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The brick wall model is a semiclassical approach to understand the microscopic origin of black hole

entropy. In this approach, the black hole geometry is assumed to be a fixed classical background on which

matter fields propagate, and the entropy of black holes supposedly arises due to the canonical entropy

of matter fields outside the black hole event horizon, evaluated at the Hawking temperature. Apart from

certain lower dimensional cases, the density of states of the matter fields around black holes cannot be

evaluated exactly. As a result, often, in the brick wall model, the density of states and the resulting

canonical entropy of the matter fields are evaluated at the leading order (in terms of @) in the WKB

approximation. The success of the approach is reflected by the fact that the Bekenstein-Hawking area

law—viz. that the entropy of black holes is equal to one-quarter the area of their event horizon, say,AH—

has been recovered using this model in a variety of black hole spacetimes. In this work, we compute the

canonical entropy of a quantum scalar field around static and spherically symmetric black holes through

the brick wall approach at the higher orders (in fact, up to the sixth order in @) in the WKB approximation.

We explicitly show that the brick wall model generally predicts corrections to the Bekenstein-Hawking

entropy in all spacetime dimensions. In four dimensions, we find that the corrections to the Bekenstein-

Hawking entropy are of the form ½An
H logAH�, while, in six dimensions, the corrections behave as

½Am
H þAn

H logAH�, where ðm; nÞ< 1. We compare our results with the corrections to the Bekenstein-

Hawking entropy that have been obtained through the other approaches in the literature, and discuss the

implications.
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I. INTRODUCTION AND MOTIVATION

The concept of black hole entropy was originally intro-
duced by Bekenstein [1–4] to resolve certain thermody-
namical paradoxes that arise in the presence of the black
holes and, in particular, to preserve the universal applica-
bility of the second law of thermodynamics. Soon after
Bekenstein’s proposal—based on their classical, macro-
scopic behavior—the thermodynamic properties of black
holes were formalized as the four laws of black hole me-
chanics [5]. Specifically, it was argued that, as the area
theorem of classical general relativity closely resembles
the statement of the second law of thermodynamics, the
area of the black hole event horizon (AH) can be inter-
preted as the physical entropy associated with the black
hole. This association, in turn, led to the identification of
the surface gravity (�) of the black hole (which, for a
stationary black hole, is a constant all over the horizon)
as the temperature of the hole.

The laws of black hole mechanics were placed on a firm
footing when, a year or two later, Hawking [6,7] showed
that, in the presence of quantum matter fields, a body that
collapses into a black hole emits thermal radiation at the
temperature

TH ¼
�
@c

kB

��
�

2�

�
; (1)

where @, c, and kB denote the Planck constant, the speed of
light, and the Boltzmann constant, respectively. The above
Hawking temperature fixes the constant of proportionality
between the temperature of the black hole and its surface
gravity and, therefore, between the entropy and the area of
the hole. One finds that the entropy of black holes are given
by the following Bekenstein-Hawking area law:

SBH ¼
�
kB
4

��
AH

‘2Pl

�
; (2)

where ‘Pl ¼ ðG@=c3Þ1=2 denotes the Planck length with G
being the Newton’s constant.
Black hole entropy assumes considerable importance

due to the fact that it may provide us with an insight
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to the microscopic structure of the gravitational the-
ory through the microcanonical, Boltzmann relation S ¼
ðkB ln�Þ, where � is the total number of quantum states
that are accessible to a black hole that is described by a
small set of classical parameters. The different approaches
that have been adopted in the literature to understand the
microscopic origin of black hole entropy can be broadly
classified into two categories. (i) Count the ‘‘microstates’’
by assuming a fundamental structure like D-branes, spin
networks, or conformal symmetry [8–11]. (ii) Associate
the black hole entropy to the quantum fields propagating in
the fixed black hole spacetime. Count the microstates of
these quantum fields [12–17].

Although none of the above approaches can be consid-
ered to be complete, all of them—within their domains of
applicability—by counting certain microscopic states yield
the semiclassical result (2) in all spacetime dimensions
d � 3. However, all these approaches seem to lead to dif-
ferent subleading corrections to the Bekenstein-Hawking
entropy. For instance, (i) the prefactor to the logarithmic
corrections obtained using the spin networks and confor-
mal symmetry [18–22] are different from the one obtained
using the statistical fluctuations around thermal equilib-
rium [23]. (ii) The power-law corrections obtained using
the Noether charge approach [15] are different from those
via entanglement of the modes between inside and outside
the horizon [24]. In other words, even though different
degrees of freedom lead to the universal Bekenstein-
Hawking entropy—quite naturally—they lead to different
subleading terms. This indicates that the key to the under-
standing of the statistical mechanical interpretation of
Bekenstein-Hawking entropy may lie in the origin of the
subleading contributions.

Physically, it is natural to expect corrections to (2):
Bekenstein-Hawking entropy is a semiclassical result and
there are strong indications that this is valid for large black
holes (i.e. when horizon radius is much larger than Planck
length). However, it is not clear whether this relation will
continue to hold for the Planck size black holes. Besides,
there is no reason to expect that the Bekenstein-Hawking
entropy is the whole answer for a correct theory of quan-
tum gravity.

In this work, we calculate the higher-order WKB con-
tributions to the Bekenstein-Hawking entropy from the
brick wall model [12,25,26]. We extend the zeroth-order
(@0) WKB analysis to higher order and show that (i) the
contribution to the entropy from the higher-order WKB
modes is of the same order as the leading-order WKB
modes. In other words, our analysis shows that it may be
incomplete to calculate the contribution only from the
leading-order WKB modes. (ii) The brick wall entropy
(SBW) leads to generic corrections to area of the form:

SBW ¼ SBH þ GðAHÞ þF ðAHÞ log
�
AH

‘2Pl

�
; (3)

where GðAHÞ, and F ðAHÞ are polynomial functions of
AH. In the case of four dimensions, we show explicitly
that the brick wall entropy (up to sixth order) has the form
given above with GðAHÞ ¼ 0. In the case of six dimen-
sions, GðAHÞ � 0. (iii) We show that, only in the case of
Schwarzschild, F ðAHÞ is a constant.
The brick wall approach is a semiclassical approach,

wherein the background geometry is assumed to be a fixed
classical background in which quantum fields propagate.
The entropy of the black hole is identified with the statis-
tical mechanical entropy arising from a thermal bath of
quantum fields propagating outside the horizon. The en-
tropy computed in this way turns out to be proportional to
the area of the horizon. This approach has been very
popular in obtaining the leading order to the black hole
entropy in different dimensions (for an incomplete list of
references, see Refs. [27–42]).
The problem with the brick wall model (as is the case of

any semiclassical approach)] is that, due to the infinite
growth of density of states close to the horizon, one has
to impose ultraviolet cutoff near the horizon and hence,
the brick wall entropy depends on the cutoff scale. (See
Sec. III, for discussion on various aspects of the brick wall
model.) Clearly, this is an undesirable feature. However,
there are several advantages of the brick wall model over
other approaches: (i) Unlike the Noether charge approach
[15], the brick wall entropy depends only on the kinemati-
cal properties of the metric close to the horizon and does
not depend on the dynamics. Hence, the brick wall entropy
(and the corrections computed in this work) can directly be
mapped to the horizon properties. In the case of Noether
charge approach, since such a mapping is not possible, the
power-law corrections do not provide any new information
about the statistical mechanical properties of black hole
entropy. (ii) Unlike entanglement entropy [24], the brick
wall entropy can be computed analytically for any spheri-
cally symmetric spacetimes to all orders. Also, it is not
possible to compute the entanglement entropy for space-
time dimensions d > 4—the entropy is divergent. (iii) In
the conformal field theory approach [10,19], the black
hole horizon is treated as boundary. However, the vector
fields (which generate the symmetries) do not have a well-
defined limit at the horizon [43]. If one requires that vector
fields generating symmetries be smooth at the horizon,
then the central charge should be zero. In other words,
the conformal field theory analysis can only be performed
close to the horizon like a brick wall.
The remainder of this paper is organized as follows. In

the following section, we shall sketch some essential prop-
erties of static, spherically symmetric black holes in arbi-
trary spacetime dimensions. In Sec. III, we shall discuss the
assumptions and approximations involved in evaluating the
brick wall entropy, and outline the procedure for extending
the calculation to the higher orders (in terms of @) in the
WKB approximation. In Sec. IV, in addition to the zeroth
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order, we shall evaluate the contributions to the brick wall
entropy of four-dimensional black holes at the second, the
fourth, and the sixth orders (in terms of @) in the WKB
approximation. In Sec. V, we extend the analysis to the
case of black holes in six dimensions. In Sec. VI, we ex-
plicitly write down the results for a few specific black hole
solutions in four and six dimensions. Finally, in Sec. VII,
after a rapid summary of the results we have obtained, we
shall discuss how the subleading contributions we have
evaluated compare with the results obtained from the other
approaches.

Before we proceed further, let us briefly outline the con-
ventions and notations we shall adopt. We shall, in general,
consider a (Dþ 2)-dimensional,1 spherically symmetric,
black hole spacetime. We shall work with the metric sig-
nature ð�;þ;þ; � � �Þ, and use the geometric units wherein
kB ¼ c ¼ G ¼ 1. We shall denote the derivative of any
function with respect to the radial coordinate r of the black
hole by an overprime. The quantum field � we shall
consider will be a minimally coupled scalar field.

II. KEY PROPERTIES OF STATIC, SPHERICALLY
SYMMETRIC BLACK HOLES

Consider the following (Dþ 2)-dimensional static and
spherically symmetric line element

ds2 ¼ �fðrÞdt2 þ dr2

gðrÞ þ r2d�2
D; (4)

¼ fðrÞ½�dt2 þ dx2� þ r2d�2
D; (5)

where fðrÞ and gðrÞ are arbitrary (but continuous and dif-
ferentiable) functions of the radial coordinate r, d�2

D is the
metric on a D-dimensional unit sphere, and

x ¼
Z drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðrÞgðrÞp (6)

denotes the tortoise coordinate. Throughout this work, we
shall assume that the line element (4) contains a singularity
(say, at r ¼ 0) and one, nondegenerate, event horizon (lo-
cated at, say, r ¼ rH).

2 But, we shall not assume any spe-
cific form of fðrÞ or gðrÞ. In the rest of this section, we shall
discuss some generic properties of the spacetime (4) near
the horizon at r ¼ rH.

In almost all approaches that evaluate the entropy of
spherically symmetric black holes, their line element close
to the event horizon is approximated to be that of a Rindler
spacetime (see, for instance, Ref. [39]). For the line ele-
ment (4), the Rindler behavior near the horizon can be
arrived at by first carrying out the following transformation
of the radial coordinate:

� ¼
�
1

�

� ffiffiffi
f

p
; (7)

where � is a constant that denotes the surface gravity of the
black hole and is defined as (see, for example, Ref. [44])

� ¼
� ffiffiffiffiffiffiffiffiffi

gðrÞ
fðrÞ

s �
f0ðrÞ
2

��
r¼rH

: (8)

In terms of the coordinate �, the line element (4) can be
expressed as

ds2 ¼ ��2�2dt2 þ 4

�
f

g

��
�

f0

�
2
d�2 þ r2d�2

D: (9)

Close to the horizon (i.e. near r ¼ rH), this line element
reduces to

ds2 ! ��2�2dt2 þ d�2 þ r2Hd�
2
D (10)

which describes the Rindler spacetime with a horizon that
is located at � ¼ 0. It should be stressed here that such a
behavior is exhibited by all nondegenerate black hole hori-
zons in all dimensions.
The above derivation of the Rindler line element near

the horizon is essentially equivalent to expanding the
metric components fðrÞ and gðrÞ in (4) about rH up to
the linear order in the Taylor series. However, we find that,
when evaluating the contributions to the brick wall entropy
at the higher orders in the WKB approximation, we need
to expand the quantities fðrÞ and gðrÞ to higher orders
as follows:

fðrÞ ¼ f0ðrHÞðr� rHÞ þ
�
f00ðrHÞ

2

�
ðr� rHÞ2

þ
�
f000ðrHÞ

6

�
ðr� rHÞ3 þ � � � ; (11a)

gðrÞ ¼ g0ðrHÞðr� rHÞ þ
�
g00ðrHÞ

2

�
ðr� rHÞ2

þ
�
g000ðrHÞ

6

�
ðr� rHÞ3 þ � � � : (11b)

As we shall see, in four dimensions, in addition to the
surface gravity of the black hole, the corrections to the
Bekenstein-Hawking entropy SBH also depend on the sec-
ond derivative of the metric evaluated at the horizon. In six
dimensions, we find that the subleading contributions to
SBH involve the third derivative of the metric as well.
Another quantity which we shall require in our calcu-

lations is the proper or the coordinate invariant distance of

1A comment on this uncommon notation may be in order. We
do not work with two time coordinates. We find it convenient
to assume the spherically symmetric event horizon to be a
D-dimensional sphere. The radial and the time coordinates
make the dimension of spacetime to be (Dþ 2).

