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Abstract

We describe a search for the extreme-mass-ratio inspiral sources in the Round
1B Mock LISA Data Challenge data sets. The search algorithm is a Monte
Carlo search based on the Metropolis–Hastings algorithm, but also incorporates
simulated, thermostated and time annealing, plus a harmonic identification
stage designed to reduce the chance of the chain locking onto secondary
maxima. In this paper, we focus on describing the algorithm that we have
been developing. We give the results of the search of the Round 1B data,
although parameter recovery has improved since that deadline. Finally, we
describe several modifications to the search pipeline that we are currently
investigating for incorporation in future searches.

PACS numbers: 04.25.Nx, 04.30.Db, 04.80.Cc, 04.80.Nn, 95.55.Ym, 95.85.Sz

1. Introduction

The inspirals of stellar mass compact objects into supermassive black holes in the centres
of galaxies—extreme-mass-ratio inspirals (EMRIs)—are one of the most exciting potential
sources of gravitational waves for the planned Laser Interferometer Space Antenna (LISA).
The detection of such sources in the LISA data stream and parameter estimation for them is
a very challenging technical problem, however, as the instantaneous amplitude of a typical
signal is an order of magnitude below the noise fluctuations in the detector. Moreover, the
long duration of the signals (LISA will detect up to 105 waveform cycles in an observation)
and the large parameter space of possible sources (an EMRI signal depends on 14 parameters)
makes fully coherent matched filtering computationally impossible [1].

Several possible algorithms have been considered for EMRI detection. In order to compute
initial event rate estimates, a semi-coherent algorithm was proposed, in which the data stream
would be divided up into short (2 or 3 weeks) segments, that would be searched coherently via
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matched filtering. The signal-to-noise ratio (SNR) would then be built up in a second stage
via incoherent summation of power along trajectories through the coherent segments [1]. This
algorithm was designed to make full use of available computing power and its effectiveness has
not yet been demonstrated practically. Time–frequency techniques have also been explored
[2–6] and have been shown to be able to both detect and recover parameters [6] when used
to search for single, high-SNR EMRIs in instrumental noise. Their effectiveness is likely to
be significantly reduced when confronted with more realistic situations, in which there are
multiple sources overlapping in time and frequency. However, these algorithms may provide
a useful first step in a hierarchical search.

Markov chain Monte Carlo (MCMC) methods may provide a way to perform matched
filtering more efficiently, without requiring a large template bank of possible signals. We follow
the convention in the literature and call our search a Metropolis–Hastings Monte Carlo
(MHMC) search rather than an MCMC search since it is not actually Markovian (see
section 2.2). Both MCMC and MHMC methods have been explored by various groups
in the context of LISA data analysis and have been shown to be very effective when searching
for toy models [7, 8], for white-dwarf binaries [9, 10] and for single or multiple supermassive
black hole binaries [11–15]. The use of an MCMC technique for EMRI searches was explored
by Stroeer et al [16], based on a highly simplified model of the EMRI waveform. In the
context of the Mock LISA Data Challenges (MLDCs) [17], Monte Carlo methods have been
used by ourselves and one other group [18] to search for the EMRI sources in the Round
2 [19] and Round 1B [20] data sets. In this paper, we describe the algorithm that we have
developed for the EMRI searches, and the performance of the algorithm on the Round 1B
challenge data sets. Our search code was adapted from the search code developed by Cornish
and Porter [11, 13–15] for supermassive black hole binary searches, but we have incorporated
a significant number of refinements that are specific to the EMRI problem.

The paper is organized as follows. In section 2 we describe the search algorithm, including
a description of the waveform model, the Metropolis–Hastings search engine and various
refinements we have tried for the EMRI problem. In section 3 we present the results that
we had at the time of the MLDC Round 1B deadline (December 2007) and compare these to
the true source parameters. Finally, in section 4 we discuss planned future refinements of the
search algorithm.

