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Abstract

Searches for gravitational waves with km-scale laser interferometers often
involve the long-wavelength approximation to describe the detector response.
The prevailing assumption is that the corrections to the detector response
due to its finite size are small and the errors due to the long-wavelength
approximation are negligible. Recently, however, Baskaran and Grishchuk
(2004 Class. Quantum Grav. 21 4041) found that in a simple Michelson
interferometer such errors can be as large as 10%. For more accurate
analysis, these authors proposed to use a linear-frequency correction to the
long-wavelength approximation. In this paper we revisit these calculations.
We show that the linear-frequency correction is inadequate for certain locations
in the sky and therefore accurate analysis requires taking into account the exact
formula, commonly derived from the photon round-trip propagation time. Also,
we extend the calculations to include the effect of Fabry–Perot resonators
in the interferometer arms. Here we show that a simple approximation
which combines the long-wavelength Michelson response with the single-pole
approximation to the Fabry–Perot transfer function produces rather accurate
results. In particular, the difference between the exact and the approximate
formulae is at most 2–3% for those locations in the sky where the detector
response is greater than half of its maximum value. We analyse the impact of
such errors on detection sensitivity and parameter estimation in searches for
periodic gravitational waves emitted by a known pulsar, and in searches for
an isotropic stochastic gravitational-wave background. At frequencies up to
1 kHz, the effect of such errors is at most 1–2%. For higher frequencies, or if
more accuracy is required, one should use the exact formula for the detector
response.
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1. Introduction

Searches for gravitational waves are currently conducted with km-scale laser interferometers
such as LIGO [1] and VIRGO [2]. These detectors utilize a Michelson configuration which
is further enhanced by the addition of Fabry–Perot cavities in the interferometer arms.
Development of efficient data analysis algorithms requires accurate knowledge of the response
of these detectors to gravitational waves. There are two somewhat different points of view
on how to calculate the detector response. In one approach, it is assumed that the size of the
detector is much less than the wavelength of the incoming gravitational wave, and therefore
can be neglected in the calculations. This approach is often called the long-wavelength
approximation [3, 4]. The advantage of this approximation is that it allows one to interpret the
effect of gravitational waves entirely in terms of the motion of test masses, which is appealing
to our physical intuition. In another approach, one takes into account the finite size of the
detector by considering variations in the gravitational wave within the duration of one photon
round trip between the test masses [5–10]. The detector response obtained in this way is
more accurate but no longer allows the simple interpretation in terms of test mass motion [11].
Such calculations are commonly used to derive the response of space-borne gravitational-
wave antennae [12–16]. For ground-based detectors, one usually adopts the long-wavelength
approximation, assuming that it is sufficiently accurate.

It was pointed out by Baskaran and Grishchuk [17] that even for ground-based detectors,
the long-wavelength approximation can lead to noticeable errors in the estimation of parameters
of a gravitational wave. In particular, they found that the error in searches for periodic
gravitational waves can be as large as 10%, thus raising a concern about the validity of the
long-wavelength approximation in recent searches for gravitational waves. Some key points
of their analysis required clarification, however. The authors assumed that for ground-based
detectors it suffices to use the first-order correction to the long-wavelength approximation and
thus introduced a linear-frequency detector response, whereas the exact, nonlinear formula was
readily available. Also, the calculations did not take into account the presence of Fabry–Perot
cavities in the interferometer arms, which play a crucial role in the formation of the signal. It
is therefore worthwhile to reconsider this analysis.

In this paper, we re-evaluate the errors due to the long-wavelength approximation
and assess their impact on current searches for gravitational waves with km-scale laser
interferometers. We show that the linear-frequency approximation is inadequate for some
locations in the sky, and therefore one must use the exact formula for the detector response
to estimate systematic errors from the long-wavelength approximation. To make the analysis
applicable to LIGO and VIRGO detectors, we include the transfer function of Fabry–Perot
cavities in the interferometer arms. Using the exact expression for the detector response, we
estimate the errors resulting from the long-wavelength approximation in searches for periodic
gravitational waves and in searches for an isotropic stochastic gravitational-wave background.

