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A Class of Dust-Like Self-Similar Solutions
of the Massless Einstein–Vlasov System

Alan D. Rendall and Juan J. L. Velázquez

Abstract. In this paper the existence of a class of self-similar solutions
of the Einstein–Vlasov system is proved. The initial data for these solu-
tions are not smooth, with their particle density being supported in a
submanifold of codimension one. They can be thought of as intermediate
between smooth solutions of the Einstein–Vlasov system and dust. The
motivation for studying them is to obtain insights into possible violation
of weak cosmic censorship by solutions of the Einstein–Vlasov system.
By assuming a suitable form of the unknowns it is shown that the exis-
tence question can be reduced to that of the existence of a certain type
of solution of a four-dimensional system of ordinary differential equations
depending on two parameters. This solution starts at a particular point
P0 and converges to a stationary solution P1 as the independent variable
tends to infinity. The existence proof is based on a shooting argument
and involves relating the dynamics of solutions of the four-dimensional
system to that of solutions of certain two- and three-dimensional systems
obtained from it by limiting processes. The spacetimes constructed do
not constitute a counterexample to cosmic censorship since they are not
asymptotically flat. They should be seen as the first step on a possible
path towards constructing solutions of importance for understanding the
issue of the formation of naked singularities in general relativity.

1. Introduction

It is well known that solutions of the Einstein equations coupled with suitable
models of matter can yield singularities in finite time. The unknowns in these
equations are the spacetime metric and some matter fields. The exact nature
of the latter depends on the physical situation being considered. The usual
terminology in general relativity is that there is said to be a singularity if the
metric fails to be causally geodesically complete, i.e. if there are timelike or null
geodesics which in at least one direction are inextendible and of finite affine
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length. The singularity is said to be in the future or the past according to the
incomplete direction of the geodesics. It is expected on the basis of physical
intuition, and known to be true in some simple cases, that the geodesic incom-
pleteness is associated with the energy density or some curvature invariants
blowing up. For background on this subject see textbooks such as [14,29] and
[26]. One of the best-known types of singularities in general relativity are those
which occur inside black holes. When a black hole is formed by the collapse
of matter it is known that under suitable circumstances an event horizon is
formed which ensures that the singularity can have no influence on distant
observers.

Mathematical relativity is the study of the properties of solutions of the
Einstein equations coupled to various matter equations. One of the main ques-
tions in the field is the cosmic censorship hypothesis. There are two versions
of this conjecture called weak and strong cosmic censorship, both of which
were proposed by Roger Penrose. It should be noted that, contrary to what
the names might suggest, the strong version does not imply the weak one.
The results proved in what follows are motivated by weak cosmic censorship
and strong cosmic censorship will not be discussed further here. Weak cosmic
censorship is a statement which concerns isolated systems in general relativ-
ity. Mathematically, this means considering solutions of the Einstein equations
which evolve from asymptotically flat initial data. Initial data for the Einstein
equations consist of a Riemannian metric hab, a symmetric tensor kab and
some matter fields which for the moment will be denoted generically by F0, all
defined on a three-dimensional manifold S. Solving the Cauchy problem for the
Einstein-matter equations means embedding the manifold S into a four-dimen-
sional manifold M on which are defined a Lorentzian metric gαβ and matter
fields F such that hab and kab are the pullbacks to S of the induced metric
and second fundamental form of the image of the embedding of S while F0 is
the pullback of the matter fields. The metric gαβ and the matter fields F are
required to satisfy the Einstein-matter equations. A comprehensive treatment
of the Cauchy problem for the Einstein equations can be found in [27]. Initial
data on R

3 are called asymptotically flat if the metric hab tends to the flat
metric at infinity in a suitable sense while kab and F0 tend to zero. Physically
this corresponds to concentrating attention on a particular physical system
while ignoring the influence of the rest of the universe.

A solution of the Einstein-matter equations evolving from initial data is
said to be a development of that data if each inextendible causal curve inter-
sects the initial hypersurface precisely once. When this property holds the
initial hypersurface is said to be a Cauchy hypersurface for that solution. In
general, a solution is called globally hyperbolic if it admits a Cauchy hyper-
surface. For prescribed data there is a development which is maximal in the
sense that any other development can be embedded into it. It is unique up to
a diffeomorphism which preserves the initial hypersurface.

In a spacetime evolving from asymptotically flat data it is often possi-
ble to define future null infinity I+ as a set of ideal endpoints of complete
future-directed null geodesics. We can say that any singularity occurring does
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not influence events near infinity if there is no inextendible causal curve to the
future of the initial hypersurface which is incomplete in the past while inter-
secting a future-complete null geodesic. The first of these properties means
intuitively that this curve represents a signal which comes out of a singularity
while the second property means that it reaches a region which can commu-
nicate with infinity. If a curve of this type does exist it is said that a globally
naked singularity exists. The past of null infinity, J−(I+), is the set of points
for which there is a future-directed causal curve starting there and going to
null infinity. The complement of J−(I+) is called the black hole region. Its
boundary is called the event horizon and is a null hypersurface in M .

There is a notion of completeness of null infinity. A precise definition
will not be given here but roughly speaking it corresponds to the situation
where there are timelike curves contained in J−(I+) which exist for a infi-
nite time towards the future. Physically this means that there are observers
which can remain outside the black hole for an unlimited amount of time.
If the maximal globally hyperbolic development of asymptotically flat initial
data always has a complete null infinity then this ensures the absence of glob-
ally naked singularities. For any inextendible causal curve to the future of
the initial surface which goes to null infinity must intersect the initial hyper-
surface. Hence it cannot be incomplete in the past. The completeness of I+

ensures that the solution is large enough to represent the whole future of
a system evolving from the initial data under consideration. The intuitive
content of the weak cosmic censorship hypothesis is that in the time evolu-
tion corresponding to initial data for the Einstein equations coupled to rea-
sonable (non-pathological) matter the existence of a singularity implies that
of an event horizon which covers the singularity and hides it from distant
observers. Often this is weakened to the requirement that a horizon exists
in the case of generic initial data. Up to now this intuitive picture has only
been developed into a precise mathematical formulation under special circum-
stances. In general finding the correct formulation is part of the problem to be
solved.

Due to the mathematical complexity of the Einstein equations many of
the studies related to singularity formation for these equations have been
carried out for spherically symmetric solutions. In spherical symmetry the
Einstein vacuum equations are non-dynamical due to Birkhoff’s theorem,
which says that any spherically symmetric vacuum solution is locally isometric
to the Schwarzschild solution and, in particular, static. Thus it is essential to
include matter of some kind. A matter model which has proved very useful
for this task is the scalar field. This is a real-valued function φ which satisfies
the wave equation ∇α∇αφ = 0. In this case the Einstein equations take the
form Rαβ = 8π∇αφ∇βφ, where Rαβ is the Ricci curvature of gαβ . The spher-
ically symmetric Einstein-scalar field equations were studied in great detail
in a series of papers by Demetrios Christodoulou. This culminated in [8] and
[9]. In [8] it was shown that in this system naked singularities can evolve from
regular asymptotically flat initial data. This represents a problem for the weak
cosmic censorship hypothesis but the conjecture can be saved by a genericity
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assumption since it was shown in [9] that generic initial data do not lead to
naked singularities.

For the spherically symmetric Einstein-scalar field equations it is known
from the work of Christodoulou [7] that small asymptotically flat initial data
lead to a solution which is geodesically complete and hence free of singular-
ities. (In fact this small data result has recently been extended to the case
without symmetry [16]). On the other hand there are certain large initial data
for which it is known that a black hole is formed. The threshold between these
two types of behaviour was studied in influential work by Choptuik [4] and
many other papers since. This area of research is known as critical collapse
and is surveyed in [13]. It is entirely numerical and heuristic and unfortunately
mathematically rigorous results are not yet available.

The scalar field provides a simple and well-behaved matter model. At
the same time, no such field has been experimentally observed and the matter
fields of importance for applications to astrophysics are of other kinds. One
astrophysically relevant matter field which has good mathematical properties
is collisionless matter described by the Vlasov equation. The necessary defini-
tions are given in the next section. For the moment, let it just be noted that
the unknown in the Vlasov equation is a non-negative real-valued function
f(t, xa, vb) depending on local coordinates (t, xa) on M and velocity variables
vb. Analogues of a number of the results proved for the scalar field have been
proved for the Einstein–Vlasov system. For small initial data the solutions
are geodesically complete [23]. There are certain large initial data for which a
black hole is formed [2]. The threshold between these two types of behaviour
has been investigated numerically in [19,24]. A closely related matter model
which has been very popular in theoretical general relativity is dust, a fluid
with vanishing pressure. It is equivalent to consider distributional solutions of
the Vlasov equation of the form f(t, xa, vb) = ρ(t, xa)δ(vb − ub(t, xa)) where
the δ is a Dirac distribution. From many points of view dust is relatively sim-
ple to analyse. Unfortunately, it has a strong tendency to form singularities
where the energy density blows up, even in the absence of gravity. For this
reason, it must be regarded as pathological and of limited appropriateness for
the investigation of cosmic censorship. A detailed mathematical study of for-
mation of singularities in the Einstein equations coupled to dust was given in
[6]. In spherical symmetry dust particles move as spherical shells. It can easily
happen that shells including a strictly positive total mass come together at
one radius and this causes the density to blow up. This effect is known as
shell-crossing.

The motivation for this paper is the wish to understand cosmic censor-
ship better for spherically symmetric solutions of the Einstein–Vlasov system.
Is it true that in asymptotically flat spherically symmetric solutions of the
Einstein–Vlasov system there are no naked singularities for generic data so
that collisionless matter is as well behaved as the scalar field? Could it even be
that the Vlasov equation is better-behaved and that there are no naked sin-
gularities at all? No answers to these questions, positive or negative, are avail-
able although considerable effort has been invested into obtaining a positive
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answer. In what follows, we try to obtain new insights by approaching a nega-
tive result through an interpolation between dust and smooth solutions of the
Vlasov equation and looking for self-similar solutions. There are some results
on related equations which give some hints. In the case of the Vlasov–Poisson
system, the non-relativistic analogue of the Einstein–Vlasov system, global
existence for general data, not necessarily symmetric, was proved by Pfaff-
elmoser [21] and Lions and Perthame [17]. The relativistic Vlasov–Poisson
system, which is in some sense intermediate between the Vlasov–Poisson and
Einstein–Vlasov systems, (but not in all ways) has been shown to have solu-
tions which develop singularities in finite time. Rather precise information is
available about the nature of these singularities [15].

As a side remark, we mention a paper [28] where it was suggested that
naked singularities are formed in solutions of the Einstein–Vlasov system. The
solutions concerned were axially symmetric but not spherically symmetric.
The work is purely numerical but trying to understand what it means for the
analytical problem leads to the conclusion that the solutions computed in [28]
were dust solutions rather than smooth solutions of the Einstein–Vlasov sys-
tem. This is discussed in [25]. There are also reasons for doubting that the
numerical results really show the formation of a naked singularity [30].

A class of distributional solutions of the Einstein–Vlasov system inter-
mediate between smooth solutions and dust is given by the Einstein clusters
[12]. These are spherically symmetric and static, i.e. there exists a timelike
Killing vector field which is orthogonal to spacelike hypersurfaces. It is sup-
posed that the support of f consists of va such that the geodesics with these
initial data are tangent to the spheres of constant distance from the cen-
tre of symmetry on these spacelike hypersurfaces. This means that the radial
velocity and its time derivative in the geodesic equation are zero. These are
in general two independent conditions on the data at a given time. A wider
class, the generalized Einstein clusters [3,10], is obtained as follows: In the
case of the Einstein clusters taking the union of the spheres at a fixed distance
from the centre defines a foliation of the spacetime by timelike hypersurfaces
and the condition on the support means that the four-velocity of a particle
with the given initial data is everywhere tangent to these timelike hypersur-
faces. The generalized Einstein clusters are obtained by dropping the condition
of staticity and replacing the family of timelike hypersurfaces invariant under
the timelike Killing vector field by another foliation by timelike hypersurfaces
which intersect any Cauchy surface in spheres and whose equation of motion
follows from the Vlasov equation. Once again, the four-velocity of a particle in
the support of f is tangent to these hypersurfaces at all times. An analytical
formulation of this definition will be given in the next section. It should be
noted that the generalized Einstein clusters exhibit shell-crossing singularities
and thus can still be thought of as pathological. We are interested in them as
an intermediate step towards better-behaved matter models.

There are two major differences between the generalized Einstein clusters
and the solutions studied in this paper. In the case of Einstein clusters, the
value of the angular momentum of the particles F is uniquely determined by
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the distance r to the centre of symmetry. By contrast, in the solutions studied
in this paper the angular momentum takes a continuous range of values for
each value of r. The second difference is that in the case of Einstein clusters
at each spacetime point the component of the velocity vector va of a particle
in the direction of the vector ∂r takes on only one value. In the case of the
solutions obtained in this paper, the component along the direction ∂r of the
velocity vector takes on two different values at most spacetime points. This
only fails at some exceptional values of r at a given time. This difference in
the structure of the generalized Einstein clusters and the solutions considered
in this paper is what gives some plausibility to the idea that the solutions
described here could be a big step towards better-behaved matter models.
From the physical point of view, in the case of the generalized Einstein clus-
ters the material particle with the smallest value of r would not experience any
gravitational field and therefore could not approach the centre r = 0 unless
its angular momentum vanished. In the solutions studied in this paper, since
two radial velocities are allowed at each spacetime point, the material particle
with the smallest value of r changes in time. This allows the occurrence of
a collective collapse of the whole distribution of particles towards the origin
with some of them coming closer and closer to the centre as the value of some
suitable time coordinate t increases.