2. Search algorithm

2.1. The waveform model

The EMRI sources in the MLDC releases to date were constructed using the analytic kludge
(AK) model of Barack and Cutler [21]. In this model, the gravitational waveforms describe
emission from a Keplerian orbit, but with perihelion and orbital-plane precessions imposed by
precessing the observer about the source with rates taken from post-Newtonian expressions.
The orbital parameters are also evolved over time using post-Newtonian prescriptions to
account for radiation reaction. The EMRI waveforms have emission at multiple frequencies,
corresponding to harmonics of the fundamental frequencies of the orbit—harmonics of the
orbital frequency, ν, arise from the eccentricity of the orbit, e; harmonics of the perihelion
precession rate, γ̇ /2π , arise from this precession; and harmonics of the orbital-plane precession
rate, α̇/2π , are present due to the inclination, λ, of the orbital plane relative to the equatorial
plane of the black hole. The frequency of a given waveform harmonic is given by three
integers, (n, l, k), as f = nν + lγ̇ /2π + kα̇/2π . The AK waveforms are purely quadrupole
in nature, and so |l|, |k| � 2, but n is unrestricted. However, the eccentricity at plunge of
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Table 1. Percentage difference between the parameters of the best-fit truncated waveform and
the parameters of the true AK waveform. The true AK waveform is the 1.3.2 training waveform
from MLDC Round 2, for which the parameters are ln(m/M�) = 2.3338, ln(M/M�) = 15.421,

ln(ν0/Hz) = −7.9399,DL/Gpc = 0.805 33, e0 = 0.187 65, χ = 0.684 97, cos(λ) = −0.439 60,

cos(β) = 0.967 37, φS = 3.6238, cos(θK) = −0.554 34, φK = 4.3216,�0 = 3.3913, γ0 =
6.1502 and α0 = 3.2400.

Parameter ln(m/M�) ln(M/M�) ln(ν0/Hz) DL/Gpc e0 χ cos(λ)

Error (%) 0.006 0.0008 0.000 04 7 0.07 0.006 0.06

Parameter cos(β) φS cos(θK) φK �0 γ0 α0

Error (%) 0.2 0.06 0.06 0.3 3 3 0.5

the MLDC sources is limited to [0.15, 0.25], and so harmonics with n � 6 are generally
weak.

In our search code, to speed up waveform evaluation, we use a truncated version of the AK
model. We include only the n � 5 and l = 2 harmonics in the waveform model (harmonics
with l �= 2 are significantly suppressed relative to the l = 2 harmonics). In addition, we
expand the Bessel functions that appear in the model [21] in powers of eccentricity, and keep
only the three leading terms in the expansion of Jn(ne) for each n. We include the full LISA
TDI response function to account for detector motions, and use parameters evaluated at plunge
to characterize the waveforms (this is in contrast to the MLDC convention, which is to specify
parameters at the start of the observation). The resulting waveforms are faithful approximations
to the full AK waveforms. The overlap between an AK and truncated waveform, evaluated
at the same waveform parameters, is at worst 90%, and is typically 95%. The overlap tends
to be higher for sources with higher mass central black holes, for which the emission is
mostly at lower frequencies (for M ∼ 107M� the overlap always exceeds 96%). The template
parameter error, i.e., the difference between the parameters of the best-fit truncated waveform
and the parameters of the true AK waveform, is also relatively small. In table 1 we list
the parameter errors for one of the MLDC Round 2 training sources. These results were
obtained by starting an MCMC chain at the true parameter values and allowing it to evolve
to evaluate the posterior. The difference between the mean of the recovered posterior and the
true parameter values provided an estimate of the bias in our truncated model. We note that
since the data stream we were searching included noise we expected and saw a noise-induced
bias in the parameter estimation. However, we could distinguish this noise bias from the
model errors. The parameter offset values in table 1 are typical for MLDC-type sources. The
parameters are the same as those used for the MLDC—compact object mass (m), central black
hole mass (M), initial orbital frequency (ν0), luminosity distance (DL), initial eccentricity
(e0), central black hole spin (χ ), ecliptic latitude and longitude (β, φS), orientation of central
black hole spin (θK, φK), orbital inclination (λ) and three initial orbital phases (�0, γ0, α0).
For most parameters, the error is at most 2σ , where σ is the noise-induced uncertainty in
the parameter, as estimated from the width of the posterior. The error is somewhat larger
for the initial phase angles, as the effect of the truncation accumulates over the observation,
but these parameters are uninteresting astrophysically. Overall, the truncated model provides
an estimate of the parameters that is sufficiently close to the true parameters to ensure that a
follow-up refinement with full AK waveforms would be quick.

