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We evolve equal-mass, equal-spin black-hole binaries with specific spins of a=mH � 0:925, the highest

spins simulated thus far and nearly the largest possible for Bowen-York black holes, in a set of

configurations with the spins counteraligned and pointing in the orbital plane, which maximizes the

recoil velocities of the merger remnant, as well as a configuration where the two spins point in the same

direction as the orbital angular momentum, which maximizes the orbital hangup effect and remnant spin.

The coordinate radii of the individual apparent horizons in these cases are very small and the simulations

require very high central resolutions (h�M=320). We find that these highly spinning holes reach a

maximum recoil velocity of �3300 km s�1 (the largest simulated so far) and, for the hangup configu-

ration, a remnant spin of a=mH � 0:922. These results are consistent with our previous predictions for the

maximum recoil velocity of �4000 km s�1 and remnant spin; the latter reinforcing the prediction that

cosmic censorship is not violated by merging highly spinning black-hole binaries. We also numerically

solve the initial data for, and evolve, a single maximal-Bowen-York-spin black hole, and confirm that the

3-metric has an Oðr�2Þ singularity at the puncture, rather than the usual Oðr�4Þ singularity seen for

nonmaximal spins.
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I. INTRODUCTION

Highly spinning black holes play an important role in
astrophysics, from powering active galactic nuclei (AGN),
to �-ray bursts (GRB) and quasars. While the (indirect)
observational evidence for the existence of black holes,
stellar mass or supermassive, is overwhelming, the actual
observational evidence for black-hole spin is scarce. There
have been attempts to measure the central black-hole spin
in AGN [1,2], Seyfert galaxies [3], and quasars [4]. The x-
ray spectra of accretion disks around stellar mass black
holes can also provide information about their spins [5–7].

The recent dramatic breakthroughs in the numerical
techniques to evolve black-hole-binary spacetimes [8–10]
has led to rapid advancements in our understanding of
black-hole physics. Notable among these advancements
are developments in mathematical relativity, including
systems of partial differential equations and gauge choices
[11–13], the exploration of the cosmic censorship [14–18],
and the application of isolated horizon formulas [15,16,19–
22]. These breakthroughs have also influenced the develop-
ment of data analysis techniques through the matching of
post-Newtonian to fully numerical waveforms [23–26]. In
particular, the moving punctures approach proved to work
in a wider realm than was originally thought. Notably, it
has been successfully applied to many-black-hole space-
times [27,28], and to black-hole-neutron star evolutions
[29–32]. Similarly, the recent discovery of very large
merger recoil kicks [33–40] has had a great impact in the

astrophysical community, with several groups now seeking
for observational traces of such high speed holes as the by-
product of galaxy collisions [41–44].
The first study of generic black-hole-binary configura-

tions (i.e. binaries with unequal component masses and
spins, and spins not aligned with each other or the orbital
angular momentum) was described in Ref. [33], and, based
on the results of that study, a semiempirical formula to
estimate the recoil velocities of the remnant black holes
was proposed, finding recent confirmation in [35,45,46].
The spin contributions to the recoil velocity are generally
larger than those due to the unequal masses, and, in par-
ticular, the spin component in the orbital plane has the
largest effect [33], leading to a maximum recoil velocity of
about 3500–4000 km s�1 [35]. The recoil velocities ac-
quired by the remnant of the merger of black-hole binaries
has many interesting astrophysical consequences [33], par-
ticularly since spinning black holes can accelerate the
merged hole high enough to eject the remnant from the
host galaxy. Recently a quasar, displaying blueshifted
emission lines by 2650 km=s with respect to its host gal-
axy, has been observed [47].
In all the above simulations, the evolution was started

using conformally flat initial data. This choice has the
advantage of being easy to implement, with the (appar-
ently) minor drawback of introducing a short, nonphysical
burst of radiation at the start of the simulation. Apart from
this initial burst, there appears to be no unphysical behavior
associated with conformally flat initial data, and this
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choice remains popular (see Refs. [48,49] for more astro-
physically realistic initial data using post-Newtonian in-
formation). The simplest initial data, Bowen-York (BY),
gives the extrinsic curvature, Kij, analytically by assuming

that it is transverse and traceless (see [50] for an alternative
prescription). A particularly interesting feature of the con-
formally flat ansatz for the 3-metric is that these data
cannot model maximally rotating Kerr black holes (such
holes are not conformally flat in any smooth slice), but
have a limiting spin [50,51] of S=M2

ADM � 0:928 for BY
data and S=M2

ADM � 0:932 for conformally Kerr extrinsic
curvature [50]. Here S denotes the spin of the black hole
(BH) and MADM the total Arnowitt-Deser-Misner (ADM)
mass.