2Since the event horizon is a null hypersurface, its location can
be determined by the condition ðg��@�N@�NÞ ¼ 0, where N is a
scalar quantity that characterizes the hypersurface. For the line
element (4), N proves to be a function of the radial coordinate r.
The above equation then leads to gðrHÞ ¼ 0, and the roots of this
algebraic equation in turn determine the location of the horizon.
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the brick wall from the horizon. The proper radial distance
to the brick wall, say, hc, that is located at r ¼ h is given by

hc ¼
Z rHþh

rH

drffiffiffiffiffiffiffiffiffi
gðrÞp : (12)

On using the expansion (11) for gðrÞ up to the second order
in this integral, we obtain the following relation between h
and hc:

h1=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g0ðrHÞ
g00ðrHÞ

s
sinh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g00ðrHÞ

2

s �
hc
2

��
: (13)

For small hc, this relation simplifies to

hc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4h

g0ðrHÞ

s
; (14)

and, for convenience, we shall use this expression for the
proper distance to the brick wall.

III. EXTENSION OF THE BRICK WALL MODEL
TO HIGHER ORDERS IN THE

WKB APPROXIMATION

In this section, after a rapid sketch of the assumptions
and approximations that are involved in evaluating the
black hole entropy using the brick wall model, we go on
to outline the procedure for computing the brick wall
entropy at the higher orders in the WKB approximation.

A. Basic assumptions

There are two crucial assumptions in the brick wall
approach to black hole entropy. The first assumption con-
cerns the modeling of the microscopic origin of the black
hole entropy, and the second is regarding the handling of
the divergences that arise close to the event horizon.

As we have mentioned before, the brick wall model is a
semiclassical approach wherein the black hole is assumed
to be described by a fixed classical geometry. It is further
assumed that the black hole is in equilibrium with a ther-
mal bath of quantum matter fields at the Hawking tem-
perature. Moreover, it is the canonical entropy (actually, a
specific component) of the quantum matter fields that are
propagating outside the black hole horizon that is identified
to be the entropy of the black hole.

In the process of calculating the canonical entropy of
a matter field outside the black hole horizon, we need to
evaluate the density of states of the field. However, one
finds that, due to the infinite blue shifting of the modes in
the vicinity of the event horizon, the density of states
actually diverges. This divergence is regulated in the model
by introducing a cutoff by hand above the horizon. The
cutoff—popularly referred to as the brick wall—is basi-
cally a static, spherical mirror at which the matter fields are

assumed to satisfy, say, the Dirichlet boundary conditions.
One finds that the leading component of the brick wall
entropy diverges as h�2

c , where hc is the proper distance to
the brick wall defined in Eq. (12). (The other component is
essentially a volume dependent term that arises even in flat
space.) It is this contribution that is identified to be the
entropy of the black hole. Moreover, a specific choice for
the cutoff hc has to be made (this depends on the number of
fields, the dimension of the spacetime, etc., but is generally
of the order of the Planck length ‘Pl), in order to reproduce
the Bekenstein-Hawking area law (2). As we mentioned,
the area law (2) has been recovered in this approach for
a variety of black hole spacetimes and matter fields [27–
42,45].

B. Essential approximations

Two approximations turn out to be essential to make the
computation of the brick wall entropy tractable. The first
approximation is required in evaluating the density of
states of matter fields around black holes, and the second
involves expanding the metric near the event horizon.
As we pointed out above, in order to evaluate the brick

wall entropy, one needs to evaluate the density of states of
matter fields around black holes. However, apart from
some lower dimensional cases, the density of states cannot
be evaluated exactly. As a result, in the brick wall model,
the density of states is usually evaluated at the leading
order in @ in the WKB approximation.
Moreover, barring a few special cases, one finds that,

even after the WKB approximation, the brick wall entropy
cannot be evaluated exactly. Recall that the dominant con-
tribution to the entropy arises due to the modes close to the
horizon. Motivated by this feature, one Taylor expands the
metric functions fðrÞ and gðrÞ near the horizon in order to
obtain a closed form expression for the brick wall entropy.

C. The methodology

Having discussed the assumptions and approximations
involved in the brick wall approach, in the remainder of
this subsection, we shall outline the procedure for evalu-
ating the brick wall entropy at the higher orders in the
WKB approximation.
The key assumption of the brick wall model, as we have

pointed out above, is that the black hole is in equilibrium
with a bath of thermal radiation at the Hawking tempera-
ture of the hole. The free energy F of a scalar field at
the inverse temperature � is given by (see, for example,
Ref. [12])

F ¼
�
1

�

�Z 1

0
dE

�
d�ðEÞ
dE

�
ln½1� exp�ð�EÞ�;

¼ �
Z 1

0
dE

�
�ðEÞ

expð�EÞ � 1

�
; (15)
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where �ðEÞ denotes the total number of modes of the field
with energy less than E. We have integrated the first of the
above equation by parts to arrive at the second and have
assumed that the boundary term vanishes. The canonical
entropy associated with the free energy F is given by

SCð�Þ ¼ �2

�
@F

@�

�
; (16)

and, it is this entropy, evaluated at the Hawking tem-
perature, that will be identified to be the entropy of the
black hole.

Consider a massive and minimally coupled scalar field
� that is propagating in the line element (4). Such a field
satisfies the differential equation

ðh�m2Þ� ¼ 0; (17)

where m denotes the mass of the field. The rotational sym-
metry of the line element (4) allows us to decompose the
normal modes uE‘mi

of the field � as follows (see, for

instance, Ref. [46]):

uE‘mi
ðx�Þ ¼

�
RðrÞ

rD=2G1=2ðrÞ
�
Y‘mi

ð�;�iÞe�ðiEt=@Þ; (18)

where E, ‘, and mi (with i 2 ½1; ðD� 1Þ�) are the energy,
angular momentum, and the azimuthal angular momenta
associated with the modes, respectively, the quantity GðrÞ
is given by

GðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞgðrÞ

q
; (19)

and Ylmi
ð�;�iÞ denote the hyperspherical harmonics. On

substituting the mode (18) in the equation of motion (17)
and using the properties of the hyperspherical harmonics,
we find that the function RðrÞ satisfies the differential
equation

R00ðrÞ þ
�
V2ðrÞ
@
2

� �ðrÞ
�
RðrÞ ¼ 0; (20)

where the quantities V2ðrÞ and �ðrÞ are given by

V2ðrÞ ¼
�

1

G2ðrÞ
��
E2 � fðrÞ

�
m2 þ

�
‘ð‘þD� 1Þ@2

r2

���
; (21a)

�ðrÞ ¼
�
G00ðrÞ
2GðrÞ

�
�

�
G02ðrÞ
4G2ðrÞ

�
þ

�
D

2r

��
G0ðrÞ
GðrÞ

�
þ

�
DðD� 2Þ

4r2

�
: (21b)

The total number of modes �ðEÞ of the field� with energy
less than E can be evaluated exactly if the solution to the
differential equation (20) can be written down
explicitly. However, apart from some simple (1þ 1)-
dimensional example [35], it proves to be difficult to obtain
an exact analytical solution for the function RðrÞ. As a
result, the WKB approximation is almost always resorted
to in the literature [27–42], and it is the leading-order
WKB solution for RðrÞ that is utilized to evaluate the
number of states �ðEÞ, and the resulting free energy F
and the entropy of SC of the quantum field. Our goal here
is to extend the analysis to the higher orders in the WKB
approximation.

Let us begin by expressing the function RðrÞ in the
following WKB form:

RðrÞ ¼
�

c0ffiffiffiffiffiffiffiffiffi
PðrÞp �

exp

�
i

@

Z r
d~rPð~rÞ

�
; (22)

where c0 is a constant. On substituting this expression in
Eq. (20), we find that the function PðrÞ satisfies the differ-
ential equation

�
1

@
2

�
½P2ðrÞ � V2ðrÞ� ¼

�
3

4

��
P0ðrÞ
PðrÞ

�
2 �

�
1

2

��
P00ðrÞ
PðrÞ

�
� �ðrÞ: (23)

Let us now expand the function PðrÞ in a power series in @2
as follows (see, for instance, Ref. [47]):

PðrÞ ¼ X1
n¼0

@
2nP2nðrÞ: (24)

On substituting this series in the differential equation (22)
and collecting the terms of a given order in @

2, we obtain
the following expressions for P2nðrÞ up to n ¼ 3:
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P0ðrÞ ¼ �VðrÞ ¼ �
�

1

GðrÞ
��

E2 � fðrÞ
�
m2 þ

�
‘ð‘þD� 1Þ@2

r2

���
1=2

; (25a)

P2ðrÞ ¼
�

3

8P0ðrÞ
��
P0
0ðrÞ

P0ðrÞ
�
2 �

�
4P00

0 ðrÞ
P2
0ðrÞ

�
�

�
�ðrÞ
2P0ðrÞ

�
; (25b)

P4ðrÞ ¼ �
�
5P2

2ðrÞ
2VðrÞ

�
�

�
4P2ðrÞ�ðrÞ þ P00

2 ðrÞ
4V2ðrÞ

�
þ

�
3P0

2ðrÞV 0ðrÞ � P2ðrÞV 00ðrÞ
4V3ðrÞ

�
; (25c)

P6ðrÞ ¼ �
�
5P2ðrÞP4ðrÞ

VðrÞ
�
�

�
8P3

2ðrÞ þ 4P4ðrÞ�ðrÞ þ P00
4 ðrÞ

4V2ðrÞ
�
�

�
�ðrÞP2

2ðrÞ
2V3ðrÞ

�

�
�
2P00

2 ðrÞP2ðrÞ þ 2P4ðrÞV 00ðrÞ � 3P02
2 ðrÞ � 6P0

4ðrÞV 0ðrÞ
8V3ðrÞ

�
: (25d)

Note that the function P0ðrÞ is related algebraically to the
quantities VðrÞ and �ðrÞ. It is evident that the higher-order
functions P2nðrÞ (with n > 0) can be expressed in terms of
the functions at the lower orders and their derivatives and,
eventually, in terms of the function P0ðrÞ.

On using the series expansion (24) in the standard
semiclassical quantization procedure [12], we can express
the total number of states �ðEÞ of the field with energy less
than E as follows:

�ðEÞ ¼ X1
n¼0

�2nðEÞ; (26)

where we have defined �2nðEÞ as

�2nðEÞ ¼
�
@
2n�1

�

�Z L

rHþhc

dr

�
Z ‘max

0
d‘ð2‘þD� 1ÞW ð‘ÞP2nðrÞ; (27)

with the quantity W ð‘Þ being given by

W ð‘Þ ¼
�ð‘þD� 2Þ!
ðD� 1Þ!‘!