Self-similar solutions of the massless Einstein–Vlasov system have also
been considered in the paper [18]. There are several differences between the
approach in [18] and the one considered in this paper. The first one is the choice
of the rescaling group under which the solutions are invariant. The massless
Einstein–Vlasov system is invariant under a two-dimensional group of resca-
lings. The choice of a particular one-dimensional rescaling group has been
made in this paper by imposing that the distribution function f for the par-
ticles remains always of order one (see Sects. 2, 3). This condition is natural,
because the function f is invariant along characteristic curves. On the contrary,
the choice of one-dimensional rescaling group for the solutions in [18] imposes
that f becomes unbounded near the singularity for the particles within the
self-similar region, something that can be achieved assuming that the distri-
bution of matter is singular near the light-cone. The second difference between
the solutions in [18] and those in this paper is that the solutions in [18] can
be thought of as self-similar perturbations of the flat Minkowski space. As a
matter of fact they have been computed by means of a perturbative iteration
procedure that takes flat space as a starting point and where the terms in the
resulting series have been computed numerically. By contrast, the solutions of
this paper are obtained by means of a shooting procedure in which a parameter
that measures the amount of energy in the self-similar region is of order one.
The approach in this paper uses purely analytical methods and does not rely
on numerical computations. On the other hand, in order to simplify the argu-
ments, we have restricted the analysis in this paper to the study of dust-like
solutions, an assumption that was not made in [18].

The plan of the paper is as follows: We will first reduce the problem of
finding self-similar solutions of the Einstein–Vlasov system to an ODE problem
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that can be transformed into a four-dimensional system using suitable changes
of variables. Using these transformations it will be seen that the construction
of the desired self-similar solutions reduces to finding a particular orbit in the
corresponding four-dimensional space connecting a certain point with a steady
state that has a three-dimensional stable manifold. The existence of such an
orbit will be shown by adjusting a parameter that measures the density of par-
ticles in a particular perturbative limit. The precise limit under consideration,
which has the goal of making the problem feasible using analytical methods,
corresponds to assuming that the radius of the region empty of particles, mea-
sured in the natural self-similar variables, is small.

2. The Einstein–Vlasov System in Schwarzschild Coordinates

In this section some basic material on the spherically symmetric Einstein–
Vlasov system is collected. A more detailed treatment can be found in the
review article [1] and its references. We do not use exactly the classical
Schwarzschild coordinates, but a slight modification of them that normalizes
the time to be the proper time at the center r = 0. The metric is given by (cf.
[22])

ds2 = −e2μ(t,r)dt2 + e2λ(t,r)dr2 + r2
(
dθ2 + sin2 θdϕ2

)
. (2.1)

If we restrict our attention to spherically symmetric solutions it is convenient
to use the quantities (cf. [22])

r = (δabx
axb)

1
2 , w =

δabx
avb

r
, F = (δabx

axb)(δcdv
cvd) − (δabx

avb)2

to parametrize the velocity variables. In particular, F is constant along char-
acteristics. Writing the particle density as

f = f (r, w, F, t)

the Einstein–Vlasov system for spherically symmetric solutions in these coor-
dinates becomes

∂tf + eμ−λ w

E
∂rf −

(
λtw + eμ−λμrE − eμ−λ F

r3E

)
∂wf = 0 (2.2)

where

E =

√

1 + w2 +
F

r2
(2.3)

and the functions λ, μ that characterize the gravitational field satisfy

e−2λ (2rλr − 1) + 1 = 8πr2ρ, (2.4)

e−2λ (2rμr + 1) − 1 = 8πr2p (2.5)

with boundary conditions

μ (t, 0) = 0, λ (t, 0) = 0, (2.6)
λ (t,∞) = 0. (2.7)
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On the other hand, ρ and p are given by

ρ = ρ (r, t) =
π

r2

∞∫

−∞

⎡

⎣
∞∫

0

EfdF

⎤

⎦dw, (2.8)

p = p (r, t) =
π

r2

∞∫

−∞

⎡

⎣
∞∫

0

w2

E
fdF

⎤

⎦dw. (2.9)

The Eq. (2.3) is valid for the case of particles of unit rest mass. Later on in the
paper massless particles are considered where the first summand in the square
root is absent from the corresponding expression (cf. (2.14)).

With these basic equations in hand it is possible to give some details con-
cerning generalized Einstein clusters, as promised in the introduction. These
are not required to understand the main results of the paper but help to put
those results into a wider context. A distributional solution of the Vlasov equa-
tion whose support is a smooth submanifold Σ has the property that Σ is a
union of characteristics of the equation. A simple example is that of dust where
the support is the graph of a function ua(t, x) of the form W (t, r)xa

r . When
expressed in terms of polar coordinates this becomes the graph of a function
W (t, r) augmented by the condition F = 0. Here, the function W solves the
equations

dR

dt
= eμ(t,R)−λ(t,R) W

E
, (2.10)

dW

dt
= −(λt(t, R)W + eμ(t,R)−λ(t,R)μr(t, R)E) (2.11)

where E =
√

1 + W 2.
Now consider the generalized Einstein clusters. They are only defined

under the condition of spherical symmetry. They can be thought of as defining
a matter model which can be used in the spherically symmetric Einstein-matter
equations. Here, they will be described in terms of Schwarzschild coordinates.
The basic unknown is a function R(t, r) which satisfies R(0, r) = r. It is the
area radius at time t of the shell which had area radius r at time 0. As input
we require a function F (r) which is the angular momentum of the particles on
the shell which was at radius r at time zero and N(r) which is the density of
particles per shell evaluated on the shell which had area radius r at t = 0. For
some purposes it is more convenient to use R as a radial coordinate instead of
r and this is what was done in the original papers [3,10]. For a given shell at
a given time, the angular momentum and radial velocity of the particles are
fixed and so the intersection of the support of the solution with the fibre of
the mass shell over the point with coordinates (t, r) has codimension two. The
following equations should be satisfied:

dR

dt
= eμ−λ W

E
, (2.12)

dW

dt
= −

(
λtW + eμ−λμrE − eμ−λ F

R3E

)
(2.13)
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where E =
√

1 + W 2 + F
R2 and the functions λ and μ are to be evaluated

at the point (t, R). These are the full characteristic equations for the Vlasov
equation. The difference in the coupled system comes from the fact that the
expressions for the components of the energy-momentum tensor are different
in the two cases. In the case of Einstein clusters, the characteristics of interest
have W = 0 and dW

dt = 0. It follows immediately that dR
dt = 0. In that case

the angular momentum is related to the geometry by the relation F = r3μr

1−rμr
.

The equations which have been written up to now describe particles of
unit mass. We are interested in the construction of solutions of (2.2)–(2.9)
supported in a region where

(
w2 + F

r2

)
takes large values near the formation

of the singularity. This suggests replacing (2.3) by

E =

√

w2 +
F

r2
. (2.14)

The system (2.2), (2.4)–(2.9), (2.14) is invariant under the rescaling

r → θr, t → θt for t < 0, w → 1√
θ
w, F → θF (2.15)

for any θ > 0. It is then natural to look for solutions of (2.2), (2.4)–(2.9), (2.14)
invariant under the rescaling (2.15). They will be the self-similar solutions in
which we will be interested in this paper.

The system obtained when (2.3) is replaced by (2.14) can be interpreted
as describing particles of zero rest mass. The rationale for this assumption
is that near the singularity the derived solution will satisfy w2 + F

r2 � 1,
and therefore it could be expected that it is possible to treat the whole
Einstein–Vlasov system with massive particles as a perturbation of the mass-
less problem.

In what follows we will consider solutions of (2.2), (2.4)–(2.9), (2.14)
where f is not a bounded function, but a measure concentrated on some
hypersurfaces that will be described in detail later. As was mentioned in the
introduction, there is a class of distributional solutions of the Einstein–Vlasov
system which are equivalent to what is usually known in the literature as dust.
From this point of view, the solutions considered in this paper are interme-
diate between dust and smooth solutions and hence will be called dust-like
solutions. Note, however, that in contrast to dust they do have some velocity
dispersion. The dimension of the support of f in the tangent space at a given
spacetime point is zero for dust, one for generalized Einstein clusters, two for
the solutions in this paper and three for smooth solutions. For the solutions
here it will be possible to describe the distribution of velocities for the par-
ticles at a given point using a function depending on one coordinate, while a
general distribution of velocities compatible with the assumption of spherical
symmetry would depend on two coordinates.
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3. Self-Similar Solutions

In this section, we formulate the system of equations satisfied by the solutions
of (2.2), (2.4)–(2.9), (2.14) that are invariant under the transformation (2.15).
We will call these self-similar solutions in what follows. It is convenient, as a
first step, in order to transform (2.2), (2.4)–(2.9), (2.14) to a more convenient
form to define a new variable

v =
w√
F

. (3.1)

We will assume in the rest of the paper that f = 0 for (r, v, F, t) = (r, v, 0, t)
in order to avoid singularities in (3.1). Moreover, we can even assume a more
stringent condition on f, namely f = 0 for 0 ≤ F ≤ δ0 for some δ0 > 0.
Concerning the support in the r coordinate, the solutions constructed in this
paper will vanish for r ≤ y0 (−t) for some y0 > 0.

Making the change of variables (r, w, F, t) → (r, v, F, t) and denoting the
new distribution function by f with a slight abuse of notation, we can trans-
form the system (2.2), (2.8)–(2.9), (2.14) into

∂tf + eμ−λ v

Ẽ
∂rf −

(
λtv + eμ−λμrẼ − eμ−λ 1

r3Ẽ

)
∂vf = 0, (3.2)

Ẽ =

√

v2 +
1
r2

, (3.3)

ρ =
π

r2

∞∫

−∞
Ẽ

⎡

⎣
∞∫

0

fFdF

⎤

⎦dv, (3.4)

p =
π

r2

∞∫

−∞

v2

Ẽ

⎡

⎣
∞∫

0

fFdF

⎤

⎦dv. (3.5)

Notice that the change of variables (3.1) eliminates the dependence on the
variable F for the characteristic curves associated with the Vlasov equation
(cf. (3.2)). Moreover, the functions ρ and p and therefore the functions λ, μ
characterizing the gravitational fields depend on f only through the reduced
distribution function

ζ (r, v, t) ≡
∞∫

0

fFdF. (3.6)

In particular, it is possible to write a closed problem for the reduced distri-
bution function that can be obtained multiplying (3.2) by F and integrating
with respect to this variable:

∂tζ + eμ−λ v

Ẽ
∂rζ −

(
λtv + eμ−λμrẼ − eμ−λ 1

r3Ẽ

)
∂vζ = 0, (3.7)
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Ẽ =

√

v2 +
1
r2

, (3.8)

ρ =
π

r2

∞∫

−∞
Ẽζdv, (3.9)

p =
π

r2

∞∫

−∞

v2

Ẽ
ζdv. (3.10)

The system (3.7)–(3.10) complemented with (2.4), (2.5) is a closed system of
equations.

We will now study the class of self-similar solutions of the system (2.4),
(2.5), (3.2)–(3.5). These are the functions having the functional dependence

f (r, v, F, t) = G (y, V,Φ) , μ (r, t) = U (y), λ (r, t) = Λ (y), (3.11)

y =
r

(−t)
, V = (−t) v, Φ =

F

(−t)
. (3.12)

The solutions of (2.4), (2.5), (3.2)–(3.5) with this functional dependence satisfy

yGy−V GV +ΦGΦ+eU−Λ V

Ê
Gy −

(
yΛyV + eU−ΛUyÊ − eU−Λ 1

y3Ê

)
GV = 0

(3.13)

where

Ê =
√

V 2 +
1
y2

(3.14)

and

e−2Λ (2yΛy − 1) + 1 = 8πy2ρ̃, (3.15)

e−2Λ (2yUy + 1) − 1 = 8πy2p̃ (3.16)

with boundary conditions

U = 0, Λ = 0 at y = 0. (3.17)

Here,

ρ̃ =
π

y2

∞∫

−∞
Ê

⎡

⎣
∞∫

0

GΦdΦ

⎤

⎦dV, (3.18)

p̃ =
π

y2

∞∫

−∞

V 2

Ê

⎡

⎣
∞∫

0

GΦdΦ

⎤

⎦dV. (3.19)
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The function G which is a solution of (3.13)–(3.19) is constant along the
characteristic curves of (3.13) which are given by

dy

dσ
= y + eU−Λ V

√
V 2 + 1

y2

= y + eU−Λ V y
√

V 2y2 + 1
, (3.20)

dV

dσ
= −V −

(

yΛyV +
eU−ΛUy

y

√
V 2y2 + 1 − eU−Λ 1

y2
√

V 2y2 + 1

)

, (3.21)

dΦ
dσ

= Φ. (3.22)

In these equations, σ is just a parameter that is used to parametrize the char-
acteristic curves. Its precise definition will be given later in some specific cases.

The Eqs. (3.20)–(3.22) can be integrated explicitly for any pair of func-
tions U = U (y), Λ = Λ (y). Indeed, the first two equations can be rewritten
as

dy

dσ
= e−Λ ∂H

∂V
, (3.23)

dV

dσ
= −e−Λ ∂H

∂y
(3.24)

where

H ≡ eU

y

√
V 2y2 + 1 + yV eΛ. (3.25)

The trajectories in the (y, V )-plane associated with the solutions of (3.20),
(3.21) are contained in the level sets

H = h. (3.26)

We will also need the self-similar formulation of the integrated form of the
Eq. (3.7). In this case, the function ζ in (3.6) has the functional dependence

ζ (r, v, t) = (−t)2 Θ (y, V ).

Notice that

Θ (y, V ) =

∞∫

0

GΦdΦ. (3.27)

The function Θ satisfies

yΘy − V ΘV − 2Θ + eU−Λ V

Ê
Θy −

(
yΛyV + eU−ΛUyÊ − eU−Λ 1

y3Ê

)
ΘV = 0

(3.28)
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and

ρ̃ =
π

y2

∞∫

−∞
ÊΘdV, (3.29)

p̃ =
π

y2

∞∫

−∞

V 2

Ê
ΘdV. (3.30)

The characteristic curves associated with (3.28) are (3.20), (3.21) and

dΘ
dσ

= 2Θ. (3.31)

4. Singular Self-Similar Solutions: General Properties

The main goal of this paper is to construct a family of distributional solutions
of (3.13)–(3.19) for which G = G (y, V,Φ) is a measure supported on some sur-
faces in the three-dimensional space with coordinates (y, V,Φ) . In this section,
we will describe in a heuristic manner the argument yielding the construction
of such solutions. The arguments will be made rigorous in the rest of the paper.
The key idea behind the argument is that the problem can be transformed into
a system of ordinary differential equations for the particular class of solutions
described in this section.