2. Michelson interferometer response (long-wavelength approximation)

In the transverse–traceless gauge [3], a plane gravitational wave coming from direction n̂ on
the sky is given by

hij (t, �x) = h+(t, �x)e+
ij (n̂) + h×(t, �x)e×

ij (n̂), (1)

where h+,×(t, �x) = h+,×(t + �x · n̂/c), and the polarization tensors are

e+
ij (n̂) = �i�j − mimj , (2)
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Figure 1. Antenna patterns in the long-wavelength approximation: |F+(n̂)| (left) and |F×(n̂)|
(right). They can also be obtained as the limiting case (f = 0) of the exact response functions,
described in section 3.2.

e×
ij (n̂) = �imj + �jmi. (3)

The unit vectors �̂ and m̂ are chosen so that �̂, m̂, n̂ form a right-handed orthonormal basis. The
rotational degree of freedom associated with the choice of �̂ and m̂ in the plane perpendicular
to n̂ is often called the polarization angle β. In what follows, we will suppress β-dependence
for simplicity.

Consider a Michelson interferometer with arms aligned along the unit vectors â and b̂. In
the long-wavelength approximation, a signal produced by a gravitational wave in the detector
[4, 18] is given by

V (t) = 1
2 (aiaj − bibj )hij (t, �0), (4)

where we assumed that the detector is located at �x = �0 and its size is negligible. Equivalently,
the signal can be written as

V (t) = F+(n̂)h+(t) + F×(n̂)h×(t), (5)

where

FA(n̂) = 1
2 (aiaj − bibj )e

ij

A (n̂) (6)

are the interferometer responses to the two independent polarizations (A = +,×) of the
gravitational wave. In the frequency domain, (5) becomes

Ṽ (f ) = F+(n̂)h̃+(f ) + F×(n̂)h̃×(f ). (7)

In what follows, tilde always denotes Fourier transform with respect to t.
Three-dimensional representations of the absolute value of FA as a function of n̂ are often

called antenna patterns. Antenna patterns have traditionally been shown for a particular choice
of polarization basis: �̂ = θ̂ and m̂ = φ̂, where θ̂ and φ̂ are the unit vectors corresponding
to the spherical coordinates φ ∈ [0, 360◦] and θ ∈ [0, 180◦]. Figure 1 shows the antenna
patterns in the coordinate system with the x and y axes aligned with the interferometer arms.
In these coordinates, n̂ = (sin θ cos φ, sin θ sin φ, cos θ).
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3. Michelson interferometer response (exact formula)

The detector response which takes into account the finite size of the interferometer will be
called here exact in contrast to the approximate response (6). Here we give a brief derivation
of the exact detector response following recent calculations in [19, 20].

3.1. Photon propagation time

The interval for photons propagating in spacetime with a gravitational wave (1) is

ds2 = −c2 dt2 + [δij + hij (t, �x)] dxi dxj = 0. (8)

Consider a photon launched in the direction â to be bounced back by a mirror some distance L
away. On the way forward, the unperturbed photon trajectory is xi = aiξ , where ξ ∈ [0, L].
Substituting this trajectory into (8) and solving for t, we obtain

c(t − t0) =
∫ ξ

0
(1 + hija

iaj )1/2 dξ ′. (9)

Let T be the nominal (unperturbed) photon transit time: T ≡ L/c. In the presence of a
gravitational wave, the transit time will slightly deviate from its nominal value giving rise to
a small perturbation:

δT (t) = 1

2c
aiaj

∫ L

0
hij

(
t0 +

ξ

c
+

n̂ · â

c
ξ

)
dξ, (10)

where t0 is the starting time for the photon propagation which can be approximated by
t0 = t − T . Similarly, on the way back,

δT ′(t) = 1

2c
aiaj

∫ L

0
hij

(
t0 +

L − ξ

c
+

n̂ · â

c
ξ

)
dξ, (11)

where t0 can also be approximated by t0 = t −T . Then the perturbation of the round-trip time
is given by

δTr.t.(t) = δT (t − T ) + δT ′(t). (12)

In the Fourier domain, it can be written as

δT̃r.t.(f )

T
= aiajD(â, f )eij

A(n̂)h̃A(f ), (13)

where we introduced the transfer function

D(â, f ) = e−i2πf T

2

[
eiπf T+ sinc(πf T−) + e−iπf T− sinc(πf T+)

]
, (14)

with short-hand notation: T± ≡ T (1 ± â · n̂). Further calculations require switching from
photons to continuous electro-magnetic waves.

