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Abstract

We present a Markov chain Monte Carlo (MCMC) technique to study the
source parameters of gravitational-wave signals from the inspirals of stellar-
mass compact binaries detected with ground-based gravitational-wave detectors
such as LIGO and Virgo, for the case where spin is present in the more massive
compact object in the binary. We discuss the aspects of the MCMC algorithm
that allow us to sample the parameter space in an efficient way. We show sample
runs that illustrate the possibilities of our MCMC code and the difficulties that
we encounter.

PACS numbers: 02.50.−r, 02.70.Uu, 04.30.Tv, 04.80.Nn, 95.85.Sz

1. Introduction

Inspirals of stellar-mass compact binaries induced by gravitational radiation are among the
most promising gravitational-wave sources for ground-based laser interferometers, such as
LIGO [1, 2] and Virgo [3]. If such a binary contains a black hole, it is believed to be spinning
moderately [4]. A spinning black hole causes the binary orbit to precess, introducing phase
and amplitude modulations in the gravitational-wave signal. This should be taken into account
in the analysis of the signal. The accuracy with which the binary parameters can be estimated
is of significant astrophysical interest.

We developed a code which implements a Markov chain Monte Carlo (MCMC) technique
[5] to compute the posterior probability-density functions (PDFs) of the source parameters.
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This code is a modification of an earlier parameter-estimation code for analysis on binaries
without spin [6, 7]. In addition to including post-Newtonian gravitational waveforms with a
single spinning object [8], we have also implemented a number of improvements designed to
make the parameter-space exploration more efficient, such as parallel tempering.

This paper is organized as follows. In section 2, we describe the implementation of the
MCMC algorithm in the code and related details, such as data handling, waveform choice,
update proposals and parallel tempering. Section 3 contains a discussion of some sample runs
obtained with our MCMC code. In section 4, we summarize our conclusions, comment on
existing issues and describe planned future improvements.

2. Implementation of MCMC

The code we use to estimate the parameters of a binary inspiral with a spinning member is
based on an earlier code that was used by some of us for the case where no spin is present [7].
In this section, we describe some of the features that were taken from the earlier non-spinning
MCMC code, as well as some features that were introduced in the present code for use on
inspirals with a single spinning object.

2.1. Data handling

For this study, we inject simulated waveforms with parameters of our choice into a stretch of
simulated Gaussian, stationary noise at the designed sensitivity level for the detectors [9]. The
resulting data are windowed, Fourier-transformed and subsequently examined by the MCMC
analysis. The details of the data handling, Fourier transformation, windowing and power
spectral density (PSD) estimation can be found in [7].

A stretch of 256 s of simulated noise data is used to estimate the PSD of the noise Sn(f ).
The signal-to-noise ratio (SNR) of an injected model signal with parameters �λ as detected by
a single detector i is computed as follows:

ρi(�λ) =

√√√√√4
fhigh∑

f =flow

|m̃(�λ, f )|2
Sn(f )

�f , (1)

where m̃(�λ, f ) is the frequency-domain model waveform, Sn(f ) is the noise PSD, the sum
is computed over the frequency bins between flow and fhigh and �f is the width of each
frequency bin. The total SNR for a network of N detectors is then given by

ρtot(�λ) =
√√√√ N∑

i=1

(ρi(�λ))2. (2)

2.2. Waveform

In order to test our models, we use a simplified waveform that takes into account post-
Newtonian (PN) expansions up to the 1.5 PN order in phase and is restricted to the Newtonian
order in amplitude. The waveform includes the simple-precession prescription [8]. This
choice of waveform template allows us to investigate the first-order effects of spin (spin–orbit
coupling), as long as either only one binary member has a spin, or the mass ratio is roughly
equal to unity. In comparison to higher-PN or double-spin waveforms, this waveform can
be computed analytically and has lower dimensionality, so that the computational cost per
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iteration is lower and the number of iterations needed for convergence is smaller. In this
paper, we focus on a fiducial binary consisting of a 10M� spinning black hole and a 1.4M�
non-spinning neutron star. Such masses are astrophysically likely [4], and the mass ratio
allows us to ignore the typical spin of a neutron star, so that the simple-precession prescription
is valid.

The waveform for an inspiral with one spinning object is described by 12 parameters.
The parameters are the chirp mass Mc, symmetric mass ratio η, spin magnitude aspin ≡ S/M2,
the constant angle between spin and orbital angular momentum θSL, the luminosity distance
dL and sky position R.A., Dec., the time, orbital phase and precession phase at coalescence
tc, φc, αc and two angles that define the direction of the total angular momentum �J0 of the
binary, θJ0 and φJ0 .