�
: (28)

It should be mentioned that, in the above expression for
�2nðEÞ, we have approximated the sum over the angular
quantum numbers ‘ as an integral with a degeneracy factor
W ð‘Þ. Such an approximation is often made in the litera-
ture, and the approximation is considered to be valid since
the separation between the states is expected to be small
[33]. Moreover, the upper limit ‘max on the integral over ‘
is a function of energy E of the mode and the radial co-
ordinate r, and it has to be chosen such that P0ðrÞ is real.3
Furthermore, the lower limit on the integral over the radial

coordinate, viz. hc, is the invariant thickness of the ‘‘brick
wall’’ defined in (12), and the upper limit L is the infrared
cutoff which we shall assume to be much larger than the
horizon radius.
A few clarifying remarks are in order at this stage of our

discussion. In the semiclassical quantization of, say, a one-
dimensional nonrelativistic quantum particle, the integral
over the coordinate will be carried out over the range
wherein P0 is real [47]). In the case of bounded systems,
these limits will prove to be the turning points of the po-
tential, whereas in the case of potential barriers the limits
will be between one of the turning points and infinity. In the
context of black holes, the effective potential turns out to
be a barrier and the integral over the radial coordinate is
to carried out between the event horizon of the black hole
(which is an infinity in terms of the tortoise coordinates)
and the first turning point that is located on the barrier.
But, one finds that most of the contribution to the density of
states of the quantum field arises due to the modes close to
the event horizon of the black hole, while the upper limit
located on the barrier leads to a volume dependent contri-
bution to the entropy. As a result, the contribution to the
number of states and the free energy and the entropy of the
quantum field due to the upper (infrared) limit is usually
ignored in the literature.
We should emphasize the point that, apart from replac-

ing the sum over ‘ by an integral, we have not made any
approximations until now. Hereafter, we shall make two
approximations that we had discussed in some detail in the
last subsection. First, we shall approximate the line ele-
ment (4) near the event horizon of a spherically symmetric
black hole to be that of Rindler spacetime, viz. Equa-
tion (10). It should be pointed out that such an approxima-
tion is always made in the literature to arrive at closed form
expressions for the free energy and the entropy of the quan-
tum field. Second, we shall truncate the series (24) at a
particular order (we shall work until the sixth order in @),
and evaluate the density of states and the associated free
energy and the entropy of the quantum field around the
black hole. It is important to note that, in the literature, it is
only the leading term in the series (26) that has always been

3Actually, the limits have to be chosen such that P2nðrÞ are real
for all n. However, since, for n > 0, the functions P2nðrÞ can be
expressed in terms of P0ðrÞ and the real functions VðrÞ and �ðrÞ,
when P0ðrÞ is real, P2nðrÞ are real as well. Therefore, the limits
on ‘ prove to be the same for all n.
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taken into account ignoring the higher orders when evalu-
ating the brick wall entropy.4

In the following two sections, we shall evaluate the
contributions to the brick wall entropy at the higher order
for four- and six-dimensional black holes, respectively. As
we shall see, the contributions to the entropy from the
higher orders turn out to be of the same order as the leading
order in the WKB approximation. In other words, it may be
incomplete to calculate the contribution only from the
leading term in the WKB expansion. Moreover, we show
that the brick wall entropy leads to generic corrections to
Bekenstein-Hawking entropy (2). For instance, in the case
of four dimensions, we find that the brick wall entropy has
the form

Sð4DÞBW ¼ SBH þF ð4DÞðAHÞ log
�
AH

‘2Pl

�
; (29)

where F ð4DÞðAHÞ depends on the surface gravity and the
second derivative of the metric at the horizon.

Before we proceed with the calculations, there is yet
another point concerning the WKB approximation at the
subleading orders that we need to discuss. As we men-
tioned above, the limits on the integral over ‘ has been
chosen such that P0ðrÞ is real. This condition essentially
identifies the turning points of the potential. Notice that, in
Eq. (25), all the higher-order WKB terms—i.e. P2nðrÞ for
n > 0—contain P0ðrÞ in the denominator. Obviously, these
functions will diverge at the turning points, or equivalently,
at the upper limits ‘. Such a divergence is a well-known
feature of the WKB approximation at the higher orders
[47], and we shall devise a systematic procedure to iso-
late these divergences. We shall outline this procedure
in the next section and relegate some of the details to
Appendix B.

IV. HIGHER-ORDER CONTRIBUTIONS
IN FOUR DIMENSIONS

In this section, we shall evaluate the brick wall entropy
for spherically symmetric, four-dimensional black holes
by considering the contributions up to the n ¼ 3 term in
the series expansion (26) for the number of states of the
quantum field. For simplicity, we shall consider here the
case of fðrÞ ¼ gðrÞ in the line element (4) and restrict
ourselves to a massless scalar field (i.e. m ¼ 0). In Ap-
pendix C, we shall extend the second-order results we
obtain in this section for the general case wherein fðrÞ �
gðrÞ and, in Appendix D, we extend the analysis to a
massive field, but restrict ourselves to the case fðrÞ ¼ gðrÞ.

A. Second order

Let us now evaluate the contribution due to the n ¼ 1
term in the series (26). For fðrÞ ¼ gðrÞ, we find that the
expression (25b) for second-order ‘‘momentum’’ P2ðrÞ can
be written as

P2ðrÞ ¼
�
Pð0Þ
2 ðrÞ

GðE; rÞ
�
þ 	ðrÞ

�
Pð1Þ
2 ðrÞ

G3ðE; rÞ
�
þ 	2ðrÞ

�
Pð2Þ
2 ðrÞ

G5ðE; rÞ
�
;

(30)

where the functions Pð0Þ
2 ðrÞ, Pð1Þ

2 ðrÞ, and Pð2Þ
2 ðrÞ are given by

Pð0Þ
2 ðrÞ ¼ �

�
g0

2r

�
;

Pð1Þ
2 ¼ g02ðrÞ

8gðrÞ �
3g0ðrÞ
4r

þ g00ðrÞ
8

þ 3gðrÞ
4r2

;

Pð2Þ
2 ¼ 5

32

�
g02ðrÞ
gðrÞ

�
2 � 5g0ðrÞ

8r
þ 5gðrÞ

8r2
;

(31)

and, for convenience, we have defined

G ðE; rÞ ¼ ½E � 	ðrÞ�1=2 (32)

with E ¼ E2 and 	ðrÞ being given by

	ðrÞ ¼ ½‘ð‘þ 1Þ@2�
�
gðrÞ
r2

�
: (33)

We now need to substitute the above expression for
P2ðrÞ in Eq. (27) and evaluate the number of modes �2

with the upper limit ‘max on the integral over ‘ being
determined by the condition that the term GðE; rÞ vanishes.
Clearly, the integral over ‘ will diverge in such a case. In
order to isolate the finite contribution due to these higher-
order WKBmodes, it is necessary that we follow a system-
atic procedure. The procedure we shall adopt is as follows.
We shall first rewrite all the terms containing inverse
powers of GðE; rÞ in terms of derivatives of E as follows:�

1

GðE; rÞ
�
¼ 2

�
@GðE; rÞ

@E

�
; (34a)

�
1

G3ðE; rÞ
�
¼ �4

�
@2GðE; rÞ

@E2

�
; (34b)

�
1

G5ðE; rÞ
�
¼

�
8

3

��
@3GðE; rÞ

@E3

�
: (34c)

Then, before evaluating the ‘ integral, we shall make use of
the Leibniz’s rule, viz.

@

@x

Z bðxÞ

aðxÞ
dtf½x; t� ¼ f½x; aðxÞ�

�
daðxÞ
dx

�
� f½x; bðxÞ�

�
�
dbðxÞ
dx

�
þ

Z bðxÞ

aðxÞ
dt

�
@fðx; tÞ
@x

�
;

(35)

and interchange the order of differentiation and integration
over the energy E and ‘. When we do so, we find that the

4The higher-order WKB procedure we use is different com-
pared to the approach used in the quasinormal modes [48–50]. In
Ref. [48], the Regge-Wheeler potential is expanded around the
maxima, and the modes close to the maxima are matched to the
one close to the horizon.
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divergences occur at the turning point. We have checked
the procedure up to the sixth-order WKB modes and, in-
deed, systematically separates the nondivergent part from
the divergent. For completeness, in Appendix B, we give
the details of the above procedure. [The procedure involves
calculating the contour integral around the branch cut that
joins the turning points. For details, see Sec. (10.7) of
Ref. [47].]

Having obtained the nondivergent part of the mode func-
tions as a function of E, our next step is to evaluate the
contribution of these modes to the density of states �2ðEÞ.
Using the general expression (27), we have

�2ðEÞ ¼ @

�

Z L

rHþh
dr

Z ‘max

0
d‘ð2‘þ 1ÞP2ðrÞ: (36)

Substituting for P2ðrÞ from Eq. (30) and using the relations
(34), we get

@�2ðEÞ ¼ 1

�

Z L

rHþh
dr

r2Pð2Þ
0 ðrÞ
2

Z E

0
d	

@GðE; rÞ
@E

� 1

�

�
Z L

rHþh
drr2Pð2Þ

1 ðrÞ
Z E

0
d		

@2GðE; rÞ
@E2

þ 1

�

�
Z L

rHþh
dr

3r2Pð2Þ
2 ðrÞ
2

Z E

0
d		2 @

3GðE; rÞ
@E3

:

(37)

Using the Leibniz rule (35) and following the steps
discussed in Appendix B, we get

�2ðEÞ ¼ E

@�

Z L

rHþh
dr

�
1

3
� 4rg0ðrÞ

3gðrÞ
þ r2

�
g0ðrÞ2
3gðrÞ2 �

g00ðrÞ
2gðrÞ

��
: (38)

The following points are worth noting regarding the above
expression: (i) In the case of leading-order WKB modes,
the density of states goes as E3 [see Eq. (A2)]. However,
for the second-order WKB modes the density of states
scales as E. (ii) As in the leading order, most of the
contributions to the entropy come close to the horizon.
(iii) The expression for the density of state (C3) for the
general spherically symmetric spacetime is the same as for
the special case discussed in this section. Hence, the de-
pendence on the entropy with area is identical to the special
case discussed in this section.

Substituting the above expression in Eq. (15), and inte-
grating over E, the free energy is

F2 ¼ � �

6@�2

Z L

rHþh
dr

�
1

3
� 4rg0ðrÞ

3gðrÞ
þ r2

�
g0ðrÞ2
3gðrÞ2 �

g00ðrÞ
2gðrÞ

��
: (39)

Using the relation (16), the entropy is given by

S2 ¼ �

3@�

Z L

rHþh
dr

�
1

3
� 4rg0ðrÞ

3gðrÞ þ r2
�
g0ðrÞ2
3gðrÞ2 �

g00ðrÞ
2gðrÞ

��
:

(40)

As mentioned above, the maximum contribution to the
entropy is from the modes close to the horizon. Hence, us-
ing the expansion (11) close to the horizon and the defini-
tion of surface gravity (8), we get

S2 ¼ 1

9

r2H
h2c

�
�
g00ðrHÞr2H

72
þ �

9
rH

�
log

�
r2H
h2c

�
; (41)

where hc is given by Eq. (14). This is the first result of this
paper, regarding which we would like to stress the follow-
ing points:
(1) The dependence of the entropy on area (from the

second-order WKB modes) is similar to that from
the zeroth-order WKB modes (A6). Also the con-
tribution to the entropy from the second-order WKB
modes contributes more as compared to the leading-
order WKB modes. This result has two immediate
consequences:

(a) To associate the brick wall entropy to SBH it is nec-
essary to calculate all the higher-order WKB mode
contributions to the brick wall entropy.

(b) The subleading corrections (at the zeroth and
second-order WKB) depend only on the surface
gravity and second derivative of the metric func-
tions. They are of the formF ðAHÞ logðAH=h

2
cÞ. To

confirm the generic structure for higher order, in the
next two subsections we evaluate fourth- and sixth-
order contributions to the brick wall entropy.5

(2) If the surface gravity is inversely proportional to
horizon radius and g00ðrHÞ is inversely proportional
to the square of the horizon radius, then the second
term in the right-hand side (RHS) of (41) is a con-
stant. In this case, the corrections to SBH are purely
logarithmic and do not contain any power-law de-
pendence. This uniquely corresponds to Schwarzs-
child spacetime.

In the case of Schwarzschild, we have

fðrÞ ¼ gðrÞ ¼ 1� 2M

r
; (42)

where M is the mass of the black hole. The horizon is at
rH ¼ 2M, � ¼ 1=ð4MÞ, and g00ðrHÞ ¼ �1=ð2M2Þ. Substi-
tuting the above expressions in Eq. (41), we get

S2 ¼ 4

9

M2

h2c
� 1

36
log

�
r2H
h2c

�
: (43)

5It should be noted that, in the case of sixth-order WKB
modes, the integral over E is divergent near E ! 0. However,
the near-horizon contribution of the entropy is identical to the
one obtained in this subsection. The fourth-order WKB modes
do not contribute to the brick wall entropy.
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This result shows that, at least, in the zeroth and second
order, there are no power-law corrections to SBH for the
four-dimensional Schwarzschild black hole, while, for all
other black holes—since � and g00ðrÞ have a more non-
trivial structure—there are power-law corrections to the
Bekenstein-Hawking entropy. This leads to the following
conclusion: The power-law corrections to the entropy oc-
cur for any nonvacuum solutions. In Sec. VI we obtain the
entropy for some known black hole solutions.