3.2. Phase lag of a continuous electro-magnetic wave

For an electro-magnetic wave propagating in the â-direction, the electric field is given by
E(t, �x) = A exp[i(ωt − k �x · â)], where A is the amplitude, ω is the frequency, and k is
the wavenumber (k = ω/c). It is convenient to suppress the fast-oscillating factor eiωt by
introducing the slowly-varying amplitude [21]: E = E e−iωt . Consider a simple Michelson
interferometer with equal arm lengths, L, as shown in figure 2 (left). The phase delay
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Figure 2. Simple Michelson interferometer (left) and Michelson interferometer with Fabry–Perot
arm cavities (right). Enlarged is a schematic picture of the photon trajectory in the â arm. (Forward
and return paths are separated for clarity.) Here we neglected the recycling mirror which increases
the power incident on the beam splitter but otherwise does not affect the detector response.

of the electro-magnetic field returning to the beam splitter after a round trip in the arm is
ω(2T + δTr.t.) = 2kL + ψ , where

ψ(t) = ω δTr.t.(t) (15)

is the phase delay due to the gravitational wave. Two such phases corresponding to arms â

and b̂ will be denoted here by ψâ and ψb̂. Let the amplitude of the field immediately after the
beam splitter be A0. Then the amplitude of the field incident on the beam splitter from arm â is
Eâ = A0 exp(−2ikL − iψâ), and similarly for Eb̂. Assuming that the interferometer operates
at the dark fringe (destructive interference), we find that the field at the output (signal) port is
proportional to

Eâ(t) − Eb̂(t) ≈ −iA0 e−2ikL[ψâ(t) − ψb̂(t)]. (16)

With appropriate normalization4 the signal is given by

V (t) = 1

2ωT
[ψâ(t) − ψb̂(t)]. (17)

In the Fourier domain, it can be written as

Ṽ (f ) = G+(n̂, f )h̃+(f ) + G×(n̂, f )h̃×(f ), (18)

where GA(n̂, f ) are the exact detector responses to the two independent polarizations of the
gravitational wave

GA(n̂, f ) = 1
2 [aiajD(â, f ) − bibjD(b̂, f )] e

ij

A (n̂). (19)

Note that the long-wavelength formula (6) is a special case of the exact response

FA(n̂) = GA(n̂, 0). (20)

As the frequency of the gravitational wave increases, the difference between FA and GA

becomes more and more pronounced [9, 22]. The most drastic change occurs at the inverse of
the photon round-trip time: f = 1/(2T ). In Fabry–Perot cavities this quantity is called the
free spectral range or FSR (see section 4.1).

4 The normalization is such that maxn̂(GA) = 1 at f = 0 for both A = +, ×.
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Figure 3. Antenna patterns at the FSR frequency (37.5 kHz): |G+(n̂, f )| (left) and |G×(n̂, f )|
(right).

Figure 3 shows the magnitude of the detector response functions GA(n̂, f ) at the free
spectral range of the 4 km LIGO interferometers (f = 37.5 kHz). Note the presence of
additional lobes in the antenna patterns, and a factor of 5–8 reduction in magnitude compared
to the response at f = 0, shown in figure 1.

3.3. Approximate formulae for the Michelson response

The long-wavelength approximation (6) is obtained by entirely neglecting the frequency
dependence of the exact response

GA(n̂, f ) ≈ FA(n̂). (21)

A moderate frequency dependence is obtained by adding the first-order correction

GA(n̂, f ) ≈ FA(n̂) + f
∂GA

∂f
(n̂, 0). (22)

This may not necessarily be a better approximation than (21) since the higher order terms
neglected in (22) can be greater than the first-order term (proportional to first derivative). This
happens because the first-order term vanishes at some locations in the sky whereas the sum of
all higher order terms remains non-zero.