Taking into account that the singularities of the distribution G might be
expected to be propagated by characteristics it is natural to look for solutions
of (3.13)–(3.19) of the form

G (y, V,Φ) = A (y, V,Φ) δ (H (y, V ) − h) (4.1)

satisfying (3.13) in the sense of distributions. Let us assume that A, H have the
differentiability properties required for all the following formal computations.
Plugging (4.1) into (3.13) we obtain

(a (y, V )Ay + b (y, V ) AV + ΦAΦ) δ (H − h) + A (a (y, V ) Hy

+ b (y, V ) HV ) δ′ (H − h) = 0

where

a (y, V ) ≡ y + eU−Λ V

Ê
= eΛ ∂H

∂V
, (4.2)

b (y, V ) ≡ −V −
(

yΛyV + eU−ΛUyÊ − eU−Λ 1
y3Ê

)
= −eΛ ∂H

∂y
. (4.3)

Notice that a (y, V ) Hy + b (y, V ) HV = 0. Then,

(a (y, V ) Ay + b (y, V ) AV + ΦAΦ) δ (H − h) = 0.

This equation is satisfied if

a (y, V ) Ay + b (y, V ) AV + ΦAΦ = 0 (4.4)
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on the surface {H = h} × R
+. Let us assume that the curve {H = h} can be

parametrized, at least locally, using a parameter σ satisfying

y = y (σ), V = V (σ),
(4.5)

dy (σ)
dσ

= a (y (σ), V (σ)),
dV (σ)

dσ
= b (y (σ), V (σ)).

Then, the function A can be written on the surface {H = h}×R
+ as a function

of the variables (σ,Φ) . We can write

A (y (σ), V (σ),Φ) = Ā (σ,Φ) for (y, V, σ) ∈ {H = h} × R
+ (4.6)

and using (4.5) we can rewrite (4.4) as

Āσ + ΦĀΦ = 0. (4.7)

Since the curves {H = h} can be determined in terms of Θ alone it is
convenient to compute this distribution explicitly. If G has the form (4.1) the
distribution Θ defined in (3.27) is given by

Θ (y, V ) = βδ (H − h) (4.8)

where

β =

∞∫

0

AΦdΦ.

Since A is given by (4.6), it follows that

β = β (σ) =

∞∫

0

Ā (σ,Φ) ΦdΦ for (y, V ) ∈ {H = h}. (4.9)

We can compute β (σ) along the curve {H = h} . To this end we multiply (4.7)
by Φ and integrate in the Φ variable in the interval [0,∞) . Then,

βσ = 2β.

The function β then takes the form

β (σ) = β0e2σ (4.10)

for some β0 ≥ 0.
In the rest of the paper we prove that there exist functions Ā (σ,Φ) as

in (4.6) and curves {H = h} with Λ, U solving (3.15)–(3.17) and ρ̃, p̃ as in
(3.18), (3.19) such that (4.1) solves (3.13) in the sense of distributions.

5. Singular Self-Similar Solutions: Describing Their Support

In this section, we describe in a precise manner the form of the curved surface
containing the support of the distribution G for the self-similar solutions con-
structed in this paper. Such a surface is contained in the surface S = γ × R

+,
where γ ⊂ {(y, V ) : y > 0, V ∈ R} is an unbounded curve, at a strictly positive
distance from the line {y = 0} ≡ {(y, V ) : y = 0, V ∈ R} with a discontinuity
in its curvature at the point (y0, V0) ∈ γ placed at the minimum distance from
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the line {y = 0} . In order to avoid such irregular curves it is more convenient
to assume that the curve γ is the union of two analytic curves γ1 and γ2 that
can be parametrized in the form

γi = {(y, V ) : y0 < y < ∞, V = Vi (y)}, i = 1, 2 (5.1)

where the functions Vi (y) are analytic and satisfy

lim
y→y+

0

V1 (y) = lim
y→y+

0

V2 (y) = V0 = − 1
√

1 − y2
0

, (5.2)

V1 (y) < V2 (y) for y0 < y < ∞ (5.3)

for some y0 ∈ (0, 1) . Since the curves γi are contained in the curve {H = h},
it follows that the functions Vi (y) are the two roots of the equation

eU

y

√
V 2y2 + 1 + yV eΛ = h (5.4)

assuming that such roots exist. Then,

V1 (y) =
1

(e2U − y2e2Λ)

[

−yeΛh −
√

(yeΛh)2 − (e2U − y2e2Λ)
(

e2U

y2
− h2

)]

,

(5.5)

V2 (y) =
1

(e2U − y2e2Λ)

[

−yeΛh +

√

(yeΛh)2 − (e2U − y2e2Λ)
(

e2U

y2
− h2

)]

.

(5.6)

Notice that for such solutions the support of G in (4.1) is contained in the half-
plane {y ≥ y0}. Therefore, ρ (y) = p (y) = 0 for y < y0. Then, (3.15)–(3.17)
imply U (y) = Λ (y) = 0 for y < y0.

Under suitable regularity assumptions for the curves γi near the point
(y0, V0) that will be made precise below the functions U and Λ are continuous
at the point y = y0. In such a case (5.4) implies

h =

√
V 2

0 y2
0 + 1

y0
+ y0V0 =

√
1 − y2

0

y0
. (5.7)

We will prove later that it is possible to construct the desired curves γi, i =
1, 2, defined by means of (5.1) with the property that the following limits exist:

lim
y→y+

0

Vi (y) − V0√
y − y0

= Ki, Ki ∈ R, i = 1, 2, K1 < K2. (5.8)

Moreover, the quotients of the functions Λ and U by
√

y − y0 also tend to
finite limits. Let

lim
y→y+

0

Λ (y)√
y − y0

= θ1 ∈ R, (5.9)

lim
y→y+

0

U (y)√
y − y0

= θ2 ∈ R. (5.10)
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We parametrize the curve γ = {H = h} as in the previous section using a
parameter σ. We will denote a parameter of this kind on the curves γ1, γ2 by
σ1, σ2, respectively. Due to (4.2), (4.5), (5.1) it follows that

dσi

dy
=

1
a (y, Vi (y))

=
1

y + eU−Λ Vi(y)y√
(Vi(y))2y2+1

, i = 1, 2. (5.11)

We will normalize the parameters σi = σi (y) by means of the condition

σi (y0) = 0, i = 1, 2. (5.12)

Finally, we remark that in order to obtain the functions U and Λ we need
to prescribe the distribution Θ defined by (3.27). Using (4.8), (4.10) and the
distributional formula δ(f(x)) =

∑
{xi:f(xi)=0}

1
|f ′(xi)|δ(x − xi) it then follows

that

Θ (y, V ) =
β0χ{y>y0}e2σ1(y)

∣
∣∂H

∂V (y, V1 (y))
∣
∣ δ (V − V1 (y))

+
β0χ{y>y0}e2σ2(y)

∣
∣∂H

∂V (y, V2 (y))
∣
∣ δ (V − V2 (y)) (5.13)

where χ{y>y0} is the characteristic function of the half-plane {y > y0} . Using
(3.29), (3.30) it follows that

ρ̃ (y) =
πβ0χ{y>y0}

y3

[
e2σ1(y)

∣
∣∂H

∂V (y, V1 (y))
∣
∣

√
(V1 (y))2 y2 + 1

+
e2σ2(y)

∣
∣∂H

∂V (y, V2 (y))
∣
∣

√
(V2 (y))2 y2 + 1

]

, (5.14)

p̃ (y) =
πβ0χ{y>y0}

y

⎡

⎣ e2σ1(y)

∣
∣∂H

∂V (y, V1 (y))
∣
∣

(V1 (y))2
√

(V1 (y))2 y2 + 1

+
e2σ2(y)

∣
∣∂H

∂V (y, V2 (y))
∣
∣

(V2 (y))2
√

(V2 (y))2 y2 + 1

⎤

⎦ (5.15)

and the functions U and Λ can then be obtained using the Eqs. (3.15), (3.16).
Due to the dust-like character of the solutions considered in this paper,

they exhibit a singular behaviour for ρ̃ and p̃ at the radius y = y0. This singu-
larity is due to the fact that at this point the quantity dy

dσ in (3.23) vanishes.
However, since the motion of the trajectories after they reach the singularity
continues in a smooth way, and since ρ̃ and p̃ are integrable near this radius,
this singularity can be expected to disappear if the dust-like assumption is
relaxed and some thickness is given to the support of the distribution function
in the phase space.

The main result of this paper is the following:

Theorem 1. There exists ε0 > 0 small such that, for any y0 ∈ (0, ε0) there
exist a value of β0 > 0 and real-valued functions Vi (i ∈ {1, 2}), U,Λ, ρ̃, p̃ and
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σi (i ∈ {1, 2}) of y belonging to the interval [y0,∞) which satisfy the con-
ditions (5.2), (5.3), (5.8), (5.9) and (5.10) and the Eqs. (3.15), (3.16), (5.5),
(5.6), (5.11), (5.12), (5.14) and (5.15). In the coefficients of these equations the
quantities h and H are defined by (5.7) and (3.25), respectively.

The significance of this theorem is that it defines curves γi of the type
introduced above by γi(y) = (y, Vi(y)). The key property that will be used
in the proof of Theorem 1 is the fact that the problem under consideration
is an ODE for the variables Λ, U, σ1 and σ2. Due to the singular character
of this system of equations at the point y = y0 some transformations will be
needed to make it into a regular problem. Using Theorem 1 it is possible to
obtain distributional solutions of the problem (3.13)–(3.19). In order to make
the definition of the distribution G in (4.1) precise we use (4.6), (4.7). Let us
prescribe a smooth function Ā0 (Φ) in Φ ∈ (0,∞) . Taking into account (4.7)
we can then define

Ā (σ,Φ) = Ā0

(
e−σΦ

)
.

Using the structure of the curves γ1, γ2, it would then follow that the distri-
bution G in (4.1) would be given by

G (y, V,Φ) =
Ā0

(
e−σ1(y)Φ

)
χ{y>y0}∣

∣∂H
∂V (y, V1 (y))

∣
∣ δ (V − V1 (y))

+
Ā0

(
e−σ2(y)Φ

)
χ{y>y0}∣

∣∂H
∂V (y, V2 (y))

∣
∣ δ (V − V2 (y)) . (5.16)

We then have the following result:

Theorem 2. Suppose that the function Ā0 (·) ∈ C1
0 (0,∞) satisfies

∞∫

0

Ā0 (Φ) ΦdΦ = β0. (5.17)

Let us define a Radon measure G ∈ M (R+ × R × R
+) by means of (5.16) with

the functions V1 (·), V2 (·), σ1 (·), σ2 (·) as in Theorem 1. Then, the functions
ρ̃, p̃ defined (3.18), (3.19) belong to the spaces Lp

loc (0,∞) for 1 ≤ p < 2. The
functions Λ, U defined by means of (3.15)–(3.17) belong to W 1,p

loc (0,∞) for
1 ≤ p < 2. The measure G satisfies (3.13) in the sense of distributions.

Remark 3. The space C1
0 (0,∞) is the space of compactly supported continu-

ously differentiable functions and the space M (R+ × R × R
+) is the space of

Radon measures on R
+×R×R

+. It is not necessary to require A0 (·) to be com-
pactly supported. Actually, this condition could be replaced by assumptions
of fast enough decay near the origin and infinity.

Remark 4. It is worth noticing that the functions ρ̃, p̃ associated with the
distribution G have an integrable singularity as y → y+

0 .

In the rest of this section we will prove Theorem 2. Theorem 1 will be
proved in the remaining sections of the paper using a shooting argument and
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refined asymptotics of the solutions for y0 small. The following auxiliary result
will be used in the proof of Theorem 2 and it will be proved in Sect. 6. We
remark that Theorem 2 will not be used in either the proof of Theorem 1 or
that of Proposition 5 below.

Proposition 5. The curves γ1, γ2 whose existence has been proved in Theorem 1
satisfy the following conditions:

lim
y→y+

0

∂H
∂V (y, V1 (y))√

y − y0
= L1, lim

y→y+
0

∂H
∂V (y, V2 (y))√

y − y0
= L2 (5.18)

for some constants L1 < L2. In fact L1 < 0 and L2 > 0.

