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Abstract. The Einstein equations with a positive cosmological constant are coupled to
the pressureless perfect fluid matter in plane symmetry. Under suitable restrictions on the
initial data, the resulting Einstein-dust system is proved to have a global classical solution
in the future time direction. Some late time asymptotic properties are obtained as well.
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1. Introduction

In [12], plane symmetric solutions of the Einstein–Vlasov system with positive
cosmological constant were investigated. It was shown that a spacetime of this
type which is initially expanding exists globally in the future when expressed in
an areal time coordinate t and information was obtained about its asymptotics for
t → ∞. It is future geodesically complete and resembles the de Sitter solution at
late times. Information is obtained on the decay rates of the components of the
energy-momentum tensor.

This paper is concerned with the question, to what extent analogues of these
results for the Einstein–Vlasov system hold in the case of the Einstein-dust sys-
tem. There is an issue which has to be addressed right at the start. This is that
of shell-crossing singularities. The intuitive idea behind this concept, as explained
in [5, 9], is the following. A shell of dust particles which are related to each other
by the symmetry of the spacetime moves in a coherent way. If two of these shells
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collide then the intermediate shells are trapped between them, so that the matter
density is forced to blow up. For more information about shell-crossing singularities,
see for instance, [7] and references therein. For general plane symmetric solutions
of the Einstein-dust system, it must be expected that shell-crossing singularities
develop, even from smooth initial data. For that reason global classical solutions
cannot be expected to exist in general. In order to have a global existence theo-
rem in the framework of classical solutions it is therefore likely to be necessary to
make some kind of smallness assumption on the initial data. There is another fact
which is essential in the following. This is the presence of a positive cosmological
constant, known as a mechanism leading to solutions of the Einstein equations with
exponential expansion. Results related to this idea have been obtained in [12, 10].
They are used in this paper to guess the decay rates on the geometric and matter
quantities providing a basis to the bootstrap argument for the proof of the main
result (Theorem 3.3).

The rest of the paper is organized as follows. In Sec. 2, the equations are derived
and a local existence theorem is obtained for the corresponding Cauchy problem.
In Sec. 3, the solution is shown to exist globally in the future time direction and
its late-time asymptotic behavior is investigated, provided some restrictions on the
initial datum are satisfied.

2. Preliminaries

2.1. The Einstein equations

Let (M, g) be a spacetime, where the manifold is assumed to be M = I × T
3, I

is a real interval and T
3 = S1 × S1 × S1 is the three-torus. The metric g and the

matter fields are required to be invariant under the action of the Euclidean group
E2 on the universal cover. It is also required that the spacetime has an E2-invariant
Cauchy surface of constant areal time. In such conditions the metric is assumed to
have the form

ds2 = −e2η(t,x)dt2 + e2λ(t,x)dx2 + t2(dy2 + dz2), (2.1)

where t > 0, η and λ are periodic in x, y and z range in [0, 2π].
The Einstein equations read

Gαβ + Λgαβ = 8πT αβ, (2.2)

where Gαβ is the Einstein tensor, T αβ the energy-momentum tensor and Λ is the
cosmological constant we assume to be positive. We introduce the notation ρ =
e2ηT 00, j = eλ+ηT 01 and S = e2λT 11.

After computations in plane symmetry with the previous coordinates consider-
ations, we obtain from (2.2) the following equations where the subscripts t and x

refer to partial derivatives with respect to t and x respectively:

e−2η(2tλt + 1) − Λt2 = 8πt2ρ, (2.3)

e−2η(2tηt − 1) + Λt2 = 8πt2S, (2.4)

J.
 H

yp
er

. D
if

fe
re

nt
ia

l E
qu

at
io

ns
 2

00
8.

05
:6

81
-6

92
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 M

A
X

 P
L

A
N

C
K

 I
N

ST
IT

U
T

E
 F

O
R

 o
n 

01
/1

4/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.



