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J Bičák1,2, M Scholtz1,2 and P Tod1,3

1 Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University,
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Abstract
We extend the work in our earlier paper (Bičák J et al 2010 Class. Quantum
Grav. 27 055007 ) to show that time-periodic, asymptotically flat solutions of
the Einstein equations analytic at I, whose source is one of a range of scalar-
field models, are necessarily stationary. We also show that, for some of these
scalar-field sources, in stationary, asymptotically flat solutions analytic at I,
the scalar field necessarily inherits the symmetry. To prove these results we
investigate miscellaneous properties of massless and conformal scalar fields
coupled to gravity, in particular Bondi mass and its loss.

PACS numbers: 04.20.−q, 04.20.Cv, 04.20.Ex, 04.20.Ha, 04.40.Nr

1. Introduction

In this paper, we continue the study begun in [4] (paper I) of asymptotically flat solutions of
Einstein’s equations that are periodic in time. In [4], we showed that such spacetimes, if either
vacuum or electrovacuum and analytic at I, are necessarily stationary near I. Here we extend
this result to spacetimes whose source is one of a range of scalar-field models.

In [4], we also considered the problem of inheritance of symmetry. This is the question
of whether, if a spacetime which is a solution of Einstein’s equations with some matter source
has a symmetry, the matter source necessarily has the same symmetry. For asymptotically
flat electrovacuum spacetimes which are analytic near I we showed that the symmetry is
necessarily inherited. For scalar-field sources, we now obtain the same result in some cases
but not in others.
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The scalar fields we consider fall into two broad classes. The first class includes the
complex, massless Klein–Gordon (KG) field which satisfies wave equation (1) and has an
energy–momentum tensor as in (2). Here we prove

Theorem 5.2. A weakly asymptotically simple time-periodic solution of the Einstein-
massless-KG field equations which is analytic in a neighbourhood of I− necessarily has a
Killing vector which is time-like in the interior and extends to a translation on I−.

It is also possible to include a potential for the scalar field, as in subsection (2.3), and
therefore to include a mass-term, and the above result will continue to hold subject to a weak
condition on the potential. Now one knows, for example from [5], that there exist boson-
star solutions of the Einstein-massive-KG system for which the metric is static, spherically
symmetric and asymptotically flat, while the complex scalar field takes the form f (r) eiωt :
these solutions are genuinely periodic in time but not stationary, and the source does not inherit
all the symmetries of the metric. However, it is easy to see that these solutions are not analytic
near I, which is why they do not violate our result.

The other class of scalar fields contains what we shall call the conformal scalar field,
that is, it satisfies the conformally invariant wave equation (35). For simplicity, we shall take
the field to be real, though the formalism allows a complex field. In the real case, there is
a conserved energy–momentum tensor for such a source due originally to [14] (see also [7]
and [15]), given in (36). This leads to a form of the Einstein equations (37) studied in [11],
where it was shown that there is a well-posed initial-value problem. With suitable data on
hyperboloidal surfaces extending to I, there exist asymptotically flat solutions even with a
regular point at i+ [11]. Explicit static spherically symmetric solutions were earlier given
in [2, 3]. Starting from the assumption of an asymptotically flat solution of these Einstein
equations, we may proceed as before, with the corresponding result.

Theorem 5.3. A weakly asymptotically simple time-periodic solution of the Einstein-
conformal-scalar-field equations which is analytic in a neighbourhood of I− necessarily has
a Killing vector which is time-like in the interior and extends to a translation on I−.

Turning to the question of inheritance, for the first class of fields we show (theorem 6.1)
that the only way a stationary symmetry can fail to be inherited in the class of spacetimes
under consideration is if the (necessarily complex) scalar field has the form f (xi) eiωt in terms
of the comoving space-coordinates xi and time t. This is periodic and the previous result can
be applied to deduce that the symmetry is in fact inherited. For a complex conformal scalar
field, the same argument can be used to show that there are no non-inheriting fields of this
form but this is only a partial result as we cannot characterize the non-inheriting fields in the
same way.

The plan of the paper is as follows: in section 2 we review the Einstein-massless-KG
equations and show how to formulate the conformal Einstein-massless-KG equations, by
which we mean the equations formulated for an unphysical, rescaled metric which correspond
to the physical Einstein-massless-KG equations. This enables the equations to be extended to
I. In section 3, we do the same thing for the Einstein-conformal-scalar equations, using the
conserved energy–momentum tensor proposed in [14] (see also [7]). This energy–momentum
tensor does not satisfy the dominant energy condition, but we give some arguments why it
might nonetheless lead to positive total energy. In section 4, we give expressions for the Bondi
mass and Bondi mass-loss for both classes of scalar-field sources. The Bondi mass-loss for
the conformal scalar field is not manifestly positive (at I+) but in the periodic case the average
over a period is. In section 5, we recall the coordinate and null-tetrad system used in [4]
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and prove theorems 5.2 and 5.3 to show that in this setting, periodic solutions are actually
stationary. The proof is much as in [4]: one shows inductively that all radial derivatives of all
metric components at I− are v-independent so K = ∂/∂v is a Killing vector. In section 6, we
discuss inheritance and prove theorem 6.1 to show that stationarity is necessarily inherited in
an analytic, weakly asymptotically flat, Einstein-massless-KG solution.

In order to be able to follow clearly the arguments in the main text, in appendix A we
review all Newman–Penrose equations for a general source: that is, the commutation relations
of the NP operators, and the Ricci and Bianchi identities. In appendix B the conformally
rescaled scalar wave equations and conformal Bianchi identities for the massless scalar field
are written down in an unphysical space in manifestly regular form. The regular conformal
Bianchi identities for conformally invariant scalar fields follow in fact from the conformal
Bianchi identities for any matter field for which the Ricci spinor behaves as O(�2) at I. The
projections of the Bianchi identities are given in section B.4 of appendix B. The asymptotic
form of the solutions of the Einstein-massless-scalar-field equations at future null infinity I+

is discussed in appendix C; this is used in section 4 in the derivation of the Bondi mass and
the mass-loss formula for both massless KG field and conformal-scalar field. Finally, in
appendix D we give some examples of exact solutions of the Einstein-conformal-scalar
equations and discuss the possible presence of singularities.

2. The massless KG field

2.1. Basic relations

First we investigate the complex scalar field which satisfies the massless KG equation in the
physical spacetime:

�̃ φ̃ = 0. (1)

We shall consistently use the tilde to indicate quantities in the physical spacetime, untilded
quantities referring to the rescaled, unphysical spacetime. The energy–momentum tensor
whose conservation is implied by this equation is

T̃ab = 1

4π
[2(∇̃(aφ̃)(∇̃b)

˜̄φ) − g̃abg̃
cd(∇̃cφ̃)(∇̃d

˜̄φ)]. (2)

First we have to determine the conformal behaviour of the scalar field. Since wave
equation (1) is not conformally invariant, there is a priori no preferred choice. However, since
near I− (r̃ → ∞) the radiative part of the field behaves as

φ̃ ∼ 1

r̃
, (3)

and we wish to have a non-vanishing regular unphysical field on I−, we define

φ̃ = � φ. (4)

In the following, we employ the notation

ϕ̃AA′ = ∇AA′ φ̃, ϕAA′ = ∇AA′φ, sAA′ = ∇AA′�, (5)

and using the NP formalism4 we denote the components of the fields sa and ϕa by the special
symbols:

D� = s00′ = S0, δ� = s01′ = S1, δ̄� = s10′ = S1̄ = S̄1, 	� = s11′ = S2,

Dφ = ϕ00′ = ϕ0, δφ = ϕ01′ = ϕ1, δ̄φ = ϕ10′ = ϕ1̄, 	φ = ϕ11′ = ϕ2,
(6)

and correspondingly with tildes in the physical spacetime.
4 The explicit expressions for the NP tetrad, the corresponding spin basis, the NP operators, etc. in the coordinate
system (v, r, θ, φ) used in the following are introduced in section 3 and appendix A of paper I and repeated in
section 5.
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In this notation, the spinor form of Einstein’s equations in the physical spacetime is

�̃ABA′B ′ = 2 ϕ̃(A(A′ ˜̄ϕB ′)B),

6�̃ = −ϕ̃c ˜̄ϕc; (7)

the components of the Ricci spinor with respect to the spin basis are

�̃00 = 2 ϕ̃0 ˜̄ϕ0,

�̃01 = 2 ϕ̃(0 ˜̄ϕ1),

�̃02 = 2 ϕ̃1 ˜̄ϕ1,

�̃11 = ϕ̃(0 ˜̄ϕ2) + ϕ̃(1 ˜̄ϕ1̄),

�̃12 = 2 ϕ̃(1 ˜̄ϕ2),

�̃22 = 2 ϕ̃2 ˜̄ϕ2,

(8)

and the scalar curvature is

�̃ = 1
3 [− ϕ̃(0 ˜̄ϕ2) + ϕ̃(1 ˜̄ϕ1̄)]. (9)

2.2. The conformal Einstein-massless-KG equations

In this subsection, we find a system of equations regular at I for all unphysical quantities.
This system, by analogy with Friedrich’s ‘conformal Einstein equations’ [9], we shall call the
‘conformal Einstein-massless-KG equations’.

In [4] we derived the physical Bianchi identities expressed in terms of the unphysical
quantities as

�2 ∇D
A′ψABCD = �∇B ′

(C �AB)A′B ′ + sB ′
(C �AB)A′B ′ + ∇B ′

(C ∇A(A′ sB ′)B), (10)

where sAA′ is given by (5), �ABA′B ′ is the Ricci spinor and ψABCD = �−1�ABCD is the rescaled
Weyl spinor (see equation (6) in paper I). Using the rule for the conformal transformation of
the Ricci spinor,

∇A(A′sB ′)B = ��̃ABA′B ′ − ��ABA′B ′ , (11)

we find

∇D
A′ ψABCD = �−2 sB ′

(C �̃AB)A′B ′ + �−1 ∇B ′
(C �̃AB)A′B ′ . (12)

The right-hand side of this equation is not manifestly regular on I, while the left-hand side is
regular by assumption of asymptotic flatness.