The most recent estimation of errors introduced by the long-wavelength approximation
is due to Baskaran and Grishchuk [17]. These authors argued in favour of the linear
approximation of the detector response (22), and estimated the corrections to the long-
wavelength formula using the first-order (f -proportional) term. (In [17], the two terms
in the right-hand side of (22) are called electric and magnetic components.) As we have
shown, such a linear approximation is problematic. Fortunately, one need not be concerned
with the accuracy of the linear approximation since the exact formula is readily available.

4. Transfer function of Fabry–Perot arm cavities

The response of LIGO and VIRGO detectors is enhanced by incorporation of optical resonators
(Fabry–Perot cavities) in interferometer arms. Here we briefly derive the transfer function of
a Fabry–Perot cavity and include it in the exact detector response.

6
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4.1. Phase amplification due to multi-beam interference

Consider a Fabry–Perot cavity in one of the arms of the interferometer, as shown in figure 2
(right). Let the amplitude of the light incident on the cavity be A0. Then the fields circulating
in the cavity satisfy

E1(t) = t1A0 − r1E2(t), (23)

E2(t) = −r2E1(t − 2T ) e−2ikL−iψ(t), (24)

where t1 is the transmissivity of the front mirror, and r1,2 are the reflectivities of the front and
back mirrors, respectively. Here ψ is the phase lag due to the gravitational wave, (15). The
condition for resonance implies that L is equal to an integer number of half-wavelengths of
light and therefore e−2ikL = 1.

The field returning to the beam splitter from the cavity, Eâ = r1A0 + t1E2, consists of the
promptly reflected field and the leakage field. The information about the gravitational wave is
contained in the leakage field which is proportional to the internal field E2. Let the amplitude
and the phase of this field be A and �, i.e. E2 = A e−i� . Solving equations (23) and (24) to
first order in �, we find that the amplitude is given by A = −t1r2A0/(1 − r1r2) and that the
phase satisfies the equation

�(t) − r1r2�(t − 2T ) = ψ(t), (25)

or equivalently,

�(t) =
∞∑

k=0

(r1r2)
kψ(t − 2kT ). (26)

Taking the Fourier transform of either (25) or (26), we obtain

�̃(f ) = g0C(f )ψ̃(f ), C(f ) = 1 − r1r2

1 − r1r2 e−i4πf T
, (27)

where g0 = (1 − r1r2)
−1 is the cavity amplification factor and C(f ) is the normalized transfer

function. Note that C(f ) is a periodic function of frequency with the period known as the free
spectral range, FSR = 1/(2T ). The 4 km LIGO interferometers have the cavity gain of 70.6
and the FSR of 37.5 kHz.

It is convenient to represent C(f ) in the following equivalent form:

C(f ) = ei2πf T sinh(2πf0T )

sinh[2πf0T (1 + if/f0)]
, (28)

where f0 is the lowest order pole, f0 = |ln(r1r2)|/(4πT ). At low frequencies (f 	 FSR),
one can approximate the exact response (28) with a zero-pole filter,

Czp(f ) = 1 + if/f1

1 + if/f0
, (29)

where f1 = FSR/π is the frequency of the zero. In the 4 km LIGO interferometers, f0 =
85.1 Hz and f1 = 11.9 kHz.

4.2. The response of a Michelson–Fabry–Perot interferometer

Calculating the field at the output (signal) port, as we did in section 3.2, we find that the signal
in a Michelson interferometer with Fabry–Perot arm cavities is

Ṽ (f ) = H+(n̂, f )h̃+(f ) + H×(n̂, f )h̃×(f ), (30)

7
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Figure 4. Top row: the normalized detector responses to + and × polarizations, bottom row: the
magnitude of the error. All these quantities are calculated at 1.2 kHz for comparison with [17].

where HA can be found by combining the Michelson response (19) with the transfer function
of a Fabry–Perot cavity (27):

HA(n̂, f ) = C(f )GA(n̂, f ). (31)