August 28, 2008 19:0 WSPC/JHDE 00165

The Plane Symmetric Einstein-Dust System 683

ηx = −4πteλ+ηj, (2.5)

e−2λ (ηxx + ηx(ηx − λx)) − e−2η

(
λtt + (λt − ηt)

(
λt +

1
t

))
+ Λ = 0. (2.6)

2.2. The equations for dust

We consider a pressureless perfect fluid with energy density µ := µ(t, x) > 0 and
4-velocity Uα. The latter is normalized to be of unit length UαUα = −1. The plane
symmetry allows us to set Uα := ξ(e−η, e−λu, 0, 0) where ξ = (1 − u2)−1/2 is the
relativistic factor, u := u(t, x) being the scalar velocity that satisfies |u| < 1. The
energy momentum tensor for a pressureless perfect fluid is

T αβ = µUαUβ,

that is

T 00 = e−2η µ

1 − u2
=: e−2ηρ

T 01 = e−λ−η µu

1 − u2
=: e−λ−ηj

T 11 = e−2λ µu2

1 − u2
=: e−2λS,

the other components being zero.
The equations for dust are given by

∇αT αβ = 0. (2.7)

The components ∇αT α2 and ∇αT α3 vanish identically. Computing the remaining
two components gives

(eλρ)t + (eηj)x = −λte
λS − ηxeηj − 2

t
eλρ, (2.8)

(eλj)t + (eηS)x = −λte
λj − ηxeηρ − 2

t
eλj, (2.9)

and expressing Eqs. (2.8)–(2.9) in terms of the variables µ and u gives

(1 − u2)[µt + ueη−λµx] + µ[2uut + (1 + u2)eη−λux]

= −µ(1 − u2)[(1 + u2)λt + 2t−1 + 2uηxeη−λ], (2.10)

(1 − u2)u[µt + ueη−λµx] + µ[(1 + u2)ut + 2ueη−λux]

= −µ(1 − u2)[2u(λt + t−1) + (1 + u2)ηxeη−λ]. (2.11)

Adding and subtracting (2.10) and (2.11) yields

(1 − u)[µt + ueη−λµx] + µ[ut + eη−λux]

= −µ[(1 − u2)(λt + ηxeη−λ) + 2(1 − u)t−1], (2.12)

(1 + u)[µt + ueη−λµx] + µ[−ut + eη−λux]

= −(1 + u)µ[(1 − u)λt + 2t−1 − (1 − u)ηxeη−λ], (2.13)
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and the linear combinations (2.12)+ (2.13) and (1+u)(2.12)+ (u− 1)(2.13) lead to

Dµ = −µ
[
(1 − u2)λt − 2t−1 + eη−λux

]
, (2.14)

Du = (1 − u2)
[−uλt − eη−ληx

]
, (2.15)

where the derivative is

D := ∂t + ueη−λ∂x.

This is called the characteristic derivative and we denote the corresponding integral
curve by (t, γ). This means that this curve satisfies the differential equation γt =
ueη−λ, and on the curve D = d

dt so that we can, for instance, rewrite (2.14) in the
form

d

dt
µ(t, γ(t)) = −µ[(1 − u2)λt − 2t−1 + eη−λux](t, γ(t)).

2.3. The Cauchy problem and local existence

The object of our study is the plane symmetric Eintein-dust system (2.3)–(2.6),
(2.14)–(2.15) with unknowns λ, η, µ and u. The initial data are prescribed at some
time t0 ≥ 1. To analyze the solutions of these equations, the first step is to obtain
a local existence theorem. The method, which has been used, for instance, in [8]
for the Einstein–Vlasov system in plane symmetry, consists on constructing an
iteration and proving its convergence. In the present investigation, we follow another
approach, which is described in [11]. There are several steps and it is not convenient
to keep track of the differentiability in the process. For this reason, only the case of
C∞ initial data will be treated in this paper. There is a general (without symmetry)
local existence theorem for the Einstein-dust system by Choquet–Bruhat [1].

In fact, in that reference the author writes the Einstein-dust system (2.2)–(2.7)
in the equivalent form

uν∇νGαβ = −8πµuαuβ∇νuν , (2.16)

uν∇νuβ = 0, (2.17)

∇ν(µuν) = 0, (2.18)

in order to prove that the equations are hyperbolic in the Leray sense. Then by the
Leray–Dionne theory [3, 6], this implies existence and uniqueness of the solution to
the Cauchy problem for Einstein-dust equations. For more details, see also [2].

We can apply this general result to the case with symmetry. Consider a plane
symmetric compact C∞ initial data for the Cauchy problem. Then the symmetry
is inherited by the corresponding solutions. (See [4, Sec. 5.6] for a discussion of
this.) Next areal coordinates can be introduced in the spacetime. The conclusion
is a local existence and uniqueness theorem for the plane symmetric Einstein-dust
system. The solution, like the initial data, is C∞.
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3. Global Existence to the Future and Asymptotics

This section is concerned with the main result of this paper. We first prove two
lemmas dealing with bounds on the unknowns as well as all their derivatives.