Next we express the physical Ricci spinor via the unphysical quantities,

�̃ABA′B ′ = 2 �2 ϕ(A(A′ ϕ̄B ′)B) + 2 φ φ̄ s(A(A′ sB ′)B) + 2 � φ̄ ϕ(A(A′ sB ′)B) + 2 �φ ϕ̄(A(A′ sB ′)B),

(13)

and insert this expression into (12).
In order to simplify the resulting equations, we introduce the following notation: let

Xa, Ya and Za be the arbitrary vector fields and define

(XYZ) = XB ′
(C YA(A′ ZB ′)B). (14)

The expression (XYZ) is obviously symmetric in YZ. It is straightforward to derive the
relation

(XYZ) + (ZXY) + (YZX) = 0, (15)

with the special case (XXX) = 0.
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After inserting the Ricci spinor (13) into the Bianchi identities (12), we arrive at

∇D
A′ψABCD = 2�−1(2 φ̄(sϕs) + 2 φ(sϕ̄s) + φ(ϕ̄s s) + φ̄(ϕs s) + φφ̄(∇s s))

+ 6 (sϕϕ̄) + 2 (ϕ̄ϕ s) + 2 (ϕϕ̄ s) + 2 φ̄ (∇ϕ s) + 2 φ (∇ϕ̄ s) + 2 �(∇ϕ ϕ̄). (16)

This can be simplified using identity (15):

∇D
A′ψABCD = 2φφ̄�−1(∇s s) + 2 �(∇ϕϕ̄) + 4(sϕϕ̄) + 2φ̄(∇ϕs) + 2φ(∇ϕ̄s), (17)

where, e.g., (∇ϕs) = ∇B ′
(C(ϕA(A′sB ′)B)), so ∇ acts on both ϕ and s. The last equation is still

formally singular on I− because of the factor �−1, but using (11) we finally obtain

∇D
A′ψABCD = 2 φ φ̄ sB ′

(C�AB)A′B ′ + 4 (s ϕ ϕ̄) + 2 φ (∇ s ϕ̄) + 2 φ̄ (∇ s ϕ)

+ 4 �
[

1
2 (∇ ϕ ϕ̄) − φ φ̄2 (s ϕ s) − φ̄ φ2 (s ϕ̄ s)

] − 4 �2 φ φ̄ (s ϕ ϕ̄), (18)

which is manifestly smooth at I.
Next we wish to derive equations for the conformal factor. The commutator of covariant

derivatives annihilates scalars, so contracting ∇[a∇b]� = 0 with εA′B ′
gives the relation

∇A′(A sA′
B) = 0. (19)

By decomposing ∇AA′sBB ′ into its symmetric and antisymmetric parts and using the above
equation, we obtain

∇AA′ sBB ′ = ∇(A(A′ sB ′)B) + 1
4 εAB εA′B ′ � �. (20)

The first term on the rhs is given by (11). We now define the quantity (cf equation (15) in
paper I)

F = 1
2 �−1 gab sa sb, (21)

which is regular on I. The rule for the conformal transformation of the scalar curvature can
be written in the form (equation (16) in paper I)

�� = 4�� − 4�−1 �̃ + 4F. (22)

We thus have found an expression for the second derivatives of the conformal factor �:

∇AA′sBB ′ = ��̃ABA′B ′ − ��ABA′B ′ + εAB εA′B ′ (�� − �−1�̃ + F). (23)

The last expression contains a term �−1�̃ which again seems to be singular on I. This is
not the case, however, since by (7), (4) and (21) we have

�̃ = − 1
6 �3[�ϕc ϕ̄c + φϕ̄c sc + φ̄ ϕc sc + 2 φ φ̄ F ]. (24)

The physical scalar curvature is therefore manifestly at least O(�3).
The projections of the last equation are written down explicitly in appendix B,

equations (B.6)–(B.15). Now we wish to derive equations governing the quantity F. The
contracted Ricci identities read

∇a �� − ∇b∇a sb = Rd
a sd . (25)

Using the spinor decomposition of the Ricci tensor

Rab = −2�ABA′B ′ + 6�εAB εA′B ′ , (26)

and expression (23), we find after some arrangements

∇AA′F = 1
3 �1 ∇BB ′

�̃ABA′B ′ + 1
3 sBB ′

�̃ABA′B ′ − sBB ′
�ABA′B ′

+ �sAA′ − �−2 �̃ sAA′ + �−1 ∇AA′�̃. (27)

The first term on the rhs can be rewritten as

∇BB ′
�̃ABA′B ′ = �−2 ∇̃BB ′

�̃ABA′B ′ + 2 �−1 �̃ABA′B ′ sBB ′
. (28)
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Now we employ the contracted physical Bianchi identities ∇̃AA′
�̃ABA′B ′ = −3∇̃BB ′�̃ and

obtain

∇AA′F = sBB ′
�̃ABA′B ′ − sBB ′

�ABA′B ′ + (� − �−2 �̃) sAA′ . (29)

The projections of this equation can be found in appendix B, equations (B.17)–(B.19).
Finally we derive conformal equations for the field ϕAA′ . The expression (� + 4�)φ is

conformally invariant with the conformal weight 3, so

�φ = −4(� − �−2 �̃) φ, (30)

where we used wave equation (1) in the physical spacetime. The symmetric part of ∇A′
A ϕBA′

is zero and we find

∇A′
A ϕBA′ = − 1

2εAB � φ. (31)

Combining the last two equations we arrive at

∇A′
A ϕBA′ = 2 (� − �−2�̃) φ εAB. (32)

To summarize, in the unphysical spacetime we have the following variables:
{�,φ, sa, ϕa, F,ψABCD,�ABA′B ′ ,�}. The evolution of these quantities is given by
equations (18), (23), (29) and (32), together with the contracted Bianchi identities

∇AA′
�ABA′B ′ = −3∇BB ′�. (33)

2.3. Potentials

The massless KG equation (1) can be generalized to include self-interactions of the scalar field
by adding a potential term to the energy–momentum tensor (2),

T̃ab �→ T̃ab +
1

4π
g̃abV (φ̃, ˜̄φ),

so that the field equation acquires the form

�̃ φ̃ +
∂V

∂ ˜̄φ
= 0.

Since the potential term in the energy–momentum tensor is proportional to the metric, it
will contribute to the scalar curvature �̃, but not to the trace-free Ricci spinor. The new form
of Einstein’s equations (7) is therefore

�̃ABA′B ′ = 2ϕ̃(A(A′ ˜̄ϕB ′)B), 6�̃ = −ϕ̃c ˜̄ϕc + 2V. (34)

For our proof we require φ = �−1φ̃ and �−3�̃ to be regular on I−, cf (4), (29) and (24).
From (34) we can see that this will be satisfied, if �−3V is regular on I−. In this case the
proof works without change. An example is massless φ4-theory, where V = (φ̃ ˜̄φ)2 = O(�4).

If there is a mass term m2φ̃ ˜̄φ in V, the asymptotic behaviour of the unphysical field
changes to

φ = O(e−mr̃),

so

�−3m2φ̃ ˜̄φ ∼ m2r̃ e−2mr̃ ,

which is regular. The field φ is now not analytic at I−, so our argument does not apply to this
case, which is the class including the boson stars of [5]. Note, however, that in general the
asymptotic behaviour of massive fields at I is a subtle question which appears to be carefully
analysed only at the level of linearized theory [17].

6
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3. The conformal-scalar field

3.1. Basic relations

Consider now the conformal-scalar field, by which we mean a scalar field satisfying the
equation (

�̃ + 1
6 R̃

)
φ̃ ≡ (�̃ + 4 �̃)φ̃ = 0. (35)

This is conformally invariant if φ transforms as (4), i.e. φ̃ = �φ. For simplicity we assume the
field φ to be real, but the procedure is easily generalized to complex φ. The energy–momentum
tensor conserved due to equation (35) is (see [7, 14] or [15], Volume II, p 125)

T̃ab = 1

4π
[2 ϕ̃A(A′ ϕ̃B ′)B − φ̃ ∇̃A(A′ ϕ̃B ′)B + φ̃2 �̃ABA′B ′ ]. (36)

Furthermore, this energy–momentum tensor also has good conformal behaviour rescaling as

T̃ab = �2Tab,

but it will not satisfy any of the usual energy conditions. We shall return to this point. We
take Einstein’s equations to be, as usual,

�̃ab + 3�̃g̃ab = 4πT̃ab;
then we can solve to find

�̃ABA′B ′ = (1 − φ̃2)−1[2 ϕ̃(A(A′ ϕ̃B ′)B) − φ̃ ∇̃(A(A′ ϕ̃B ′)B)],

�̃ = 0.
(37)

These equations are singular when φ̃2 = 1 but there are known solutions which avoid this
singularity [2, 3] (for explicit examples, see appendix D) and it is known that there is a well-
posed initial-value problem [11] which with suitable data extends to I+. We shall therefore
assume that we have an asymptotically flat solution, periodic in time, with φ̃ tending to zero
at infinity, so that φ̃2 < 1 everywhere.

In the absence of the dominant energy condition, it is not clear that any version of the
positive mass theorem holds but there is some reason to expect a positive global energy. To see
this, integrate the energy density over an asymptotically flat maximal space-like hypersurface
� (assuming for the moment that one exists) with normal Na. Note from (36) and (37) that

T̃ab = 1

4π

1

1 − φ̃2
[2 ϕ̃A(A′ ϕ̃B ′)B − φ̃ ∇̃A(A′ ϕ̃B ′)B]. (38)

Then a measure of total energy at � is

E: =
∫

T̃abN
aNb d�

= 1

4π

∫
1

1 − φ̃2

[
(Naϕ̃a)

2 − 1

2
g̃abϕ̃aϕ̃b − φ̃ Na Nb ∇̃a ϕ̃b

]
d�. (39)

Now,

NaNb∇̃aϕ̃b = (hab + g̃ab)∇̃aϕ̃b = hij ∇̃i ϕ̃j = hijDiϕ̃j + (Naϕ̃a)K,

where Di is the derivative operator associated with the three-dimensional metric hij induced
on �, K is the trace of the extrinsic curvature which vanishes for a maximal surface, and we
have used �̃φ̃ = 0.

Note also

g̃abϕ̃aϕ̃b = (Naϕ̃a)
2 − hij ϕ̃i ϕ̃j ,

7
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and integrate by parts in (39) to find

E = 1

4π

∫
d� (1 − φ̃2)−1

[
3

2
(Naϕ̃a)

2 +
1

2

3 + φ̃2

1 − φ̃2
hij ϕ̃i ϕ̃j

]
,

which is manifestly non-negative. Thus, on a maximal surface the global energy is positive
without local positivity. Positive energy also holds for hyperplanes in Minkowski space with
Tab as in (36) and we shall see something similar below, namely that, while the Bondi mass-loss
is not necessarily positive at any particular cut, nonetheless the mass-loss integrated over a
period in a periodic spacetime is non-negative.