The spin of the merger remnant is similarly important
both because high-spin black holes are more efficient at
converting accreting matter into radiation than lower-spin
holes, and because of open questions regarding cosmic
censorship. This issues have already been studied in the
‘‘Lazarus’’ approach to numerical evolutions [52] and in
early evolutions using the ‘‘moving punctures’’ approach
[14–16]. Recently the issue has been revisited in the con-
text of unequal mass holes [17,18,53–55], and highly
elliptical, equal-mass binaries [56,57]. In the current
work we show that, for the maximum possible spin for
Bowen-York black holes, the merger remnant will always
have submaximal spins.

This paper is organized as follows: in Sec. II A we
describe the Bowen-York initial data for a single spinning
black hole and how one can obtain the maximum possible
spin for a Bowen-York black hole; in Sec. II C we describe
how we obtain initial data for black-hole binaries with
nearly maximal BY spin; in Sec. III we describe the
numerical techniques used to evolve these binaries; in
Sec. IV we give the results and analysis from the numerical
evolutions; and in Sec. V present our conclusions.

II. INITIAL DATA

An initial data set for the Einstein vacuum equations is
given by a triple ðM; �ij; KijÞ, whereM is a connected 3-

dimensional manifold, �ij a (positive definite) Riemannian

metric, and Kij a symmetric tensor field on M, such that

the constraint equations

DjK
ij �DiK ¼ Ji; (1)

R� KijK
ij þ K2 ¼ 2�; (2)

are satisfied on M, where D and R are the Levi-Civita
connection and the Ricci scalar associated with �ij, and

K ¼ Kij�
ij. The vector Ji and the scalar function � are

determined by the stress energy tensor of the sources which
describes the matter content of the spacetime. In these
equations the indices are moved with the metric �ij and

its inverse �ij.

A. Maximum spin Bowen-York initial data

The Bowen-York family of initial sets [58] represents a
relevant class of data suitable for numerical simulations of
black-hole binaries. They are constructed using the con-
formal method for solving the constraint equations (1) and
(2) (for a recent review on this method see [59] and
references therein). Let us consider one member of this
family, namely, the spinning Bowen-York data. These data
describe a (nonstationary) black hole with intrinsic angular
momentum. In order to construct the data we prescribe ~Kij,
a symmetric, trace-free and divergence-free tensor with
respect to the flat metric �ij:

~K ij ¼ 6

r3
nði�jÞklSknl; (3)

where r is the spherical radius, ni the corresponding radial
unit normal vector, �ijk the flat volume element, and Sk an
arbitrary constant vector which will give the total spin of
the data. In this equation the indices are moved with the flat
metric �ij. The data are given by

�ij ¼ ’4�ij Kij ¼ ’�10 ~Kij; (4)

where the conformal factor satisfies the following equation
[which is the conformal version of the Hamiltonian con-
straint (2)]:

�’ ¼ � 18S2sin2�

8r6’7
: (5)

where S2 ¼ SiSj�
ij and � is the flat Laplacian.

For any solution’ of Eq. (5) the metric �ij andKij given

by (4) define a solution of the vacuum (i.e. Ji ¼ � ¼ 0)
constraint equations (1) and (2). In order to find a unique
and physically relevant solution of (5), we need to impose
appropriate boundary conditions for ’. This is essentially
equivalent to prescribe the manifold M of the initial data.
For example, Eq. (5) is singular at r ¼ 0, it follows that the
solution ’ cannot be regular at r ¼ 0 and hence the origin
can not be in the manifoldM. That is R3 is not allowed as
manifold in this class of initial data. In the present case the
manifold will be M ¼ R3 n f0g, the origin r ¼ 0 repre-
sents another end of the initial data.
Boundary conditions for black holes are prescribed as

follows. Let mp > 0 be an arbitrary number. Define the
function u by

’ ¼ 1þmp

2r
þ u: (6)