2.2. Metropolis–Hastings Monte Carlo algorithm

Our search engine is based in the Metropolis–Hastings algorithm, which works as follows:
given a data set s(t) and a set of templates h(t; �x), we randomly choose a starting point, �x,
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in the parameter space. We then propose a jump to another point, �y, in the space by drawing
from a certain proposal distribution, q(�y|�x) (see below), and evaluate the Metropolis–Hastings
ratio

H = π(�y)p(s|�y)q(�x|�y)

π(�x)p(s|�x)q(�y|�x)
. (1)

Here π(�x) are the priors of the parameters, which, in our analysis, were taken to be uniform
distributions within the ranges allowed by the MLDC. The function p(s|�x) is the likelihood

p(s|�x) = C e−〈s−h(�x)|s−h(�x)〉/2, (2)

where C is a normalization constant. This jump is then accepted with probability α =
min(1,H), otherwise the chain stays at �x.

If the proposal distribution was independent of the step number, the algorithm would be
Markovian. However, the MHMC algorithm we employ is not, since we use a variety of
purposely directed proposal distributions that allow a range of jumps of different size and type
in the parameter space. We also implement several annealing schemes to encourage movement
of the chain and use time sliding to search automatically over the plunge time (which we use
as a parameter instead of the initial frequency, ν0). We are using the MHMC algorithm as a
search code to find the unknown parameters of the signal. Making the search non-Markovian
allows more rapid convergence to the source parameters, at the expense of no longer being able
to construct the posterior from the chain state distribution. In a future implementation of the
pipeline, we will include a final Markov Chain stage to recover the posterior once the source
parameters have been approximately identified. This was not implemented for the searches
described here.

2.3. Proposal distributions

Our primary proposal distribution is a multi-variate Gaussian, which is constructed as a product
of Gaussian distributions in each eigendirection of the Fisher information matrix (FIM), 
ij .
The distribution in each eigendirection is taken to have zero mean and a standard deviation of
σi = 1/

√
DEi . Here D is the dimensionality of the search space (in this case, D = 13, as we

use normalized search templates) and Ei is the corresponding eigenvalue of 
μν . The FIM
is computed numerically, using the same truncated AK model that we employ as the search
template, but with the additional simplification that the detector response is modelled using
the low-frequency approximation (as in the original AK paper [21]), rather than via the full
TDI response.

While the FIM-based proposal is used at most steps, we also periodically draw a proposed
point from one of several other proposal distributions:

• Scaled uniform jumps—the proposal distribution is taken to be uniform within the priors
for each parameter. This forces the chain to explore other, widely separated, regions of
the parameter space.

• Scaled FIM jumps—this proposal is based on the FIM as for the standard proposal, but
the proposed jumps are artificially reduced in size by a factor of 10. These proposals are
almost always accepted, forcing the chain to move slightly away from secondaries and
hence encouraging movement.

• Antipodal sky position—at low frequencies, the sky positions (β, φS) and (−β, φS ± π)

are equivalent in terms of the detector response. In searches for black hole binaries, it was
found that the chains could often become locked on the wrong sky position, so we include
a proposal that moves the chain to the antipodal sky position to avoid this problem.
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• Intrinsic/extrinsic/phase only jumps—the waveforms can be divided into intrinsic
parameters (m,M, ν0, e0, χ, λ), extrinsic parameters (DL, β, φS, θK, φK) and phase
offsets (�0, γ0, α0). Intrinsic parameters affect the frequency and phase evolution of
the different harmonics, while extrinsic parameters only affect how this is projected into
a detector response, and the phase offsets only define the relative phase of the different
harmonics at one fiducial time. Proposing jumps in extrinsic/phase offset parameters
only was designed to improve the fit while keeping the harmonic frequencies fixed (see
section 2.5).