The Ricci spinor written in terms of unphysical quantities reads

(1 − �2φ2)�̃ABA′B ′ = 2 �2 ϕ(A(A′ ϕB ′)B) − �2 φ ∇(A(A′ ϕB ′)B) − �φ2 ∇(A(A′ sB ′)B). (40)

Let us define the ‘rescaled Ricci spinor’

φABA′B ′ = �−2 �̃ABA′B ′ , (41)

which should be distinguished from the unphysical Ricci spinor. Substituting the rule for the
conformal transformation of the Ricci spinor (11) into (40) we arrive at the following simple
expression for the rescaled Ricci spinor:

φABA′B ′ = 2 ϕ(A(A′ ϕB ′)B) − φ ∇(A(A′ϕB ′)B) + φ2 φABA′B ′ . (42)

This spinor is regular on I−. Note that we do not write the tilde over φABA′B ′ (as we
wrote over �̃ABA′B ′ in (7)), since we expect that the physical Ricci spinor has already been
expressed in terms of the unphysical quantities and the following relations become simpler.
The components of φABA′B ′ with respect to the spin basis are

φ00 = 2ϕ2
0 − φ[Dϕ0 − (ε + ε̄)ϕ0 + κ̄ϕ1 + κϕ1̄] + φ2 �00,

φ01 = 2ϕ0ϕ1 − 1
2φ[Dϕ1 + δϕ0 − (ᾱ + β + π̄)ϕ0 + κϕ2 + (ρ̄ − ε + ε̄)ϕ1 + σϕ1̄] + φ2 �01,

φ02 = 2ϕ2
1 − φ[δϕ1 − λ̄ϕ0 + σϕ2 + (ᾱ − β)ϕ1] + φ2 �02,

φ12 = 2ϕ1ϕ2 − 1
2φ[	ϕ1 + δϕ2 − ν̄ϕ0 + (β + τ + ᾱ)ϕ2 + (γ̄ − γ − μ)ϕ1 − λ̄ϕ1̄] + φ2 �12,

φ22 = 2ϕ2
2 − φ[	ϕ2 + (γ + γ̄ )ϕ2 − νϕ1 − ν̄ϕ1̄] + φ2 �22,

φ11 = ϕ0ϕ2 + ϕ1ϕ1̄ − 1
4φ[Dϕ2 + 	ϕ0 + δϕ1̄ + δ̄ϕ1 − (γ + γ̄ + μ + μ̄)ϕ0]

− 1
4φ[(ρ + ρ̄ + ε + ε̄)ϕ2 + (τ̄ − α + β̄ − π)ϕ1 + (τ − ᾱ + β − π̄)ϕ1̄] + φ2 �11. (43)

3.2. The conformal Einstein-conformal-scalar equations

Now, as in subsection 2.2, we obtain a system of conformal Einstein equations, regular in the
unphysical, rescaled spacetime and equivalent to the Einstein-conformal-scalar equations.

In order to derive the conformal Bianchi identities for the conformal-scalar field we return
to the general physical Bianchi identities (12). Using the rescaled Ricci spinor instead of
�̃ABA′B ′ the Bianchi identities become

∇D
A′ ψABCD = 3 sB ′

(C φAB)A′B ′ + �∇B ′
(CφAB)A′B ′ . (44)

Projections of these equations on the spin basis can be found in appendix B, equations (B.51)–
(B.58).

Next we turn to the contracted Bianchi identities in the physical spacetime

∇̃BB ′
�̃ABA′B ′ = −3∇̃AA′ �̃, (45)

where �̃ = 0 by (37). Following the rules for the conformal transformation of the covariant
derivative we find that the left-hand side transforms like

∇̃BB ′
�̃ABA′B ′ = �2 ∇BB ′

�̃ABA′B ′ − 2 �sBB ′
�̃ABA′B ′ (46)

8
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or, using (41),

∇̃BB ′
�̃ABA′B ′ = �4 ∇BB ′

φABA′B ′ , (47)

and thus the contracted Bianchi identities have a simple form, just as in the physical spacetime:

∇BB ′
φABA′B ′ = 0. (48)

Projections of these equations on the spin basis can be obtained from the Bianchi identities
(A.8a)–(A.8c) by deleting terms containing � and replacing �mn �→ φmn.

4. Bondi mass

One of the necessary ingredients in this work is to find restrictions which the assumption
of periodicity imposes on the Bondi mass. As long as the Bondi mass MB(u) on I+ is a
non-increasing function of the retarded time u, it can be periodic only if it is constant. In [4]
we used the well-known formula for the Bondi mass of an electrovacuum spacetime5,

MB(u) = − 1

2
√

π

∮
dS

(
�0

2 + σ 0 ˙̄σ 0), (49)

when its time decrease is given by the ‘mass-loss’ formula

ṀB(u) = − 1

2
√

π

∮
dS

(
σ̇ 0 ˙̄σ 0 + φ0

2 φ̄0
2

)
. (50)

This expression is manifestly non-positive. To achieve periodicity of the Bondi mass we thus
had to set σ̇ 0 = 0 and φ0

2 = 0. The loss of the Bondi mass due to the gravitational radiation is
described by the news function − ˙̄σ 0 and the electromagnetic contribution by the quantity φ0

2 .
Periodicity thus requires the absence of both gravitational and electromagnetic radiation.

In order to repeat this reasoning in the case of spacetimes with scalar fields, we need
the appropriate formula for Bondi mass-loss. The gravitational contribution will again be
expressed by the news function and there will be a contribution from the matter. The energy
flux due to the matter is described by the energy–momentum tensor Tab (omitting tildes for
clarity, in this subsection only). If we write, using the NP formalism,

Tab = A la lb + B n(alb) + C na nb + · · · , (51)

then the component A = Tabn
anb is the energy radiated out of I+ (recall that na is tangential to

I+, and la points into the spacetime towards I−). In terms of the Ricci spinor NP component,
we get

Tab na nb ∝ �22. (52)

For the complex scalar field φ, �22 ∝ φ̇ ¯̇φ, where dot means the derivative with respect to u.
For the scalar field we thus expect

ṀB(u) = − 1

2
√

π

∮
[σ̇ 0 ˙̄σ 0 + k φ̇0 ˙̄φ0] dS, (53)

where k is a positive constant factor and φ0 is the radiative part of the scalar field, i.e.
φ = φ0 r−1 + O(r−2). We shall now calculate the Bondi mass for the scalar field which will
imply the exact formula for the mass-loss.

5 In fact, in [4] we constructed the proof—and the same will be done here—at I− where the Bondi mass is non-
decreasing but it is straightforward to get one from the other. Since it is more common to work at I+, in this section
we discuss the Bondi mass there.

9
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4.1. Massless KG field

To compute the Bondi mass we use a method based on the asymptotic twistor equation as
described in [16]. More details can be found in [12] or [15]. In this approach we have to find
the asymptotic solution of the Einstein-massless-KG equations in the neighbourhood of I+ (in
the physical spacetime). We give enough of this for our present purposes in appendix C.

The Bondi mass is then given by the coefficient μ(2), which is the O(�2) term in the
expansion of the spin coefficient μ. This term is given by (C.5) and reads

μ(2) = −ððσ̄ (0) − �
(0)
2 − 2�(0) − σ (0) ˙̄σ (0).

Since the term ððσ̄ (0) vanishes on integration, we find the Bondi mass to be (with the
normalization used in paper I)

MB(u) = − 1

2
√

π

∮
dS

[
�

(0)
2 + 2�(0) + σ (0) ˙̄σ (0)

]
. (54)

Using the expansion of � given by (C.6) leads to the final expression

MB(u) = − 1

2
√

π

∮
dS

[
�

(0)
2 +

1

3
∂u(φ

(0) φ̄(0)) + σ (0) ˙̄σ (0)

]
. (55)

To find the time derivative of the Bondi mass we use the leading term in the Bianchi
identity (A.7c):

�̇
(0)
2 + 2�̇(0) = ð�

(0)
3 + �

(0)
22 + σ (0) �

(0)
4 . (56)

The term ð�
(0)
3 vanishes on integration. By (C.6) we have �

(0)
4 = − ¨̄σ (0). The leading term

of �22 is found from (8) to be �
(0)
22 = 2φ̇(0) ˙̄φ(0), and the mass-loss formula thus acquires the

form

ṀB(u) = − 1

2
√

π

∮
dS[σ̇ (0) ˙̄σ (0) + 2 φ̇(0) ˙̄φ(0)]. (57)

This expression is manifestly non-positive. If we demand the spacetime to be periodic, the
Bondi mass must be constant, i.e.

˙̄σ (0) = φ̇(0) = 0.

4.2. Conformal-scalar field

The same calculation can be repeated with minor changes in the case of the conformal-scalar
field. Now we obtain the following expressions for the Bondi mass and its ‘loss’:

MB(u) = − 1

2
√

π

∮
dS

[
�

(0)
2 + σ (0) ˙̄σ (0)

]
,

ṀB(u) = − 1

2
√

π

∮
dS[σ̇ (0) ˙̄σ (0) + 2 (φ̇(0))2 − φ(0) φ̈(0)].

(58)

Now the formula for the rate of change of the Bondi mass is not manifestly non-positive,
so it can apparently increase as well as decrease. This seems to be a consequence of the fact
that the energy–momentum tensor (36) does not obey the energy condition Tabl

anb � 0 for
the arbitrary future null vectors la and na.

However, if the Bondi mass is supposed to be periodic, its overall change 	MB during
the one period T is non-positive. Indeed,

	MB = − 1

2
√

π

∫ u+T

u

du

∮
dS[σ̇ (0) ˙̄σ (0) + 3 φ̇(0) φ̇(0)] +

1

2
√

π

∮
dS [φ(0) φ̇(0)]u+T

u , (59)

10
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where we have integrated the term containing φ̈(0) by parts. The second term in (59) vanishes
because of periodicity and we arrive at a manifestly non-positive expression for the loss of
mass during one period. Such an expression can be periodic only if it is constant, so we again
obtain the condition

˙̄σ (0) = φ̇(0) = 0.

5. Periodic solutions are necessarily stationary: proof of the theorems

5.1. The massless KG field

In this section we prove that all periodic, asymptotically flat Einstein-massless-KG spacetimes,
analytic near I− in the coordinates we shall introduce, are necessarily stationary. First we
set up a coordinate system, choose the null tetrad and fix the conformal gauge as in paper I,
and the justification for the assertions below is given there. The coordinates are denoted as
xμ = (v, r, θ, φ). Here v is the affine parameter along the generators of I− and has the meaning
of the advanced time. The coordinate r is an affine parameter along the null geodesics ingoing
from I− with the property � = r + O(r2), and (θ, φ) are the standard spherical coordinates
on the unit sphere. The NP operators D,	 and δ representing derivatives in the directions of
the vectors l, n and m (constituting the null tetrad) can be expressed in the coordinates xμ in
the following way:

D = ∂v − H∂r + CI∂I ,

	 = ∂r ,

δ = P I∂I .

(60)

The metric functions H,CI and PI are governed by the frame equations

	H = −(ε + ε̄), (61)

δH = −κ, (62)

	CI = −2 πP I − 2π̄ P̄ I , (63)

δ̄P I − δP̄ I = (α − β̄) P I − (ᾱ − β)P̄ I , (64)

	P I = −(μ − γ + γ̄ )P I − λ̄P̄ I , (65)

δCI − D P I = −(ρ + ε − ε̄)P I − σ P̄ I , (66)

which can be understood as determining the nonzero spin coefficients. We choose

P 2 = 1√
2
, P 3 = i√

2 sin θ
on I−. (67)

The metric functions H and CI vanish on I− by construction, so the operator D reduces to ∂v

there, and we have

H = CI = 0, DP I = 0 on I−. (68)

As a consequence of the choice of the coordinates and the tetrad, we have

ρ − ρ̄ = μ − μ̄ = ν = π − α − β̄ = τ̄ − β − ᾱ = 0, everywhere,

α = −β = − 1

2
√

2
cot θ, κ = 0, on I−.