Here we omitted the cavity gain (g0) to have the detector response normalized to 1 at f = 0.
An ad hoc low-frequency approximation for this formula is obtained by replacing the

exact Michelson response, GA(n̂, f ), with its long-wavelength counterpart, FA(n̂), and by
replacing the exact Fabry–Perot response, C(f ), with the single-pole transfer function:

Cpole(f ) = 1

1 + if/f0
. (32)

The result is the long-wavelength approximation for a Michelson–Fabry–Perot interferometer:

H
approx
A (n̂, f ) = Cpole(f )FA(n̂), (33)

which is frequently used in theoretical calculations and data-analysis algorithms.
The difference between the exact (31) and approximate (33) detector response, δHA, is a

source of systematic errors. The magnitude of δHA at a given frequency is a function of the
sky location, as shown in figure 4. Note that the relative error, εA = |δHA|/|HA| diverges at
those places in the sky where HA vanishes and δHA remains non-zero. Since the signal also
vanishes at these locations, we can safely exclude all such places from the error estimation.
Therefore, we consider only those locations in the sky where |HA| is greater than a certain
value (threshold). For a conservative threshold of 25% of the maximum value, we find that εA

is at most 6–7%. With a more realistic threshold of 50%, εA is at most 2–3%.

4.3. Variations of the interferometer arm lengths

In the following analysis, we will also need to consider the response of the interferometer
to changes of its arm lengths. Such a detector response is commonly used in calibration

8
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measurements. If x1 and x2 are the displacements of the front and back mirrors of one of the
arm cavities, the change in the distance between the mirrors, as seen by the light propagating
in the cavity, is

δL(t) = x2(t − T ) − x1(t), (34)

where T is the photon transit time (T = L/c). In this case, the signal5 is

Ṽ (f ) = μC(f )δL̃(f )

= μC(f )[e−i2πf T x̃2(f ) − x̃1(f )], (35)

where C(f ) is given by (27). (For derivation of (34) and (35), see [21].) At low frequencies,
this response can be approximated by

Ṽ (f ) ≈ μ[Cpole(f )x̃2(f ) − Czp(f )x̃1(f )]. (36)

The relative error between the exact (35) and approximate formula (36) is less than 1% for the
front mirror and 0.5% for back mirror for frequencies up to 2 kHz.

5. Effect on searches for periodic gravitational waves

A gravitational-wave signal from a pulsar is quasi-periodic and therefore greatly benefits
from synchronous detection (heterodyne method) [23]. This method removes the dominant
oscillatory part of the signal at frequency f , and corrects for any phase modulation (Doppler
shift) due to the rotation of the Earth and its orbital motion relative to the pulsar, as well as any
possible pulsar frequency evolution (e.g., spin-down). If we ignore variations in the detector
response due to these small frequency shifts, the output of the heterodyne method is given by
the following (complex) signal,

y(t) = 1
2

[
H+(n̂, f ; t) 1

2 (1 + cos2 ι) − iH×(n̂, f ; t) cos ι
]
h0 eiφ0 , (37)

where h0 is the amplitude, ι the inclination angle and φ0 the initial phase of the heterodyne
transformation. There is also an implicit dependence on the polarization angle β which enters
the signal through the detector response functions. The remaining time dependence in (37)
comes from the sidereal rotation of unit vectors â and b̂ which are fixed to the Earth.

The use of the long-wavelength approximation affects both detection sensitivity and
parameter estimation. For simplicity, assume that all parameters of the pulsar signal are
known except for the amplitude h0. Then the relevant quantities are

ε = 1 − 〈y, z〉√〈y, y〉√〈z, z〉 and δ = 〈y, z〉
〈z, z〉 − 1, (38)

where y(t) is given by (37) and z(t) is calculated with the same expression except that HA are
replaced with H

approx
A given in (33). The inner product is defined as

〈yu, yv〉 =
∫

Re
[
yu(t)y

∗
v (t)

]
dt, (39)

where the integration is taken over one sidereal day. It can be shown that ε is the fractional
change in signal-to-noise ratio and δ is the fractional bias in the estimate of the amplitude of
the gravitational wave, both caused by the use of the inaccurate detector response [24].