Proof of Theorem 2. Using (3.27), (5.16) and (5.17) we obtain

Θ (y, V ) =

∞∫

0

GΦdΦ =
β0e2σ1(y)χ{y>y0}∣
∣∂H

∂V (y, V1 (y))
∣
∣ δ (V − V1 (y))

+
β0e2σ2(y)χ{y>y0}∣
∣∂H

∂V (y, V2 (y))
∣
∣ δ (V − V2 (y)) . (5.19)

We can then compute ρ̃, p̃ using (3.29), (3.30):

ρ̃ (y) =
πβ0χ{y>y0}

y3

⎡

⎣
e2σ1(y)

√
1 + y2 (V1 (y))2

∣
∣∂H

∂V (y, V1 (y))
∣
∣ +

e2σ2(y)

√
1 + y2 (V2 (y))2

∣
∣∂H

∂V (y, V2 (y))
∣
∣

⎤

⎦ ,

(5.20)

p̃ (y) =
πβ0χ{y>y0}

y

⎡

⎣ e2σ1(y) (V1 (y))2

∣
∣∂H

∂V (y, V1 (y))
∣
∣
√

1 + y2 (V1 (y))2

+
e2σ2(y) (V2 (y))2

∣
∣∂H

∂V (y, V2 (y))
∣
∣
√

1 + y2 (V2 (y))2

⎤

⎦ . (5.21)

Using (5.8)–(5.10), (5.18), we obtain

|ρ̃ (y)| + |p̃ (y)| ≤ Cχ{y>y0}√
y − y0

(5.22)

for y0 < y < y0 + 1, whence the estimate ρ̃, p̃ ∈ Lp
loc (0,∞), 1 ≤ p < 2, in the

theorem follows. On the other hand, (3.15)–(3.17) imply

Λ = −1
2

log

⎛

⎝1 − 8π

y

y∫

y0

ξ2ρ̃ (ξ) dξ

⎞

⎠ , (5.23)

U =

y∫

y0

[(
8πξ2p̃ (ξ) + 1

)
e2Λ(ξ) − 1

]

2ξ
dξ. (5.24)

Due to Theorem 1 the functions Λ, U are bounded for any finite value y > 0.
On the other hand, (5.23), (5.24) imply Λ, U ∈ W 1,p

loc (0,∞) , 1 ≤ p < 2.
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In order to complete the proof of Theorem 2 it only remains to prove
that G solves (3.13) in the sense of distributions. This is equivalent to showing
that

∫

R+×R×R+

[

− (yϕ)y + (V ϕ)V − (Φϕ)Φ −
(

eU−Λ V

Ê
ϕ

)

y

+
((

yΛyV + eU−ΛUyÊ − eU−Λ 1
y3Ê

)
ϕ

)

V

]

GdydV dΦ = 0 (5.25)

for any ϕ = ϕ (y, V,Φ) ∈ C∞
0 (R+ × R × R

+) . Using (5.16) we can rewrite
(5.25) as

J ≡
2∑

i=1

∞∫

y0

∞∫

0

[

− (yϕ)y + (V ϕ)V − (Φϕ)Φ −
(

eU−Λ V

Ê
ϕ

)

y

+
((

yΛyV + eU−ΛUyÊ − eU−Λ 1
y3Ê

)
ϕ

)

V

]∣∣
∣
∣
∣
(y,Vi(y),Φ)

× Ā0

(
e−σi(y)Φ

)
∣
∣∂H

∂V (y, Vi (y))
∣
∣dΦdy = 0 (5.26)

and making the change of variables e−σi(y)Φ → Φ we can transform J into

J ≡
2∑

i=1

∞∫

y0

∞∫

0

[

− (yϕ)y + (V ϕ)V − (Φϕ)Φ −
(

eU−Λ V

Ê
ϕ

)

y

+
((

yΛyV + eU−ΛUyÊ − eU−Λ 1
y3Ê

)
ϕ

)

V

]∣∣
∣
∣
∣
(y,Vi(y),Φeσi(y))

× Ā0 (Φ) eσi(y)

∣
∣∂H

∂V (y, Vi (y))
∣
∣dydΦ (5.27)

Notice that we can write

F ≡ − (yϕ)y + (V ϕ)V − (Φϕ)Φ −
(

eU−Λ V

Ê
ϕ

)

y

+
((

yΛyV + eU−ΛUyÊ − eU−Λ 1
y3Ê

)
ϕ

)

V

= −yϕy + V ϕV − (Φϕ)Φ −
(

eU−Λ V y
√

1 + V 2y2
ϕ

)

y

+

((

yΛyV +
eU−ΛUy

y

√
1 + V 2y2 − eU−Λ 1

y2
√

1 + V 2y2

)

ϕ

)

V
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and, using Leibniz’s rule

F = −yΛyϕ − yeΛ
(
e−Λϕ

)
y

+ V ϕV − ΦϕΦ − ϕ − UyeU−Λ V y
√

1 + V 2y2
ϕ

−eU−Λ V
√

1 + V 2y2
ϕ + eU−Λ V 3y2

(1 + V 2y2)
3
2
ϕ − eU V y

√
1 + V 2y2

(
e−Λϕ

)
y

+

(

yΛy + UyeU−Λ V y
√

1 + V 2y2
+ eU−Λ V

(1 + V 2y2)
3
2

)

ϕ

+

(

yΛyV +
eU−ΛUy

y

√
1 + V 2y2 − eU−Λ 1

y2
√

1 + V 2y2

)

ϕV .

After some cancellations

F (y, V,Φ) = −
(

yeΛ + eU V y
√

1 + V 2y2

)
(
e−Λϕ

)
y

− ΦeΛ
(
e−Λϕ

)
Φ

− ϕ

+

(

yΛyV eΛ + V eΛ +
eUUy

y

√
1 + V 2y2 − eU 1

y2
√

1 + V 2y2

)
(
e−Λϕ

)
V

.

(5.28)

Then, (5.27) can be rewritten as

J =
2∑

i=1

∞∫

y0

∞∫

0

F
(
y, Vi (y) ,Φeσi(y)

) Ā0 (Φ) eσi(y)

∣
∣∂H

∂V (y, Vi (y))
∣
∣dΦdy.

Due to Proposition 5 as well as the fact that the curves γ1, γ2 are globally
defined, it follows that

∣
∣
∣
∣
∂H

∂V
(y, Vi (y))

∣
∣
∣
∣ = (−1)i−1 ∂H

∂V
(y, Vi (y)) .

Then,

J =
2∑

i=1

(−1)i−1

∞∫

y0

∞∫

0

F
(
y, Vi (y) ,Φeσi(y)

) Ā0 (Φ) eσi(y)

∂H
∂V (y, Vi (y))

dΦdy. (5.29)

Using (3.25) and (5.28), we obtain

F (y, V,Φ)
yeΛ + eU V y√

V 2y2+1

= − (
e−Λϕ

)
y

− Φ
y + eU−Λ V y√

V 2y2+1

(
e−Λϕ

)
Φ

− 1
y + eU−Λ V y√

V 2y2+1

(
e−Λϕ

)
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+
1

y + eU−Λ V y√
V 2y2+1

(
yΛyV + V +

eU−ΛUy

y

√
1 + V 2y2

)
(
e−Λϕ

)
V

− eU−Λ

y + eU−Λ V y√
V 2y2+1

1

y2
√

1 + V 2y2

(
e−Λϕ

)
V

.

Equations (4.3), (4.4) and (5.11) give

dVi

dy
(y) = − 1

y + eU−Λ V y√
V 2y2+1

(

yΛyV + V +
eU−ΛUy

y

√
1 + V 2y2

− eU−Λ 1

y2
√

1 + V 2y2

)

. (5.30)

Therefore,

F
(
y, Vi (y),Φeσi(y)

) eσi(y)

∂H
∂V (y, Vi (y))

= eσi(y)

[
− (

e−Λϕ
)
y

− Φ
dσi

dy

(
e−Λϕ

)
Φ

−dσi

dy

(
e−Λϕ

) − dVi

dy
(y)

(
e−Λϕ

)
V

]∣∣
∣
∣
(y,Vi(y),Φeσi(y))

.

It then follows, using the chain rule that

d
dy

(
eσi(y)e−Λ(y)ϕ

(
y, Vi (y) ,Φeσi(y)

))

= −F
(
y, Vi (y) ,Φeσi(y)

) eσi(y)

∂H
∂V (y, Vi (y))

.

Formula (5.29) then becomes

J =
2∑

i=1

(−1)i

∞∫

y0

∞∫

0

Ā0 (Φ)
d
dy

(
eσi(y)e−Λ(y)ϕ

(
y, Vi (y) ,Φeσi(y)

))
dΦdy

or, equivalently

J =
2∑

i=1

(−1)i−1

∞∫

0

Ā0 (Φ)
(
eσi(y0)e−Λ(y0)ϕ

(
y0, Vi

(
y+
0

)
,Φeσi(y0)

))
dΦ

and using (5.9), (5.10), (5.12)

J ≡
2∑

i=1

(−1)i−1

∞∫

0

Ā0 (Φ) ϕ (y0, Vi (y0) ,Φ) dΦ.

Due to the fact that ϕ
(
y0, Vi

(
y+
0

)
,Φ

)
= ϕ (y0, V0,Φ) for i = 1, 2 we have

J = 0 and (5.26) follows. This completes the proof of the theorem. �
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We now remark that it is possible to derive some detailed information about
the behaviour of the curves γ1, γ2 as y → ∞.

Theorem 6. Suppose that the curves γ1, γ2 are as in the remark following The-
orem 1. Then, the following asymptotic formulas hold:

U(y) = log
(

y

y0

)
+ log

(√
1 − y2

0

)
+ o (1) as y → ∞,

Λ(y) → log
(√

3
)

as y → ∞,

V1(y) = −2y0

√
3 (1 − y2

0)
(1 − 4y2

0) y
(1 + o(1)) as y → ∞,

V2(y) = −
√

1 − y2
0√

3y0

C1

y

(
y0

y

)2

(1 + o(1)) as y → ∞

for a suitable constant C1 ∈ R.

The proof of this theorem is given later in Sect. 6.5. Notice that the
asymptotic behaviour of the solutions in Theorem 6 shows that the support of
these solutions approaches the line {V = 0} away from the self-similar region
(i.e. for y → ∞). This is one of the main differences between the solutions
described in this paper and the ones in [18].

It is relevant to notice that the spacetime described by the solutions in
Theorem 6 exhibits curvature singularities and not just coordinate singulari-
ties. To this end we use the Kretschmann scalar (cf. [26])

RαβγδRαβγδ = 4K2 +
16m2

r6
+ 12r−2∇a∇br∇a∇br

where K is the Gaussian curvature of the quotient of the spacetime by the sym-
metry group and m is the Hawking mass that can be computed by means of

m =
r

2
(1 − ∂ar∂ar).

Combining (2.1), (3.11), (3.12) we obtain the following self-similar form for
the Hawking mass:

m =
r

2

(
1 − e−2Λ( r

(−t) )
)

and therefore, it follows from Theorem 6 that

m ∼ r

3
for

r

(−t)
sufficiently large.

On the other hand, the last term in the Kretschmann scalar can be written as
(cf. [11], Appendix A)

24r−2

(
1
2r

(k − ∇br∇cr) + 2πrtrT
)2

+ 96π2

(
Tab − trT

2
gab

)(
T ab − trT

2
gab

)
.
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The last term turns out to be positive for any matter model satisfying the
dominant energy condition, which includes in particular the case of Vlasov
matter. Therefore, RαβγδRαβγδ ≥ 16m2

r6 and so the curvature becomes singu-
lar as r → 0 for a fixed large value of r

(−t) .

We remark that the solutions which have been derived do not provide an
example of violation of the cosmic censorship hypothesis for Vlasov matter,
because the spacetimes concerned are not asymptotically flat as r → ∞. More-
over, it turns out that the region contained inside the light cone reaching the
singular point at r = 0, t = 0− in the spacetime described by Theorem 6 is
dependent on the data on the whole region with 0 ≤ r < ∞. This implies that
a gluing of this spacetime with another one causally disconnected from the
singular point is not possible, because this would require doing some gluing
along regions where r = ∞. In order to check these statements, it is convenient
to rewrite the metric (2.1) in double null coordinates. Notice that (2.1), (3.11)
and (3.12) yield the following self-similar structure for the metric:

ds2 = −e2U( r
(−t) )dt2 + e2Λ( r

(−t) )dr2 + r2
(
dθ2 + sin2 θdϕ2

)
.

The double-null coordinates are then just the constants of integration associ-
ated with the pair of differential equations

−eU( r
(−t) )dt + eΛ( r

(−t) )dr = 0,

eU( r
(−t) )dt + eΛ( r

(−t) )dr = 0.

The solutions of these equations can be written in terms of two integration
constants u and v that will define the double-null coordinates. The particular
choice of coordinates has been made in order to obtain u and v taking values
in compact sets.

arctanh (u) = log (−t) +

y∫

0

eΛ(ξ)−U(ξ)

1 + ξeΛ(ξ)−U(ξ)
dξ

arctanh (v) = log (−t) −
y∫

0

eΛ(ξ)−U(ξ)

1 − ξeΛ(ξ)−U(ξ)
dξ

In the region close to the centre (i.e. y 
 1) the structure of the metric
is similar to Minkowski. On the other hand, Theorem 6 yields the following
asymptotics for r � (−t) :

arctanh (v) ∼ log (−t) +
√

3y0√
1 − y2

0

log
(

r

(−t)

)
,

arctanh (u) ∼ − log (−t) +
√

3y0√
1 − y2

0

log
(

r

(−t)

)
.

The light cone approaching the singular point is described in these coordinates
by the line u = 1. Notice along such a line, for v of order one we would have
r = ∞, whence the assertion above follows.
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For these reasons a spacetime behaving asymptotically as Minkowski can-
not be obtained gluing the self-similar solution obtained in this paper with a
spacetime causally disconnected from the singular point. This kind of gluing
might be possible for non self-similar solutions of the Einstein equations behav-
ing asymptotically near the singular point like those described in this paper.
However, such an analysis is beyond the scope of this paper.

6. Proof of Theorem 1

The strategy used to prove Theorem 1 is the following: We first transform the
original problem (3.15), (3.16), (5.2), (5.3), (5.5), (5.6), (5.8)–(5.12), (5.14),
(5.15) into a family of four-dimensional autonomous systems depending on
the parameter β0 by means of a change of variables. It will be shown that
proving Theorem 1 is equivalent to finding an orbit for this system connecting
two specific points P0, P1 of the four-dimensional phase space. The point P1 is
a unstable saddle point with an associated three-dimensional stable manifold
M = M (β0) that can be described in detail in the limit y0 → 0. A shooting
argument will show that for a suitable choice of the parameter β0 the manifold
M (β0) contains the point P0. In the rest of this section we give the details of
this argument.