(69)

11
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Exploiting the tetrad gauge freedom corresponding to the rotation of (m, m̄) we achieve

γ = 0 everywhere, ε = 0 on I−. (70)

Using the conformal gauge freedom we set

μ = 0 everywhere. (71)

Recall from (24) that the physical scalar curvature is O(�3). Equations (B.6)–(B.15) for
the conformal factor then reveal that on I−

F = ρ = σ = π = τ̄ = 0,

	S0 = 	S1 = 	S2 = DS2 = 0.
(72)

Equations (B.17) and (B.18) for derivatives of F imply

�00 = �01 = 0 on I−. (73)

We saw in the previous section that the periodicity of the solution requires the constancy
of the Bondi mass. This is expressed by the relations

ψ0 = 	�0 = 0,

ϕ0 = Dφ = 0,
on I−. (74)

These equations also imply Dϕ1 = Dϕ1̄ = 0 on I−, as can be seen from (B.2) and (A.1).
First we prove that, assuming periodicity, all NP quantities are time-independent on I−,

i.e. independent of v. This follows immediately from the choices made above for all spin
coefficients except for λ. The Ricci identity (A.5g) and Bianchi identity (A.7a) show

Dλ = �20, D�02 = 0 on I−, (75)

and therefore

D2λ = 0. (76)

By the same argument as in [10] and [4], we conclude

Dλ = 0 on I−, (77)

since equation (76) has a polynomial solution in v, but λ can be periodic only if it is constant.
Equation (75) then gives

�20 = 0 on I−. (78)

The conformal Bianchi identities (B.24), (B.26), (B.28) and (B.30) on I− simplify to

Dψ1 = 0,

Dψ2 − δ̄ψ1 = −2α ψ1,

Dψ3 − δ̄ψ2 = −2λ ψ1 + 1
3 (φDϕ̄1̄ + φ̄Dϕ1̄),

Dψ4 − δ̄ψ3 = −3λ ψ2 + 2α(ψ3 + φ̄ϕ1̄ + φϕ̄1̄) − 4ϕ1̄ ϕ̄1̄ + φ̄ δ̄ϕ1̄ + φ δ̄ϕ̄1̄.

(79)

Applying D to these equations, we immediately see that

D2ψn = 0 on I− (80)

for all n. By periodicity

Dψn = 0 on I−, (81)

so all components of the Weyl spinor are v-independent on I−. Because ψn = �−1�n, we
have

D	�n = 0 on I−. (82)

12
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Finally, we investigate the behaviour of the remaining components of the Ricci tensor, i.e.
�11,�12, �22 and �. The Ricci identity (A.5h) immediately shows

� = 0 on I−. (83)

Since μ is identically zero not only on I−, but also in its neighbourhood, the Ricci identity
(A.5k) on I− reduces to

�22 = − λ λ̄ on I−, (84)

and therefore

D�22 = 0 on I−. (85)

Applying D on the Ricci identity (A.5r) leads to

D�21 = 0 on I−. (86)

The spin coefficients α and β on I− are given by (69). Inserting these into the Ricci identity
(A.5q) we find

�11 = 1
2 on I−, (87)

so �11 is obviously v-independent on I−.
We have already shown that ϕ1 and ϕ1̄ are v-independent on I−. Equation (B.3) implies

Dϕ2 − δϕ1̄ = (β − ᾱ)ϕ1̄ on I−. (88)

Applying D and assuming periodicity of the scalar field we conclude

Dϕ2 = 0 on I−. (89)

Projections (B.4) and (B.5) of the wave equation and commutator (A.3) applied to φ reveal,
after differentiating with D, that D	Q = 0 on I−, with

Q ∈ {ϕ0, ϕ1̄, ϕ1}.
To show the same for 	ϕ2 we apply D	 to (B.3) and obtain

D2	ϕ2 + 2φD	� = ϕ1D	π − ϕ2D	(ε + ε̄ − ρ). (90)

From Ricci identities (A.5f ), (A.5i), (A.5l)–(A.5o), we find that D	Q = 0 on I− for

Q ∈ {ρ, π, α, σ, ε, β}.
Applying D	 to (A.5h) shows

D	� = 0 on I−,

and thus (90) implies D2	ϕ2 = 0 on I−, so by periodicity

D	ϕ2 = 0 on I−. (91)

Thus, we have proved the lemma

Lemma 5.1. The following quantities vanish on I−:

H,CI , ρ, σ, π, τ, κ, ε, S0, S1, F,ψ0,�00,�01,�02,�, ϕ0,

DP I ,Dα,Dβ,Dλ,DS2,	S0,	S1,	S2,

Dϕ1,Dϕ1̄,Dϕ2,D	ϕ0,D	ϕ1,D	ϕ1̄,D	ϕ2,

Dψ1,Dψ2,Dψ3,Dψ4,D�11,D�12,D�22.

(92)

Now we set up an induction, with inductive hypothesis.
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Suppose that D	jQ = 0 on I− for 0 � j � k with

Q ∈ {H,CI , P I , ε, ρ, σ, λ, π, τ, κ, α, β, F,ψn,�mn,�},
and for 0 � j � k + 1 with Q ∈ {Sm, ϕm}.

This holds for k = 0 by lemma 5.1, so we need to deduce it for j = k + 1 from its validity
for j � k. Here we closely follow the procedure we used in [4]. Applying D	k on (61) we
find

D	k+1H = −D	k(ε + ε̄),

where the rhs vanishes on I− by the inductive hypothesis. By a similar argument we can
deduce D	k+1Q = 0 on I−:

• for H,CI and PI from (61), (63) and (65);
• for κ, ε, π, τ, λ, β, σ, ρ and α from (A.5c), (A.5f ), (A.5i)–(A.5o);
• for F from (B.19), taking �̃mn from (8) and �̃ from (9) and (24);
• for �00,�20,�01 and �21 from (A.6b), (A.6d), (A.7b) and (A.7d);
• for �, �22 and �11 from (A.5h), (A.5k) and (A.5q);
• for ψ0, ψ1, ψ2 and ψ3 from (B.25), (B.27), (B.29) and (B.31).

Now, all quantities except for ψ4 are proved to satisfy D	k+1Q = 0 on I−. Applying
D	k+1 on (B.7), (B.10), (B.14), (B.4), (B.5) and (A.3) shows D	k+2Q = 0 on I− for
Q ∈ {S0, S1, S2, ϕ0, ϕ1̄, ϕ1}.

Ricci identities (A.5f ), (A.5i), (A.5l)–(A.5o) and (A.5h) in this order imply D	k+2Q = 0
on I− for

Q ∈ {ε, π, β, σ, ρ, α,�}.
Applying D	k+2 on (B.3) implies D2	k+2ϕ2 = 0 on I− and using periodicity we obtain
D	k+2ϕ2 = 0 on I−.

Finally, acting by D	k+1 on (B.30) we find D2	k+1ψ4 = 0 on I−, and therefore, by
periodicity,

D	k+1ψ4 = 0 on I−.

This completes the induction.
We have thus proved that all variables are v-independent on I− and, assuming analyticity

in r, in a finite neighbourhood. Since our set of variables also includes the functions H,CI

and PI constituting the components of the metric tensor, we can conclude that K = ∂v is a
Killing vector of the unphysical metric. However, the conformal factor is v-independent as
well, so the Lie derivative of the physical metric is

LKg̃ab = −2�−3gabLK� = 0,

i.e. K is also a Killing vector of the physical metric.
The norm of K is given by the component gvv in the coordinates xμ. The full form of the

metric tensor gμν can be found in paper I, equation (34). The norm of K is then

g(K,K) = gvv = 2H − 2ωω̄,

where ω = −CIRI and RI are the O(1) functions (see (33) in paper I). Frame equations (61)
and (63) imply H,CI = O(r2), and the Ricci identity (A.5f ) with (87) shows ε = −1/2 on
I−. From these relations we find the norm of the Killing vector to be

g(K,K) = 2r2 + O(r3).

We can see that K is null on I− and time-like in its neighbourhood. Our results are summarized
in the following theorem.

14



Class. Quantum Grav. 27 (2010) 175011 J Bičák et al

Theorem 5.2. A weakly asymptotically simple time-periodic solution of the Einstein-
massless-KG field equations which is analytic in a neighbourhood of I− in the coordinates
introduced above necessarily has a Killing vector which is time-like in the interior and extends
to a translation on I−.

5.2. The conformal-scalar field

The proof for the conformal-scalar field is essentially the same as in the case of massless KG
field, the only difference lying in the Bianchi identities. These are not so complicated as in the
previous case and we present them in their full form in appendix B, equations (B.51)–(B.58).
Our results are summarized in the following theorem.

Theorem 5.3. A weakly asymptotically simple time-periodic solution of the Einstein-
conformal-scalar equations which is analytic in a neighbourhood of I− in the coordinates
introduced above necessarily has a Killing vector which is time-like in the interior and extends
to a translation on I−.

We briefly outline the main steps of the proof. We use the same coordinate system and
tetrad, defined by (60) and (61)–(66), so all consequences of the choice of the gauge remain
unchanged. Projections of wave equation (B.2)–(B.5) and equations for the conformal factor
(B.6)–(B.19) differ only in the presence of the physical scalar curvature �̃, which in this case
is zero. The form of the Ricci identities does not depend on the type of the matter field. On
the whole, equations (60)–(78) hold without change.

Now it is straightforward to see from the conformal Bianchi identities (B.51)–(B.54) that
the Weyl scalars ψn are v-independent on I−. Next we return to equations (83)–(91), which
are again valid. So lemma (5.1) holds.

To finalize the proof we need to repeat the induction. In the previous case, in the inductive
hypothesis we assumed that each quantity Q satisfies D	jQ = 0 on I−, where 0 � j � k,
and in addition, D	k+1Q = 0 on I− for Q ∈ {Sa, ϕa}. This was necessary, since the Bianchi
identities contained derivatives of these fields. In the inductive step we were able to prove
D	k+1Q = 0 on I− for ψn’s and for all other quantities. Moreover, we proved D	k+2Q = 0
on I− for Q ∈ {Sa, ϕa}.

In this case, the Bianchi identities actually contain the second derivatives of the fields
Sa and ϕa , i.e. the third derivatives of � and φ. This is not a problem, however, as all third
derivatives are multiplied by �. Therefore, terms with problematic D	k+2-derivatives vanish
on I−, and the induction can be repeated without change.

6. Inheritance

In the previous section, we proved that if both gravitational and scalar fields are periodic
near infinity, the spacetime is stationary there and the scalar field does not depend on time.
However, there are examples known in which the gravitational field and its matter source do
not share the same symmetries (see paper I for a longer discussion). The question therefore
is, whether a stationary gravitational field can be produced by a time-dependent source. In
paper I we showed that this is not the case with an electromagnetic field—once the spacetime
is stationary, the electromagnetic field must be too. Let us briefly recall the idea of the proof.

In the electromagnetic case, the components of the physical Ricci spinor have the simple
form φ̃mn = φ̃m

˜̄φn. It is clear that if the Ricci spinor is to be stationary, the electromagnetic field
can depend on time only through the phase of φ̃m, i.e. φ̃m = ϕ̃m eiχ , where χ = χ(v, r, xI ),
but the modulus ϕ̃ is time-independent. Now, by the Bondi mass-loss formula φ0 = 0 on I−.
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Using Maxwell’s equations we deduced that φm are time-independent on I−, and by induction
also in its neighbourhood. Therefore, if an asymptotically flat electrovacuum spacetime is
stationary, the electromagnetic field has to inherit stationarity.