Each waveform template is computed in the time domain, and then windowed and Fourier-
transformed. The calculation of the likelihood, which measures how well a model waveform
matches the data, is carried out in the frequency domain.

In this initial study, we focus on waveforms for our fiducial binary (Mc ≈ 3.0M�, η ≈
0.11) at a distance of dL = 13.0 Mpc. We analyse the effect of spin in an initial parameter
study [10]. The sky position and orientation of the binary are fixed in this study, while the
SNR ranges between 12 and 22 per detector, depending on the spin.

2.3. Computation of the likelihood

We follow a Bayesian approach to infer the posterior probability-density functions (PDFs) of
the 12 parameters that describe our waveform. The PDF of a parameter vector �λ given an
observed data set d follows from Bayes’ theorem:

p(�λ|d) = p(�λ)p(d|�λ)

p(d)
∝ p(�λ)L(d|�λ), (3)

where p(�λ) is the prior distribution of the parameters, and L(d|�λ) is the likelihood function.
We calculate the likelihood for a model waveform m̃(�λ, f ) with parameters �λ and the data set
d̃(f ) as measured by a detector i in the usual way:

Li(d|�λ) ∝ exp

(
−2

∫ ∞

0

|d̃(f ) − m̃(�λ, f )|2
Sn(f )

df

)
. (4)

The tildes indicate that both d and m are expressed in the frequency domain. Since we will
be considering the ratio of likelihoods, we do not need to take into account the normalization
factor, and it is sufficient to compute the proportionality in equation (4).

Assuming that the noise of different interferometers is independent, the expression of the
PDF given data from a coherent network of N interferometers generalizes to

p(�λ|d) ∝ p(�λ)

N∏
i=1

Li(d|�λ). (5)

2.4. Prior distribution

We use a prior distribution that is uniform in log(dL), cos(θSL), sin(Dec), sin(θJ0) (the sine
is used for parameters defined in the domain

[−π
2 , π

2

]
, the cosine for θSL ∈ [0, π ]) and in

the original scales of the remaining parameters. The allowed ranges for these parameters are
between 1 and 6M� for Mc, between 0 and 0.25 for η, in the range tc ± 50ms, below 100 Mpc
for dL, between 0 and 1 for aspin, between −1 and 1 for the angles of which we use the sine
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or cosine as the MCMC parameter and between 0 and 2π for all other angles. We use these
broad, flat priors to keep our study general. However, when additional information becomes
available (for instance, the time and sky location of a gamma-ray burst), we can restrict our
priors.

2.5. Proposals

The Markov chain is created as follows. If in the current iteration i, the chain has the location
in parameter space (set of waveform parameters, or state) �λi , we propose a random jump ��λi

to the new location �λi+1 = �λi + ��λi . Since the jump proposal is random, the next state of the
chain should depend only on the current state, thus giving the chain its Markovian property.

We then compute the likelihood for the new state as given by equation (5) and
determine whether to accept it by comparing the acceptance probability (the left-hand side in
equation (6)) to a random number r drawn from a uniform distribution between 0 and 1:

p(�λi+1)

p(�λi)

L(d|�λi+1)

L(d|�λi)
> r. (6)

The jump to the state �λi+1 is accepted if equation 6 is fulfilled; otherwise the jump is rejected,
the chain keeps the old parameter set �λi+1 = �λi and a new iteration is started by drawing a new
random jump proposal ��λi+1 to a different state �λi+2. Equation (6) shows that a new state is
always accepted when it improves the product of the prior and the likelihood, and that a larger
decrease in this product means a smaller probability of acceptance.

We use an adaptive scheme for the proposed jump size [11]. The size of the jump proposal
for the parameter λj (the j th element of the vector �λ) is drawn from a Gaussian distribution
with width σ

j

jump. Thus, these widths form a vector �σjump with the same number of elements as
�λ. The adaptation of the jump size consists of increasing σ

j

jump when a jump proposal in the
parameter λj is accepted and decreasing it when a proposal is rejected. In a typical run, the
increase of σ

j

jump is a factor of ∼8 and the decrease a factor of ∼2, which results in the target
acceptance ratio of about 25%.

2.5.1. Uncorrelated proposals. The default method for choosing a jump proposal is to draw
the jump size independently in the different dimensions of the parameter space. This implies
that adaptation is done per parameter as well. We make these updates in two categories.
The first category contains per-parameter updates, where the likelihood is calculated after
proposing a jump in one parameter only, thus deciding whether to accept the jump for each
parameter separately. The second category involves proposing a jump in all parameters at once
before calculating the likelihood only once. This is typically done in 10% of the uncorrelated
update proposals. For both categories of uncorrelated update proposals the same vector �σjump

is used.