6.1. Reduction of the Problem to an Autonomous System

Instead of the set of variables (y, U,Λ, Vi, σi) it is more convenient to use the
set of variables (s, u,Λ, ζi, Qi) where

s = log
(

y

y0

)
, U = log

(
y

y0

)
+ u, ζi = yVi, Qi =

y0

y
eσi , i = 1, 2. (6.1)

Then, the evolution equations (3.15), (3.16), (5.4), (5.11) and the inequality
(5.3) become

eu
√

ζ2
i + 1 + y0ζieΛ =

√
1 − y2

0 , i = 1, 2, ζ1 < ζ2, (6.2)

dQi

ds
= − euQiζi[

y0eΛ
√

ζ2
i + 1 + ζieu

] , i = 1, 2, (6.3)

e−2Λ

(
2
dΛ
ds

− 1
)

+ 1 =
θ

2

⎡

⎣ Q2
1

(
ζ2
1 + 1

)
∣
∣
∣ζ1eu + y0eΛ

√
ζ2
1 + 1

∣
∣
∣

+
Q2

2

(
ζ2
2 + 1

)
∣
∣
∣ζ2eu + y0eΛ

√
ζ2
2 + 1

∣
∣
∣

⎤

⎦ ,

(6.4)

e−2Λ

(
2
du

ds
+ 3

)
− 1 =

θ

2

⎡

⎣ Q2
1ζ

2
1∣

∣
∣ζ1eu + y0eΛ

√
ζ2
1 + 1

∣
∣
∣

+
Q2

2ζ
2
2∣

∣
∣ζ2eu + y0eΛ

√
ζ2
2 + 1

∣
∣
∣

⎤

⎦

(6.5)

where

θ =
16π2β0

y0
. (6.6)
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The initial conditions (3.17), (5.12) imply

u = 0, Λ = 0, Qi = 1, i = 1, 2 at s = 0. (6.7)

Notice that the system (6.3)–(6.5) with ζi as in (6.2) is a four-dimensional
autonomous system of equations for the unknown functions (Q1, Q2,Λ, u) .
Notice, however, that the system seems to become singular if the variables
(Q1, Q2,Λ, u) approach the values in (6.7) due to the vanishing of the denom-
inators in (6.4), (6.5). To treat these singularities we rewrite the terms[
y0eΛ

√
ζ2
i + 1 + ζieu

]
. Notice that (6.2) implies

ζi =
1

(
1 − y2

0e2(Λ−u)
)
[
−y0

√
1 − y2

0eΛ−2u ∓ Z

]
, i = 1, 2, (6.8)

Z =
√

(e−2u (1 − y2
0) − 1)

(
1 − y2

0e2(Λ−u)
)

+ y2
0 (1 − y2

0) e2(Λ−2u). (6.9)

Then,

y0eΛ
√

ζ2
i + 1 + ζieu = ∓euZ, i = 1, 2

and the system of Eqs. (6.3)–(6.5) becomes
dQ1

ds
=

Q1ζ1

Z
, (6.10)

dQ2

ds
= −Q2ζ2

Z
, (6.11)

e−2Λ

(
2
dΛ
ds

− 1
)

+ 1 =
θe−u

2

[
Q2

1

Z

(
ζ2
1 + 1

)
+

Q2
2

Z

(
ζ2
2 + 1

)
]

, (6.12)

e−2Λ

(
2
du

ds
+ 3

)
− 1 =

θe−u

2

[
Q2

1ζ
2
1

Z
+

Q2
2ζ

2
2

Z

]
. (6.13)

We now eliminate the variables Λ, u in (6.3)–(6.5) and replace them by the
functions Z and G where Z is as in (6.9) and G is defined by means of

G = e−2Λ. (6.14)

Then, (6.12) becomes

dG

ds
= 1 − G − θe−u

2

[
Q2

1

Z

(
ζ2
1 + 1

)
+

Q2
2

Z

(
ζ2
2 + 1

)
]

. (6.15)

On the other hand, (6.9) implies

e−2u =
Z2 + 1

[(1 − y2
0) + y2

0e2Λ]
=

(
Z2 + 1

)
G

[G + y2
0 (1 − G)]

(6.16)

whence

u = −1
2

log

( (
Z2 + 1

)
G

[G + y2
0 (1 − G)]

)

.

Differentiating this formula, we obtain

du

ds
= − Z

(Z2 + 1)
dZ

ds
− y2

0

2
1

[G + y2
0 (1 − G)] G

dG

ds
.
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Eliminating du
ds from this formula using (6.13), (6.15) we obtain

Z
dZ

ds
=

(
3
2

− 1
2G

− Δ
)
(
Z2 + 1

)
(6.17)

where

Δ ≡ y2
0

2
1

[G + y2
0 (1 − G)] G

dG

ds
+

θe−u

4G

[
Q2

1ζ
2
1

Z
+

Q2
2ζ

2
2

Z

]
.

Using (6.15) it then follows, after some computations, that

4GZ
[
G + y2

0 (1 − G)
]
Δ = 2 (1 − G) y2

0Z

+ θe−u
(−y2

0

[
Q2

1

(
ζ2
1 + 1

)
+ Q2

2

(
ζ2
2 + 1

)]

+
[
Q2

1ζ
2
1 + Q2

2ζ
2
2

] [
G + y2

0 (1 − G)
])

. (6.18)

The last bracket in (6.18) can be rewritten as
(−y2

0

[
Q2

1

(
ζ2
1 + 1

)
+ Q2

2

(
ζ2
2 + 1

)]
+

[
Q2

1ζ
2
1 + Q2

2ζ
2
2

] [
G + y2

0 (1 − G)
])

= Q2
1

[
ζ2
1 − y2

0

(
ζ2
1 + 1

)]
+ Q2

2

[
ζ2
2 − y2

0

(
ζ2
2 + 1

)]

+
(
1 − y2

0

) [
Q2

1ζ
2
1 + Q2

2ζ
2
2

]
(G − 1) . (6.19)

Using (6.8), we obtain

[
ζ2
i − y2

0

(
ζ2
i + 1

)]
=

(
1 − y2

0

)
Z2

(
1 − y2

0e2(Λ−u)
)2 ± 2y0

(
1 − y2

0

) 3
2 eΛ−2u

(
1 − y2

0e2(Λ−u)
)2 Z

+ y2
0

[(
1 − y2

0

)2 e2(Λ−2u)

(
1 − y2

0e2(Λ−u)
)2 − 1

]

, i = 1, 2. (6.20)

Plugging (6.20) into (6.19) it then follows that
(−y2

0

[
Q2

1

(
ζ2
1 + 1

)
+ Q2

2

(
ζ2
2 + 1

)]
+

[
Q2

1ζ
2
1 + Q2

2ζ
2
2

] [
G + y2

0 (1 − G)
])

=

(
1 − y2

0

)
Z2

(
1 − y2

0e2(Λ−u)
)2

(
Q2

1 + Q2
2

)
+

2y0

(
1 − y2

0

) 3
2 eΛ−2u

(
1 − y2

0e2(Λ−u)
)2

(
Q2

1 − Q2
2

)
Z

+ y2
0

[(
1 − y2

0

)2 e2(Λ−2u)

(
1 − y2

0e2(Λ−u)
)2 − 1

]
(
Q2

1 + Q2
2

)

+
(
1 − y2

0

) [
Q2

1ζ
2
1 + Q2

2ζ
2
2

]
(G − 1)

and using (6.18), we arrive at

Δ =
(1 − G) y2

0

2G [G + y2
0 (1 − G)]

+
θe−u

4G [G + y2
0 (1 − G)]

[ (
1 − y2

0

)
Z

(
1 − y2

0e2(Λ−u)
)2

(
Q2

1 + Q2
2

)

+
2y0

(
1 − y2

0

) 3
2 eΛ−2u

(
1 − y2

0e2(Λ−u)
)2

(
Q2

1 − Q2
2

)
+

1
Z

Φ

⎤

⎦ (6.21)
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where

Φ=y2
0

[(
1−y2

0

)2 e2(Λ−2u)

(
1−y2

0e2(Λ−u)
)2 − 1

]
(
Q2

1 + Q2
2

)
+
(
1 − y2

0

) [
Q2

1ζ
2
1 + Q2

2ζ
2
2

]
(G − 1).

(6.22)

In order to obtain analytic solutions it is convenient to introduce the change
of variables

ds = 2GZdχ, χ = 0 at s = 0. (6.23)

Then the system (6.10), (6.11), (6.15), (6.17) becomes

dQ1

dχ
= 2GQ1ζ1, (6.24)

dQ2

dχ
= −2GQ2ζ2, (6.25)

dG

dχ
= 2G

(
Z (1 − G) − θe−u

2
[
Q2

1

(
ζ2
1 + 1

)
+ Q2

2

(
ζ2
2 + 1

)]
)

, (6.26)

dZ

dχ
= (3G − 1 − 2GΔ)

(
Z2 + 1

)
(6.27)

with the initial conditions

Q1 = Q2 = 1, G = 1, Z = 0, at χ = 0. (6.28)

It is possible to eliminate the variables ζi from the expression for Φ in (6.22)
using (6.8) with the result

Φ = y2
0

[(
1 − y2

0

)2 e2(Λ−2u)

(
1 − y2

0e2(Λ−u)
)2 − 1

]
(
Q2

1 + Q2
2

)

+

(
1 − y2

0

)
(G − 1)

(
1 − y2

0e2(Λ−u)
)2

([
y2
0

(
1 − y2

0

)
e2(Λ−2u) + Z2

] (
Q2

1 + Q2
2

)

+2y0

√
1 − y2

0ZeΛ−2u
(
Q2

1 − Q2
2

)
)

. (6.29)

In order to identify the behaviour of Φ as Z → 0, we write the terms in brackets
on the right-hand side of (6.29) as
[(

1 − y2
0

)2 e2(Λ−2u)

(
1 − y2

0e2(Λ−u)
)2 − 1

]

=
1

(
1 − y2

0e2(Λ−u)
)2

[
(
1 − y2

0

)2
(
e2(Λ−2u) − 1

)
+ 2

(
1 − y2

0

)
y2
0

(
e2(Λ−u) − 1

)

−y4
0

(
e2(Λ−u) − 1

)2
]

.
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Then, (6.29) becomes

Φ =
y2
0

(
1 − y2

0

) (
Q2

1 + Q2
2

)

(
1 − y2

0e2(Λ−u)
)2

[(
1 − y2

0

) (
e2(Λ−2u) − 1

)
+ 2y2

0

(
e2(Λ−u) − 1

)

+
(
1 − y2

0

)
(G − 1) e2(Λ−2u)

]

+

(
1 − y2

0

)
(G − 1)

(
1 − y2

0e2(Λ−u)
)2

[
Z2

(
Q2

1 + Q2
2

)
+ 2y0

√
1 − y2

0ZeΛ−2u
(
Q2

1 − Q2
2

)
]

− y6
0

(
Q2

1 + Q2
2

)

(
1 − y2

0e2(Λ−u)
)2

(
e2(Λ−u) − 1

)2

. (6.30)

In order to simplify this formula we write, using (6.14), (6.16)
[(

1 − y2
0

) (
e2(Λ−2u) − 1

)
+ 2y2

0

(
e2(Λ−u) − 1

)
+

(
1 − y2

0

)
(G − 1) e2(Λ−2u)

]

= − (
1 − y2

0

) (
1 − e−4u

)
+ 2y2

0

(
e2(Λ−u) − 1

)

= − (
1 − y2

0

)
(

1 −
(

G

[G + y2
0 (1 − G)]

)2
)

+ 2y2
0

(
1

[G + y2
0 (1 − G)]

− 1
)

+
(
1 − y2

0

) (
2Z2 + Z4

)
(

G

[G + y2
0 (1 − G)]

)2

+ 2y2
0

(
Z2

[G + y2
0 (1 − G)]

)
,

(
e2(Λ−u) − 1

)
=

Z2 + (1 − G)
(
1 − y2

0

)

[G + y2
0 (1 − G)]

.

Plugging these formulas into (6.30) we obtain, after some computations

Φ
Z

=
y2
0

(
1 − y2

0

) (
Q2

1 + Q2
2

)

(
1 − y2

0e2(Λ−u)
)2

[
(
1 − y2

0

) (
2Z + Z3

)
(

G

[G + y2
0 (1 − G)]

)2

+2y2
0

(
Z

[G + y2
0 (1 − G)]

)]

+

(
1 − y2

0

)
(G − 1)

(
1 − y2

0e2(Λ−u)
)2

[
Z
(
Q2

1 + Q2
2

)
+ 2y0

√
1 − y2

0eΛ−2u
(
Q2

1 − Q2
2

)
]

− y6
0

(
Q2

1 + Q2
2

)

(
1 − y2

0e2(Λ−u)
)2

[
2
(
1 − y2

0

)
Z (1 − G) + Z3

[G + y2
0 (1 − G)]2

]

. (6.31)

Summarizing, we have transformed the original problem (3.15), (3.16),
(5.4), (5.11) into the system of Eqs. (6.24)–(6.27) with Δ as in (6.21), Φ

Z as
in (6.31), ζi as in (6.8) and Λ, u given by (6.14), (6.16). The initial data for
(Q1, Q2, G, Z) are as in (6.28).

Some of the forms that we have derived for the ODE problems above
are more convenient for describing the solutions in different regions of the
phase space. We will change freely between the different groups of equivalent
variables in the following.
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6.2. Local Existence of the Curves γ1, γ2

With the reformulation of the problem obtained in the previous subsection,
the existence of the curves γ1, γ2 in a neighbourhood of the point (y0, V0) can
be obtained using standard ODE theory.

Proposition 7. For any y0 ∈ (0, 1) and any β0 > 0 there exist δ > 0 and two
curves γ1, γ2 that can be parametrized as

γi = {(y, V ) : y0 < y < y0 + δ, V = Vi (y)}, i = 1, 2 (6.32)

with the functions V1 (y) , V2 (y) as in (5.5), (5.6) satisfying (5.2), (5.3), (5.8)
the functions U, Λ satisfying (3.15), (3.16) and (5.9), (5.10) with ρ̃, p̃ as in
(5.14), (5.15) and σ1, σ2 solving (5.11), (5.12).

Proof. The arguments in Sect. 6.1 show that the proposition follows from prov-
ing local existence and uniqueness for (6.24)–(6.27) with initial data (6.28).
Since the right-hand side of (6.24)–(6.27) is analytic in a neighbourhood of
(Q1, Q2, G, Z) = (1, 1, 1, 0), it follows that there exists a unique solution of
(6.28), (6.24)–(6.27) on an interval of the form 0 < χ < δ0 for some δ0 > 0.
Moreover, for such a solution Δ → 0 as χ → 0+, whence Z ∼ 2χ as χ → 0+.
Therefore, (6.23) yields

s ∼ 2χ2 as χ → 0+, χ ∼
√

s

2
as s → 0+,

(6.33)
Z ∼

√
2s as s → 0+.