Using (5) we obtain an equation for u outside the origin:

�u ¼ � 18rS2sin2�

8ðrþ mp

2 þ ruÞ7 : (7)

If u is positive (this will be the case as a consequence of the
maximum principle) then the denominator of Eq. (7) never
vanishes and hence this equation is regular at the origin.
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The idea is to impose this equation also at the origin, that
is, we want to solve (7) in R3 with a boundary condition at
infinity

lim
r!1u ¼ 0: (8)

It is well known that for each mp > 0 there exists a unique
solution u of (7) which satisfies the boundary condition (8).
The solution is positive and from standard elliptic theory it
follows that it is smooth outside the origin and it isC2 at the
origin [this loss of differentiability is due to the presence of
the function r on the right-hand side of Eq. (7) which is not
smooth at the origin]. This is what in the numerical rela-
tivity is called the puncture method [60]; the parameter mp

is called the mass parameter of the puncture. By Eq. (6),
the singular part of ’ at r ¼ 0 is Oð1=rÞ, this implies that
the physical fields �ij; Kij are asymptotically flat at the end

r ¼ 0.
The physical parameters of the data are given by Swhich

represent the angular momentum of the data and the total
ADM mass MADM, which is given by the following for-
mula:

MADM ¼ mp þmu; (9)

where mu is the coefficient Oð1=rÞ of u, that is
u ¼ mu

2r
þOð1=r2Þ (10)

as r! 1. Note that in order to calculate the total mass
MADM we need to solve the nonlinear equation (7).

The solution u depends on the coordinates x and the two
parameters mp and S. However, there exists a scale invari-
ance for Eq. (7). Namely, if we have a solution uðmp; S; xÞ,
for parameters S and mp, then the rescaled function
uð�mp; �2S; �xÞ, where � is an arbitrary positive number,
is also a solution. This means that the solution depends
nontrivially only on one parameter. We chose to fix S and
varymp. Note that the following quotient is scale invariant:

�S ¼ S

M2
ADM

: (11)

For a Kerr black hole we have �S � 1 and �S ¼ 1 implies
that the black hole is extreme. For general axially sym-
metric vacuum black holes (which, in particular, includes
the spinning Bowen-York data), we also have �S � 1
[61,62] and �S ¼ 1 if and only if the data are slices of
extreme Kerr black hole. Since the Bowen-York data are
not slices of the extreme Kerr black hole, it follows that
�S < 1 for this family. What is the maximum value for �S
in this family? This question was explored numerically in
[50,51,63]. In these references it was observed that in the
limit S! 1 (for fixed mp) the ratio �S reaches an asymp-
totic maximum value. Because of the scaled invariance
mentioned above, this limit is equivalent to mp ! 0, with
S fixed. What was not clear at all is that in fact in the limit
we get a well behaved solution of the constraint equation.
This is precisely the question we want to answer here. That

is, we want to give numerical evidence that the limit

uðS; xÞ ¼ lim
mp!0

uðmp; S; xÞ (12)

exists and defines a solution of the constraint equations. An
analytical proof of this is detailed in [64]. We will call this
new solution the extreme Bowen-York spinning data be-
cause it has the maximum amount of angular momentum
per mass in this family [65].
In the limit mp ! 0 the difference between ’ and u is

just a constant and Eq. (7) becomes singular at the origin,
hence the limit solution u cannot be regular at the origin. If
we assume that u ¼ Oðr�Þ at r ¼ 0 for some real number
�, using Eq. (7) we get that � ¼ �1=2. That is, we expect
the following behavior at the origin:

u ¼ O
�
1ffiffiffi
r

p
�
: (13)

This behavior is confirmed by the numerical simulations
presented in Sec. II B.
We have seen that the limit solution u has a different

falloff behavior at the origin than the family uðmpÞ for
mp > 0, in particular, the conformal factor for mp > 0
behaves like Oð1=rÞ at r ¼ 0 but in the limit mp ! 0 it
behaves like Oð1= ffiffiffi

r
p Þ. This implies a change in the falloff

behavior off the physical fields at the end r ¼ 0. This end
will not be asymptotically flat in the extreme limit.
We illustrate the same phenomena with two important

examples. The first one is the Reissner-Nordström black-
hole initial data. In isotropic coordinates, a canonical slice
t ¼ const for the Reissner-Nordström black-hole space-
time with mass MADM and charge q (for a black hole we
always have q � MADM) defines the following initial data
set:

�ij ¼ ’4�ij; Kij ¼ 0; Ji ¼ 0; � ¼ q2

r4’8
;

(14)

where the conformal factor is given by

’ ¼ 1

2r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqþ 2rþMADMÞð�qþ 2rþMADMÞ

q
: (15)

The conformal factor satisfies the following equation [ana-
log to Eq. (5)]:

�’ ¼ � q2

4r4’3
: (16)

For this solution define the parameter

mp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

ADM � q2
q

; (17)

and the function u by

u ¼ ’� 1�mp

2r
: (18)

For mp > 0, the function u is bounded at r ¼ 0. The
extreme limit q! MADM corresponds to mp ! 0. In this
limit we have
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’ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MADM

r
þ 1

s
; u ¼ ’� 1; (19)

and hence’ ¼ u ¼ Oð1= ffiffiffi
r

p Þ. Note that, although Eq. (16)
is different from (5), the powers of r and ’ on the right-
hand side are such that if we assume u ¼ Oðr�Þ at r ¼ 0
we get � ¼ �1=2 as in the Bowen-York spinning black
hole.

The second example is given by the Kerr black-hole
initial data in quasi-isotropic coordinates. Let S and
MADM be the total angular momentum and mass of the
Kerr spacetime. Define the parameter mp by

mp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

ADM � a2
q

; a ¼ S

M2
ADM

: (20)

As in the previous example, the extreme limit
ffiffiffi
S

p ! MADM

of the Kerr metric corresponds to mp ! 0. The explicit
expression of these data can be found in [66]; in this
reference it is proved that the conformal factor behaves
in a similar way as the Reissner-Nordström in the limit
mp ! 0. For completeness, we reproduce this calculation
and adapt it to our setting. We use the coordinate trans-
formation [67]

r ¼ �r

�
1þmþ a

2�r

��
1þm� a

2�r

�
; (21)

where r is the standard Boyer-Lindquist radial coordinate,
which puts the Kerr metric in the quasi-isotropic form

ds2 ¼ �4
K½e�2qK ðd�r2 þ �r2d�2Þ þ �r2 sin�2d�2�; (22)

where ds2 is the spatial line element,

e�2qK ¼ r2 þ a2cos2�

r2 þ a2 þ 2ma2rsin2�
r2þa2cos2�

; (23)

and

�4
K ¼ �r�2

�
r2 þ a2 þ 2ma2rsin2�

r2 þ a2cos2�

�
: (24)

The function �4 has the expansion

�4
K ¼ ða2 �m2Þ2

16�r4
þm3 � a2m

2�r3
þ a2 þ 3m2

2�r2
þ (25)

2mð�2 cosð2�Þa2 þ a2 þm2Þ
ðm2 � a2Þ�r þOð1Þ (26)

when a < m. However, for a ¼ m expansion (25) is sin-
gular. In this case �4 has the form

�4
K ¼ 4mðmþ �rÞð2m2 þ 2�rmþ �r2Þ

�r2ðcosð2�Þm2 þ 3m2 þ 4�rmþ 2�r2Þ þ 1; (27)

which has the expansion

�4
K ¼ 8m2

ðcosð2�Þ þ 3Þ �r2 þ
32mcos2ð�Þ

ðcosð2�Þ þ 3Þ2 �rþOð1Þ: (28)

Thus the behavior of �K changes from

�K �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 �m2

p
=ð2�rÞ þOð1Þ

to

�K �
ffiffiffiffiffiffiffiffiffiffiffiffi
2m=�r

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos2�

4
p þOðr1=2Þ

in the extremal case a ¼ m (the horizon is then mapped to
the limiting surface �r ¼ 0). Hence, just as in the maximal
Bowen-York case, the �r ¼ 0 coordinate singularity corre-
sponds to an end which is not asymptotically flat.