Figure 5 shows ε and δ as a function of the frequency of the gravitational wave for fixed
source declination, and also as a function of the declination angle for fixed frequency, for
the 4 km LIGO Hanford interferometer. For source location, we only need to specify the

5 Consistency with a gravitational-wave signal requires that μ = 2/L.
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Figure 5. ε and δ as a function of frequency for dec = 45◦ (left), and as a function of declination
for f = 2 kHz (right). (Other parameters are β = 0, ι = 0, and φ0 = 0.)

declination angle as the dependence on the right ascension is removed by the 24 hour sidereal-
time integration. For simplicity, we assumed that β = ι = φ0 = 0, which corresponds to a
circularly-polarized gravitational wave. One can see from the figure that the change in the snr,
ε, is much less than 1% for all directions on the sky and all frequencies up to 4 kHz. Also, the
bias, δ, in the estimation of h0 is less than 1.5% for all directions on the sky at f = 2 kHz.

6. Effect on searches for stochastic gravitational waves

Consider an isotropic, unpolarized stochastic gravitational-wave background and assume that
it is described by a stationary Gaussian random process. Then the expectation value of the
cross-correlation [8, 25, 26] of the outputs of two detectors is proportional to the overlap
reduction function:

�(f ) = 5

8π

∫
S2

d2�n̂ H1A(n̂, f )H ∗
2A(n̂, f ) ei2πf n̂·( �x1−�x2)/c, (40)

where �x1 and �x2 are the locations of the two detectors on Earth and H1A(n̂, f ) and H2A(n̂, f )

are their response functions. (The summation over polarization indices A is understood.)
Figure 6 shows a typical �(f ) calculated with both the exact (31) and approximate (33)
formulae. The two detectors are the 4 km LIGO Hanford (H1) and Livingston (L1)
interferometers.

The error in the detector response from the long-wavelength approximation affects
detection sensitivity and parameter estimation via the overlap reduction function. The two
relevant quantities are

ε = 1 − 〈�,��.w.〉√〈�,�〉√〈��.w., ��.w.〉
and δ = 〈�,��.w.〉

〈��.w., ��.w.〉 − 1, (41)

10
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Figure 6. Overlap reduction function for LIGO H1 and L1 interferometers, calculated using the
long-wavelength and exact detector response functions. Left: Re(�(f )) for frequency range from
1 Hz to 1 kHz. Right: a small section of the plot magnified to show the slight difference between
the two curves.

where �(f ) is given by (40) and ��.w.(f ) is calculated with the same expression except that
HA are replaced with H

approx
A given in (33). The inner product is defined as

〈�u, �v〉 =
∫ fmax

fmin

Re[�∗
u(f )�v(f )]

f 6Q1(f )Q2(f )
df, (42)

where Q1,2(f ) are the power spectra of the outputs of the two detectors. It can be shown
that ε is the fractional change in signal-to-noise ratio and δ is the fractional bias in the cross-
correlation statistic, both caused by the use of the inaccurate detector response [24]. In this
calculation, we also took into account the systematic error from the single-pole approximation
to the cavity response (see (36)) which occurs when the detector output is calibrated.

Table 1 shows ε and δ corresponding to several detector cross-correlations. The upper
part of the table gives the values for the LIGO–ALLEGRO search for a stochastic background
[28], which involved correlations of the Livingston interferometer with the ALLEGRO bar
detector in a narrow band of frequencies near its peak sensitivity at 915 Hz. The search was
performed with three different orientations of the bar detector: parallel to the X-arm of the
interferometer (AX), parallel to the Y-arm (AY) and parallel to the bisector of the two arms
(AN), also known as the null orientation. We find that the upper limits in [28] are not affected
to the stated precision by the corrections in �.