Using (6.1), it follows that

s ∼ y − y0

y0
as y → y+

0 . (6.34)

Combining then (6.1) and (6.8), we obtain (5.8). The asymptotics (5.9), (5.10)
follows from the asymptotics for G, Z in an analogous way. �
Moreover, we can prove Proposition 5 in a similar way.

Proof of Proposition 5. All the conclusions except the last statement concern-
ing the signs of the Li follow from (3.25), (6.1), (6.33) and (6.34). The remain-
ing statement may be proved as follows: The second derivative of H with
respect to V is given by

∂2H

∂V 2
=

yeU

(V 2y2 + 1)
3
2
. (6.35)

Since the right-hand side of this equation is positive, the function H is convex
in its dependence on V for any fixed value of y. It follows that if the restriction
of H to a line of constant y has two zeroes (and this has already been proved),
its derivative must be negative at the zero with the smaller value of V and
positive at that with the larger value of V . �
We notice for further reference that we have also proved the following result:

Proposition 8. There exists a unique solution of the system (6.3)–(6.5) with ζi

as in (6.2) and initial data (Q1, Q2,Λ, u) = (1, 1, 0, 0) as s → 0+.
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6.3. Steady States for the System (6.24)–(6.27)

In order to study the steady states of (6.24)–(6.27), it is more convenient
to use the form of the equations in (6.2)–(6.5). Then, the steady states are
characterized by

Qiζi = 0; i = 1, 2, (6.36)

−e−2Λ + 1 =
θ

2

⎡

⎣ Q2
1∣

∣
∣ζ1eu + y0eΛ

√
ζ2
1 + 1

∣
∣
∣

(
ζ2
1 + 1

)

+
Q2

2∣
∣
∣ζ2eu + y0eΛ

√
ζ2
2 + 1

∣
∣
∣

(
ζ2
2 + 1

)
⎤

⎦ , (6.37)

3e−2Λ − 1 =
θ

2

⎡

⎣ Q2
1ζ

2
1∣

∣
∣ζ1eu + y0eΛ

√
ζ2
1 + 1

∣
∣
∣

+
Q2

2ζ
2
2∣

∣
∣ζ2eu + y0eΛ

√
ζ2
2 + 1

∣
∣
∣

⎤

⎦. (6.38)

The first and third equations imply

3e−2Λ − 1 = 0. (6.39)

Then, the second equation reduces to

2
3

=
θ

2

⎡

⎣ Q2
1(ζ

2
1 + 1)∣

∣
∣ζ1eu + y0eΛ

√
ζ2
1 + 1

∣
∣
∣

+
Q2

2(ζ
2
2 + 1)∣

∣
∣ζ2eu + y0eΛ

√
ζ2
2 + 1

∣
∣
∣

⎤

⎦ . (6.40)

Notice that (6.40) implies that at least one of the variables Q1, Q2 is different
from zero at the steady state. Suppose that both of them are different from
zero. Then ζ1 = ζ2 = 0, whence, using

eu
√

ζ2
i + 1 + y0ζieΛ =

√
1 − y2

0 , i = 1, 2, ζ1 ≤ ζ2

it follows that

eu =
√

1 − y2
0 (6.41)

and (6.40) reduces to

(
Q2

1 + Q2
2

)
=

4y0eΛ

3θ
=

4y0

√
3

3θ
.

This defines a family of steady states. Local analysis near these solutions
indicates that they are reached for finite values of y. Since we are interested in
solutions defined for arbitrarily large values of y > y0 a more detailed analysis
of these solutions will not be pursued here. We will then restrict our analysis
to the solutions for which Q1Q2 = 0.
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Suppose that Q1 �= 0. Then ζ1 = 0. (6.41) implies

√
ζ2
2 + 1 +

y0ζ2eΛ

√
1 − y2

0

= 1,

ζ2 =

√
1 − y2

0

y0eΛ

[
1 −

√
ζ2
2 + 1

]
< 0.

This contradicts ζ1 ≤ ζ2. Therefore, for solutions with Q1Q2 = 0 we must have
Q2 �= 0 whence ζ2 = 0. Then, (6.41) is satisfied and (6.40) yields

Q2 =

√
4
√

3
3θ

y0 =
2
√

y0

3
1
4
√

θ
.

We remark that for this solution

ζ1 = − 2heΛ∞

(h2 − e2Λ∞)
= −2y0

√
3 (1 − y2

0)
1 − 4y2

0

.

In order to have ζ1 < ζ2 = 0 we need y0 ∈ (
0, 1

2

)
.

Summarizing, for each y0 ∈ (
0, 1

2

)
the system (6.24)–(6.27) has the fol-

lowing steady state:

Q1 = Q1,∞ = 0, (6.42)

Q2 = Q2,∞ =
2
√

y0

3
1
4
√

θ
, (6.43)

Λ = Λ∞ =
log (3)

2
, (6.44)

u = u∞ = log
(√

1 − y2
0

)
. (6.45)

We also introduce the following notation for further reference:

ζ1,∞ = − 2heΛ∞

(h2 − e2Λ∞)
= −2y0

√
3 (1 − y2

0)
1 − 4y2

0

, (6.46)

ζ2,∞ = 0. (6.47)

6.4. Linearization Near the Equilibrium

The main result that we prove in this subsection is the following:

Theorem 9. For each y0 ∈ (
0, 1

2

)
the point P1 = (Q1,∞, Q2,∞,Λ∞, u∞) defined

by (6.42)–(6.45) is an unstable hyperbolic point of the system (6.2)–(6.5). The
corresponding stable manifold of the point (Q1,∞, Q2,∞,Λ∞, u∞) that will be
denoted by Mθ is three-dimensional and it is tangent at this point to the sub-
space generated by the vectors
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⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎛

⎜
⎜
⎝

1
0
0
0

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎜
⎜
⎝

0

− (1−y2
0)

3
5
4 y

3
2
0

√
θ

− 2
3

1

⎞

⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0

− 2
√

1−y2
0

3
5
4 y

3
2
0

√
θ

−
√

1−y2
0

3y0

1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

. (6.48)

Proof. The key ingredient in the proof of this theorem is the linearization of
the system (6.2)–(6.5) around the point (Q1,∞, Q2,∞,Λ∞, u∞) . The restric-
tion that y0 ∈ (0, 1

2 ) ensures that the system is well defined and smooth in a
neighbourhood of P1. Let us write

Λ = Λ∞ + L,

u = u∞ + ν,

Q1 = Q1,∞ + q1 = q1,

Q2 = Q2,∞ + q2.

Neglecting terms quadratic in |L|+|ν|+|q1|+|q2| we obtain, after some tedious,
but mechanical computations, the following linearized problem:

dq1

ds
= − 2h2

(h2 − 3)
q1 = −2

(
1 − y2

0

)

(1 − 4y2
0)

q1, (6.49)

dq2

ds
=

2
(
1 − y2

0

)

3
5
4
√

θy
3
2
0

ν, (6.50)

dL

ds
=

3
1
4
√

θ√
y0

q2 +

(
1 − y2

0

)

3y2
0

ν − 2L, (6.51)

dν

ds
= 3L. (6.52)

Looking for solutions of the linearized problem of the form

eγs

⎛

⎜
⎜
⎝

A1

A2

A3

A4

⎞

⎟
⎟
⎠

we obtain the following possible values of γ with their corresponding eigenvec-
tors:

γ1 = −2
(
1 − y2

0

)

(1 − 4y2
0)

↔

⎛

⎜
⎜
⎝

A1

A2

A3

A4

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

1
0
0
0

⎞

⎟
⎟
⎠ ,

γ2 = −2 ↔

⎛

⎜
⎜
⎝

A1

A2

A3

A4

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎜
⎜
⎝

0

− (1−y2
0)

3
5
4 y

3
2
0

√
θ

− 2
3

1

⎞

⎟
⎟
⎟
⎟
⎠

,
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γ3 = −
√

(1 − y2
0)

y0
↔

⎛

⎜
⎜
⎝

A1

A2

A3

A4

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0

− 2
√

1−y2
0

3
5
4 y

3
2
0

√
θ

−
√

1−y2
0

3y0

1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

γ4 =

√
(1 − y2

0)
y0

↔

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0
2
√

1−y2
0

3
5
4 y

3
2
0

√
θ√

1−y2
0

3y0

1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

The theorem then follows from the Stable Manifold Theorem (cf. for instance
[20, p. 107]). �

6.5. Reformulation of the Solution in the Original Variables
and Proof of Theorem 6

Our goal now is to obtain a trajectory connecting the point (Q1, Q2,Λ, u) =
(1, 1, 0, 0) at s = 0 with the point P1 at s = ∞ for a suitable value of θ
(or equivalently β0). Let us remark that such a trajectory would satisfy the
requirements in Theorem 1. Indeed, notice that such a trajectory behaves near
the point (y0, V0) as stated in Theorem 1 due to Proposition 7. On the other
hand, such a trajectory would belong to the stable manifold of the point P1

and therefore its asymptotic behaviour as s → ∞ would be given by

⎛

⎜
⎜
⎝

Q1

Q2

Λ
u

⎞

⎟
⎟
⎠ ∼

⎛

⎜
⎜
⎝

Q1,∞
Q2,∞
Λ∞
u∞

⎞

⎟
⎟
⎠ + C1e−2s

⎛

⎜
⎜
⎜
⎜
⎝

0
(1−y2

0)
3

5
4

√
θy

3
2
0

2
3−1

⎞

⎟
⎟
⎟
⎟
⎠

+ C2e
− 2(1−y2

0)
(1−4y2

0)
s

⎛

⎜
⎜
⎝

1
0
0
0

⎞

⎟
⎟
⎠ + · · ·

for sufficiently small y0. Notice that the smallness of y0 guarantees that the last
term yields a contribution larger for s → ∞ than the first quadratic corrections
if C2 �= 0.

Using (6.1) we obtain the following asymptotics for the original set of
variables U, Λ, σi, Vi, i = 1, 2:

U(y) = log
(

y

y0

)
+ u(y) ∼ log

(
y

y0

)
+ log

(√
1 − y2

0

)
+ o (1) as y → ∞,

Λ(y) → log
(√

3
)

as y → ∞,

eσ1(y) ∼ C2

(
y

y0

)− 1+2y2
0

(1−4y2
0)

as y → ∞,

eσ2(y) ∼ Q2,∞

(
y

y0

)
as y → ∞,
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V1(y) ∼ ζ1,∞
y

= −2y0

√
3 (1 − y2

0)
(1 − 4y2

0) y
as y → ∞,

V2(y) ∼ −
√

1 − y2
0√

3y0

C1

y

(
y0

y

)2

as y → ∞.

in particular, these formulas prove Theorem 6.

6.6. The Shooting Argument: Approximation of the Stable Manifold Mθ

for Small y0

Since the stable manifold Mθ is three-dimensional, we cannot expect the point
(Q1, Q2,Λ, u) = (1, 1, 0, 0) to belong to Mθ for generic values of θ. The intu-
itive idea of the proof which follows is to show that the manifold Mθ divides
the set {0 < G < 1, Z > 0, Qi > 0, i = 1, 2} into two different regions. If the
point (1, 1, 0, 0) lies on different sides of Mθ for different values of θ, then by
continuity there must exist a value θ∗ of θ such that (1, 1, 0, 0) ∈ Mθ∗ . In the
rest of the paper, we will obtain approximations to the manifold Mθ for y0

small that will show that the point (1, 1, 0, 0) lies on different sides of Mθ for
large positive values of θ and small positive values of θ. More precisely, the
main result of this subsection is the following:

Theorem 10. There exists ȳ0 small enough such that, for any y0 in the interval
[0, ȳ0] there exists θ∗ = θ∗ (y0) > 0 such that (1, 1, 0, 0) ∈ Mθ∗.

Proof. In order to prove Theorem 10 it is convenient to use the coordi-
nates (Q1, Q2, G, Z) (cf. (6.9), (6.14)). These variables satisfy the system of
Eqs. (6.24)–(6.27). The steady state P1 = P1 (y0) is given in these coordinates
by

P1 = (Q1,∞, Q2,∞, G∞, Z∞) =

(

0,
2
√

y0

3
1
4
√

θ
,
1
3
,

√
3y2

0

(1 − y2
0)

)

. (6.53)

The point P1 depends continuously on y0 if y0 ∈ [
0, 1

2

)
. If y0 = 0, the system

(6.24)–(6.27) becomes

dQ1

dχ
= −2GZQ1, (6.54)

dQ2

dχ
= −2GZQ2, (6.55)

dG

dχ
= 2G

⎡

⎣Z (1 − G) − θ
[
Z2 + 1

] 3
2

2
(
Q2

1 + Q2
2

)
⎤

⎦ , (6.56)

dZ

dχ
=

(
3G − 1 − θe−u

2
Z
(
Q2

1 + Q2
2

)
)
(
Z2 + 1

)
. (6.57)

Theorem 9 shows that the point P1 (y0) is hyperbolic for y0 ∈ (
0, 1

2

)
with a

three-dimensional stable manifold Mθ = Mθ (y0). On the other hand, two
of the eigenvalues associated with the linearization around P1 of the system
(6.24)–(6.27) degenerate for y0 = 0. More precisely, let us write G = 1

3 + g.
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Since P1 (0) =
(
0, 0, 1

3 , 0
)
, we obtain the following linearization of (6.54)–(6.57)

near P1 (0):

dQ1

dχ
= 0,

dQ2

dχ
= 0,

dG

dχ
=

4Z

9
,

dZ

dχ
= 3g.