In what follows, C will denote a positive constant estimating functions that are
uniformly bounded, and it may change from line to line.

Let Pn(t) := ‖∂n
x λ(t)‖∞ + ‖∂n

xµ(t)‖∞ + ‖∂n
x w(t)‖∞

Lemma 3.1. Consider a C∞ plane symmetric solution of Einstein-dust system on
a time interval [0, T ) such that the following estimates hold, where w := e−λux:

|λt − t−1| ≤ Ct−4, |Λt2e2η − 3| ≤ Ct−3, |λtx| ≤ Ct−4 (3.1)

|ηx| ≤ Ct−3, |ηxx| ≤ Ct−3, µ ≤ Ct−3 (3.2)

|u| ≤ Ct−1, |µx| ≤ Ct−3, |ux| ≤ Ct−1, |wx| ≤ Ct−2. (3.3)

If all derivatives with respect to x of order up to n of the quantities λ, µ, w, η and
u are bounded then all derivatives with respect to x of order up to n+1 of the same
quantities are bounded.

Proof. Note that from the hypotheses of the lemma, it follows that the quantities
λ, µ, w, η and u, as well as all their first order derivatives are bounded on [0, T ).

By definition w = e−λux, which implies

uxx = eλwx + λxux, (3.4)

and from (2.5),

ηxx = −4πteη+λjx + ηx(ηx + λx). (3.5)

Differentiating uxx and ηxx n−1 times with respect to x, the boundedness of ∂n+1
x η

and ∂n+1
x u follows immediately from the hypotheses of the lemma.

The expression for λtx is

λtx = ηxe2η(Λt + 8πtρ) + 4πtρxe2η. (3.6)

Differentiating this n times with respect to x gives a linear equation for ∂t(∂n+1
x λ)

with coefficients which are known to be bounded, except for terms involving ∂n+1
x ρ.

But the latter can be estimated in terms of ∂n+1
x µ so that the following holds

|∂t(∂n+1
x λ)| ≤ C(1 + |∂n+1

x µ|). (3.7)

Integrating this in time implies that

‖∂n+1
x λ(t)‖∞ ≤ ‖∂n+1

x λ(t0)‖∞ + C

∫ t

t0

(1 + Pn+1(s)) ds. (3.8)

Now recall that

Dµx = −µx[(1 − u2)λt − 2t−1 + 2eη−λux + u(ηx − λx)eη−λ]

−µ[−2uuxλt + (1 − u2)λtx + (ηx − λx)eη−λux + eη−λuxx], (3.9)
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and

D(wx) = −Λtu(1 − u2)(ηxx + 2η2
x − λxηx)e2η−λ − 2ηxweη[w + tΛ(1 − 3u2)eη]

+ 3t−1uuxw(Λt2e2η − 1) − uw[ηxx + ηx(ηx − λx)]eη−λ − λtxw

−
[
λt + [2ux + u(2ηx − λx)]eη−λ +

t−1(1 − 3u2)
2

(Λt2e2η − 1)
]

wx.

(3.10)

Differentiating (3.9) n times with respect to x and using (3.5) and (3.6) shows that
D(∂n+1

x µ) depends linearly on ∂n+1
x λ, ∂n+1

x µ and ∂n+2
x u with bounded coefficients.

But ∂n+2
x u can be estimated in terms of ∂n+1

x w and ∂n+1
x λ. It then follows that

|D(∂n+1
x µ)| ≤ C(1 + |∂n+1

x µ| + |∂n+1
x λ| + |∂n+1

x w|), (3.11)

and integrating this along the characteristic γ implies that

‖∂n+1
x µ(t)‖∞ ≤ ‖∂n+1

x µ(t0)‖∞ + C

∫ t

t0

(1 + Pn+1(s)) ds. (3.12)

Likewise taking the x-derivative n times in (3.10) leads to

|D(∂n+1
x w)| ≤ C(1 + |∂n+1

x µ| + |∂n+1
x λ| + |∂n+1

x w|), (3.13)

and integration along γ implies

‖∂n+1
x w(t)‖∞ ≤ ‖∂n+1

x w(t0)‖∞ + C

∫ t

t0

(1 + Pn+1(s)) ds. (3.14)

Putting (3.8), (3.12) and (3.14) together implies

Pn+1(t) ≤ Pn+1(t0) + C

∫ t

t0

(1 + Pn+1(s))ds. (3.15)

By Gronwall’s inequality, it follows that Pn+1 is bounded and thus so are ∂n+1
x λ,

∂n+1
x µ and ∂n+1

x w. This completes the proof of the lemma.

