	0.0067

*Designated as strong or moderate association in WTCCC (2007) Supplementary Table 7A and 9.

Table S5. Three study meta-analysis with and without adjustment for principal components (PCs)

SNP		PCs		No PCs		
	Chr	OR (95% CI)	Р	OR (95% CI)	Р	
rs472913	1	1.18 (1.11–1.25)	$2.0 imes10^{-7}$	1.18 (1.11–1.26)	$7.4 imes 10^{-8}$	
rs1042779	3	1.19 (1.11–1.27)	$1.8 imes10^{-7}$	1.20 (1.13–1.28)	$2.7 imes10^{-8}$	
rs17418283	5	1.21 (1.13–1.30)	$1.3 imes10^{-7}$	1.20 (1.12–1.29)	$2.3 imes10^{-7}$	