B. Fourth order

Using the expression (25c), we get

P4ðrÞ ¼ Pð0Þ
4 ðrÞ

G3ðE; rÞ þ
	ðrÞPð1Þ

4 ðrÞ
G5ðE; rÞ þ 	2ðrÞPð2Þ

4 ðrÞ
G7ðE; rÞ

þ 	3ðrÞPð3Þ
4 ðrÞ

G9ðE; rÞ þ 	4ðrÞPð4Þ
4 ðrÞ

G11ðE; rÞ ; (44)

where the complete form of PðiÞ
4 ðrÞ (where i goes from 0 to

4) are given in Appendix E.
Rewriting the above expressions in terms of the deriva-

tives of energy and following the procedure discussed in
Appendix B, the contribution to the density of states by the
fourth-order WKB modes is given by

�4ðEÞ ¼ @

�

Z L

rHþh
dr

�
�4Pð0Þ

4 ðrÞ @2

@E2

Z E

0
d	GðE; rÞ

þ 8

3
Pð1Þ
4 ðrÞ @3

@E3

Z E

0
d		GðE; rÞ � 16

15
Pð2Þ
4 ðrÞ

� @4

@E4

Z E

0
d		2GðE; rÞ þ 32

105
Pð3Þ
4 ðrÞ

� @5

@E5

Z E

0
d		3GðE; rÞ � 64

945
Pð4Þ
4 ðrÞ

� @6

@E6

Z E

0
d		4GðE; rÞ

�
: (45)

Integrating over 	, we get

�4ðEÞ ¼ cð4Þ0

E

Z L

rHþh
dr�ð4ÞðrÞ; (46)

where cð4Þ0 is a constant and �ð4ÞðrÞ is given in Eq. (E6).

Using the expansion (11) close to the horizon, we get

�4ðEÞ ¼ cð4Þ0 �

E

�
323rH�

2520ðr� rHÞ2
þ 5r2Hg

00ðrÞ � 20�rH
16ðr� rHÞ

�
:

(47)

This is the second result of the paper, regarding which we
would like to stress the following points: (i) The fourth-
order contributions to the density of states goes as 1=E.
Using the expression (15), it is easy to see that the fourth-
order contribution to the free energy is independent of
� and, hence, the contribution to the entropy vanishes.6

(ii) The density of states contribution close to the horizon
again depends only on the first- and second-order deriva-
tives of the metric. (iii) Comparing the fourth-order con-
tribution to the density of states with the leading and
second order, it is clear that the density of states scales as
E3�2n, where n is the order of the WKB modes.

C. Sixth order

Using the expression (25d), we get

P6ðrÞ ¼ Pð0Þ
6 ðrÞ

G5ðE; rÞ þ
	ðrÞPð1Þ

6 ðrÞ
G7ðE; rÞ þ 	2ðrÞPð2Þ

6 ðrÞ
G9ðE; rÞ

þ 	3ðrÞPð3Þ
6 ðrÞ

G11ðE; rÞ þ 	4ðrÞPð4Þ
6 ðrÞ

G13ðE; rÞ þ 	5ðrÞPð5Þ
6 ðrÞ

G15ðE; rÞ

þ 	6ðrÞPð6Þ
6 ðrÞ

G17ðE; rÞ ; (48)

where the complete form of PðiÞ
6 ðrÞ (where i goes from 0 to

6) are given in Appendix F.
Rewriting the above expressions in terms of the deriva-

tives of energy and following the procedure discussed in
Appendix B, the contribution to the density of states by the
sixth-order WKB modes is given by

�6ðEÞ ¼ @
3

�

Z L

rHþh
dr

�
8

3
Pð0Þ
6 ðrÞ @3

@E3

Z E

0
d	GðE; rÞ � 16

15
Pð1Þ
6 ðrÞ @4

@E4

Z E

0
d		GðE; rÞ þ 32

105
Pð2Þ
6 ðrÞ @5

@E5

Z E

0
d		2GðE; rÞ

� 64

945
Pð3Þ
6 ðrÞ @6

@E6

Z E

0
d		3GðE; rÞ þ 128

10 395
Pð4Þ
6 ðrÞ @7

@E7

Z E

0
d		4GðE; rÞ � 256

135 135
Pð5Þ
6 ðrÞ @8

@E8

Z E

0
d		5GðE; rÞ

þ 512

202 7025
Pð6Þ
6 ðrÞ @9

@E9

Z E

0
d		6GðE; rÞ

�
: (49)

6Note that, as mentioned earlier, the free-energy integral has an infrared (E ! 0) divergence.
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Integrating over 	, we get

�6ðEÞ ¼ cð6Þ0

E3

Z L

rHþh
dr�ð6ÞðrÞ; (50)

where cð6Þ0 is a constant �ð6ÞðrÞ is given by Eq. (F8).
Repeating the steps i.e. using the relation [Eq. (15)] ob-
taining the free energy, substituting the free energy in (16)
and expanding the metric close to horizon using Eq. (11),
we get

S6



¼ � 13 892�2

45 045

r2H
h2c

þ
�
9�2

77
g00ðrHÞr2H þ 30�2

77
�rH

�

� log

�
r2H
h2c

�
: (51)

This is the third result of the paper, regarding which we
would like to stress the following points: (i) The sublead-
ing corrections (like the zeroth- and second-order WKB)
depend only on the surface gravity and the second deriva-
tive of the metric functions. This indeed implies that the
brick wall entropy does indeed provide generic corrections
to the Bekenstein-Hawking entropy at all orders. We have
shown this to be the case up to sixth order. It is natural to
expect this to be valid for all higher orders. (ii) As men-
tioned above, the density of states in each order is given by
E3�n. (iii) 
 in the above expression is due to the fact that
the E divergences as E ! 0. Thus, the above expression for
the entropy depends on the infrared cutoff.

V. HIGHER-ORDER CONTRIBUTIONS
IN SIX DIMENSIONS

In this section, we obtain the zeroth- and second-order
WKB mode contributions to the brick wall entropy in six-
dimensional black hole spacetime. The analysis can be ex-
tended to any even dimensional spacetime, however, the
analysis in odd-dimensional spacetime is more involved.7

We show that the results of the brick wall entropy in
the zeroth- and second-order WKB modes have the same
structure confirming the results of four dimensions and has
the following generic form:

Sð6DÞBW ¼ SBH þ GðAHÞ þF ð6DÞðAHÞ log
�
AH

‘2Pl

�
: (52)

A. Zeroth order

In the case of D ¼ 4, the weight function (28) becomes

W ð‘Þ ¼ ð‘þ 1Þð‘þ 2Þ
6

: (53)

Substituting the above expression in (27), the density of
states for the zeroth-order WKBmodes [for fðrÞ ¼ gðrÞ] is

�ð6DÞ
0 ¼ 1

@
3�

Z L

rHþh
dr

r2

gðrÞ2
Z E

0
d	

�
	r2

@
2gðrÞ þ 2

�
GðE; rÞ;

(54)

where GðE; rÞ is given by (32) and

	 ¼ lðlþ 3Þ@2 gðrÞ
r2

: (55)

Repeating the procedure discussed in the previous section,
the zeroth-order brick wall entropy is given by

Sð6DÞ0 ¼ 32�5

945�5
@
5

Z L

rHþh
dr

r4

gðrÞ3 þ
8�2

135�3
@
3

�
Z L

rHþh
dr

r2

gðrÞ2 : (56)

Expanding the metric near the horizon (11), up to third
order, and using the relation (14), the zeroth-order entropy
is given by

Sð6DÞ0 ¼ r4H
3780h4c

þGð0ÞðrHÞ þF ð0ÞðrHÞ log
�
r2H
h2c

�
; (57)

where

G ð0ÞðrHÞ ¼ r2H
15 120h2c

½�3g00ðrHÞr2H þ 16�rH þ 56�

F ð0ÞðrHÞ ¼ þ rH
60 480

½ð2�g000ðrHÞ � 3g00ðrHÞ2Þr3H
þ 24g00ðrHÞ�r2H � 224�þ ð56g00ðrHÞ
� 48�2ÞrH�:

(58)

As in the four dimensions, the leading-order term in the
above expression (57) is proportional to area (Bekenstein-
Hawking area relation). The subleading term has two
parts: (a) one that contains purely power-law corrections
[Gð0ÞðrHÞ] that is absent in the case of four dimensions.

(b) The logarithmic term contains a prefactor which, in
general, is a function of area as in four dimensions.
F ð0ÞðrHÞ, as in four dimensions, depend up to the second

derivative of the metric close to the horizon while Gð0ÞðrHÞ
depend up to the third derivative of the metric close to the
horizon.

B. Second order

Substituting Eq. (53) in Eq. (25b), the contribution to the
density of states from the second-order WKB modes is
given by

7This can be traced to the fact that the wave propagation in
these spacetimes are nonlocal. For more discussion, see
Refs. [51,52].
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�ð6DÞ
2 ¼ 1

�@

Z L

rHþh
dr

�
Pð0Þ
26 ðrÞ

Z E

0
d	W ð	Þ@GðE; rÞ

@E

þ 4Pð1Þ
26 ðrÞ

Z E

0
d	W ð	Þ	ðrÞ@

2GðE; rÞ
@E2

þ 8

3
Pð2Þ
26 ðrÞ

�
Z E

0
d	W ð	Þ	ðrÞ2 @

3GðE; rÞ
@E3

�
; (59)

where the degeneracy factor W ð	Þ in terms of 	 is
given by

W ð	Þ ¼ 	

@
2

r2

gðrÞ þ 2; (60)

and

Pð0Þ
26 ðrÞ ¼ � gðrÞ

r2
� g0ðrÞ

r
;

Pð1Þ
26 ðrÞ ¼

3gðrÞ2
4r4

� 3gðrÞg0ðrÞ
4r3

þ g0ðrÞ2
8r2

þ gðrÞg00ðrÞ
8r2

;

Pð2Þ
26 ðrÞ ¼

5gðrÞ3
8r6

� 5gðrÞ2g0ðrÞ
8r5

þ 5gðrÞg0ðrÞ2
32r4

: (61)

Repeating the procedure discussed in Appendix B, and
substituting the resultant in Eq. (15), we get

F2 ¼ �

�2
@

Z L

rHþh
dr

�
� r2g0ðrÞ2

54gðrÞ2 þ
3g00ðrÞr2 þ 14g0ðrÞr

108gðrÞ
þ 5

54

�
þ �3

�4
@
3

Z L

rHþh
dr

�
g00ðrÞr4 þ 6g0ðrÞr3

135gðrÞ2

� r4g0ðrÞ2
90gðrÞ3 �

2r2

135gðrÞ
�
: (62)

Substituting the above expression in Eq. (16) and expand-
ing the metric using (11) the second-order WKB mode
contribution to the brick wall entropy is given by

Sð6DÞ2 ¼ r4H
180h4c

þ Gð2ÞðrHÞ þF ð2ÞðrHÞ log
�
r2H
h2c

�
; (63)

where

G ð2ÞðrHÞ ¼ r2H
2160h2c

½80� r2Hg
00ðrHÞ�

F ð2ÞðrHÞ ¼ � rH
8640

½ðg00ðrHÞ2 � 2�g000ðrHÞÞr3H
� 8g00ðrHÞ�r2H � 800�� ð112�2

þ 40g00ðrHÞÞrH�:

(64)

This is the fourth result of this paper, regarding which we
would like to discuss the following: (i) As in the case of
four dimensions, the second-order WKB modes contrib-
utes the same to the brick wall entropy as the zeroth-order
modes. This again proves that, in order to associate the
brick wall entropy to the black hole entropy, it is necessary
to calculate all the higher-order WKB mode contributions.
(ii) As in the case of four dimensions, the dependence of

the entropy on the horizon area is the same in both the
orders. (iii) Gð2ÞðrHÞ [like Gð0ÞðrHÞ] has generic power-law
corrections to SBH and depend only up to the second
derivative of the metric near the horizon. F ð2ÞðrHÞ [like
F ð0ÞðrHÞ] has a prefactor which is a function of the area,

and—as in four dimensions—is a constant only for the
Schwarzschild spacetime.