The situation is more complicated in the case of the massless KG field, for now it is not
obvious what kind of time dependence of the scalar field φ̃ is compatible with the stationarity
of the spacetime. We first find this time dependence and then the result follows, using the
Bondi mass-loss formula and induction.

Theorem 6.1. In a stationary, analytic, weakly asymptotically simple solution of the
Einstein-massless-KG equations with the stationarity Killing vector K = ∂/∂v, the physical
massless-KG field must take the form φ̃ = eiωvφ̃0, where ∂vφ̃0 = 0. If the metric is analytic in
a neighbourhood of I− in the coordinates introduced above then φ̃ is in fact time-independent.

For the first part, we use the coordinate system introduced above and assume the
stationarity of the spacetime. Hence, K = ∂v is a Killing vector of the metric and the
Lie derivative LK reduces to a simple partial derivative with respect to v, which is also
denoted by a dot. Since �̃ is stationary, Einstein’s equations (7) imply

∂v(ϕ̃c ˜̄ϕc
) = 0.

The Lie derivative of the energy–momentum tensor (2) is then

4πLKT̃ab = ψ̃a ˜̄ϕb + ϕ̃a
˜̄ψb + ϕ̃b

˜̄ψa + ψ̃b ˜̄ϕa,

where ψ̃ = ˙̃φ and ψ̃a = ∇aψ̃ . Let us decompose the fields φ̃ and ψ̃ into real and imaginary
parts:

φ̃ = X + iY, ψ̃ = U + iW, (93)

with X, Y,U and W being the real functions. In this notation we have

2π ˙̃T ab = XaUb + YaWb + XbUa + YbWa = 0, (94)

where Xa = ∇aX, etc.
We first consider the case when the gradient fields Xa and Ya are proportional in some finite

region so that, by analyticity, they are proportional everywhere. Thus X and Y are functionally
dependent. If either were constant then that constant would be zero, since φ̃ = 0 at infinity.
Thus we may suppose that Y is a function of X and then

ϕ̃a = (1 + iY ′)Xa, �̃φ̃ = (1 + iY ′)�̃X + iY ′′g̃abXaXb,

where the prime indicates derivative w.r.t. X.
If Y ′′ = 0 then Y = aX +b for constants a, b, but once again b must vanish by asymptotic

flatness so φ̃ = (1 + ia)X and, after rescaling φ̃ by a constant, we may assume Y = 0 whence
also W = 0. Now (94) becomes X(aUb) = 0 from which necessarily Ua = 0 and ˙̃φ = constant,
but then asymptotic flatness forces ˙̃φ = 0.

If Y ′′ �= 0 then

�̃X = 0 = g̃abXaXb.

Now

4πT̃ab = 2(1 + Y ′2)XaXb, (95)

and one may impose on this expression the vanishing of LKT̃ab. Introduce

h := LKX,
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then this is

LK(4πT̃ab) = 4Y ′Y ′′hXaXb + 2(1 + Y ′2)(haXb + Xahb) = 0.

For nonzero h, this is only possible if ha is proportional to Xa, so that h is a function of X and
this condition becomes

4Y ′Y ′′h + 4h′(1 + Y ′2) = 0,

which can be integrated to give h2(1 + Y ′2) = C, a constant. Now from (95)

4πT̃abK
aKb = 2h2(1 + Y ′2) = 2C,

but this expression must vanish at infinity for asymptotic flatness, so C = 0 and so h = 0, and
the scalar field inherits the symmetry of the metric.

When Xa and Ya are not proportional (except possibly on a set of measure zero), we return
to (94) and choose a vector field Za with ZaXa = 0 but ZaYa �= 0. Contracting (94) with such
Za we find that Wb is a linear combination of Xb and Yb, from which we deduce

W = f (X, Y ).

Similarly, contracting (94) with a different Za satisfying ZaXa �= 0 and ZaYa = 0 we arrive at

U = g(X, Y ).

Inserting this back into (94) we obtain

gXXaXb + 2(fX + gY )X(aYb) + fY YaYb = 0,

where the subscript on f or g indicates the corresponding partial derivative. Since Xa and Ya

are assumed to be linearly independent, all terms in the last equation must vanish separately.
We thus have three differential equations for f and g. The general solution is

W = f = ωX + β, U = g = −ωY + γ,

with constants ω, β and γ . Regarding (93), for the field ψ̃ we have

ψ̃ = iω(X + iY ) + (γ + iβ).

Since ψ̃ = ˙̃φ, we can solve the last equation to find

φ̃ = φ̃0 eiωv + const. (96)

However, the constant second term must be set to zero, as the field itself must vanish at infinity.
We have shown that the most general non-stationary scalar field compatible with

stationarity of the spacetime is of the form

φ̃(v, r, xI ) = φ̃0(r, x
I ) eiωv. (97)

(It is not difficult to show that the same result is obtained with a potential term V (φ̃, ¯̃φ) added
as in subsection 2.3, with the extra condition that necessarily V must also have the form
V = F(φ̃ ¯̃φ).) We shall next show that nonzero ω leads to the vanishing of φ̃. The stationarity
of the spacetime implies the constancy of the Bondi mass, so ϕ0 is again zero on I−. Now, if
ω = 0, the field φ is v-independent everywhere and is therefore stationary. On the other hand,
if ω �= 0, then expanding φ0 in the variable r and using (96), we find

iωφ
(0)
0 = 0 on I−,

so that φ
(0)
0 = 0. Continuing by induction, suppose that φ

(j)

0 = 0 for 0 � j � k. Acting with
	k on (B.3) leads to (recall that ρ and ε vanish on I−)

iω	(k+1)φ = 0 on I−
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and since the constant ω is assumed to be nonzero, it follows immediately that

φ(k+1) = 0.

Hence, by induction and analyticity, the field φ vanishes in a neighbourhood of I−. This
completes the proof of theorem 6.1 and of inheritance for the massless KG field.

Let us now turn to the conformal-scalar field. Again, we demand the stationarity of
the metric, and therefore also the stationarity of the energy–momentum tensor, but not the
stationarity of the scalar field. Unfortunately, the complicated form of the energy–momentum
tensor (36) does not allow us to find the most general time dependence of φ̃ compatible with
the stationarity of the metric, and thus we cannot proceed as before. In addition, we cannot
deduce any concrete condition on I−, as we do not have a negative semi-definite mass-loss
formula. Because of these complications we will only show that the scalar field inherits
the symmetry in a simpler case. Let us consider a complex conformal-scalar field with the
energy–momentum tensor,

T̃ C

ab = 1

4π

[
2 ϕ̃(a ˜̄ϕb) − 1

2
g̃ab ϕ̃c ˜̄ϕc − 1

2
φ̃ ∇̃a ˜̄ϕb − 1

2
˜̄φ ∇̃aϕ̃b + φ̃ ˜̄φ φ̃ab

]
. (98)

The Bondi mass-loss formula (59) now takes the form

ṀB = − 1

2
√

π

∮
dS

[
σ̇ (0) ˙̄σ (0) + 2 φ̇(0) ˙̄φ(0) − 1

2
φ(0) ¨̄φ(0) − 1

2
φ̈(0) φ̄(0)

]
. (99)

Although we cannot exclude the existence of some more general time dependence of φ̃,
for the field of the form (97) the energy–momentum tensor (98) is stationary. In this case we
can integrate by parts in (99) to find as in (59)

	MB = − 1

2
√

π

∫ v+2π/ω

v

dv

∮
dS[σ̇ (0) ˙̄σ (0) + 3 φ̇(0) ˙̄φ(0)]. (100)

Since we assume the stationarity of the spacetime, σ̇ (0) = 0. The constancy of the Bondi mass
then implies φ̇(0) = 0, i.e.

Dφ ≡ ϕ0 = 0 on I−. (101)

Now we can proceed as in the case of the massless scalar field. By (101) we have ω = 0
or φ(0) = 0. If ω = 0, the field is time-independent everywhere. If φ(0) = 0, or equivalently,
φ = 0 on I−, we prove by induction that φ = 0 everywhere.
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Appendix A. The general Newman–Penrose equations

A.1. Commutation relations

The operators D,	, δ and δ̄ satisfy the commutation relations

Dδ − δD = (π̄ − ᾱ − β)D − κ	 + (ρ̄ − ε̄ + ε)δ + σ δ̄, (A.1)

	D − D	 = (γ + γ̄ )D + (ε + ε̄)	 − (τ̄ + π)δ − (τ + π̄)δ̄, (A.2)

	δ − δ	 = ν̄D + (ᾱ + β − τ)	 + (γ − γ̄ − μ)δ − λ̄δ̄, (A.3)

δδ̄ − δ̄δ = (μ − μ̄)D + (ρ − ρ̄)	 + (ᾱ − β)δ̄ − (α − β̄)δ. (A.4)

A.2. Ricci identities

Dρ − δ̄κ = ρ2 + (ε + ε̄)ρ − κ(3α + β̄ − π) − τ κ̄ + σ σ̄ + �00, (A.5a)

Dσ − δκ = (ρ + ρ̄ + 3ε − ε̄)σ − (τ − π̄ + ᾱ + 3β)κ + �0, (A.5b)

Dτ − 	κ = ρ(τ + π̄) + σ(τ̄ + π) + (ε − ε̄)τ − (3γ + γ̄ )κ + �1 + �01, (A.5c)

Dα − δ̄ε = (ρ + ε̄ − 2ε)α + βσ̄ − β̄ε − κλ − κ̄γ + (ε + ρ)π + �10, (A.5d)

Dβ − δε = (α + π)σ + (ρ̄ − ε̄)β − (μ + γ )κ − (ᾱ − π̄)ε + �1, (A.5e)

Dγ −	ε = (τ + π̄)α + (τ̄ + π)β − (ε + ε̄)γ − (γ + γ̄ )ε + τπ − νκ + �2 − � + �11, (A.5f )

Dλ − δ̄π = (ρ − 3ε + ε̄)λ + σ̄μ + (π + α − β̄)π − νκ̄ + �20, (A.5g)

Dμ − δπ = (ρ̄ − ε − ε̄)μ + σλ + (π̄ − ᾱ + β)π − νκ + �2 + 2�, (A.5h)

Dν − 	π = (π + τ̄ )μ + (π̄ + τ)λ + (γ − γ̄ )π − (3ε + ε̄)ν + �3 + �21, (A.5i)

	λ − δ̄ν = −(μ + μ̄ + 3γ − γ̄ )λ + (3α + β̄ + π − τ̄ )ν − �4, (A.5j )

	μ − δν = −(μ + γ + γ̄ )μ − λλ̄ + ν̄π + (ᾱ + 3β − τ)ν − �22, (A.5k)

	β − δγ = (ᾱ + β − τ)γ − μτ + σν + εν̄ + (γ − γ̄ − μ)β − αλ̄ − �12, (A.5l)

	σ − δτ = −(μ − 3γ + γ̄ )σ − λ̄ρ − (τ + β − ᾱ)τ + κν̄ − �02, (A.5m)

	ρ − δ̄τ = (γ + γ̄ − μ̄)ρ − σλ + (β̄ − α − τ̄ )τ + νκ − �2 − 2�, (A.5n)

	α − δ̄γ = (ρ + ε)ν − (τ + β)λ + (γ̄ − μ̄)α + (β̄ − τ̄ )γ − �3, (A.5o)