We note that no matter which proposal we use, all the waveform parameters are updated, i.e.,
we do not use Gibbs sampling to update one parameter at a time. Typically, we draw from
each of the alternative proposals every few tens of chain points, but these sampling frequencies
are tunable parameters which we have not yet optimized for the EMRI search, and so we do
not quote specific numbers here.

2.4. Simulated, thermostated and time annealing

As the likelihood surface for EMRIs is full of secondary maxima, it is very easy for the search
chains to get stuck. To ensure acceptable movement in the chain, we use simulated annealing
to heat the likelihood surface [13, 15]. This smooths and flattens any bumps on the likelihood
surface, which ensures the chain has a greater chance of escaping secondaries and moving
uphill towards the primary peak. In the definition of the likelihood, equation (2), there is a
factor of 2 in the denominator of the exponent. We replace this factor with a ‘heat’ parameter
�, defined by

� = 2 ×
{

10ξ(1− i
Tc

) 0 � i � Tc

1 i > Tc,
(3)

where ξ > 0 is the heat-index defining the initial heat, i is the step number of the chain and Tc

is the cooling schedule (i.e., the number of chain steps over which the cooling takes place). As
the success of the choice of initial heat is only known a posteriori, we are still investigating
the optimal heating scheme.

To mitigate potential problems, we also employed a thermostated heating scheme as used
in [15]. We define

δ = 2 ×
{

1 0 � SNR � ρc(
SNR
ρc

)2
SNR > ρc,

(4)

and take the heat to be the maximum of δ and � defined by equation (3). The thermostated
heating scheme pumps heat into the system once we reach SNR = ρc. This should make
the chain move uphill faster, once we have begun to match the signal. This scheme is run
in conjunction with the simulated annealing. While we continue to calculate both heats, we
always use the heat that is highest in the search. For this study we chose ρc = 15.

The final annealing scheme we employ is time annealing, which is similar to the frequency
annealing described in [15]. The cost of evaluating the likelihood and the FIM for the proposal
distribution depends on the length of the waveform template being used. It is inefficient to
use full length (2 years) templates initially, when the parameter values are poorly constrained.
We therefore start off with shorter templates and increase the length of the template, tdur, as
the chain progresses

tdur =
{

tmax(tmin/tmax)
(1− i

Nf
)

t < tmax

tmax t � tmax,
(5)
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where i is the number of steps in the chain, Nf is the total number of iterations in the time
annealing chain, tmin is the minimum length of template and tmax is the maximum length of the
template. The aim of the time annealing is to use shorter templates while the chain is taking
big jumps exploring the parameter space, and then to increase the template length and refine
the parameter determination once the chain has settled in the vicinity of the true parameters.
For this analysis, we used tmin = 4 months to ensure a reasonable SNR (�20) in the shortest
templates employed, and we took Nf = 10 000 and tmax = 1 year, half the length of the
MLDC data release.

In our implementation of the search, we started by running a 5000 iteration chain with
tdur fixed at 4 months, but using simulated annealing and thermostated heating. After 5000
iterations we began a 10 000 iteration time-annealing scheme, using thermostated heating
in conjunction but not simulated annealing. Once the time-annealing phase was complete,
we cooled the surface down over 5000 iterations during a final simulated annealing phase
according to the scheme detailed by equation (3) without thermostated heating. We then
allowed the chain to run as a standard MCMC with unit heat for 80 000 iterations to obtain a
final refinement of the parameters.

2.5. Harmonic identification

The EMRI likelihood space is very complicated and is characterized by many secondary
maxima. It is consequently very easy for the chain to get stuck on a secondary. This was a
major concern in our analysis of the MLDC Round 2 data, and again in the initial analysis
of the Round 1B data. A chain started at a random point would lock very quickly onto a
secondary of the signal, but would then not move far away from that point. However, chains
seeded at different initial points would lock onto different secondaries. A secondary typically
has one or two harmonics that overlap with harmonics of the true signal for a section of
the data stream, and we can use that information to determine the true parameters. Given
the parameters of a secondary, one can construct the cumulative overlap (in the frequency
domain) of each harmonic of the secondary with the data stream. If the overlap is significant,
the frequency range in which the overlap accumulates indicates the section of that secondary
harmonic which matches a harmonic of the true signal. This is illustrated in the top panel of
figure 1.