VI. RESULTS FOR SPECIFIC BLACK HOLES

In this section, we shall explicitly write down the brick
wall entropy (evaluated up to the second order in the WKB
approximation) for a few well-known black hole solutions
in four and six spacetime dimensions. We shall restrict
ourselves to the cases wherein fðrÞ ¼ gðrÞ.

A. Four-dimensional examples

We find that, in four dimensions, on combining the
zeroth-order (A6) and the second-order (41) terms, the
total brick wall entropy can be expressed as

Sð4DÞBW ¼ SBH þF ð4DÞðAHÞ log
�
AH

‘2Pl

�
; (65)

where, in order for the leading term to match the
Bekenstein-Hawking entropy (2), we have set the brick
wall invariant cutoff hc to be

h2c ¼
�
11‘2Pl
90�

�
: (66)

and the quantity F ð4DÞðAHÞ is given by

F ð4DÞðAHÞ ¼ �
�
1

60

�
g00ðrHÞr2H �

�
1

10

�
�rH: (67)

1. Schwarzschild black hole

For the Schwarzschild black hole, the metric coefficients
are given by Eq. (42) and the event horizon of the black
hole is located at rH ¼ ð2MÞ. The surface gravity � and the
second derivative of the metric at the horizon are given by

� ¼
�
1

4M

�
; g00ðrHÞ ¼ �

�
1

2M2

�
: (68)

On substituting these expressions in Eq. (65), we ob-
tain that

Sð4DÞSch ¼ SBH �
�
1

60

�
log

�
AH

‘2Pl

�
: (69)

2. Schwarzschild (anti)de sitter spacetime

For the Schwarzschild (anti)de Sitter spacetime, the
metric function gðrÞ is given by

gðrÞ ¼
�
1� 2M

~r
� ~r2

l2

�
¼

�
1� 2

r
� r2

y

�
; (70)
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where y ¼ ðl=MÞ2, r ¼ ð~r=MÞ, M is the mass of the black
hole, l is related to the positive (negative) cosmological
constant and �ðþÞ corresponds to (anti)de Sitter space-
time. Note that the coordinates y and r are dimensionless.
While the Schwarzschild anti-de Sitter spacetime has only
one horizon associated with the singularity at the origin,
the Schwarzschild-de Sitter has two—one event and one
cosmological—horizons. Here, we shall focus on the en-
tropy associated with the event-horizon.

Recall that the event horizon is identified by the condi-
tion gðrÞ ¼ 0. On substituting the resulting rH correspond-
ing to the above gðrÞ in Eq. (65), we find that the brick wall
entropy up to the second order can be expressed as

Sð4DÞSch-ðaÞdS ¼ SBH �
�

�1=2

15A1=2
H

þAH

�y

�
log

�
M2AH

‘2Pl

�
; (71)

where AH defined in terms of the coordinate r is also
dimensionless. In contrast to the purely Schwarzschild case
wherein the prefactor to the logarithmic correction was a
constant, here the factor is a function of the horizon area.

3. Reissner-Nordström black hole

For the Reissner-Nordström black hole, we have

gðrÞ ¼
�
1� 2M

~r
þQ2

~r2

�
¼

�ðr� r�Þðr� rþÞ
r2

�
; (72)

where M and Q denote the mass and the electric charge of
the black hole. Also, r ¼ ~r=M and r� is the outer/inner
horizon given by

r� ¼
�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Q2

M2

s �
; (73)

where, again, r is a dimensionless variable. It is the outer
horizon rþ that is the event horizon of the black hole.

On substituting the above relations in Eq. (65), we ob-
tain the brick wall entropy up to the second order to be

Sð4DÞRN ¼ SBH �
�

�1=2

15A1=2
H

�
log

�
M2AH

‘2Pl

�
; (74)

where, again, AH defined in terms of r is dimensionless.
As in the previous example, the prefactor again turns out to
be a function of the horizon area AH.

B. Six-dimensional examples

On combining the zeroth-order (57) and the second-
order (63) terms, we find that the brick wall entropy for
six-dimensional black holes can be expressed as

Sð6DÞBW ¼ SBH þ GðAHÞ þF ð6DÞðAHÞ log
�
AH

‘4Pl

�
; (75)

where, as in the four-dimensional case, we have chosen the
invariant cutoff hc to be such that the leading term matches

the Bekenstein-Hawking entropy. The quantities hc,

GðAHÞ, F ð6DÞðAHÞ are given by

h4c ¼
�
11‘4Pl
1860�2

�
; (76)

F ð6DÞðAHÞ ¼
�

rH
30 240

�
½ð8�g000ðrHÞ � 5g002ðrHÞÞr3H

þ 40g00ðrHÞ�r2H þ 2688�

þ 8ð46�2 þ 21g00ðrHÞÞrH�; (77)

GðAHÞ ¼
�
31r4H
165‘4Pl

�
1=2

�
�

252

�
ð�5g00ðrHÞr2H

þ 8�rH þ 308Þ: (78)

1. Schwarzschild black hole

In six dimensions, the function gðrÞ for Schwarzschild
black holes is given by

gðrÞ ¼
�
1�

�
r0
r

�
3
�
; (79)

where r0 is related to the black hole mass (M) by the
relation

M ¼
�
2�r30
3�G6

�
; (80)

with G6 being the six-dimensional Newton’s constant
(which we shall hereafter set to unity). On using the defi-
nition (8) of the surface gravity � we find that

� ¼
�
3

2rH

�
; (81)

where rH ¼ r0. Substituting the derivatives of the above
metric function gðrÞ in the expression Eq. (75), we obtain
the brick wall entropy to be

Sð6DÞSch ¼ SBH þ 19�

63

ffiffiffiffiffiffiffiffi
155

33

s
r2H
‘2Pl

� 59

840
log

�
AH

‘4Pl

�

¼ SBH þ 19

63

ffiffiffiffiffiffiffiffi
155

88

s
A1=2

H

‘2Pl
� 59

840
log

�
AH

‘4Pl

�
; (82)

where in deriving the above expression we have used
the expression for the area of the 4-sphere i.e. AH ¼
ð8�2Þ=3r4H.
Unlike four dimension, there is a pure power-law cor-

rection term to the Bekenstein-Hawking entropy.

2. Schwarzschild (anti)de Sitter black hole

The line element for Schwarzschild (anti)de Sitter
spacetime is given by (4) with
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fðrÞ ¼ gðrÞ ¼ 1�
�
r0
~r

�
3 � ~r2

l2
¼ 1� 1

r3
� r2

y6
; (83)

where y6 ¼ ðl=r0Þ2, r ! ð~r=r0Þ, l is related to the posi-
tive (negative) cosmological constant, and �ðþÞ corre-
sponds to asymptotic (anti)de Sitter. Here again, for
Schwarzschild-de Sitter, we consider only the event-
horizon.

The event horizon is given by the condition gðr ¼ rHÞ ¼
0. Substituting these in Eq. (75), we get

Sð6DÞðAÞdS ¼ SBH � �

252

ffiffiffiffiffiffiffiffi
31

165

s
r20
‘2Pl

�
2r4H
y6

� 308r2H � 72

rH

�

�
�

19

1512

r4H
y26

þ r2H
10y6

þ 11

252y6rH
þ 1

15r3H

�

� log

�
r40
‘4Pl

AH

�
: (84)

Note that as in four dimensions,AH is dimensionless. The
above expression gives a series of power-law corrections
to SBH.

3. Reissner-Nordström black hole

For the 6-dimensional Reissner-Nordström black hole,
we have

fðrÞ ¼ gðrÞ ¼ 1�
�
r0
~r

�
3 þ �2

~r6
¼ 1�

�
1

~r

�
3 þ �

r6
; (85)

where the charge of the black hole is given by

Q ¼ 3

2�

�2

G6

; r ¼ ~r

r0
; � ¼ �2

r0
: (86)

As in four dimensions, this has two horizons—event and
Cauchy horizon. The event horizon (rH) is the outer hori-
zon while the inner horizon is the Cauchy horizon. Note
that � and r are dimensionless.

Substituting these in Eq. (75), we get

Sð6DÞRN ¼ SBH þ �

252

ffiffiffiffiffiffiffiffi
31

165

s
r20
‘2Pl

�
308r2H þ 72

rH
� 234�

r4H

�

þ
�
� 23�2

280r12H
þ �

140r9H
þ 3� 28�

840r6H
þ 1

15r3H

�

� log

�
r40
‘4Pl

AH

�
; (87)

where, again, AH is dimensionless. As can be seen, this
also generates a series of power-law corrections to the
Bekenstein-Hawking entropy.

4. Boulware-Deser black hole

The Boulware-Deser black hole [53] is an exact spheri-
cally symmetric solution of the Einstein action modified by
the quadratic Gauss-Bonnet combination, i.e.,

I ¼ 1

16�G6

Z
d6x

ffiffiffiffiffiffiffi�g
p ½Rþ �gbðR2 � 4RabR

ab

þ RabcdR
abcdÞ�; (88)

where �gb is the Gauss-Bonnet coupling. The line element

is given by (4), where

fðrÞ ¼ gðrÞ ¼ 1þ ~r2

6 ~	

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 12!~	

~r5

s �

¼ 1þ r2

6	

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 12	

r5

s �
; (89)

where ~	 ¼ 12�gb, r ¼ ~r!�1=3, 	 ¼ ~	!�2=3, and ! is

related to the ADM mass (MADM) by the relation

MADM ¼ !

4�
AH: (90)

Note that the rescaled variables r, 	 are dimensionless. The
horizon is given by the condition fðrÞ ¼ 0 and occurs at
r ¼ rH such that

r3H þ 3	rH � 1 ¼ 0: (91)

The existence of the horizon requires 	 > 0 and which then
gives rH3 < 1. The surface gravity of the event horizon is
given by

� ¼ !�1=3

2rH

�
1þ 2r3H
2� r3H

�
: (92)

Substituting these in Eq. (75), we get

Sð6DÞGB ¼ SBH þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
148 955

523 908

s
!2=3�

‘2Pl

�
r2H þ 7r2H

31ð2� r3HÞ

� 25r2H
31ð2� r3HÞ2

�
þ

�
125

216

1

ð2� r3HÞ6
� 1175

756

� 1

ð2� r3HÞ5
þ 725

504

1

ð2� r3HÞ4
� 649

7560
þ 355

756

� 1

ð2� r3HÞ2
þ 17

189

1

2� r3H
� 655

756

1

ð2� r3HÞ3
�

� log

�
!4=3

‘4Pl
AH

�
: (93)

It is instructive to stress the implications of this result: (i) In

the limit of the 	 ! 0 limit, Sð6DÞGB reduces to Sð6DÞSch . (ii) The

subleading corrections to the Bekenstein-Hawking entropy
for the Boulware-Deser black hole have been obtained
earlier by other authors (see, for instance, Ref. [54]). Us-
ing the Noether charge, it was shown that

SNCGB ¼ SBH þ 8�2!�4=3

‘4Pl
	r2H: (94)

Comparing the two results we see that the subleading cor-
rections in the brick wall approach, unlike the Noether

SUBLEADING CONTRIBUTIONS TO THE BLACK HOLE . . . PHYSICAL REVIEW D 78, 024003 (2008)

024003-13



charge approach, can be completely specified by the hori-
zon properties.

VII. DISCUSSION

A. Summary

As we have pointed out repeatedly, the brick wall model
has been a very popular approach that has been utilized to
recover the Bekenstein-Hawking entropy SBH in a multi-
tude of situations [27–42]. In all these efforts, it is only the
leading term in the WKB expansion (26) that has been
taken into account in evaluating the density of states and
the associated free energy and entropy of quantum fields
around black holes. Also, the metric has almost always
been assumed to be of the Rindler form near the event
horizon.