The corresponding eigenvalues are
{

0, 0,− 2
√

3
3 , 2

√
3

3

}
and the correspond-

ing eigenvectors are

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜
⎜
⎝

1
0
0
0

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

0
1
0
0

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

0
0

− 2
√

3
9

1

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

0
0

2
√

3
9
1

⎞

⎟
⎟
⎠

⎫
⎪⎪⎬

⎪⎪⎭
. There exists a

centre-stable manifold that will be denoted by Mθ (0) that is invariant under
the flow defined by the system (6.54)–(6.57) and is tangent at P1 (0) to the
plane spanned by

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜
⎜
⎝

1
0
0
0

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

0
1
0
0

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

0
0

− 2
√

3
9

1

⎞

⎟
⎟
⎠

⎫
⎪⎪⎬

⎪⎪⎭
. (6.58)

This follows from results proved in chapter 1 of [5].
The same results of [5] can be used to show that it is possible to obtain

a continuously differentiable four-dimensional manifold Mθ,ext ⊂ [
0, 1

2

) × R
4,

with (y0, Q1, Q2, G, Z) ∈ Mθ,ext such that

Mθ,ext ∩ {y0 = b} = Mθ (b) (6.59)

for any b ∈ (
0, 1

2

)
. Indeed, the manifold Mθ,ext is any centre-stable mani-

fold at the point (y0, Q1, Q2, G, Z) =
(
0, 0, 0, 1

3 , 0
)

associated with the system
(6.24)–(6.27) complemented with the additional equation

dy0

dχ
= 0. (6.60)

More precisely, we make use of the fact that the dynamical system of inter-
est has a smooth extension to an open neighbourhood of the stationary point
under consideration. The manifold Mθ,ext is the intersection of a centre-stable
manifold for the extended system with the subset defined by the inequality
y0 ≥ 0. The manifold Mθ,ext contains all the points of the form (y0, P1 (y0))
with y0 ∈ [

0, 1
2

)
since they remain in a neighbourhood of

(
0, 0, 0, 1

3 , 0
)

for arbi-
trary times. Moreover, the manifolds Mθ,ext ∩{y0 = b} are invariant under the
flow (6.24)–(6.27) and since they are formed by points that remain in a neigh-
bourhood of

(
0, 0, 0, 1

3 , 0
)

for arbitrarily long times, it follows from (6.60) that
the points in Mθ,ext ∩ {y0 = b} are contained in the stable manifold associ-
ated with the point P1 (y0) . The uniqueness of the stable manifold then implies
Mθ (b) ⊂ Mθ,ext∩{y0 = b} . Moreover, the form of the tangent space to Mθ,ext

at the point
(
0, 0, 0, 1

3 , 0
)

implies that the dimension of Mθ,ext ∩ {y0 = b} is
three for small b. Since this is also the dimension of Mθ (b) , it follows that
the tangent space to Mθ,ext ∩ {y0 = b} at the stationary point coincides with
that of Mθ (b). Using the uniqueness of the stable manifold again implies that
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the relation (6.59) holds. The continuity of Mθ,ext then implies that the cen-
tre-stable manifold Mθ (0) can be uniquely obtained as limit of the manifolds
Mθ (y0) as y0 → 0+, i.e. the points of Mθ (0) are precisely those which can be
obtained as limits of sequences of points (y0,n, xn) where xn ∈ Mθ (y0,n) for
each n and y0,n tends to zero. In particular, the manifold Mθ (0) is unique.

The properties of the manifold Mθ (0) can be analysed in more detail.
We remark that the curve

√
(Z2 + 1)

√
G (1 − G) =

2
3

3
2
, Q1 = Q2 = 0 (6.61)

belongs to Mθ (0). For the hyperplane {Q1 = Q2 = 0} is invariant under the
dynamics induced by (6.54)–(6.57) and hence carries an induced dynam-
ical system. For this two-dimensional system it can be computed that√

(Z2 + 1)
√

G (1 − G) is invariant under the flow and its value at the sta-
tionary point (1

3 , 0) is 2
3
√

3
. On the other hand, the invariance of (6.54)–(6.57)

under rotations in the (Q1, Q2)-plane allows the problem to be reduced to one

with smaller dimensionality. More precisely, defining Q =
√

1
2 (Q2

1 + Q2
2) leads

to the system
dQ

dχ
= −2GZQ, (6.62)

dG

dχ
= 2G

[
Z (1 − G) − θ

[
Z2 + 1

] 3
2 Q2

]
, (6.63)

dZ

dχ
=

(
3G − 1 − θZQ2

√
(Z2 + 1)

) (
Z2 + 1

)
. (6.64)

We will denote by Nθ the (two-dimensional) invariant manifold associated with
the system (6.62)–(6.64) that is obtained from Mθ by taking the quotient by
rotations in the Qi and which contains the curve (6.61).

Our goal is to show the existence for any y0 sufficiently small of a value
θ∗ = θ∗ (y0) of θ such that the manifold Mθ∗ (y0) contains the point Q1 =
Q2 = 1, G = 1, Z = 0. This will be done by showing that the corresponding
statement holds in the case y0 = 0 and then doing a perturbation argument.
The statement about the manifold Mθ∗ (0) is equivalent to the statement
that Nθ∗ contains the point (1, 1, 0). It will be shown that the latter state-
ment is true and, moreover, that when θ is varied through the value θ∗ the
manifold Nθ moves through (1, 1, 0) with non-zero velocity. It then follows
that Mθ(0) moves through (1, 1, 1, 0) with non-zero velocity. Note that the
coefficients of the system extend smoothly to an open neighbourhood of the
manifold Mθ∗ (0). As a consequence, the manifold Mθ,ext extends smoothly
to small negative values of y0. The desired statement concerning Mθ(y0) is a
consequence of the implicit function theorem. In more detail, the statement
that Mθ depends on θ and y0 in a way which is continuously differentiable
means that there is a C1 mapping Ψ from the product of a neighbourhood of
(0, θ∗) in R

2 with Mθ∗(0) into a neighbourhood of (1, 1, 1, 0) with the proper-
ties that its restriction to y0 = 0 and θ = θ∗ is the identity and that the image
of {(y0, θ)} × Mθ∗(0) under Ψ is Mθ(y0). The condition that the manifold
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moves with non-zero velocity implies that if x0 denotes the point of Mθ∗(0)
with coordinates (1, 1, 1, 0) the linearization of Ψ at the point (0, θ∗, x0) with
respect to the last four variables is an isomorphism. This allows the implicit
function theorem to be applied.

In order to check the existence of θ∗ it is enough to study the behaviour of
the manifolds Nθ for θ → 0+ and θ → ∞. These manifolds are two-dimensional
manifolds in the three-dimensional space (Q,G,Z) . Notice that the structure
of the manifolds Nθ can be easily understood using the fact that the parameter
θ can be rescaled out of the system (6.62)–(6.64) using the change of variables

Q =
1√
θ
q. (6.65)

Then, (6.62)–(6.64) becomes
dq

dχ
= −2GZq, (6.66)

dG

dχ
= 2G

[
Z (1 − G) − [

Z2 + 1
] 3

2 q2
]
, (6.67)

dZ

dχ
=

(
3G − 1 − Zq2

√
(Z2 + 1)

) (
Z2 + 1

)
. (6.68)

Let us denote by Ñ the centre-stable manifold at the point (q,G,Z) =(
0, 1

3 , 0
)

for the dynamics (6.66)–(6.68). The manifold Ñ contains the curve{(
Z2 + 1

)
G (1 − G)2 = 4

33 , q = 0
}

. Notice that

(Q,G,Z) ∈ Nθ ⇐⇒
(√

θQ,G,Z
)

∈ Ñ .

Therefore, the family of manifolds Nθ can be obtained from the manifold Ñ
by means of the rescaling (6.65) while keeping the same value of the variables
G, Z. In order to check if (Q,G,Z) = (1, 1, 0) ∈ Nθ, we just need to describe in
detail the intersection of the manifold Ñ with the line {G = 1, Z = 0} . Once
the existence of a value θ∗ of θ for which the manifold Nθ∗ contains the point
(1, 1, 0) has been shown, the statement that the manifold Nθ moves through
this point with non-zero velocity follows immediately from the rescaling prop-
erty.

Notice that the plane {q = 0} is invariant for the system of Eqs. (6.66)–
(6.68). The analysis of the trajectories of (6.66)–(6.68) in this plane can be
done using phase portrait arguments. There is a unique equilibrium point at
(G,Z) =

(
1
3 , 0

)
with stable manifold

{(
Z2 + 1

)
G (1 − G)2 = 4

33

}
. This man-

ifold splits the plane (G,Z) in two connected regions. The trajectories starting
their motion in the region that contains the point (G,Z) = (0, 0) reach the
line Z = 0 for a finite value of χ if Z > 0 initially and eventually develop
a singularity where Z approaches −∞ at a finite value of χ. On the other
hand, the trajectories starting their motion in the region containing the point
(G,Z) = (1, 0) move in the direction of increasing Z towards Z = ∞, G = 1,
a value that is achieved for a finite value of χ.
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Notice that the solutions of (6.66)–(6.68) starting their dynamics in the
set {0 ≤ G ≤ 1, Z ≥ 0} can only evolve in two different ways. Either the tra-
jectory remains in the region where Z ≥ 0 for arbitrarily large values of χ
or the trajectory enters the region {Z < 0} . In the second case, this can only
happen through the set G ≤ 1

3 . Since G is decreasing, it remains in the set
{Z < 0} for larger values of χ, and eventually it approaches Z = −∞ for some
finite value of χ.

Suppose on the other hand that the trajectory remains in the region
where Z ≥ 0 for arbitrary values of χ. Then, q decreases to zero and the
behaviour of the trajectories is then similar to the ones in the plane {q = 0} .

We now claim that either this trajectory belongs to the stable manifold Ñ or it
satisfies limχ→χ∗ Z (χ) = ∞ for some χ∗ ≤ ∞. In order to avoid breaking the
continuity of the argument we will prove this result in Lemma 11 in Sect. 7.

We will show that there exists a point of the line {G = 1, Z = 0} in the
manifold Ñ . The points of this line enter the region {0 < G < 1, Z > 0} due
to the form of the vector field associated with (6.66)–(6.68). If q (0) > 0 is
small, Lemma 12 shows that Z approaches Z = ∞ for a finite value of χ.
Suppose now that q (0) > 0 is sufficiently large. Then, the trajectory enters
the region {Z < 0} for a finite value of χ as the following argument shows: A
solution which starts at (q0, 1, 0) with q0 large immediately enters the region
Z > 0, G < 1. The inequality Z ≤ 1 will hold for at least a time 1

4 since
dZ
dχ ≤ 4 as long as Z ≤ 1. The aim is to show that for q0 sufficiently large Z

will become negative within the interval [0, 1
4 ]. From now on, only that interval

is considered. Integrating the equation for q gives the inequality q(χ) ≥ e− 1
2 q0.

The equation for G then shows that G(χ) ≤ e−α(q0)χ where α(q0) = q2
0e−1 −1.

Choose q0 large enough so that e− 1
40 α(q0) ≤ 1

6 . When χ = 1
40 the inequality

Z ≤ 1
10 still holds. Under the given circumstances G is decreasing on the whole

interval [0, 1
4 ]. The equation for Z shows that by the time χ = 9

40 at the latest
Z has reached zero.

Let U1 be the set of positive real numbers q0 for which the solution start-
ing at (q0, 1, 0) is such that Z → −∞ as χ → χ∗, where χ∗ denotes the maximal
time of existence, and let U2 be the set of positive real numbers q0 for which
the solution starting at (q0, 1, 0) is such that Z → +∞ as χ → χ∗. It follows
from Lemma 13 that U2 is open. We also know that U1 is open. Moreover, it
has been proved that both U1 and U2 are non-empty. By connectedness of the
interval (0,∞) it follows that there must be a value of q0 for which the solution
starting at (q0, 1, 0) is neither in U1 or U2. For that solution Z is non-negative
and does not tend to infinity and thus, by Lemma 11, it is the desired solution
which lies on Ñ .

The equivalence between the existence of the self-similar solution
described in Sect. 5 and the existence of a trajectory connecting the points
(Q1, Q2, G, Z) = (1, 1, 1, 0) and (Q1,∞, Q2,∞,Λ∞, u∞) proved in Sect. 6.5
completes the proof of Theorem 10. Theorem 1 is just a Corollary of The-
orem 10. �
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7. Some Auxiliary Lemmas Used in the Analysis
of (6.66)–(6.68)

Lemma 11. Suppose that a solution of (6.66)–(6.68) is defined for χ ∈ [χ∗, χ∗),
where χ∗ is the maximal time of existence. Suppose that Z (χ) > 0 for any
χ ∈ [χ∗, χ∗) and also that G (χ∗) ∈ (0, 1) , q (χ∗) > 0. Then, either the curve
{(q (χ) , G (χ) , Z (χ)) : χ ∈ (χ∗, χ∗)} is contained in the stable manifold Ñ or
limχ→χ∗ Z (χ) = ∞.

Proof. The plane {G = 0} is invariant under the flow associated with (6.66)–
(6.68). On the other hand, the vector field on the right-hand side of (6.66)–
(6.68) points into the region {G < 1} if q �= 0. Therefore, the region defined by
the inequalities 0 < G < 1 and q > 0 is invariant for the flow defined by (6.66)–
(6.68), and we can assume that the inequalities 0 < G (χ) < 1, q (χ) > 0 hold
for any χ ∈ [χ∗, χ∗) . We now have two possibilities:

lim sup
χ→χ∗

Z (χ) < ∞ , (7.1)

lim sup
χ→χ∗

Z (χ) = ∞. (7.2)

Suppose first that (7.1) holds. Then, there exists M > 0 such that

Z (χ) ≤ M for any χ ∈ [χ∗, χ∗) . (7.3)

We claim that in this case the trajectory {(q (χ) , G (χ) , Z (χ)) : χ ∈ (χ∗, χ∗)}
is contained in Ñ . Notice that in this case, the boundedness of |(q,G,Z)|
implies that χ∗ = ∞. Since (GZq) (χ) > 0 for χ ∈ [χ∗,∞) , it follows from
(6.66) that q (χ) is decreasing. Therefore, q∞ = limχ→∞ q (χ) exists and is non-
negative. Suppose that 0 < q∞. Then, 0 < q∞ < q (χ) for any χ ∈ [χ∗,∞) .
Integrating (6.66) we obtain

∫ ∞
χ∗

(GZq) (χ) dχ < ∞, whence

∞∫

χ∗

(GZ) (χ) dχ < ∞. (7.4)

Since dG
dχ , dZ

dχ are bounded, (7.4) implies limχ→∞ (GZ) (χ) = 0. Then, (6.67)
implies

dG

dχ
≤ −q2

∞G

for χ ≥ χ0 sufficiently large. Therefore, limχ→∞ G (χ) = 0. Equation (6.68)
then yields

dZ

dχ
≤ −1

2

for χ ≥ χ0 large enough. Then, Z (χ) < 0 for large χ, but this contradicts the
hypothesis of the lemma. It then follows that q∞ = 0.