δρ − δ̄σ = (ᾱ + β)ρ − (3α − β̄)σ + (ρ − ρ̄)τ + (μ − μ̄)κ − �1 + �01, (A.5p)

δα − δ̄β = μρ − λσ + αᾱ + ββ̄ − 2αβ + (ρ − ρ̄)γ + (μ − μ̄)ε − �2 + � + �11, (A.5q)

δλ − δ̄μ = (ρ − ρ̄)ν + (μ − μ̄)π + (α + β̄)μ + (ᾱ − 3β)λ − �3 + �21. (A.5r)

A.3. Bianchi identities

D�1 − δ̄�0 − D�01 + δ�00 = (π − 4α)�0 + 2(2ρ + ε)�1 − 3κ�2 + 2κ�11

− (π̄ − 2ᾱ − 2β)�00 − 2σ�10 − 2(ρ̄ + ε)�01 + κ̄�02, (A.6a)

D�2 − δ̄�1 + 	�00 − δ̄�01 + 2D� = −λ�0 + 2(π − α)�1 + 3ρ�2 − 2κ�3

+ 2ρ�11 + σ̄�02 + (2γ + 2γ̄ − μ̄)�00 − 2(α + τ̄ )�01 − 2τ�10, (A.6b)
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D�3 − δ̄�2 − D�21 + δ�20 − 2δ̄� = −2λ�1 + 3π�2 + 2(ρ − ε)�3 − κ�4

+ 2μ�10 − 2π�11 − (2β + π̄ − 2ᾱ)�20 − 2(ρ̄ − ε)�21 + κ̄�22, (A.6c)

D�4 − δ̄�3 + 	�20 − δ̄�21 = −3λ�2 + 2(α + 2π)�3 + (ρ − 4ε)�4 + 2ν�10

− 2λ�11 − (2γ − 2γ̄ + μ̄)�20 − 2(τ̄ − α)�21 + σ̄�22, (A.6d)

	�0 − δ�1 + D�02 − δ�01 = (4γ − μ)�0 − 2(2τ + β)�1 + 3σ�2

+ (ρ̄ + 2ε − 2ε̄)�02 + 2σ�11 − 2κ�12 − λ̄�00 + 2(π̄ − β)�01, (A.7a)

	�1 − δ�2 − 	�01 + δ̄�02 − 2δ� = ν�0 + 2(γ − μ)�1 − 3τ�2 + 2σ�3

− ν̄�00 + 2(μ̄ − γ )�01 + (2α + τ̄ − 2β̄)�02 + 2τ�11 − 2ρ�12, (A.7b)

	�2 − δ�3 + D�22 − δ�21 + 2	� = 2ν�1 − 3μ�2 + 2(β − τ)�3 + σ�4

− 2μ�11 − λ̄�20 + 2π�12 + 2(β + π̄)�21 + (ρ̄ − 2ε − 2ε̄)�22, (A.7c)

	�3 − δ�4 − 	�21 + δ̄�22 = 3ν�2 − 2(γ + 2μ)�3 + (4β − τ)�4 − 2ν�11

− ν̄�20 + 2λ�12 + 2(γ + μ̄)�21 + (τ̄ − 2β̄ − 2α)�22, (A.7d)

D�11 − δ�10 + 	�00 − δ̄�01 + 3D� = (2γ + 2γ̄ − μ − μ̄)�00 + (π − 2α − 2τ̄ )�01

+ (π̄ − 2ᾱ − 2τ)�10 + 2(ρ + ρ̄)�11 + σ̄�02 + σ�20 − κ̄�12 − κ�21, (A.8a)

D�12 − δ�11 + 	�01 − δ̄�02 + 3δ� = (2γ − μ − 2μ̄)�01 + ν̄�00 − λ̄�10

+ 2(π̄ − τ)�11 + (π + 2β̄ − 2α − τ̄ )�02

+ (2ρ + ρ̄ − 2ε̄)�12 + σ�21 − κ�22, (A.8b)

D�22 − δ�21 + 	�11 − δ̄�12 + 3	� = ν�01 + ν̄�10 − 2(μ + μ̄)�11 − λ�02 − λ̄�20

+ (2π − τ̄ + 2β̄)�12 + (2β − τ + 2π̄)�21 + (ρ + ρ̄ − 2ε − 2ε̄)�22. (A.8c)

Appendix B. The conformal field equations

B.1. The conformally rescaled wave equation

The wave equation �̃φ̃ = 0 in the physical spacetime is not conformally invariant. If φ̃

is the solution of the physical wave equation, then the unphysical scalar field φ satisfies
equation (32),

∇A′
A ϕBA′ = 2 (� − �−2�̃) φ εAB. (B.1)

The projections of this equation are as follows:

Dϕ1 − δϕ0 = (π̄ − ᾱ − β)ϕ0 + (ρ̄ + ε − ε̄)ϕ1 + σϕ1̄ − κϕ2, (B.2)

Dϕ2 − δϕ1̄ = −μϕ0 + πϕ1 + (π̄ − ᾱ + β)ϕ1̄ + (ρ̄ − ε − ε̄)ϕ2 − 2φ(� − �−2�̃), (B.3)

	ϕ0 − δ̄ϕ1 = (γ + γ̄ − μ̄)ϕ0 + (β̄ − α − τ̄ )ϕ1 − τϕ1̄ + ρϕ2 − 2φ(� − �−2�̃), (B.4)

	ϕ1̄ − δ̄ϕ2 = νϕ0 − λϕ1 + (γ̄ − γ − μ̄)ϕ1̄ + (α + β̄ − τ̄ )ϕ2. (B.5)

Appropriate equations for the conformal-scalar field can be obtained from (B.2)–(B.5) by
setting �̃ = 0.
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B.2. Equations for the conformal factor

The projections of equation (23),

∇AA′sBB ′ = ��̃ABA′B ′ − ��ABA′B ′ + εAB εA′B ′ (�� − �−1�̃ + F),

are as follows6:

DS0 − (ε + ε̄) S0 + κ̄ S1 + κ S̄1 = ��̃00 − ��00, (B.6)

	S0 − (γ + γ̄ ) S0 + τ̄ S1 + τ S̄1 = ��̃11 − ��11 + �� − �−1 �̃ + F, (B.7)

δS0 − (ᾱ + β) S0 + ρ̄ S1 + σ S̄1 = ��̃01 − ��01, (B.8)

DS1 − π̄ S0 + (ε̄ − ε) S1 + κ S2 = ��̃01 − ��01, (B.9)

	S1 − ν̄ S0 + (γ̄ − γ ) S1 + τ S2 = ��̃12 − ��12 (B.10)

δS1 − λ̄ S0 + (ᾱ − β) S1 + σ S2 = ��̃02 − ��02, (B.11)

δ̄S1 − μ̄ S0 + (β̄ − α) S1 + ρ S2 = ��̃11 − ��11 − �� + �−1 �̃ − F, (B.12)

DS2 − π S1 − π̄ S̄1 + (ε + ε̄) S2 = ��̃11 − ��11 + �� − �−1 �̃ + F, (B.13)

	S2 − ν S1 − ν̄ S̄1 + (γ + γ̄ ) S2 = ��̃22 − ��22, (B.14)

δS2 − μS1 − λ̄ S̄1 + (ᾱ + β) S2 = ��̃12 − ��12. (B.15)

Equation (29) for the derivatives of F = (1/2)�−1scs
c,

∇AA′F = sBB ′
�̃ABA′B ′ − sBB ′

�ABA′B ′ + (� − �−2 �̃) sAA′, (B.16)

has the following projections:

DF = S2 �̃00 − S1 �̃10 + S0 �̃11 − S̄1 �̃01

− S2 �00 + S1 �10 − S0 �11 + S̄1 �01 + (� − �−1�̃)S0, (B.17)

δF = S2 �̃01 − S1 �̃11 + S0 �̃12 − S̄1 �̃02

− S2 �01 + S1 �11 − S0 �12 + S̄1 �02 + (� − �−1�̃)S1, (B.18)

	F = S2 �̃11 − S1 �̃21 + S0 �̃22 − S̄1 �̃12

− S2 �11 + S1 �21 − S0 �22 + S̄1 �12 + (� − �−1�̃)S2. (B.19)

B.3. Conformal Bianchi identities for the scalar field

Let us write the conformal Bianchi identities (18) for the scalar field in the form

XABCA′ = YABCA′, (B.20)

where (for notation see (14))

XABCA′ = ∇D
A′ψABCD − 2 φ φ̄ sB ′

(C�AB)A′B ′ ,

YABCA′ = 4 (s ϕ ϕ̄) + 2 φ (∇ s ϕ̄) + 2 φ̄ (∇ s ϕ) (B.21)

+ 4 �
[

1
2 (∇ϕϕ̄) − φφ̄2(s ϕ s) − φ̄ φ2(s ϕ̄ s)

]
(B.22)

− 4 �2 φ φ̄ (s ϕ ϕ̄). (B.23)

6 There is a misprint in paper I: in equation (B.2a) the sign of (ε + ε̄)S0 should be ‘minus’ as in (B.6). This does not
affect the results of paper I.
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Since both sides are totally symmetric in ABC, we denote their contractions with spinors
o and ι by the number of ι’s in the first index and number of ῑ’s in the second, e.g.
X20 = XABCA′oAιBιCōA′

, X01 = XABCA′oAoBoCῑA
′
.

The components of XABCA′ read

X00 = −Dψ1 + δ̄ψ0 + (π − 4α)ψ0 + 2(ε + 2ρ)ψ1 − 3κψ2

+ φφ̄(−2S1�00 + 2S0�01), (B.24)

X01 = 	ψ0 − δψ1 + (μ − 4γ )ψ0 + 2(β + 2τ)ψ1 − 3σψ2

+ φφ̄(2S0�02 − 2S1�01), (B.25)

X10 = −Dψ2 + δ̄ψ1 − λψ0 + 2(π − α)ψ1 + 3ρψ2 − 2κψ3

+ (2/3)φφ̄(S̄1�01 − S2�00 + 2S0�11 − 2S1�10), (B.26)

X11 = 	ψ1 − δψ2 − νψ0 + 2(μ − γ )ψ1 + 3τψ2 − 2σψ3

+ (2/3)φφ̄(S̄1�02 − S2�01 + 2S0�12 − 2S1�11), (B.27)

X20 = −Dψ3 + δ̄ψ2 − 2λψ1 + 3πψ2 + 2(ρ − ε)ψ3 − κψ4

+ (2/3)φφ̄(S0�21 − S1�20 + 2S̄1�11 − S2�10), (B.28)

X21 = 	ψ2 − δψ3 − 2νψ1 + 3μψ2 + 2(τ − β)ψ3 − σψ4

+ (2/3)φφ̄(S0�22 − S1�21 + S̄1�12 − S2�11), (B.29)

X30 = −Dψ4 + δ̄ψ3 − 3λψ2 + 2(α + 2π)ψ3 + (ρ − 4ε)ψ4

+ φφ̄(2S̄1�21 − 2S2�20), (B.30)