In this work, we have extended the brick wall approach
to the higher orders in the WKB approximation. Moreover,
by expanding the metric functions fðrÞ and gðrÞ beyond
the leading order near the event horizon, we have been able
to evaluate the corrections to the Bekenstein-Hawking
entropy for spherically symmetric black holes in four and
six dimensions. To begin with, we have illustrated that
even the often considered zeroth-order term in the WKB
approximation leads to corrections to the Bekenstein-
Hawking entropy, provided the metric functions are ex-
panded beyond the linear order near the horizon. Second,
we have shown that all the higher-order terms in the WKB
approximation have the same form as the zeroth-order
term. Last, we find that the higher-order WKB terms
actually contribute more to the entropy than the lower or-
der terms.

Specifically, we have shown that, up to the second order
in the WKB approximation, the brick wall entropy of four-
dimensional black holes can be expressed as

Sð4DÞBW ¼ SBH þF ð4DÞðAHÞ log
�
AH

‘2Pl

�
;

where F ð4DÞðAHÞ / An
H with n < 1. Whereas, in six

dimensions, we find that the brick wall entropy up to the
second order has the form

Sð6DÞBW ¼ SBH þGðAHÞ þF ð6DÞðAHÞ log
�
AH

‘2Pl

�
;

where GðAHÞ / An
H and F ð6DÞðAHÞ / Am

H with
ðn;mÞ< 1. Note that, while the brick wall entropy in
four dimensions depends only on the first and the second
derivatives of the metric at the horizon, in six dimensions it
depends on the third derivative as well. It is tempting to
propose that, at least in even dimensions, the brick wall
entropy will depend on as many as derivatives of the metric
as half the number of spacetime dimensions. However, the
black hole entropy is a coordinate invariant concept. If
the brick wall entropy depends on arbitrary derivatives of
the metric functions at the horizon, then it is not a priori

evident that the resulting entropy will be coordinate in-
variant. We believe that this is an issue that needs to be
addressed satisfactorily.

B. Comparison with results from other approaches

Power-law and logarithmic corrections to the
Bekenstein-Hawking entropy SBH that we have obtained
in the brick wall approach have been encountered earlier in
a few other approaches to black hole entropy. For instance,
the Noether charge approach predicts a generic power-law
correction to the Bekenstein-Hawking entropy [15]. How-
ever, unlike our approach wherein the brick wall entropy
can be completely expressed in terms of the metric and
its first few derivatives at the event horizon, the Noether
charge entropy cannot be mapped to the horizon properties.
It is also interesting to note that, in the case of the four-
dimensional Reissner-Nordström black hole, for large hor-

izon area, i.e. when M � ‘Pl, the brick wall entropy Sð4DÞRN

[cf. Eq. (74)] reduces to

Sð4DÞRN ’ SBH �
�
2�1=2

15

��
1

A1=2
H

� ‘2PlA
3=2
H

M2

�
: (95)

Similar power-law corrections arise on evaluating the en-
tanglement entropy of such black holes [24]. This behavior
seems to suggest a possible relationship between the brick
wall model and the approach due to entanglement entropy.
Another interesting feature is the absence of power-law
corrections in case of four-dimensional Schwarzschild
black hole. It seems to indicate that power-law corrections
to the Bekenstein-Hawking entropy are related with the
presence of matter. The logarithmic corrections that we
have obtained as in Eq. (69) for the case of the four-
dimensional Schwarzschild black hole have also been ar-
rived at in other methods such as the approach through
conformal field theory [19], statistical fluctuations around
thermal equilibrium [23], and spin foam models [18].
However, it should be pointed out that the prefactor to
the logarithmic term that we obtain turns out to be different
from the one that arises in the other approaches.

C. A few words on the divergences

The divergence that results in the need of a brick wall
cutoff arises even at the leading order in the WKB approxi-
mation, and is, obviously, well known. So, it is not at all
surprising that such a divergence occurs at the higher or-
ders terms as well. However, in addition to the brick wall
divergence, we seem to encounter three more types of
divergences at the higher orders. The first is the divergence
that occurs at the upper limit when integrating over ‘ in the
higher orders and the second is an infrared divergence that
arises at a sufficiently high order when integrating over E
(as in the case of the sixth-order term in four dimensions).
As we mentioned above, the higher-order terms contribute
more to the brick wall entropy than the lower orders.
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Therefore, the third and last is a divergence that can arise if
we get around to summing over all the terms n.

The first of these additional divergences is associated
with the turning points. Such divergences are known to oc-
cur at the higher orders in the WKB approximation even in
nonrelativistic quantum mechanics. Evidently, these di-
vergences are not a feature of the field theory, but a feature
of the approximation. The procedure we have adopted to
isolate and discard these divergences effectively deals
with them.

In contrast, the remaining two divergences that occur at
the higher orders are field theoretic divergences. The in-
frared divergence is clearly one as it arises when integrat-
ing over all the modes. In the context of the leading-order
results, it has been argued that the brick wall divergence
can be absorbed into the renormalization of the Newton’s
constant [30,41]. Clearly, if the higher-order WKB terms
continue to contribute more to the brick wall entropy than
the lower order ones, then a divergence will arise when the
contributions from all the orders are summed over. We be-
lieve that, when working at the higher orders in the WKB
approximation, these additional divergences need to be ac-
commodated in a renormalization procedure, along with
the brick wall divergence itself.

D. Outlook

Since the odd-dimensional cases are analytically more
involved, after first working in four dimensions, we had
jumped to consider six-dimensional black holes. Needless
to add, it will be interesting to extend the current analy-
sis to black holes in odd-dimensional spacetimes. The
Banados-Teitelboim-Zanelli black hole in three dimen-
sions [55,56] and the five-dimensional Boulware-Deser
black hole [53] are interesting cases that are to be studied.
The canonical entropy has been calculated exactly around
the Banados-Teitelboim-Zanelli black hole (see, for ex-
ample, Ref. [57]), and the entropy of the Boulware-Deser
black hole is expected to contain a power-law correction
( / A1=3

H ) to the Bekenstein-Hawking entropy (see, for

instance, Ref. [54]). It will be worthwhile to investigate
how the brick wall entropy compares with these results. We
hope to consider these cases in a future publication.
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APPENDIX A: RECOVERING SBH

FROM BRICK WALL

In the first part of the Appendix, we provide the steps
leading to the SBH in the Schwarzschild-like coordinate
system, i.e. fðrÞ ¼ gðrÞ in the line element (4). In the
second part, we obtain the same in the tortoise coordinate
(5). As mentioned in Sec. III, the brick wall model assumes
that the WKB mode functions are a good approxima-
tion for the radial modes near the horizon. In the case of
Schwarzschild-like coordinate system, it is not apparent
whether such an approximation is valid.

1. Schwarzschild-like coordinate

In the case of a massless scalar field, the leading-order
WKB modes are given by

P0 ¼ � 1

gðrÞ
�
E2 � gðrÞL

2

r2

�
1=2

: (A1)

Substituting the above expression in Eq. (27), we get

�0ðEÞ ¼ 2E3

3@3

Z L

rHþh

r2dr

g2ðrÞ : (A2)

Substituting the above expression in (15) and integrating
over E, the free energy F now reads

F0 ¼ � 2�3

45@3
1

�4

Z L

rHþh

r2

g2ðrÞdr; (A3)

and the entropy is

S0 ¼ 8�3

45@3
1

�3

Z L

rHþh

r2

g2ðrÞdr: (A4)

On expanding the metric near the horizon up to the first
order, we recover the following standard result [12]:

SðStdÞ0 ¼ r2H
90h2c

: (A5)

However, if we expand the metric to higher orders (11),
we get

S0 ¼ r2H
90h2c

þ
�
�rH
90

� g00ðrHÞr2H
360

�
log

�
r2H
h2c

�
: (A6)

It is interesting to note that the form of the brick wall
entropy in the lowest-order WKB is same as the one
obtained in the higher-order WKB. See Sec. IV for details.

2. Tortoise coordinates

For the case fðrÞ ¼ gðrÞ in (4), the tortoise coordinate
simplifies to
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x ¼
Z dr

gðrÞ : (A7)

As mentioned in Sec. II, in the Rindler approximation (10)
the new radial coordinate x takes the form x ¼ logðr�
rHÞ=g0ðrHÞ. Thus, the horizon r ¼ rH corresponds to
x ! �1. Hence the tortoise coordinate cover the range
ð�1;1Þ. The massless scalar field propagating in the
background (5) is nothing but the Regge-Wheeler equation
given by

d2R̂

dx2
þ ½!2 � VRW½rðxÞ��R̂ ¼ 0; (A8)

where

VRW½rðxÞ� ¼ lðlþ 1Þ
r2

gðrÞ þ gðrÞg0ðrÞ
r

: (A9)

The Regge-Wheeler potential decays exponentially near
the event horizon and as a power-law near spatial infinity
(for asymptotically flat spacetimes), i.e.,

V½rðxÞ� ’x!�1 expð2�hxÞ; V½rðxÞ� ’x!1 1

x2
:

(A10)

Thus, the general solution to Eq. (A8) as x ! �1 can be
written as a superposition of plane waves:

R̂½x� 	x!�1 C�
1 expði!xÞ þ C�

2 expð�i!xÞ; (A11)

where C�
1 , C

�
2 are the constants determined by the choice

of the boundary conditions. Thus, in other words, theWKB
modes are a good approximation for the radial modes close
to the horizon.

Using the procedure discussed in Sec. III, the leading-
order density of states is given by

�ðxÞ
0 ðEÞ ¼ � 2

3�@3

Z L

�H
dx

r2

gðrÞ
�
E2 � gðrÞg0ðrÞ

r

�
3=2

;

(A12)

where H is a large positive number corresponding to the
cutoff h. At the linear order in the near-horizon approxi-
mation we finally obtain

�ðxÞ
0 ðEÞ ¼ � 2

3�@3

Z L

�H
dx

E3r2H
g0ðrHÞ expð�2�xÞ

¼ � E3

6�@3
r2H
�2

expð2�HÞ: (A13)

Following the procedure discussed above, the leading-
order free energy and the entropy are given by

FðxÞ
0 ¼ � �3

90@3�4

r2H
�2

expð2�HÞ (A14)

SðxÞ0 ¼ r2H
180

� expð2�HÞ: (A15)

Now, we want to express this entropy in terms of invariant
cutoff Hc defined as

Hc ¼
Z �H

�1
dr


ffiffiffiffiffiffiffiffiffi
gðrÞ

q
¼

ffiffiffiffi
2

�

s
expð�H�Þ: (A16)

Using this invariant cutoff, the final expression of entropy
is given by

SðxÞ0 ¼ r2H
90H2

c

: (A17)

The entropy obtained in the tortoise coordinate is the same
as obtained in the Schwarzschild coordinate.

APPENDIX B: ISOLATING THE
FINITE CONTRIBUTION

In this Appendix, we shall outline how we isolate the
finite part of the integrals using the Leibniz rule (35).
The first integral in the RHS of Eq. (37) does not lead to

any divergent term. Using the relation (35)—with aðEÞ ¼
0, bðEÞ ¼ E—we getZ E

0
d	Pð0Þ

2 ðrÞ@GðE; rÞ
@E

¼ @

@E

Z E

0
d	Pð0Þ

2 ðrÞGðE; rÞ: (B1)

The second and third integral in the RHS of Eq. (37) lead to
divergent terms. The origin of the divergent terms can be
associated to the breakdown of WKB approximation at the
turning point (E). In order to see this, we evaluate the two
integrals explicitly.
Using the relation (35) in the second integral of Eq. (37),

we get

Z E

0
	
@2GðE; rÞ

@E2
d	 ¼ @

@E

Z E

0
	
@GðE; rÞ

@E
d	

� E
@GðE; rÞ

@E

��������at E¼	

¼ @2

@E2

Z E

0
	ðrÞGðE; rÞd	

� E

ðE � 	Þ1=2
��������at E¼	

; (B2)

where we have used Eq. (B1) to obtain the second
equation.
Using the relation (35) in the third integral of Eq. (37),

we get

Z E

0
	2 @

3GðE; rÞ
@E3

d	 ¼ @3

@E3

Z E

0
d		2GðE; rÞ �

�
@

@E

�
�

E2

2GðE; rÞ
�
� E2

4G3ðE; rÞ
���������E¼	

:

(B3)

From Eqs. (B2) and (B3), it is clear that both the in-
tegrals have a finite and a divergent part. The divergence
occurs at the turning point E ¼ 	. This is not a physical
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divergence, this is occurring due to the fact that the WKB
approximation is not valid close to the turning points.
However, it can be shown that by introducing a cutoff close
to the turning point the results are independent of the
cutoff. (For details, see Sec. (10.7) in Ref. [47].)