2.5.2. Correlated proposals. There can exist strong correlations between parameters, in
which case uncorrelated updates can be very inefficient. We implemented a method to calculate
the correlations between the parameters of a block of ncorr iterations (typically ncorr ≈ 104).
We then draw the subsequent ncorr jump proposals from a multivariate normal distribution that
is given by the Cholesky decomposition of this covariance matrix.

We recompute the covariance matrix and its Cholesky decomposition at the end of each
block of ncorr iterations, and decide whether to use the new matrix or not by checking how
the diagonal elements of the matrix have changed. We find that if we accept each proposed
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matrix update (for which the covariance matrix is positive definite), our proposed jump sizes
may become very small. This problem does not arise if we accept the new matrix only when
∼50% of the diagonal elements have decreased in value.

The correlated update proposals are always block updates of all 12 parameters at once,
hence there is a separate σjump,corr for these updates. In a typical MCMC run, 70–90% of the
update proposals are done in a correlated way and 10–30% in an uncorrelated way.

2.6. Parallel tempering

The problem that arises when using MCMC for parameter estimation, and especially to find
the (unknown) modes of the PDFs, is that the chains should typically be broad enough to
sample the whole allowed parameter ranges, while also being able to probe the region of
maximum likelihood in a detailed way. These two demands are almost mutually exclusive,
but the technique known as parallel tempering offers a solution.

Parallel tempering consists of several parallel chains that each have a different
‘temperature’. In addition to the default Markov chain with T = 1, parallel chains of higher
temperature are computed. Hotter chains are more likely to accept a jump that decreases the
likelihood, by adjusting equation (6) to accept a jump when

p(�λi+1)

p(�λi)

(
L(d|�λi+1)

L(d|�λi)

) 1
T

> r, (7)

where T � 1 is the temperature of the chain. (Equation (7) can be viewed as the definition
of ‘temperature’.) The property of more frequently accepting jumps that lower the likelihood
allows a hot chain to move around in the parameter space more widely than a cooler chain,
thus allowing it to discover different modes. Hence, a combination of hot and cool chains
can probe both wide parameter ranges and the narrow region(s) of maximum likelihood. In
order to do so, the chains must be able to exchange information. This is done by swapping the
parameter sets between two parallel chains with Tm < Tn whenever

(
Ln

Lm

) 1
Tm

− 1
Tn

> r. (8)

Since the likelihood that is needed to determine whether to swap the parameter sets was already
calculated, this decision comes almost for free, and we make it for every pair of chains at
every iteration. The output of parallel chains with different temperatures for a sample run is
shown in figure 2 in section 3.3.

2.6.1. Setting up a temperature ladder. The temperature ladder is determined by setting
the lower temperature to T = 1. This is the only chain that is saved and used to create the
PDFs. One also has to choose a maximum temperature Tmax, which is typically the lowest
temperature that allows the chain to scatter over the whole allowed parameter ranges quickly.
In our test runs, we find that we need to increase the value of Tmax when injecting a signal
with a higher SNR. The last quantity to choose is the number of parallel chains Nch in the
temperature ladder. This will be a compromise between high computation speed (low Nch) and
high swap efficiency for the chains by having small differences between adjacent temperatures
(high Nch). The temperatures are then chosen equidistantly in log(T ). Our typical setup is
Nch ≈ 7 and Tmax ≈ 30–50 for SNRs between 10 and 20.
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2.6.2. Sinusoidal temperatures. The obvious drawback of parallel tempering is that one has
to calculate a handful of chains, instead of just one. In order to reduce the number of chains
in the temperature ladder, we have tested our simulations with sinusoidal temperatures, for
all chains with T > 1. In order to do this, we set up our temperature ladder as before, but
now sinusoidally oscillate the temperature of each chain m 
= 1 with an amplitude �Tm. We
find that the swapping is efficient when we choose �Tm = Tm − Tm−1 for each chain m > 1,
so that the minimum temperature of each chain is equal to the mean temperature of the next
cooler chain. Furthermore, we make sure that adjacent chains are in antiphase, so that there
is an optimal overlap at the extrema. In this setup, we can use Nch ≈ 4–5 and Tmax ≈ 15–30
for SNRs between 10 and 20, thus reducing the computational cost of the MCMC runs with
parallel tempering. We suggest that the period of the temperature variation should not be too
close to ncorr (see section 2.5.2) and that a too short period may endanger the Markovian nature
of the chain. Hence we chose a period that is ∼5×ncorr.