Lemma 3.2. If the hypotheses of Lemma 3.1 are satisfied and if all derivatives
of the quantities λ, η, µ and u of the form ∂k

t ∂n
x with n arbitrary and k ≤ m are

bounded then the derivatives of the form ∂m+1
t ∂n

x of the same quantities are bounded.

Proof. From the evolution equations we have

λt =
1
2
(Λte2η − t−1) + 4πte2ηρ, (3.16)

ηt =
1
2
(t−1 − Λte2η) + 4πte2ηS, (3.17)

µt = −ueη−λµx − µ
[
(1 − u2)λt − 2t−1 + eη−λux

]
, (3.18)

ut = −ueη−λux + (1 − u2)
[−uλt − eη−ληx

]
. (3.19)
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Differentiating (3.16)–(3.19) n times with respect to x and m times with respect to
t allows ∂m+1

t ∂n
x λ, ∂m+1

t ∂n
xη, ∂m+1

t ∂n
x µ and ∂m+1

t ∂n
x u to be bounded.

We can now prove the main result of the present investigation.

Theorem 3.3. Consider any C∞ solution of Einstein-dust system with positive
cosmological constant in plane symmetry written in areal coordinates with C∞ initial
data. Let δ be a positive constant and suppose the following inequalities hold:

|λt(t0) − t−1
0 | ≤ δ, |Λt20e

2η(t0) − 3| ≤ δ, |ηx(t0)| ≤ δ, |λtx(t0)| ≤ δ, (3.20)

|ηxx(t0)| ≤ δ, µ(t0) ≤ δ, |u(t0)| ≤ δ, |µx(t0)| ≤ δ,

|ux(t0)| ≤ δ, |wx(t0)| ≤ δ. (3.21)

Then if δ is sufficiently small, the corresponding solution exists on [t0,∞). Moreover,
for this solution the following properties hold at late times:

|λt − t−1| = O(t−4), |Λt2e2η − 3| = O(t−3), |ηx| = O(t−3), (3.22)

|ηxx| = O(t−3), |λtx| = O(t−4), µ = O(t−3), (3.23)

|µx| = O(t−3), |u| = O(t−1), |ux| = O(t−1), |wx| = O(t−2). (3.24)

Proof. The proof proceeds by a bootstrap argument.
By continuity it follows from the hypothesis (3.20)–(3.21) that

|λt(t) − t−1| ≤ 2δ, |Λt2e2η(t) − 3| ≤ 2δ, |ηx(t)| ≤ 2δ, |ηxx(t)| ≤ 2δ,

|λtx(t)| ≤ 2δ, µ(t) ≤ 2δ, |u(t)| ≤ 2δ, |µx| ≤ 2δ, |ux| ≤ 2δ, |wx| ≤ 2δ,

for t close to t0.
Let C1 and ε be constants for 0 < C1 < 1 and 0 < ε < 1/2. We can reduce δ if

necessary so that 2δ < C1t
−4+ε
0 . Then there exists some time interval on which the

solution of the Einstein-dust system exists and the following bootstrap assumption
is satisfied

|λt − t−1| ≤ C1t
−4+ε, |Λt2e2η − 3| ≤ C1t

−3+ε, |λtx| ≤ C1t
−4+ε, (3.25)

|ηx| ≤ C1t
−3+ε, |ηxx| ≤ C1t

−3+ε, µ ≤ C1t
−3+ε, (3.26)

|u| ≤ C1t
−1+ε, |µx| ≤ C1t

−3+ε, |ux| ≤ C1t
−1+ε, |wx| ≤ C1t

−2+ε. (3.27)

Consider the maximal interval [t0, t∗) on which the solution of the full system (2.3)–
(2.6), (2.14)–(2.15) exists and (3.25)–(3.27) hold. Suppose t∗ is finite.