The rest of the table gives the values for ε and δ corresponding to various choices of
cross-correlation between the LIGO and VIRGO (V1) interferometers. The first frequency
band, 50–150 Hz, corresponds to the best sensitivity of the LIGO detectors. The second
frequency band, 900–1000 Hz, is motivated by the VIRGO detector. At present, this is
where it contributes the most to the correlation-based searches. Note that only the H1–L1
low frequency analysis has been done so far, see e.g., [29]. The other interferometer cross-
correlations will be performed in the future. One can see from the table that all these errors are
less than 1%, except for the LIGO–VIRGO correlation searches around 1 kHz, which would
have a 1–2% fractional bias in parameter estimation.
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Table 1. The fractional snr change, ε, and the fractional bias, δ, for an isotropic stochastic
background. Here we assumed that the stochastic background has constant energy density in the
frequency band of interest [fmin, fmax], and used the nominal design sensitivities of the instruments.
(For details, see [24].)

f LIGO–ALLEGRO

915 Hz L1-AX L1-AY L1-AN

ε 3.6 × 10−7 3.6 × 10−7 3.6 × 10−7

δ −4.1 × 10−3 −5.3 × 10−3 −2.6 × 10−2

[fmin, fmax] LIGO–VIRGO

50–150 Hz H1-L1 H1-V1 L1-V1

ε 4.0 × 10−6 1.5 × 10−6 1.5 × 10−6

δ −6.6 × 10−3 −5.5 × 10−3 −5.5 × 10−3

900–1000 Hz H1-L1 H1-V1 L1-V1

ε 1.2 × 10−3 3.1 × 10−5 2.2 × 10−5

δ 2.7 × 10−2 −1.5 × 10−2 −1.5 × 10−2

7. Summary

We re-evaluated high-frequency corrections to the detector response and analysed their effect
on current searches for gravitational waves with km-scale laser interferometers. Using the
exact formula for the detector response, we estimated systematic errors introduced by the long-
wavelength approximation in detection sensitivity and parameter estimation of gravitational
waves. Typical examples were taken from searches for periodic gravitational waves and from
searches for an isotropic stochastic background. So far, in all cases considered, the errors are
at most 1–2% and somewhat smaller than the previously reported 10% error at 1.2 kHz [17].

We have thus shown that the long-wavelength approximation for Michelson–Fabry–Perot
interferometer (33) was sufficiently accurate for searches performed to date, which were
limited to frequencies below 2 kHz. However, extending the analysis to higher frequencies
will likely require using the exact formula for the detector response (31). For example, the
exact formula is essential in searches for burst [30] and stochastic gravitational waves [31]
at the free-spectral-range frequency (37.5 kHz) of LIGO interferometers. Future searches
for stochastic gravitational waves can go to even higher frequencies [32]. In conclusion, we
recommend the use of the exact formula whenever the accuracy of the detector response is
important.
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[10] Mizuno J, Rüdiger A, Schilling R, Winkler W and Danzmann K 1997 Opt. Commun. 138 383
[11] Rakhmanov M 2005 Phys. Rev. D 71 084003
[12] Estabrook F and Wahlquist H 1975 Gen. Relat. Grav. 6 439
[13] Estabrook F 1985 Gen. Relat. Grav. 17 719
[14] Schilling R 1997 Class. Quantum Grav. 14 1513
[15] Larson S, Hiscock W and Hellings R 2000 Phys. Rev. D 62 062001
[16] Cornish N and Rubbo L 2003 Phys. Rev. D 67 022001
[17] Baskaran D and Grishchuk L 2004 Class. Quantum Grav. 21 4041
[18] Schutz B and Tinto M 1987 Mon. Not. R. Astron. Soc. 224 131
[19] Rakhmanov M 2006 Response of LIGO 4 km interferometers to gravitational waves at high frequencies and in

the vicinity of the FSR (37.5 kHz) LIGO Technical Report T060237
[20] Whelan J 2007 Higher-frequency corrections to stochastic formulae LIGO Technical Report T070172
[21] Rakhmanov M, Savage R, Reitze D and Tanner D 2002 Phys. Lett. A 305 239
[22] Hunter E 2005 Analysis of the frequency dependence of the LIGO directional sensitivity (antenna pattern) and

implications for detector calibration. LIGO Technical Report T050136
[23] Dupuis R and Woan G 2005 Phys. Rev. D 72 102002
[24] Woan G and Romano J D 2008 Effects of using the wrong antenna pattern on sensitivity and parameter

estimation. LIGO Technical Report T080134
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