3. MCMC simulations

In order to accurately sample the parameter space in our MCMC runs, we typically need to
accumulate a few million iterations. A run with two detectors takes about a week to compute
2 × 106 iterations on a single 2.8 GHz CPU. The run time scales linearly with the number of
detectors.

In an MCMC run, we simulate a data set by injecting a signal into detector noise, as
described in section 2.1. This data can be either Gaussian, stationary noise that is simulated
at the designed sensitivity of the detectors, or real LIGO or Virgo data. The test simulations
described in this study were all done using synthetic noise.

For our simulations, we inject the signal with a given set of parameters into the noise,
appropriately projecting it onto one or more of the following gravitational-wave detectors: the
4-km LIGO detectors at Hanford, WA (H1), Livingston, LA (L1) in the USA or the 3-km
Virgo detector near Pisa, Italy. This way, we can do coherent parameter estimation with such
a network of detectors, as described in section 2.3.

Test simulations that we carry out at the moment focus on a fiducial binary that consists of
a 10M� spinning black hole and a 1.4M� non-spinning neutron star at a distance of typically
15–20 Mpc. The purpose of these test simulations is twofold. First, we want to establish to
which accuracy the source parameters can be measured. Second, our code must be able to
find these source parameters when started from arbitrary values. These are two different goals
that require slightly different simulations to test in an efficient way.

3.1. Accuracy of parameter estimation

For a fixed network SNR (see equation (2)), the accuracy with which the parameters can be
determined depends mainly on three factors: the number of detectors in the network, the
sky position and orientation of the binary (these quantities determine how the network SNR
is distributed over the different interferometers) and the magnitude and the direction of the
spin of the black hole. We are therefore carrying out a systematic study in which we vary
these parameters in order to map their influence on the accuracy of the parameter estimation.
Because of the large number of parameters that is varied, and the timescale of 1–2 weeks
that is needed for the chains to accumulate a sufficient number of iterations, this is a lengthy
process. To speed up these simulations, we usually start the Markov chains from the true
source parameter values which were used for the software injection. We must be careful,
however, in addition to parameter-estimation uncertainties caused by noise, which are quickly
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Figure 1. Likelihood and Markov chains for the parameter estimation on a simulated injection. The
MCMC run consists of six serial chains plotted in two shades of grey. All of the four black chains
find the parameters of the injected signal after ∼4.5×106 iterations, while the two grey chains
have found other, local maxima. The figure shows the difference between the logarithm of the
likelihood log L for a waveform with the current parameter values and log L for the null waveform
(upper-left panel), and the chain projections for the chirp mass Mc (upper-right), symmetric mass
ratio η (lower-left) and spin magnitude aspin (lower-right). All horizontal axes show the iteration
number in the chains. The six dotted lines in each panel indicate the starting value of each chain of
the corresponding colour. The dashed black lines are the parameter values of the injected signal,
and the corresponding value for the likelihood. One out of ∼ 104 calculated iterations is plotted.

measured by seeding the chains with the true parameters, there can also be uncertainties due
to degeneracies or near-degeneracies in the parameter space, which may not become apparent
in short runs starting from the true parameter values. We typically start five serial chains
for the same analysis. Each of these Markov chains uses parallel tempering, as described in
section 2.6, and hence consists of several parallel chains each with a different temperature.
Although these serial chains start from the same (true) values, they use a different seed for the
random-number generator and therefore produce different and independent Markov chains.

3.2. Finding the true parameters

The second purpose of the simulations with our MCMC code is to find the true source
parameters in the case where these are unknown. In order to test the ability of our MCMC
code to do so, we carry out a semi-blind analysis, in which the chains are started from offset
(i.e., non-true) parameter values. For the chirp mass and the time of coalescence, these
starting values are drawn from a Gaussian distribution that is centred on the value of the
injected parameter, with a standard deviation of about 0.1M� and 30 ms, respectively. The
other ten parameters are drawn randomly from the allowed ranges (see, e.g., figure 1). By
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Figure 2. Likelihood and Markov chains for chains of different temperatures in a sample run with
parallel tempering. The panels contain the same information as those in figure 1, and the dashed
and dotted lines have the same meaning as in that figure. The chains with T > 1 have sinusoidal
temperatures and chains with increasing temperature are displayed by black plusses (T = 1.0),
dark-grey circles (Tmean ≈2.5), light-grey crosses (Tmean ≈6.3) and black squares (Tmean ≈16.0).
One out of ∼4000 calculated iterations is plotted.

selecting the starting values for the chains this way, we model the information that will be
available after a detection trigger is analysed by the LIGO-Virgo data-analysis pipeline.