Putting inequalities (3.25)–(3.27) into equations coming from the system (2.3)–
(2.6), (2.14)–(2.15) allows new estimates to be derived. We first derive an estimate
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for u. For this purpose an evolution equation for tu can be obtained from (2.15),
using the field Eqs. (2.3)–(2.4) involving λt and ηx. The result is

D(tu) = u3 − u

2
(1 − u2)(Λe2ηt2 − 3). (3.28)

Using the bootstrap assumption on |u| and |Λt2e2η − 3|, integrating the resulting
inequality along the integral curve γ and keeping the worst powers, it follows from
(3.28) that

|u(t)| ≤ [t0|u(t0)| + C3
1 + C2

1 ]t−1 =: C2t
−1. (3.29)

Next we derive an estimate for µ. Using (2.14), an evolution equation for t3µ follows:

D(t3µ) = t3µ[t−1u2 − (1 − u2)(λt − t−1) − eη−λux]. (3.30)

An estimate for e2η, eη−λ and eη+λ will be also required.

e2η = Λ−1t−2(Λt2e2η)

≤ Λ−1t−2[(Λt2e2η − 3) + 3]

≤ 3Λ−1t−2 + C1Λ−1t−5+ε. (3.31)

On the other hand, by assumption |λt − t−1| ≤ C1t
−4+ε, and integrating this in

time implies that e−λ ≤ eC1−λ(t0)t0t
−1 and eλ ≤ eC1+λ(t0)t−1

0 t. Thus

eη−λ ≤ Λ−1/2(
√

3 + C
1/2
1 )t0eC1−λ(t0)t−2, and

eη+λ ≤ Λ−1/2(
√

3 + C
1/2
1 )t−1

0 eC1+λ(t0). (3.32)

Using this, the bootstrap assumption, integration along γ and keeping the worst
powers it follows from (3.30) that

µ ≤ [t30µ + C1C2 + C2
1 + C1Λ−1/2(

√
3 + C

1/2
1 )t0eC1−λ(t0)]t−3 =: C3t

−3. (3.33)

Now estimates for |Λt2e2η−3| and |tλt−1| will be derived. Estimates for the matter
quantities S and ρ are needed for this purpose. From the definition of S and ρ and
the estimates for µ and u obtained above, we obtain

ρ ≤ C3

1 − C2
t−3, S ≤ C3C

2
2

1 − C2
t−5. (3.34)

From (2.4), we have

∂t

[
−1

3
te−2η(Λt2e2η − 3)

]
= −8πt2S,

so that using (3.31), (3.34), integration and keeping the worst powers gives

|Λt2e2η − 3| ≤ [3Λ−1 + C1Λ−1]
[
t0|Λt20 − 3e−2µ(t0)| + 24πC3C

2
2

1 − C2

]
t−3

=: C4t
−3. (3.35)

From (2.3), we have

tλt − 1 =
1
2
(Λe2ηt2 − 3) + 4πt2e2ηρ,
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and using (3.31), (3.34), (3.35) and keeping the worst powers yields

|tλt − 1| ≤
[
C4 + 4πΛ−1(3 + C1)

C3

1 − C2

]
t−3 =: C5t

−3. (3.36)

An estimate for ηx will be derived. Recalling that

ηx = −4πteλ+ηj and j =
µu

1 − u2
,

it follows from (3.29) and (3.32)–(3.33) that

|ηx| ≤ 4πΛ−1/2(C1/2
1 +

√
3)eC1+λ(t0) C2C3

1 − C2
t−3

=: C6t
−3. (3.37)

The following are estimates for ux and µx which will be needed in order to get
better estimates for λtx and ηxx.

An evolution equation for tux can be derived by taking the x-derivative in (3.28):

D(tux) = (3u2 − 1)ux(tλt − 1) + 3uxu2 + t(ηx + λx)uuxeη−λ − tu2
xeη−λ

− t(1 − u2)[uλtx + (ηx − λx)ηxeη−λ + ηxxeη−λ], (3.38)

and using the bootstrap assumption, some estimates obtained above as well as
integration along γ leads to

|ux| ≤ [t0|ux(t0)| + 4C2
1 + 4t0C1Λ−1/2(

√
3 + C

1/2
1 )eC1−λ(t0)(2C1 + |λx(t0)|)]t−1

=: C7t
−1. (3.39)

Now taking the x-derivative in (2.14) allows us to obtain an evolution equation
for t3µx:

D(t3µx) = −t2(tλt − 1)[(1 − u2)µx − 2µuux] − 2t3µxuxeη−λ

− t3(ηx − λx)uµxeη−λ + t2(u2µx + 2µuux) − t3(1 − u2)µλtx

− t3(ηx − λx)µuxeη−λ − t3µuxxeη−λ. (3.40)

So far we know how to estimate all the terms on the right-hand side in (3.40) except
the last one in uxx which needs to be worked out carefully. We can obtain an evo-
lution equation for uxx by taking the x-derivative of Dux. This does not give a
satisfactory result because terms containing λxx occur, and we do not know how to
estimate them. This difficulty can be overcome if we rather take the x-derivative
of D(e−λux), which will lead to an estimate for wx (where w = e−λux). An esti-
mate for uxx will then be deduced from the following relation which is obtained by
differentiating the equality w = e−λux in x:

uxx = eλwx + λxux. (3.41)