In order to exploit this information, as a preliminary stage of the search we ran several
(∼20) chains, seeded at different points in parameter space, stopped the chains after ∼1000
steps and then analysed the harmonic content of the highest SNR point found in each chain.
Different chains would typically find different harmonics, and so combining this information
allows a picture of the signal structure to be constructed. This is illustrated in the bottom
panel of figure 1. This information can be used in the search in several ways—as a veto of
secondaries (any parameter space point that does not match these harmonics cannot be the
primary maximum); to fold into parameter priors (reject proposed steps that move harmonics
too far away from these tracks); or as a constraint when proposing steps for the chain.

2.6. Constrained jumps

It is possible to modify the proposal distribution to ensure certain constraints are satisfied, e.g.,
the frequency of a given harmonic at a given time. Given a set of constraints, {fi(�x) = 0}
for i = 1, . . . , N , we can define a set of unit vectors orthogonal to the constraint surfaces,
�ei = ∇fi/|∇fi |, and decompose a step in parameter space, δ�x, into a piece that maintains
the constraints, δ �̃x, and a piece in the space spanned by the �ei, δ�x = δ �̃x + ai �ei . The template
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Figure 1. Top panel: cumulative overlap of a given harmonic with the data stream, as a function
of frequency. The curves show the overlap of the A and E TDI data streams, respectively. The
overlap accumulates when the harmonic frequency is 4.5 mHz � f � 5.5 mHz, which indicates
the time range where it matches a harmonic of the true signal. Bottom panel: true harmonics
(lines) and identified harmonics (crosses) for the MLDC Round 1B training source 1B.3.2.

mismatch, M, at the new point for a jump that maintains the constraints is therefore given in
terms of the FIM, 
ij , by

2M = 
ij δx̃
iδx̃j = 
̃ij δx

iδxj

= (

ij − 2
mjClke

i
ke

m
l + 
mnClkCpqe

i
ke

j
qe

m
l en

p

)
δxiδxj (6)

in which superscripts indicate vector components, Cij = (A−1)ij for Aij = �ei · �ej and repeated
indices are summed as usual. The matrix 
̃ij can be used in place of 
ij to generate proposed
steps that maintain the constraints. The matrix 
̃ij has N zero eigenvalues with corresponding
eigenvectors { �ei}, which are ignored when constructing the proposed step.

We implemented constrained jumps in the search, using the results of the harmonic
analysis described in section 2.5 to determine the frequencies of several harmonics and their
rates of change at a specified time. In practice, we found it best to use the frequencies of three
harmonics, and the time derivative of the dominant harmonic as the constraints. Additional
frequencies or derivatives did not provide any extra information. For the AK model, it is
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Figure 2. SNR as a function of chain index (top-left); frequency of dominant harmonic versus
SNR (top-right); rate of change of frequency of dominant harmonic versus SNR (bottom-left); and
sky longitude versus SNR (bottom-right), in a partially constrained search for the MLDC Round
1B.3.2 challenge source. The chain is moving steadily towards the true parameter values, indicated
by horizontal lines. This run did not employ either simulated annealing or time-annealing.

easy to translate such constraints into parameter values and hence reduce the six-dimensional
intrinsic parameter space—M,m, S, λ, e0, ν0—to a two-dimensional space spanned by e0 and
λ. We actually used this dimensional reduction in our implementation of the search, although
the general expression (6) will be necessary for a generic waveform model.