When starting chains from offset values, we typically use up to ten serial chains. The
reason for using a larger number of chains is that chains may get stuck at a local maximum in
likelihood. In the case of our semi-blind analysis, it is easy to recognize such chains, since
we can see whether the chains have found the likelihood of the injected signal. In the case of
a real analysis, we need to be sure that the chains have found the highest likelihood present.
One way to do this is by starting multiple serial chains from different positions in parameter
space and requiring that they find the same highest value for the likelihood. Figure 1 shows
a run where six chains were started from offset values. After about 4.5 × 106 iterations, the
four black chains have all found the same likelihood and parameter values, whereas the two
grey chains are exploring different parts of parameter space. The latter two chains are clearly
at a lower value of the likelihood and have therefore found local maxima in parameter space.
If the run were continued, the last two chains should eventually find the parameter values of
the injected signal.

3.3. Example of parallel tempering

Figure 2 shows how the parallel chains with different temperatures cooperate in the case of
parallel tempering. The figure shows the likelihood and Markov chains for four different
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parallel chains. The chains with T > 1 have sinusoidal temperatures in the ranges 1.0–4.0,
2.5–10.1 and 6.3–25.5. The coolest chain (black plusses) has the highest likelihood and the
smallest spread in the parameters, whereas the hottest chain (black squares) has the lowest
likelihood and largest spread. The spread in likelihood in especially the second coolest chain
(dark-grey circles) can be attributed in part to the sinusoidal variation in temperature; whenever
the temperature drops, the chain may climb a nearby ‘hill’ in likelihood, find a high value and
communicate the location of that hill to the cooler chain. The two ‘sudden’ jumps for the
coolest chain, around iterations 5.2×105 and 1.52×106, may be explained that way. In the first
jump, the chain moves to the correct value for the chirp mass; in the second jump, the ‘true’
values for the mass ratio and spin magnitude are found. In most MCMC runs, we start 5–10
of these sets of parallel chains, but only save the output for the T = 1 chains.

4. Conclusions and future work

We have developed a Markov chain Monte Carlo (MCMC) algorithm that we use to estimate
the 12 physical parameters of the gravitational waves emitted during a spinning compact-
binary inspiral that can be detected with ground-based gravitational-wave observatories such
as LIGO and Virgo. In section 2, we discuss many of the implemented features that are needed
to run this code efficiently. In section 3, we show the examples of MCMC simulations carried
out with our code.

We are constantly working on improving the efficiency with which the Markov chains
explore the parameter space. In particular, a more efficient sampler speeds up the search for
the true modes of the PDFs when the Markov chains are started from offset (i.e., non-true)
initial parameter values, as they would be in the case of a real detection.

When the structure of the likelihood function in the parameter space is very rich, and
the SNR is high, there are many sharply peaked local maxima of the likelihood. In this case,
the MCMC algorithm is likely to get stuck on some of these local maxima, as random jumps
are unlikely to lead from one local maximum to another. Coherent changes in parameters
based on an improved analytical understanding of the waveform may allow us to efficiently
traverse the peaks of this complicated parameter space. We are currently working on gaining
a sufficient understanding of the harmonic structure of the waveform, which would allow us
to implement such coherent jumps.

A part of our effort is directed at understanding degeneracies that exist between parameters,
especially the sky position and orientation of the binary. For example, we find cases where
the PDF for the sky position is more-or-less uniform over the whole sky, cases where there are
multiple regions in the sky where the binary could be, and cases where one unique sky position
is resolved. We need to understand better how these degeneracies depend on the number of
detectors in the network and on the exact configuration of that network with respect to the
binary position and orientation, and on the spin of the black hole.

Another part of our work focuses on the implementation of a more realistic, higher-
order post-Newtonian (PN) waveform, that includes the spin of both binary components
[12]. The inclusion of the second spin will allow us to investigate inspirals where both
spins are equally important, such as for double-neutron-star and double-black-hole binaries.
The implementation of a higher-order PN waveform is expected to increase the accuracy of
parameter estimation and to reduce the bias that inevitably arises when using approximate
waveforms.

At the moment, we are testing our MCMC code regularly on software injections into real
interferometer data (e.g. LIGO S5 playground data) and we plan to explore the possibility of
doing follow-up on candidate events that come out of the LIGO detection pipeline [13, 14].
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We have detailed plans to include this MCMC code as a final stage in the LIGO pipeline, in
order to provide a post-processing tool that can be used after a detection.
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