APPENDIX C: SECOND-ORDER CONTRIBUTION
WHEN fðrÞ � gðrÞ

Earlier, in Sec. IVA, we had computed the brick wall
entropy at the second order in the WKB approximation for
the specific case wherein fðrÞ ¼ gðrÞ in the line element
(4). In this Appendix, we shall obtain the corresponding

result for the more general case of fðrÞ � gðrÞ. For sim-
plicity, we shall again consider a massless field.
When fðrÞ � gðrÞ, we find that, the ‘‘momentum’’ at the

second order P2ðrÞ [cf. Eq. (25b)] can be written as

PðGÞ
2 ðrÞ ¼

�
Pð0Þ
2GðrÞ

GðE; rÞ
�
þ 	ðrÞ

�
Pð1Þ
2GðrÞ

G3ðE; rÞ
�
þ 	2ðrÞ

�
Pð2Þ
2GðrÞ

G5ðE; rÞ
�
;

(C1)

where GðE; rÞ is given by Eq. (32). We have defined the

functions Pð0Þ
2GðrÞ, Pð1Þ

2GðrÞ, and Pð2Þ
2GðrÞ to be

Pð0Þ
2GðrÞ ¼ �

�
GðrÞf0ðrÞ
4rfðrÞ

�
�

�
GðrÞg0ðrÞ
4rgðrÞ

�
;

Pð1Þ
2GðrÞ ¼

�
3GðrÞfðrÞ

4r4

�
�

�
5GðrÞf0ðrÞ

8r3

�
þ

�
GðrÞf0ðrÞ2
16r2fðrÞ

�
�

�
GðrÞfðrÞg0ðrÞ

8r3gðrÞ
�
þ

�
GðrÞf0ðrÞg0ðrÞ

16r2gðrÞ
�
þ

�
GðrÞf00ðrÞ

8r2

�
;

Pð2Þ
2GðrÞ ¼

�
5GðrÞfðrÞ2

8r6

�
�

�
5GðrÞfðrÞf0ðrÞ

8r5

�
þ

�
5GðrÞf0ðrÞ2

32r4

�
;

(C2)

with the quantity GðrÞ given by Eq. (19). Then we find that
the number of states at the second order �ðGÞ

2 ðEÞ can be
expressed as follows:

�ðGÞ
2 ðEÞ ¼

�
1

�@

�Z L

rHþh
dr

�
2Pð0Þ

2GðrÞ
@

@E

Z E

0
d	GðE; rÞ

� 4Pð1Þ
2GðrÞ

@2

@E2

Z E

0
d		GðE; rÞ

þ
�
8

3

�
Pð2Þ
2GðrÞ

@3

@E3

Z E

0
d		2GðE; rÞ

�
: (C3)

Repeating the procedure discussed in Appendix B to iden-
tify and ignore the divergences in the above expression and
substituting this expression in the integral (15) for the free
energy, we obtain that

FðGÞ
2 ¼

�
�

36�@

�Z L

rHþh

drGðrÞ
gðrÞf3ðrÞ ½4f

2ðrÞgðrÞ

� 16rfðrÞf0ðrÞgðrÞ þ 7r2f02ðrÞgðrÞ
� 3r2fðrÞf0ðrÞg0ðrÞ � 6r2fðrÞgðrÞf00ðrÞ�: (C4)

Using the relation (16) and expanding the functions fðrÞ an
gðrÞ about the event horizon as in Eq. (11), we obtain the
expression for the entropy to be

SðGÞ
2 ¼

�
r2H
9h2c

�
�

��
g00ðrHÞ
144

�
þ

�
f00ðrHÞg0ðrHÞ
48f0ðrHÞ

�

þ
�
4�rH
9�@

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
g0ðrHÞ
f0ðrHÞ

s �
log

�
r2H
h2c

�
: (C5)

APPENDIX D: SECOND-ORDER CONTRIBUTION
FOR A MASSIVE FIELD

In Sec. IVA, we had evaluated the brick wall entropy at
the second order for a massless field in four spacetime
dimensions. We had considered the specific case wherein
fðrÞ ¼ gðrÞ in the line element (4). In this Appendix, we
shall discuss the corresponding result for a massive field.
For a massive field, the quantity P2ðrÞ as given by

Eq. (25b) can be expressed as follows:

PðmÞ
2 ðrÞ ¼

�
Pð0Þ
2 ðrÞ

GðmÞðE; rÞ
�
þ

�
	ðrÞPð1Þ

2 ðrÞ þ Pð0Þ
2mðrÞ

G3
mðE; rÞ

�

þ
�
	2ðrÞPð2Þ

2 ðrÞ þ 	ðrÞ½Pð1Þ
2mðrÞ þ Pð2Þ

2mðrÞ�
G5

mðE; rÞ
�
;

(D1)

where we have defined the functions Pð0Þ
2mðrÞ, Pð1Þ

2mðrÞ, and
Pð2Þ
2mðrÞ to be

Pð0Þ
2mðrÞ ¼

�
m2

8

�
½g02ðrÞ þ gðrÞg00ðrÞ�;

Pð1Þ
2mðrÞ ¼

�
5m2gðrÞg0ðrÞ

16r3

�
½2gðrÞ þ rg0ðrÞ� and

Pð2Þ
2mðrÞ ¼

�
5

32

�
½m4gðrÞg02ðrÞ�;

(D2)

with the quantity GmðE; rÞ being given by

G mðE; rÞ ¼ ½E � 	ðrÞ �m2gðrÞ�1=2: (D3)
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Carrying out the procedure we had discussed in Appen-
dix B to identify and discard the divergences, we obtain the

second-order density of states �ðmÞ
2 ðEÞ for the massive field

to be

�ðmÞ
2 ðEÞ¼

�
1

2@�

�Z L

rHþh
drr2

�
Pð0Þ
2 ðrÞ @

@E

Z Em

0
d	GðmÞðE;rÞ

�2Pð1Þ
2 ðrÞ @

2

@E2

Z Em

0
d		GðmÞðE;rÞþ4Pð0Þ

2mðrÞ
@2

@E2

�
Z Em

0
d	GðmÞðE;rÞþ

�
4

3

�
Pð2Þ
2 ðrÞ @

3

@E3

�
Z Em

0
d		2GðmÞðE;rÞþ

�
8

3

�
½Pð1Þ

2mðrÞ

þPð2Þ
2mðrÞ�

@3

@E3

Z Em

0
d		GðmÞðE;rÞ

�
; (D4)

where Em ¼ ½E �m2gðrÞ�. As in the massless case, on
expanding the function gðrÞ near the event horizon as in

Eq. (11), we find that �ðmÞ
2 ðEÞ can be expressed as

�ðmÞ
2 ðEÞ ¼

�
1

�@�

�Z L

rHþh
dr

�
�
�

2ErH
3ðr� rHÞ

�

þ
�

Er2H
3ðr� rHÞ2

�
�

�
Er2Hg

00ðrHÞ
12ðr� rHÞ�

�

þ
�

m2r2H�

Eðr� rHÞ
��

: (D5)

Note that the last term containing the massm of the field is
inversely proportional to E. Recall that, in Sec. IVB, we

had encountered such a behavior at the fourth order for the
massless field [cf. Eq. (47)]. As we had then pointed out,
such a dependence on the energy E in the number of states
leads to a free energy that turns out to be independent of the
inverse temperature � and, hence, the term does not con-
tribute to the entropy. Therefore, the massless and the
massive fields lead to the same entropy at the second order
in the WKB approximation.

APPENDIX E: EXPLICIT FORMS OF PðiÞ
4 ðrÞ

The functions PðiÞ
4 ðrÞ (where i goes from 0 to 4) are given

by

Pð0Þ
4 ðrÞ ¼ � 5

2
gðrÞPð0Þ

2 ðrÞ2 � gðrÞ
r

g0ðrÞPð0Þ
2 ðrÞ

� 1

4
g0ðrÞ2Pð0Þ

2 ðrÞ � 3

4
gðrÞg0ðrÞP0ð0Þ

2 ðrÞ

� 1

4
gðrÞPð0Þ

2 ðrÞg00ðrÞ � 1

4
gðrÞ2P00ð0Þ

2 ðrÞ; (E1)

Pð1Þ
4 ðrÞ ¼ �5gðrÞPð0Þ

2 ðrÞPð1Þ
2 ðrÞ þ 5

4r3
½gðrÞ2g0ðrÞPð0Þ

2 ðrÞ

þ gðrÞ3P0ð0Þ
2 ðrÞ� � 5

8r2
½gðrÞPð0Þ

2 ðrÞg0ðrÞ2

þ gðrÞ2g0ðrÞP0ð0Þ
2 ðrÞ� � 1

r
gðrÞg0ðrÞPð1Þ

2 ðrÞ

� 1

4
½g0ðrÞ2Pð1Þ

2 ðrÞ þ 3gðrÞg0ðrÞP0ð1Þ
2 ðrÞ

þ gðrÞg00ðrÞPð1Þ
2 ðrÞ þ gðrÞ2P00ð1Þ

2 ðrÞ�; (E2)

Pð2Þ
4 ðrÞ ¼ �5gðrÞPð0Þ

2 ðrÞPð2Þ
2 ðrÞ � 5

2
gðrÞPð1Þ

2 ðrÞ2 � 3

16
gðrÞg0ðrÞP0ð2Þ
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½gðrÞg00ðrÞPð2Þ

2 ðrÞ þ gðrÞ2P00ð2Þ
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2 ðrÞ þ 5
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gðrÞ3g0ðrÞPð0Þ
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2r4

�
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gðrÞ2g0ðrÞ2Pð0Þ

2 ðrÞ
�
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½15gðrÞ2g0ðrÞPð1Þ

2 ðrÞ þ 9gðrÞ3P0ð1Þ
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r
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2 ðrÞ � 1

8r2
½11g0ðrÞ2gðrÞPð1Þ
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þ 9gðrÞ2g0ðrÞP0ð1Þ

2 ðrÞ þ 2gðrÞ2g00ðrÞPð1Þ
2 ðrÞ�; (E3)

Pð3Þ
4 ðrÞ ¼ �5gðrÞPð1Þ

2 ðrÞPð2Þ
2 ðrÞ � 23

4r6
gðrÞ4Pð1Þ

2 ðrÞ þ 23gðrÞ3Pð1Þ
2 ðrÞg0ðrÞ

4r5
� 1

r4

�
3gðrÞ3Pð2Þ

2 ðrÞ � 23

16
gðrÞ2g0ðrÞ2Pð1Þ

2 ðrÞ
�

þ 1

4r3
½25gðrÞ2Pð2Þ

2 ðrÞg0ðrÞ þ 13gðrÞ3P0ð2Þ
2 ðrÞ� � 1

8r2
½17gðrÞPð2Þ

2 ðrÞg0ðrÞ2 þ 13gðrÞ2g0ðrÞP0ð2Þ
2 ðrÞ

þ 4gðrÞ2Pð2Þ
2 ðrÞg00ðrÞ�; (E4)

Pð4Þ
4 ðrÞ ¼ � 49

4r6
gðrÞ4Pð2Þ

2 ðrÞ þ 49

4r5
gðrÞ3g0ðrÞPð2Þ

2 ðrÞ � 5

2
gðrÞPð2Þ
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16r4
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2 ðrÞ; (E5)
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�ð4ÞðrÞ ¼ 323

10080

r2g0ðrÞ4
gðrÞ2 þ 101r2g0ðrÞ2g00ðrÞ � 631rg0ðrÞ3

1680gðrÞ þ 7r2

840
½g00ðrÞ2 þ 7g0ðrÞgð3ÞðrÞ þ 5gð4ÞðrÞgðrÞ� þ r
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�½155g0ðrÞg00ðrÞ þ 252gð3ÞðrÞgðrÞ� þ 467g0ðrÞ2 þ 150g00ðrÞgðrÞ
420

þ 17
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gðrÞ2
r2

� 1223

2520

g0ðrÞgðrÞ
r

: (E6)