Note that the factor e−λ allows us to eliminate bad terms such as λxx. This device
has been used in another context [13].
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The term wx will now be estimated. An evolution equation for w is

Dw = −λtw − w2eη − uηxweη−λ − t−1w(1 − 3u2)

− t−1w(1 − 3u2)
2

(Λt2e2η − 3) − Λtηxu(1 − u2)e2η−λ,

so that differentiating this in x implies

D(t2wx) = −Λt3u(1 − u2)(ηxx + 2η2
x − λxηx)e2η−λ − 2t2ηxweη[w + tΛ(1 − 3u2)eη]

+ 6tuuxw + 3tuuxw(Λt2e2η − 3) − t2uw(ηxx + ηx(ηx − λx))eη−λ

− t2λtxw −
[
t(tλt − 1) − 3tu2 + t2[2ux + u(2ηx − λx)]eη−λ

+
t(1 − 3u2)

2
(Λt2e2η − 3)

]
wx. (3.42)

We use the bootstrap assumption, some estimates obtained above and integration
along γ to get

|wx| ≤ [t20|wx(t0)| + 4C7C1t0e
C1−λ(t0)(1 + |λx(t0)|)

+ 4C2
1(1 + Λ−1/2)(1 + |λx(t0)|)]t−2

=: C8t
−2. (3.43)

It then follows from (3.41) that

|uxx| ≤ [C8t
−1
0 eC1+λ(t0) + C7(C1 + |λx(t0)|)]t−1 =: Cuxx t−1. (3.44)

This together with (3.40) imply that

|µx| ≤ [t30|µx(t0)| + 7C2
1

+ (3C1 + 3Cuxx + |λx(t0)|)(
√

3 + C
1/2
1 )Λ−1/2t0C1e

C1−λ(t0)]t−3

=: C9t
−3. (3.45)

Estimates for ρx and jx are required in order to derive estimates for λtx and ηxx.
We have

ρx =
µx

1 − u2
+

2uuxµ

(1 − u2)2
;

using estimates established above gives

|ρx| ≤ C9 + 2C2C3C8

(1 − C1)2
t−3,

and recalling that

λtx = ηxe2η(Λt + 8πtρ) + 4πtρxe2η,

it follows that

|λtx| ≤
[
Λ−1C6(3 + C1)

(
Λ +

8πC3

1 − C1
+ 4π

C9 + 2C2C3C8

(1 − C1)2

)]
t−4

=: C10t
−4. (3.46)

J.
 H

yp
er

. D
if

fe
re

nt
ia

l E
qu

at
io

ns
 2

00
8.

05
:6

81
-6

92
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 M

A
X

 P
L

A
N

C
K

 I
N

ST
IT

U
T

E
 F

O
R

 o
n 

01
/1

4/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.



August 28, 2008 19:0 WSPC/JHDE 00165

The Plane Symmetric Einstein-Dust System 691

Now

jx =
µxu + µux

1 − u2
+

2u2uxµ

(1 − u2)2
,

so that using estimates obtained above gives

|jx| ≤ C2C9 + C3C8(2C2
2 + 1)

(1 − C1)2
t−4 =: Cjx t−4. (3.47)

Taking the spatial derivative of (2.5) gives

ηxx = −4πteη+λjx + ηx(ηx + λx). (3.48)

It then follows that

|ηxx| ≤ [4πΛ−1/2(C1/2
1 +

√
3)eC1+λ(t0)Cjx + C4(C4 + C1 + |λx(t0)|)]t−3

=: C11t
−3. (3.49)

The constants C2 − C11 appearing along the proof are all less than or equal to
C×(g(δ)+C2

1 ), with C a positive constant and g(δ) a positive function of δ tending
to 0 as δ tends to 0. Therefore it is always possible to choose C1 and δ small enough
in such a way that CC1 ≤ 1/2 and Cg(δ) ≤ C1/2, and so the constants C2−C11 are
all less than C1. This together with Lemmas 3.1–3.2 show that all derivatives of λ,
η, µ and u are bounded on [0, t∗). This means that the solution can be extended to a
time interval [t0, t1) on which (3.25)–(3.27) hold, with t1 > t∗. This contradicts the
maximality of the interval [t0, t∗). Therefore, t∗ = ∞ and the proof of the theorem
is complete.
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