The constrained search was able to rapidly improve the SNR from the initial guess and
if the constraints were specified exactly (using the MLDC training data), the chain moved
steadily to the correct point. However, the harmonic analysis was not able in general to
determine precise values for the frequencies. An error of ∼10−7 Hz in one frequency leads to
a dephasing after ∼4 months, which limits the usefulness of the fully constrained search. We
found it more effective to use a partially constrained search, i.e., using the harmonic analysis to
estimate frequencies and frequency derivatives at a certain time with estimated uncertainties.
It is possible to reparametrize the waveform in terms of the values of the three fundamental
frequencies at a certain time, plus the time derivative of the dominant harmonic at the same
time. An MHMC chain can then be run on this alternative parameter space, using tight priors
on those frequencies assigned using the frequency uncertainty estimates. This can also be done
directly in the physical parameter space by using the constrained FIM, 
̃ij , and additionally
allowing small jumps in the directions �ei orthogonal to the constraint surface. The results of
one partially constrained search are illustrated in figure 2. This type of search was found to
be much more effective, although our initial implementation of the proposal was inefficient
which led to a low acceptance rate.
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Table 2. Comparison of best recovered parameters at time of MLDC submission to true parameters.

Source S/M2 m/M� M/(106 M�) ν0(mHz) e0 λ

1B.3.1 True 0.698 16 10.296 9.5180 0.192 04 0.214 38 0.439 46
Recovered 0.636 24 10.500 10.359 0.187 11 0.158 10 0.508 00

1B.3.2 True 0.637 96 9.7711 5.2156 0.342 28 0.207 91 1.4358
Recovered 0.639 71 9.7751 5.2076 0.342 23 0.209 41 1.4399

1B.3.3 True 0.533 26 9.6973 5.2197 0.342 57 0.199 27 0.928 22
Recovered 0.596 55 10.193 5.2344 0.342 36 0.196 47 0.758 82

1B.3.4 True 0.625 14 10.105 0.955 80 0.851 44 0.450 58 1.6707
Recovered 0.631 04 10.085 1.0439 0.795 10 0.440 77 2.1837

1B.3.5 True 0.658 30 9.7905 1.0334 0.832 18 0.426 91 2.3196
Recovered 0.677 01 9.8849 0.978 72 0.833 90 0.429 50 2.5092

3. Round 1B results

At the time of the MLDC submission deadline (December 2007), we were still developing the
details of the search outlined above, and therefore just submitted the maximum a posteriori
(MAP) parameters that had been found in the search by that time. We used the MAP values as
we were sure at this stage that we were either still moving towards the true solution or stuck on
a secondary. It therefore made no sense to use the mean of a posterior to determine the best-fit
parameters. Our strategy involved starting 10 chains at different random start points for each
challenge. Due to time constraints we needed to stop the MCMC chains after between 35 000
and 40 000 iterations out of 80 000. We used the MAP values from each of these chains as
starting points for the harmonic identification and constrained stages of the search. The initial
MHMC runs took 2–3 weeks each, the harmonic identification was then quick (a few hours),
but the final constrained stage also took several weeks. We expect these run times to decrease
as the algorithm is refined, but a final run time of ∼1 week is a reasonable guess. We should
mention that the search of Challenge 1B.3.2 was the most advanced at the time of submission,
and this was the only source for which we had begun the constrained jump phase of the search
by that time.

A harmonic analysis indicated that we were in the vicinity of secondary maxima for
sources 1B.3.1, 1B.3.3, 1B.3.4 and 1B.3.5. The harmonics of our best guess parameters for
1B.3.2 appeared to be approximately in the right place, although the total SNR of this point
did not lie within the MLDC prior, indicating that the parameters were not completely correct.
The submitted results are summarized in tables 2 and 3, along with the true values of the
Challenge parameters.

As expected, our results for 1B.3.2 agreed quite well with the true parameters, but in the
other cases we were quite far off. The recovered parameters correspond to secondaries of the
likelihood in all cases, which share harmonics with the true signal. For all sources except
1B.3.1, we appeared to have locked onto the antipodal sky location, despite the inclusion of a
sky position flip as one of the proposal distributions. We hope to avoid this in the future by
implementing delayed rejection [18] which will be discussed in section 4.