APPENDIX F: EXPLICIT FORMS OF PðiÞ
6 ðrÞ

The functions PðiÞ
6 ðrÞ (where i goes from 0 to 6) are given by

Pð0Þ
6 ðrÞ ¼ �2gðrÞ2Pð0Þ

2 ðrÞ3 � 5gðrÞPð0Þ
2 ðrÞPð0Þ
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4 ðrÞg0ðrÞ2; (F1)

Pð1Þ
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6 ðrÞ ¼ �gðrÞ4
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4 ðrÞ� � 3gðrÞ3

r4
½gðrÞPð0Þ

2 ðrÞPð1Þ
2 ðrÞ

þ Pð1Þ
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2 ðrÞ

�
; (F3)
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Pð3Þ
6 ðrÞ ¼ � gðrÞ4

4r6
½9gðrÞPð0Þ

2 ðrÞPð1Þ
2 ðrÞ þ 49Pð1Þ

4 ðrÞ� þ g0ðrÞgðrÞ3
4r5

½9gðrÞPð0Þ
2 ðrÞPð1Þ

2 ðrÞ þ 49Pð1Þ
4 ðrÞ� � 9

4r4
gðrÞ4

�
Pð1Þ
2 ðrÞ2

þ 2Pð0Þ
2 ðrÞPð2Þ

2 ðrÞ þ 2

gðrÞP
ð2Þ
4 ðrÞ

�
� gðrÞ2g0ðrÞ2

16r4
½9gðrÞPð0Þ

2 ðrÞPð1Þ
2 ðrÞ þ 49Pð1Þ

4 ðrÞ� � gðrÞ4
4r3

�
13Pð2Þ

2 ðrÞP0ð0Þ
2 ðrÞ

� 7Pð0Þ
2 ðrÞP0ð2Þ

2 ðrÞ þ 3gðrÞ4Pð1Þ
2 ðrÞP0ð1Þ

2 ðrÞ � 17

gðrÞP
0ð2Þ
4 ðrÞ

�
þ gðrÞ3g0ðrÞ

4r3

�
35

gðrÞP
ð2Þ
4 ðrÞ þ 6Pð1Þ

2 ðrÞ2

þ 12Pð0Þ
2 ðrÞPð2Þ

2 ðrÞ
�
� gðrÞ

4
½3g0ðrÞP0ð3Þ

4 ðrÞ þ g00ðrÞPð3Þ
4 ðrÞ� � 3

8r2
gðrÞ3g00ðrÞ

�
Pð1Þ
2 ðrÞ2 þ 2Pð0Þ

2 ðrÞPð2Þ
2 ðrÞ

� 2

gðrÞP
ð2Þ
4 ðrÞ

�
� gðrÞg0ðrÞ2

8r2
½23g0ðrÞPð2Þ

4 ðrÞ þ 17gðrÞP0ð2Þ
4 ðrÞ� þ gðrÞ3g0ðrÞ

8r2
½13Pð2Þ

2 ðrÞP0ð0Þ
2 ðrÞ

þ 3Pð1Þ
2 ðrÞP0ð1Þ

2 ðrÞ � 7Pð0Þ
2 ðrÞP0ð2Þ

2 ðrÞ� � gðrÞg0ðrÞ
r

½gðrÞPð1Þ
2 ðrÞPð2Þ

2 ðrÞ þ Pð3Þ
4 ðrÞ� � 2gðrÞ2Pð1Þ

2 ðrÞ3

� 12gðrÞ2Pð0Þ
2 ðrÞPð1Þ

2 ðrÞPð2Þ
2 ðrÞ � 1

4
gðrÞ2P00ð3Þ

4 ðrÞ � 5gðrÞ½Pð2Þ
2 ðrÞPð1Þ

4 ðrÞ þ Pð1Þ
2 ðrÞPð2Þ

4 ðrÞ þ Pð0Þ
2 ðrÞPð3Þ

4 ðrÞ�

þ gðrÞg0ðrÞ2
4

½gðrÞPð1Þ
2 ðrÞPð2Þ

2 ðrÞ � Pð3Þ
4 ðrÞ� þ gðrÞ3

4
½3P0ð1Þ

2 ðrÞP0ð2Þ
2 ðrÞ � 2Pð1Þ

2 ðrÞP00ð2Þ
2 ðrÞ � 2Pð2Þ

2 ðrÞP00ð1Þ
2 ðrÞ

� Pð1Þ
2 ðrÞP00ð2Þ

2 ðrÞ�; (F4)

Pð4Þ
6 ðrÞ ¼ � gðrÞ5

8r6

�
3Pð1Þ

2 ðrÞ2 þ 46Pð0Þ
2 ðrÞPð2Þ

2 ðrÞ þ 166

gðrÞP
ð2Þ
4 ðrÞ

�
� gðrÞ2g00ðrÞ

r2
½gðrÞPð1Þ

2 ðrÞPð2Þ
2 ðrÞ þ Pð3Þ

4 ðrÞ� þ g0ðrÞgðrÞ4
8r5

�
�
46Pð0Þ

2 ðrÞPð2Þ
2 ðrÞ þ 3Pð1Þ

2 ðrÞ2 þ 166

gðrÞP
ð2Þ
4 ðrÞ

�
� 6gðrÞ3

r4
½gðrÞPð2Þ

1 ðrÞPð2Þ
2 ðrÞ þ Pð3Þ

4 ðrÞ� � gðrÞ3g0ðrÞ2
32r4

�
�
3Pð1Þ

2 ðrÞ2 þ 46Pð0Þ
2 ðrÞPð2Þ

2 ðrÞ þ 166

gðrÞP
ð2Þ
4 ðrÞ

�
� g0ðrÞgðrÞ

2r
½gðrÞPð2Þ

2 ðrÞ2 þ 2Pð4Þ
4 ðrÞ� þ gðrÞ2

4r3

� ½16gðrÞg0ðrÞPð1Þ
2 ðrÞPð2Þ

2 ðrÞ þ 45gðrÞPð3Þ
4 ðrÞ þ 84gðrÞP0ð3Þ

4 ðrÞ� � gðrÞ4
4r3

½9Pð2Þ
2 ðrÞP0ð1Þ

2 ðrÞ

þ gðrÞ4Pð1Þ
2 ðrÞP0ð2Þ

2 ðrÞ� � gðrÞg00ðrÞ
4

½gðrÞPð2Þ
2 ðrÞ2 þ Pð4Þ

4 ðrÞ� þ gðrÞ3g0ðrÞ
8r2

�
9Pð2Þ

2 ðrÞP0ð1Þ
2 ðrÞ � Pð1Þ

2 ðrÞP0ð2Þ
2 ðrÞ

� 21

gðrÞP
0ð3Þ
4 ðrÞ � 29

g0ðrÞ
gðrÞ P

ð3Þ
4 ðrÞ

�
� 6gðrÞ2½Pð1Þ

2 ðrÞ2Pð2Þ
2 ðrÞ þ Pð0Þ

2 ðrÞPð2Þ
2 ðrÞ2� � 5gðrÞ½Pð2Þ

2 ðrÞPð2Þ
4 ðrÞ

þ Pð1Þ
2 ðrÞPð3Þ

4 ðrÞ þ Pð0Þ
2 ðrÞPð4Þ

4 ðrÞ� þ 1

8
gðrÞg0ðrÞ

�
g0ðrÞPð2Þ

2 ðrÞ2 � 2
g0ðrÞ
gðrÞ P

ð4Þ
4 ðrÞ � 6P0ð4Þ

4 ðrÞ
�

þ 1

8
gðrÞ3

�
P0ð2Þ
2 ðrÞ2 � 2Pð2Þ

2 ðrÞP00ð2Þ
2 ðrÞ � 2

gðrÞP
00ð4Þ
4 ðrÞ

�
; (F5)

Pð5Þ
6 ðrÞ ¼ � 5gðrÞ4

4r6
½gðrÞPð1Þ

2 ðrÞPð2Þ
2 ðrÞ þ 25Pð3Þ

4 ðrÞ� þ 5g0ðrÞgðrÞ2
4r5

½gðrÞPð1Þ
2 ðrÞPð2Þ

2 ðrÞ þ 25Pð3Þ
4 ðrÞ� � 15

4r4
gðrÞ3½gðrÞPð2Þ

2 ðrÞ2

þ 2Pð4Þ
4 ðrÞ� � 5

16r4
gðrÞ2g0ðrÞ2½gðrÞPð1Þ

2 ðrÞPð2Þ
2 ðrÞ þ 25Pð3Þ

4 ðrÞ� þ 5gðrÞ2g0ðrÞ
4r3

½2gðrÞPð2Þ
2 ðrÞ2 þ 11gðrÞ2Pð4Þ

4 ðrÞ�

� 5gðrÞ3
4r3

½gðrÞPð2Þ
2 ðrÞP0ð2Þ

2 ðrÞ þ 25P0ð4Þ
4 ðrÞ� � 35gðrÞg0ðrÞ2

8r2
Pð4Þ
4 ðrÞ þ 5gðrÞ3g0ðrÞ

8r2
½gðrÞPð2Þ

2 ðrÞP0ð2Þ
2 ðrÞ � 5P0ð4Þ

4 ðrÞ�

� 6gðrÞ2Pð1Þ
2 ðrÞPð2Þ

2 ðrÞ2 � 5g00ðrÞgðrÞ2
8r2

½gðrÞPð2Þ
2 ðrÞ2 � 2Pð4Þ

4 ðrÞ� � 5gðrÞ½Pð2Þ
2 ðrÞPð3Þ

4 ðrÞ þ Pð1Þ
2 ðrÞPð4Þ

4 ðrÞ�; (F6)
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Pð6Þ
6 ðrÞ ¼ 5

8r6
gðrÞ4½gðrÞPð2Þ

2 ðrÞ2 � 70Pð4Þ
4 ðrÞ� � 5gðrÞ3g0ðrÞ

8r5
½gðrÞPð2Þ

2 ðrÞ2 � 70Pð4Þ
4 ðrÞ� þ 5gðrÞ2g0ðrÞ2

32r4
½gðrÞPð2Þ

2 ðrÞ2

� 70Pð4Þ
4 ðrÞ� � 2gðrÞ2Pð2Þ

2 ðrÞ3 � 5gðrÞPð2Þ
2 ðrÞPð4Þ

4 ðrÞ; (F7)

�ð6ÞðrÞ

¼9341gðrÞ4
180180r4

�4741g0ðrÞgðrÞ3
16380r3

þ1308784g00ðrÞgðrÞ3þ3926504g0ðrÞ2gðrÞ2
5765760r2

�536120gð3ÞðrÞgðrÞ3þ3719032g0ðrÞg00ðrÞgðrÞ3þ2869040g0ðrÞ3gðrÞ
5765760r

þ213928gð4ÞðrÞgðrÞ3þ761280g00ðrÞ2gðrÞ2þ1261208g0ðrÞgð3ÞðrÞgðrÞ2þ1508748g0ðrÞ2g00ðrÞgðrÞþ435674g0ðrÞ4
5765760

þrð137280gð5ÞðrÞgðrÞ3þ947804g00ðrÞgð3ÞðrÞgðrÞ2þ903188g0ðrÞgð4ÞðrÞgðrÞ2þ462228g0ðrÞg00ðrÞ2gðrÞÞ
5765760

þrð971568g0ðrÞ2gð3ÞðrÞgðrÞ2�4496g0ðrÞ3g00ðrÞgðrÞ�24496g0ðrÞ5Þ
5765760gðrÞ

þr2ð3473g0ðrÞ6�27895gðrÞg00ðrÞg0ðrÞ4þ84032gðrÞ2gð3ÞðrÞg0ðrÞ3þ113100gðrÞ2g00ðrÞ2g0ðrÞ2Þ
5765760gðrÞ2

þr2ð183898gðrÞ3gð4ÞðrÞg0ðrÞ2þ316316gðrÞ3g00ðrÞgð3ÞðrÞg0ðrÞþ99528gðrÞ4gð5ÞðrÞg0ðrÞÞ
5765760gðrÞ2

þr2ð40040gðrÞ3g00ðrÞ3þ61776gðrÞ4gð3ÞðrÞ2þ123552gðrÞ4g00ðrÞgð4ÞðrÞþ12012gðrÞ5gð6ÞðrÞÞ
5765760gðrÞ2 : (F8)
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