Due to (7.3) and since limχ→∞ q (χ) = 0 we can approximate the trajecto-
ries associated with (6.66)–(6.68) for large values of χ using the corresponding
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trajectories associated with (6.66)–(6.68) for q = 0. The study of the trajecto-
ries associated with (6.66)–(6.68) that are contained in {q = 0}∩{0 < G < 1}
reduces to a two-dimensional phase portrait. These trajectories can have only
three different behaviours. Either they are contained in Ñ ∩ {q = 0} , or they
reach the plane {Z = 0} , with G < 1

3 , entering {Z < 0} , or they become
unbounded. The continuous dependence of the trajectories with respect to
the initial values as well as the fact that limχ→∞ q (χ) = 0 implies then that

either limχ→∞ dist
(
(q (χ) , G (χ) , Z (χ)) , Ñ ∩ {q = 0}

)
= 0, or Z (χ) < 0 for

some χ < ∞, or Z (χ) ≥ M + 1 for some χ < ∞. The second alternative
contradicts the hypothesis of the lemma. The third alternative contradicts
(7.3) and therefore only the first alternative is left. However, in that case
limχ→∞ (q (χ) , G (χ) , Z (χ)) =

(
0, 1

3 , 0
)

and the trajectory is contained in Ñ
as claimed.

Suppose then that (7.2) holds. We claim that in this case limχ→χ∗ Z (χ)
= ∞. Notice that the monotonicity of q (χ) implies that limχ→χ∗ q (χ) = q∞
exists. We will first prove that q∞ = 0. Suppose that, on the contrary, q∞ > 0.
Then q (χ) > q∞ > 0 for any χ ∈ [χ∗, χ∗) . Equation (6.68) as well as G < 1
yields

dZ

dχ
<

(
2 − Zq2

∞
√

Z2 + 1
) (

Z2 + 1
)

for any χ ∈ [χ∗, χ∗) . This inequality implies dZ
dχ < 0 for Z > Z∞ = Z∞ (q∞).

Therefore, Z (χ) < Z∞ for χ ∈ [χ∗, χ∗) and this contradicts (7.2). From now
on, take q∞ = 0. We can then assume (7.2) and

lim
χ→χ∗ q (χ) = 0. (7.5)

Suppose also that lim infχ→χ∗ Z (χ) < ∞. This is equivalent to the existence
of 0 < M < ∞ and a subsequence {χn} with χn → χ∗ as n → ∞ such that

Z (χn) ≤ M. (7.6)

We now claim that

lim
χ→χ∗ [Z (χ) q (χ)] = 0. (7.7)

To prove (7.7) we argue as follows: Combining (6.66), (6.68) we obtain
d
dχ

(Zq) = qZ2 (G − 1) + q (3G − 1) − Zq3

√
(Z2 + 1)3. (7.8)

We now use the inequality Z

√
(Z2 + 1)3 ≥ Z4 for Z > 0. Then, using also the

inequality G < 1:
d
dχ

(Zq) ≤ q−1
[
(3G − 1) q2 − (Zq)4

]
. (7.9)

It follows from this inequality, as well as (7.5) that for any ε > 0, every tra-
jectory satisfying the hypothesis of Lemma 11 and entering any of the regions
{(q,G,Z) : Zq < ε } for χ sufficiently close to χ∗ remains in such a region for
later times. If χ∗ = ∞, the meaning of sufficiently close is large enough. Due
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to (7.5) and (7.6), for any ε > 0, there exist χn arbitrarily close to χ∗ such that
(Zq) (χn) < ε. Then, (Zq) (χ) < ε for any χ ∈ (χn, χ∗) . Since ε is arbitrary
we obtain (7.7).

Combining (7.5) and (7.7) it follows that

lim
χ→χ∗ δ1 (χ) = lim

χ→χ∗ δ2 (χ) = 0 (7.10)

where

δ1 (χ) = Zq2
√

Z2 + 1, δ2 (χ) =

(
Z2 + 1

) 3
2 q2

Z + 1
.

We can then rewrite (6.66), (6.68) as
dq

dχ
= −2GZq, (7.11)

dG

dχ
= 2G [Z (1 − G) − (Z + 1) δ2 (χ)] , (7.12)

dZ

dχ
= (3G − 1 − δ1 (χ))

(
Z2 + 1

)
. (7.13)

We now claim the following: Given any ε0 belonging to the interval
(
0, 2

3

)

suppose that the trajectory under consideration enters the set

Ωε0 =
{

G ≥ 1
3

+ ε0 , Z ≥ 1
}

for some χ < χ∗ sufficiently close to χ∗. Then limχ→χ∗ Z (χ) = ∞ and χ∗ < ∞.
The proof as the follows: Due to (7.10) the set Ωε0 is invariant for (7.11)–(7.13)
if χ is close to χ∗. Then, for χ close to χ∗ we have

dZ

dχ
≥ ε0

(
Z2 + 1

)

and this implies limχ→χ∗ Z (χ) = ∞ and χ∗ < ∞.
Therefore, to complete the proof of Lemma 11 it only remains to prove

that the trajectory enters Ωε0 for values of χ sufficiently close to χ∗. Due to
(7.2) and (7.6) there exists a sequence {χ̄n} with χn < χ̄n < χ∗ such that

Z (χ̄n) = 2M and
dZ

dχ
(χ̄n) ≥ 0.

Due to (7.13) this implies

lim sup
n→∞

G (χ̄n) ≥ 1
3
. (7.14)

On the other hand, a Gronwall type of argument applied to (7.13) implies the
existence of αM > 0, depending only on M such that

0 <
M

2
≤ Z (χ) ≤ 4M for χ ∈ [χ̄n, χ̄n + αM ] . (7.15)

Comparing the solution of the Eq. (7.12) with the solution of the equation
dG
dχ = 2GZ (1 − G) with the same initial datum at χ = χ̄n and taking into
account (7.14), (7.15) it then follows that, (q (χ̄n), G (χ̄n), Z (χ̄n)) ∈ Ωε0 for n
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large enough. Therefore, limχ→χ∗ Z (χ) = ∞. This contradicts (7.6) and the
lemma follows. �

Lemma 12. There exists δ > 0 sufficiently small such that, the solution of
(6.66)–(6.68) with initial value (q (0) , G (0) , Z (0)) = (q0, 1, 0) and 0 < q0 < δ
satisfies limχ→χ∗ Z (χ) = ∞, where χ∗ denotes the maximal time of existence
of the trajectory.

Proof. The trajectory enters the region {Z > 0} and as long as it remains
there, the function q (χ) is decreasing. The inequality ∂Z

∂χ ≤ 4 holds as long
as Z ≤ 1. It follows that Z ≤ 1 on the interval

[
0, 1

4

]
. On that interval the

inequality ∂(log G)
∂χ ≥ −2

5
2 q2

0 holds and hence G ≥ e−q2
0 . Furthermore,

∂Z

∂χ
≥ 3e−q2

0 − 1 −
√

2q2
0 = β(q0). (7.16)

Choose δ sufficiently small that β(δ) > 1 and e−δ2
> 1

2 . Then, Z
(

1
4

)
> 1

4 and
G > 1

2 on
[
0, 1

4

]
. Choose ε > 0 and suppose that 2δ2 < ε4. Then, it follows

from (7.9) that the set defined by the inequality Zq ≤ ε is invariant. Thus,
the solution remains in that region on its whole interval of existence. Now,
δ1(χ) ≤ ε

√
ε2 + δ2 and δ2(χ) ≤ (ε2 + δ2). Let [0, χ1) be the longest interval

on which G ≥ 1
2 . From what has been shown already χ1 ≥ 1

4 . Reduce the
size of ε if necessary so that ε

√
ε2 + δ2 < 1

2 . Then, it follows from (7.13) that
Z is increasing on [0, χ1) and hence is greater than 1

4 for χ ≥ χ1. Putting
this information into (7.12) shows that provided ε2 + q2

0 < 1
16 then G cannot

decrease. For δ sufficiently small this gives a contradiction unless χ1 = χ∗. In
particular, there is a positive lower bound for Z at late times. Furthermore,
(7.13) implies that limχ→χ∗ Z (χ) = ∞ and the lemma follows. �

Lemma 13. Suppose that a solution satisfying the hypotheses of Lemma 11 with
χ∗ = 0 has the property that limχ→χ∗ Z(χ) = ∞. Then, any solution starting
sufficiently close to the given solution for χ = 0 also has the property that Z
tends to infinity on its maximal interval of existence.

Proof. To start with, a number of further consequences of the hypotheses
of Lemma 11 will be derived. The assumption on the initial condition only
plays a role towards the end of the proof. It has been shown in the proof
of Lemma 11 that limχ→χ∗ q (χ) = 0. We now claim that (7.7) holds. Sup-
pose that it is not true. Then, we claim that the limit limχ→χ∗ (Zq) (χ) = L
exists and that L > 0. Indeed, notice first that lim infχ→χ∗ (Zq) (χ) > 0.
Otherwise, there would exist a sequence {χn} such that limn→∞ χn = χ∗ with
limn→∞ (Zq) (χn) = 0. Combining this with the fact that q → 0 and (7.9)
we would obtain (7.7), a contradiction. Thus, lim infχ→χ∗ (Zq) (χ) > 0. Using
again the fact that q → 0 and (7.9) it follows that (Zq) is monotone decreasing
for χ close to χ∗, whence the limit limχ→χ∗ (Zq) (χ) = L exists. Moreover, we
have obtained also in this case that (Zq) (χ) > L for χ close to χ∗.

It follows from the proof of Lemma 11 that χ∗ < ∞. By the bounded-
ness of the right-hand side of (6.66) it follows by integrating this equation
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between χ and χ∗ that q(χ) ≤ a−1(χ∗ − χ) for a positive constant a. Hence,
q−1(χ) ≥ a(χ∗ − χ)−1. This can be used together with the limiting behaviour
of Zq to estimate the right-hand side of (7.8) from above. The first term is
negative and can be discarded. The second term tends to zero as χ → χ∗. The
third term can be written in a suggestive form as −q−1[(Zq)

√
((Zq)2 + q2)3].

The expression in square brackets tends to a positive limit as χ → χ∗. Thus,
the right-hand side of (7.8) fails to be integrable, contradicting the fact that Zq
is positive. This contradiction completes the proof that limχ→χ∗ (Zq) (χ) = 0.

We now use some arguments analogous to the ones used in the proof of
Lemmas 11 and 12. As a next step, we prove that G(χ) tends to a limit as
χ → χ∗ and that this limit is greater than 1

3 . We first claim that

S = lim sup
χ→χ∗

G (χ) ≥ 1
3
. (7.17)

Indeed, suppose first that S = lim supχ→χ∗ G (χ) < 1
3 . Since (Zq) (χ) tends to

zero as χ → χ∗ we can approximate (6.62)–(6.64) by the system (7.11)–(7.13).
Using (7.13), it follows that Z (χ) is decreasing for χ close to χ∗. This contra-
dicts (7.2) and then (7.17) follows. On the other hand, (7.12) implies that G
is increasing if G > 1

4 for χ close to χ∗. Using (7.17), it then follows that G
increases for χ close to χ∗. Therefore, the limit limχ→χ∗ G (χ) exists and

lim
χ→χ∗ G (χ) ≥ 1

3
.

Since G is monotonically increasing, we can parametrize Z as a function
of G. Let us denote the corresponding function by Z = Z̃ (G) . Then, by (7.12)
and (7.13)

d(log Z̃)
dG

=
(3G − 1 − δ1(χ))(1 + Z̃−2)

2G[(1 − G) − (1 + Z̃−1)δ2(χ)]
. (7.18)

If the limit of G were less than one, the right-hand side of this expression
would be bounded and it would follow that Z was bounded, a contradiction.
Hence, limχ→χ∗ G(χ) = 1.

To complete the proof, the condition on the initial data in the hypoth-
eses of the lemma will be used. Due to the fact that limχ→χ∗ Z (χ) = ∞,
limχ→χ∗ q (χ) = 0, limχ→χ∗ (Zq) (χ) = 0 and limχ→χ∗ G (χ) > 1

3 it follows
that for any sufficiently small δ > 0 and for any solution

(
q̄, Ḡ, Z̄

)
that is

sufficiently close to (q,G,Z) at χ = 0 we have for some χ0 < χ∗ :

q̄ (χ0) ≤ δ3, Ḡ (χ0) ≥ 1
3

+ δ,
(
Z̄q̄

)
(χ0) ≤ δ, Z̄ (χ0) ≥ 1

δ
. (7.19)

It will now be shown that for δ sufficiently small the region defined by these
four inequalities is invariant. On the part of the boundary of the region where
q̄ = δ3 we have dq̄

dχ < 0. On the part of the boundary where Z̄q̄ = δ assuming

that δ < 3− 1
3 suffices to show, using (7.9), that the derivative of Z̄q̄ is negative.
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On the part with Ḡ = 1
3 + δ the following inequality holds:

∂Ḡ

∂χ
≥ 2

3

[
2
3δ

− 1 − (δ
1
2 + δ

5
2 )2 − (δ + δ3)2

]
. (7.20)

Choosing δ sufficiently small implies that the right-hand side of this inequality
is positive. On the whole region,

dZ̄

dχ
≥ δ

(
3 −

√
δ2 + δ6

)
. (7.21)

If δ is small enough then this quantity is positive. Putting these facts together
shows that the solution starts in the region of interest when χ = χ0 and stays
there. In particular, Ḡ (χ) ≥ 1

3 + δ for χ ≥ χ0. Therefore, Z̄ blows up in finite
time due to (7.13) and Lemma 13 follows. �
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