4. Summary and future plans

Our final search algorithm for identifying isolated EMRIs in instrumental noise was as follows:
(1) run a set of chains without annealing for a small number of chain steps; (2) identify
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Table 3. Comparison of best recovered parameters at time of MLDC submission to true
parameters—sky position and source orientation.

Source β φS θK φK

1B.3.1 True 0.552 58 4.9104 1.7625 2.0472
Recovered 0.645 58 4.9473 2.2005 1.7141

1B.3.2 True 0.359 70 4.6826 3.0372 4.0382
Recovered −0.874 34 1.1145 1.5836 6.0901

1B.3.3 True 0.981 66 0.709 67 1.5364 4.1487
Recovered −0.694 82 3.8708 2.2751 3.8650

1B.3.4 True −0.980 20 0.978 73 1.7601 4.1164
Recovered 0.813 38 3.2806 0.609 80 6.0855

1B.3.5 True −1.1092 1.0876 0.840 39 5.7564
Recovered 0.390 53 1.9690 1.9561 5.1293

harmonics of the true signal from the highest SNR points found in the preliminary chains;
(3) run a partially constrained search, including temperature and time annealing, to refine
the source parameters. The search runs were incomplete at the time of the MLDC deadline,
but subsequent runs have moved closer to what we now know are the true parameters. The
convergence rate is slow, however, so we are currently exploring several improvements to the
algorithm, including

• Fast waveform model. By using the low-frequency approximation to the detector response,
and interpolation of the barycentre waveform, it is possible to speed up the waveform and
FIM evaluations which are the bottlenecks in the current code.

• Semi-coherent analysis. As considered for template-based searches in [1], by dividing
the data stream into sections of a few months in length, and searching these separately
in parallel, the search speed is increased. The main difficulty is forcing parameter
consistency between the different segments.

• Delayed rejection. This is a technique whereby the chain is forced to accept a (large) jump
in the parameter space, but the likelihood at the original point, �xi , is recorded. The chain
is then allowed to run (with small jumps) for a pre-specified number of steps, e.g., 100,
to reach a final point, �xf , before the Metropolis–Hastings ratio is evaluated using �xi and
�xf . If this step is rejected, the chain goes back to �xi and another jump is proposed. This

technique can help the chain jump to widely separated secondaries in the parameter space,
and it might also encourage the chain to switch to the correct antipodal sky position, as
mentioned earlier.

• Numerical F-statistic. It is relatively straightforward to construct a proposal that changes
the intrinsic parameters of the source in order to achieve a rotation of the signal harmonics,
i.e., to keep the dominant harmonic in the same place, but change the indices (n, l, k) of
that harmonic. However, it will usually be necessary to change the extrinsic parameters
and phase angles in order to find a high SNR at the new point. This can be accomplished
by proposing a jump in the intrinsic parameters, and then finding the best-fit extrinsic
parameters at the new point, either by using a template grid or by using a mini (∼100
iteration) Monte Carlo chain that explores only the extrinsic parameters. The likelihood
maximized over extrinsic parameters can then be used to evaluate the Metropolis–Hastings
ratio for the proposed jump in intrinsic parameters.

10



Class. Quantum Grav. 25 (2008) 184030 J R Gair et al

A short-coming of the algorithm described here will become apparent when the data
stream becomes more complex and contains multiple sources, as in MLDC Round 3. When
multiple sources are present, distinguishing between a weak harmonic that is a sideband of
an identified bright source and one that is the dominant harmonic of a second, weaker signal,
is difficult. The location in time and frequency, and the shape of the track, will be useful
diagnostics, but some confusion will be inevitable. As an alternative to identifying harmonics
to use as constraints, an understanding of how harmonic rotations/shifts can be achieved by
parameter changes should allow the formulation of proposal distributions that will move the
chain from one secondary to another (similar to the ‘island hopping’ used in supermassive
black hole binary searches [15]). The aim of such a proposal would be to make the chain
jump between points in parameter space that had harmonics in common with the true signal
and hence the chain should find the true parameters more quickly. Such proposals will be
explored when we apply these algorithms to the Round 3 data.
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