X31 = 	ψ3 − δψ4 − 3νψ2 + 2(γ + 2μ)ψ3 + (τ − 4β)ψ4

+ φφ̄(2S̄1�22 − 2S2�21). (B.31)

We do not present the projections of YABCA′ in full detail since they are too long. However,
the structure of all the terms entering this spinor allows one to reconstruct its components from
knowledge of the components of spinors (sϕϕ̄) and (∇sϕ), if appropriate interchanges of s, ϕ

and ϕ̄ are made. For expressions of type (sϕϕ̄) we get

2 (s ϕ ϕ̄)00 = 2S1ϕ0ϕ̄0 − S0(ϕ0ϕ̄1 + ϕ1ϕ̄0), (B.32)

2 (s ϕ ϕ̄)01 = −2S0ϕ1ϕ̄1 + S1(ϕ0ϕ̄1 + ϕ1ϕ̄0), (B.33)

6(s ϕ ϕ̄)10 = −S0(ϕ0ϕ̄2 + ϕ2ϕ̄0 + ϕ1ϕ̄1̄ + ϕ1̄ϕ̄1) + 2S1(ϕ0ϕ̄1̄ + ϕ1̄ϕ̄0)

− S̄1(ϕ0ϕ̄1 + ϕ1ϕ̄0) + 2S2ϕ0ϕ̄0, (B.34)

6(s ϕ ϕ̄)11 = −2S0(ϕ2ϕ̄1 + ϕ1ϕ̄2) + S1(ϕ0ϕ̄2 + ϕ2ϕ̄0 + ϕ1ϕ̄1̄ + ϕ1̄ϕ̄1)

− 2S̄1ϕ1ϕ̄1 + S2(ϕ0ϕ̄1 + ϕ1ϕ̄0), (B.35)

6(s ϕ ϕ̄)20 = −S0(ϕ2ϕ̄1̄ + ϕ1̄ϕ̄2) + 2S1ϕ1̄ϕ̄1̄

− S̄1(ϕ0ϕ̄2 + ϕ2ϕ̄0 + ϕ1ϕ̄1̄ + ϕ1̄ϕ̄1) + 2S2(ϕ0ϕ̄1̄ + ϕ1̄ϕ̄0), (B.36)

6(s ϕ ϕ̄)21 = −2S0ϕ2ϕ̄2 + S1(ϕ2ϕ̄1̄ + ϕ1̄ϕ̄2)

− 2S̄1(ϕ2ϕ̄1 + ϕ1ϕ̄2) + S2(ϕ0ϕ̄2 + ϕ2ϕ̄0 + ϕ1ϕ̄1̄ + ϕ1̄ϕ̄1), (B.37)

2(s ϕ ϕ̄)30 = −S̄1(ϕ2ϕ̄1̄ + ϕ1̄ϕ̄2) + 2S2ϕ1̄ϕ̄1̄, (B.38)
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2(s ϕ ϕ̄)31 = −2S̄1ϕ2ϕ̄2 + S2(ϕ1̄ϕ̄2 + ϕ2ϕ̄1̄). (B.39)

The expressions of type (∇sϕ) (and their projections) can be slightly simplified by
observing that both sa and ϕa are the gradients of scalar functions, namely � and φ. Since the
commutator ∇A′(A∇A′

B) annihilates any scalar quantity, we have

∇A′(AsB ′
B) = ∇A′(AϕB ′

B) = 0, (B.40)

and thus

(∇sϕ) = 1
2 sB ′(A∇B ′

C ϕB)A′ + 1
2 ϕB ′(A∇B ′

C sB)A′ = −(s∇ϕ) − (ϕ∇s). (B.41)

The components of (s∇ϕ) are

2(s∇ϕ)00 = S0[δϕ0 − (β + ᾱ)ϕ0 + ρ̄ϕ1 + σϕ1̄] + S1[−Dϕ0 + (ε + ε̄)ϕ0 − κ̄ϕ1 − κϕ1̄],

(B.42)

2(s∇ϕ)01 = S0[δϕ1 − λ̄ϕ0 + σϕ2 + (ᾱ − β)ϕ1] + S1[−Dϕ1 + π̄ϕ0 − κϕ2 + (ε − ε̄)ϕ1],

(B.43)

6(s∇ϕ)10 = S0[	ϕ0 + δϕ1̄ − (γ + γ̄ + μ)ϕ0 + ρ̄ϕ2 + τ̄ ϕ1 + (β + τ − ᾱ)ϕ1̄]

+ S1[−Dϕ1̄ − δ̄ϕ0 + (π + α + β̄)ϕ0 − κ̄ϕ2 − σ̄ ϕ1 + (ε̄ − ρ − ε)ϕ1̄]

+ S̄1[δϕ0 − (ᾱ + β)ϕ0 + ρ̄ϕ1 + σϕ1̄] + S2[−Dϕ0 + (ε + ε̄)ϕ0 − κ̄ϕ1 − κϕ1̄],

(B.44)

6(s∇ϕ)11 = S0[	ϕ1 + δϕ2 − ν̄ϕ0 + (β + τ + ᾱ)ϕ2 + (γ̄ − γ − μ)ϕ1 − λ̄ϕ1̄]

+ S1[−Dϕ2 − δ̄ϕ1 + μ̄ϕ0 − (ρ + ε + ε̄)ϕ2 + (π + α − β̄)ϕ1 + π̄ϕ1̄]

+ S̄1[δϕ1 − λ̄ϕ0 + σϕ2 + (ᾱ − β)ϕ1] + S2[−Dϕ1 + π̄ϕ0 − κϕ2 + (ε − ε̄)ϕ1],

(B.45)

6(s∇ϕ)20 = S0[	ϕ1̄ − νϕ0 + τ̄ ϕ2 + (γ − γ̄ )ϕ1̄] + S1[−δ̄ϕ1̄ + λϕ0 − σ̄ ϕ2 + (β̄ − α)ϕ1̄]

+ S̄1[	ϕ0 + δϕ1̄ − (γ + γ̄ + μ)ϕ0 + ρ̄ϕ2 + τ̄ ϕ1 + (β + τ − ᾱ)ϕ1̄]

+ S2[−Dϕ1̄ − δ̄ϕ0 + (π̄ + α + β̄)ϕ0 − κ̄ϕ2 − σ̄ ϕ1 + (ε̄ − ε − ρ)ϕ1̄],

(B.46)

6(s∇ϕ)21 = S0[	ϕ2 + (γ + γ̄ )ϕ2 − νϕ1 − ν̄ϕ1̄]

+ S1[−δ̄ϕ2 − (α + β̄)ϕ2 + λϕ1 + μ̄ϕ1̄]

+ S̄1[	ϕ1 + δϕ2 − ν̄ϕ0 + (β + τ + ᾱ)ϕ2 + (γ̄ − γ − μ)ϕ1 − λ̄ϕ1̄]

+ S2[−Dϕ2 − δ̄ϕ1 + μ̄ϕ0 − (ρ + ε + ε̄)ϕ2 + (π + α − β̄)ϕ1 + π̄ϕ1̄], (B.47)

2(s∇ϕ)30 = S̄1[	ϕ1̄ − νϕ0 + τ̄ ϕ2 + (γ − γ̄ )ϕ1̄] + S2[−δ̄ϕ1̄ + λϕ0 − σ̄ ϕ2 + (β̄ − α)ϕ1̄],

(B.48)

2(s∇ϕ)31 = S̄1[	ϕ2 + (γ + γ̄ )ϕ2 − νϕ1 − ν̄ϕ1̄] + S2[−δ̄ϕ2 − (α + β̄)ϕ2 + λϕ1 + μ̄ϕ1̄].

(B.49)

B.4. Conformal Bianchi identities for the conformal-scalar field

The projections of the Bianchi identities (44)

∇D
A′ ψABCD = 3 sB ′

(C φAB)A′B ′ + �∇B ′
(C φAB)A′B ′ (B.50)
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are as follows:

Dψ1 − δ̄ψ0 = (π − 4α)ψ0 + 2(ε + 2ρ)ψ1 − 3κψ2 − 3S1φ00 + 3S0φ01

+ �[Dφ01 − δφ00 + (2β − 2ᾱ − π̄)φ00 − 2(ε + ρ̄)φ01 − 2σφ11 + κ̄φ02],

(B.51)

Dψ2 − δ̄ψ1 = −λψ0 + 2(π − α)ψ1 + 3ρψ2 − 2κψ3

+ 2S0φ11 + S̄1φ01 − S2φ00 − S1φ10

+ 1
3�[2Dφ11 − 	φ00 + 2δφ10 − δ̄φ01

+ (2γ + 2γ̄ + 2μ − μ̄)φ00 − 2(π + α + τ̄ )φ01 − 2(π̄ + τ − 2ᾱ)φ10

+ 2(ρ − 2ρ̄)φ11 + 2κ̄φ12 + 2κφ21 + σ̄ φ02 − 2σφ20], (B.52)

Dψ3 − δ̄ψ2 = −2λψ1 + 2πψ2 + 2(ρ − ε)ψ3 − κψ4

+ S0φ21 − S1φ20 − 2S2φ10 + 2S̄1φ11

+ 1
3�[2	φ10 − Dφ21 − 2δ̄φ11 + δφ20

+ 2νφ00 − 2λφ01 + 2(μ − μ̄ + 2γ̄ )φ10 − 2(π + 2τ̄ )φ11

+ 2σ̄ φ12 + 2(ρ − ρ̄ + ε)φ21 + (2ᾱ − 2β − 2τ − π̄)φ20 + κ̄φ22], (B.53)

Dψ4 − δ̄ψ3 = −3λψ2 + 2(α + 2π)ψ3 + (ρ − 4ε)ψ4 + 3S̄1φ21 − 3S2φ20 + �[	φ20 − δ̄φ21

+ 2νφ10 − 2λφ11 + 2(α − τ̄ )φ21 + (2γ̄ − 2γ − μ̄)φ20 + σ̄ φ22], (B.54)

	ψ0 − δψ1 = (4γ − μ)ψ0 − 2(β + 2τ)ψ1 + 3σψ2 + 3S1φ01 − 3S0φ02 + �[−Dφ02 + δφ01

− λ̄φ00 + 2(π̄ − β)φ01 + 2σφ11 − 2κφ12 + (2ε − 2ε̄ + ρ̄)φ02], (B.55)

	ψ1 − δψ2 = νψ0 + 2(γ − μ)ψ1 − 3τψ2 + 2σψ3

+ S2φ01 + 2S1φ11 − 2S0φ12 − S̄1φ02

+ 1
3 �[	φ01 − δ̄φ02 + 2δφ11 − 2Dφ12

− ν̄φ00 + 2(μ̄ − μ − γ )φ01 − 2λ̄φ10 + 2(τ + 2π̄ )φ11

+ 2(ρ̄ − ρ − 2ε̄)φ12 + 2σφ21 + (2π + 2α − 2β̄ + τ̄ )φ02 − 2κφ22], (B.56)

	ψ2 − δψ3 = 2νψ1 − 3μψ2 + 2(β − τ)ψ3 + σψ4

+ 2S2φ11 + S1φ21 − S0φ22 − 2S̄1φ12

+ 1
3 �[2	φ11 + δφ21 − 2δ̄φ12 − Dφ22

− 2νφ01 − 2ν̄φ10 + 2(2μ̄ − μ)φ11 + 2(π + τ̄ − 2β̄)φ12

+ 2(β + τ + π̄)φ21 + 2λφ02 − λ̄φ20 + (ρ̄ − 2ρ − 2ε − 3ε̄)φ22], (B.57)

	ψ3 − δψ4 = 3νψ2 − 2(γ + 2μ)ψ3 + (4β − τ)ψ4 + 3S2φ21 − 3S̄1φ22 + � [	φ21 − δ̄φ22

− 2νφ11 + 2λφ12 + 2(γ + μ̄)φ21 − ν̄φ20 + (τ̄ − 2α − 2β̄)φ22]. (B.58)

Appendix C.

C.1. The asymptotic solution of the Einstein-massless-scalar-field equations

Although we want the results at I−, we follow the usual convention and find the asymptotic
solution of the field equations in the physical spacetime first in the neighbourhood of
I+. The results can easily be translated to I−. For the solution, we closely follow the
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procedure presented in [16] for the vacuum spacetimes. The coordinates, tetrad and conformal
transformations of the spin basis are identical to those used therein, and in this appendix, since
we do not consider unphysical quantities, we omit the tildes from physical quantities.

We define

ϕ0 = Dφ, ϕ1 = δφ, ϕ1̄ = δ̄φ, ϕ2 = 	φ. (C.1)

The components of the Ricci spinor and the scalar curvature are given by (8) and (9). The
asymptotic behaviour of these quantities is as follows:

�00,�01,�02 = O(�4),

�11,�12,� = O(�3),

�22 = O(�2).

(C.2)

Assuming analyticity we can expand any quantity X = O(�k) in a series of the form

X =
∞∑
i=0

X(i)(u, θ, φ)�i+k. (C.3)

Using the field equations, i.e. the Ricci and Bianchi identities and the frame equations, we
arrive at the following asymptotic solution for the spin coefficients (setting �mn = 0 and
� = 0 we recover expansions valid for the vacuum case which can be found, e.g. in [16],
section 3.10):

σ = σ (0) �2 + O(�4),

ρ = −� + ρ(2) �3 + O(�4),

α = a � + α(1) �2 + O(�3),

β = −a � − a σ (0) �2 + O(�3),

π = ðσ̄ (0) �2 + O(�3),

λ = ˙̄σ (0) � + λ(2) �2 + O(�3),

γ = γ (2) �2 + O(�3),

μ = − 1
2 � + μ(2) �2 + O(�3),

ν = O(�),

(C.4)

where

ρ(2) = −[
σ (0) σ̄ (0) + �

(0)
00

]
,

a = − (2
√

2)−1 cot θ,

α(1) = ðσ̄ (0) + a σ̄ (0),

γ (2) = aðσ̄ (0) − að̄σ (0) − 1
2 (�

(0)
2 + �

(0)
11 − �(0)),

λ(2) = 1
2 σ̄ (0) − ð̄ðσ̄ (0),

μ(2) = − ððσ̄ (0) − �
(0)
2 − 2 �(0) − σ (0) ˙̄σ (0),

(C.5)

For the relevant Weyl scalars and Ricci tensor components we have

�2 = �
(0)
2 �3 + O(�4),

�4 = − ¨̄σ (0) � + O(�2),

�11 = − 1
2∂u(φ

(0) φ̄(0)) �3 + O(�4),

� = 1
6 ∂u(φ

(0) φ̄(0)) �3 + O(�4).

(C.6)

25



Class. Quantum Grav. 27 (2010) 175011 J Bičák et al

Appendix D. Selected solutions to the Einstein-conformal-scalar equations

We first briefly survey some explicit stationary solutions to the Einstein-conformal-scalar
equations which satisfy the requirements of our theorem. To explore the field equation (37)
further, we also present two families of time-dependent solutions. Some are singular when
φ2 = 1, some are not and in some φ2 never takes the value 1.

D.1. Stationary solutions

Over 50 years ago Buchdahl [6] demonstrated how from any given static vacuum solution a
one-parameter family of pairs of solutions of Einstein’s equations with the massless scalar
field can be constructed. Later Bekenstein [2] showed how from any Einstein-scalar field
solution the corresponding Einstein-conformal-scalar field solution can be found. In particular,
considering any static vacuum solution in the form

ds2 = W 2dt2 − W−2 hij dxi dxj , (D.1)

the two Einstein-conformal-scalar solutions are

ds2 = 1

4
(Wβ ± W−β)2[W 2α dt2 − W−2αhij dxi dxj ],

φ =
√

3

4π

1 ∓ W 2β

1 ± W 2β
,

(D.2)

where α = (1 − 3β2)1/2, and β ∈ 〈− 1√
3
, 1√

3

〉
is a free parameter. Upper and lower signs,

respectively, in (D.2) correspond to two types of solutions A and B. If the solution (D.1)
is asymptotically flat, so it is the type A solution. Hence, many solutions satisfying our
assumptions are available.

A special spherically symmetric solution—after choosing a suitable radial coordinate—
reads

ds2 =
(

1 − m

r̄

)2
dt2 −

(
1 − m

r̄

)−2
dr̄2 − r̄2 (dθ2 + sin2 θ dφ2),

φ =
√

3

4π

m

r̄ − m
.

(D.3)

The geometry is identical to that of an extreme Reissner–Nordström black hole, so it can
be analytically continuated to r̄ < m. However, φ and (∇aφ)(∇aφ) diverge at the ‘horizon’
r̄ = m. Nevertheless, this infinite scalar field does not imply an infinite barrier for test scalar
charges and the solutions are often regarded as ‘black holes with scalar charge’ [3]. In any
case, both geometry and scalar fields are analytic at r̄ → ∞ satisfying our requirements.

Bekenstein’s work inspired a number of more recent papers: for example, Einstein-
conformal-scalar-field solutions were analysed in arbitrary dimensions [18], self-interacting
scalar fields were considered [8] and transversable wormholes from massless conformally
coupled and other scalar fields non-minimally coupled to gravity were constructed [1].

D.2. FLRW metric

In this section, we present simple homogenous isotropic solutions of the Einstein-conformal-
scalar equations. We shall take the metric in the standard form

ds2 = dt2 − a2(t)

[
dr2

1 − k r2
+ r2 (dθ2 + sin2 θ dφ2)

]
, (D.4)
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where k ∈ {−1, 0, 1}. The energy–momentum tensor is given by (38). Since this tensor is
traceless, the scalar curvature must vanish:

R = 6

a2
[k + ȧ2 + äa] = 0.

Solutions to this equation are

a(t) =
√

c1 − k(t + c2)2 for k �= 0,

a(t) = c1

√
2t + c2 for k = 0.

(D.5)

The conformally invariant scalar field in the physical spacetime satisfies d’Alembert’s
equation � φ = 0. Because the spacetime is assumed to be homogeneous and isotropic, we
suppose that the field does not depend on the spatial coordinates. D’Alembert’s equation then
reduces to

�φ(t) = φ̈ +
3 ȧ φ̇

a
= 0. (D.6)

For given a(t), the solution can be found explicitly:

φ(t) = C3 + C4

∫
dt

a3(t)
.

In the following short discussion we consider three cases for the three possible values of
k. We solve the wave equation, find the components of the energy–momentum tensor and see
that these components do not exhibit the singularity formally present in (38).

(1) k = 0. Imposing the initial condition a(0) = 0 leads to

a(t) =
√

2 C t, (D.7)

where C is an arbitrary positive constant. The general solution of (D.4) is

φ(t) = α +
β√
t
.

Einstein’s equations then imply

α = ±1,

and β is nonzero but arbitrary. Note that φ2 = 1 at t = β2/4 if αβ/|β| = −1, but φ2 is
never 1 if αβ/|β| = +1. The components of the energy–momentum tensor are

Tab = 1

16 π
diag

(
3

2 t2
,
C

t
,
C r2

t
,
C r2 sin2 θ

t

)
. (D.8)

Obviously, Tab is regular unless t = 0. This is the expected initial curvature singularity
(for example, the Kretschmann invariant Rabcd Rabcd = 3/(2t4) diverges for t = 0). As
noted above, the term (1 − φ2) may or may not vanish depending on the constants of
integration but even when it does there is no singularity in Tab despite the form of (38).

(2) k = −1. Again, we demand a(0) = 0, so a(t) is of the form

a(t) =
√

t (t + C).

The general solution of the wave equation is

φ(t) = α + β
2t + C

2a(t)
, (D.9)

and Einstein’s equations give

α = cosh χ, β = sinh χ, (D.10)
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where χ is an arbitrary constant. Now (1 − φ2) will vanish at some t > 0 for χ < 0 but
not for χ > 0. The components of the energy–momentum tensor are

Tab = C2

32πa2(t)
diag

(
3

a2(t)
,

1

1 + r2
, r2, r2 sin2 θ

)
, (D.11)

and they are again singular only for t = 0, and not at φ2 = 1.
(3) k = 1. Now we impose the conditions a(0) = 0 and ȧ(T ) = 0, so that

a(t) =
√

t (2T − t).

The solution of the wave equation is

φ(t) = α + β
T − t

a(t)
, (D.12)

and Einstein’s equations imply

α = cos χ, β = sin χ. (D.13)

In this case, φ2 always takes the value 1 for some time, but the components of the
energy–momentum tensor are

Tab = T 2

8 π a2(t)
diag

(
3

a2(t)
,

1

1 − r2
, r2, r2 sin2 θ

)
, (D.14)

and are nonsingular at φ2 = 1.
In [2], cosmological solutions were also considered (both conformal scalar field and

incoherent radiation); however, singularities in Tab for scalar field were not discussed.

D.3. pp-waves

We can find pp-wave solutions with this source: consider the pp-wave with the metric given
by

ds2 = 2 H(u, x, y) du2 + 2 du dv − dx2 − dy2. (D.15)

For simplicity, we assume that the scalar field φ = φ(u, x, y) does not depend on v. The wave
equation is then

�φ = −φxx − φyy = 0, (D.16)

with subscripts denoting corresponding derivatives. We can take the general real solution to
be

φ(u, x, y) = f (u, x + iy)/2 + f (u, x − iy)/2, (D.17)

where f is an arbitrary real function of two variables. Let us denote

Kab = Rab + 8 π Tab, (D.18)

so that Einstein’s equation are Kab = 0. One of these equations is

K01 = φ2
x + φ2

y

1 − φ2
= 0, (D.19)

from which we find

φ = f (u). (D.20)

Then the only remaining nonzero component of Kab is

K00 = Hxx + Hyy +
2

1 − f 2

(
f fuu − 2f 2

u

)
. (D.21)
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Solving the equation K00 = 0 with respect to H we arrive at

H = C(u, x + iy) + C(u, x − iy) +
x2 + y2

2

(
2f 2

u − f fuu

)
1 − f 2

. (D.22)

Here, C and f are the arbitrary real functions. As we can now see, the metric function H is
singular if ever f ≡ φ = ±1 and this, if it occurs, will be a curvature singularity.

In [13], a large class of solutions of the Einstein-conformal-scalar equations for colliding
plane waves was found by employing the Bekenstein transformation [2].
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