B. Numerical test of highly spinning BY initial data

We first solve the initial data for one black hole pre-
sented in Sec. II A. We used a modified version of
BAM_ELLIPTIC thorn [60,68] in order to solve for the case

where S=M2 ¼ 1 (hereM denotes a scale factor) andmp ¼
0 on a uniform grid with resolution h ¼ 0:0035M and outer
boundary at 0:64M (here we are only interested in the
singular behavior, which is not affected by inaccurate
boundary data). In order to avoid the singularity itself,
we constructed the grid such that the origin was located
halfway between gridpoints. We fit �xx along the lines y ¼
z ¼ h=2 and x ¼ y ¼ h=2 to the form: �xx ¼ aþ
b=ðx2 þ 2c2Þ (with a similar form for z) and perform a
nonlinear least-squares fit (see Fig. 1). We find that
�xxðxÞ ¼ 11:483þ 2:5042=ðx2 þ 2ð0:002 310 57Þ2 and
�xxðzÞ ¼ 265:319þ 1:913 25=ðx2 þ 2ð0:001 929 25Þ2Þ.
Note that the c parameter differs from the expected h=2 but

−0.04 −0.02 0 0.02 0.04
x/M , z/M

10
3

10
4

10
5

10
6

γ xx

γxx(x)
γxx(z)
fit (x)
fit (z)

FIG. 1 (color online). The �xx component of the metric on the
initial slice for a single spinning, nonboosted black hole located
at the origin with S ¼ 1M2 and the puncture mass parameter
mp ¼ 0. Here we plot �xx versus x (y ¼ z ¼ 0:001 75M) and z
(x ¼ y ¼ 0:001 75M) and fits to �xx ¼ aþ b=ðx2 þ 2c2Þ (with
a similar form for z). Note that �xx / 1=r2 is consistent with the
expected ’ / 1=

ffiffiffi
r

p
.
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this functional form captures the expected singular behav-
ior to high accuracy. In Fig. 2 we plot the function u for
various choices of mass parameter mp for a configuration

consisting of two black holes, one at the origin and one at
x ¼ �20M, with the former hole having spin S=M2 ¼ 1
and the latter nonspinning. From the plot one can see that,
although u is finite, u ends to 1=

ffiffiffi
r

p
as mp tends to zero.

We are not able to calculate the ADMmassMADM of the
data, because we needed very high resolution near the
puncture r ¼ 0, leaving too few points outside the horizon.
Instead, we compute the horizon mass mH given by mH ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

irr þ S2=ð4m2
irrÞ

q
, where mirr is the irreducible mass (it is

expected for these kinds of data that mH � MADM, there
exists however no proof of this conjecture). Analogous to
the ratio (11) we define the quasilocal ratio a=mH, where
a ¼ S=mH. For these data the maximum possible value of
this quantity is given by a=mH � 0:93 [50,69].

Even the horizon mass mH is difficult to resolve at the
initial surface (the horizon is located at only one point r ¼
0); we need to perform the evolution of the data to compute
it at later times.

These data have axial symmetry and then the spin is a
conserved quantity. One part of the radiation emitted by the
data will fall into the black hole increasing its area and the
other part will scape to infinity. Hence, the ratio a=mH will
monotonically decrease during the evolution. This is pre-
cisely what we observed in the numerical evolution pre-
sented in Fig. 3.

In order to measure the horizon mass and the quotient
a=mH in this case, we performed a second unigrid run, this
time using fisheye [70,71], with a central resolution of h ¼
M=64 and outer boundaries at 65M. Initially the horizon

has a coordinate radius of zero (akin to extreme Kerr in
quasi-isotropic coordinates) that grows to r� 0:3M at t ¼
15M as it absorbs the spurious radiation produced by the
conformally flat initial data. In Fig. 3 we show the horizon
mass and specific quotient for this run. Note the rapid drop
off in the ratio a=mH between t ¼ 10M and t ¼ 15.
Because of the relatively poor resolution of this run, and
the short evolution time, it is not clear if it asymptotes to
a=mH ¼ 0:933, or will continue to drop to the numerically
predicted value of 0.928.

C. Spinning-black-hole-binary initial data

The initial data techniques of Sec. II A can be extended
to multiple spinning black holes with linear momentum
[60]. Here too the 3-metric on the initial slice has the form
�ab ¼ ð BL þ uÞ4�ab, where  BL is the Brill-Lindquist
conformal factor, �ab is the Euclidean metric, and u is
(at least) C2 on the punctures. The Brill-Lindquist confor-
mal factor is given by  BL ¼ 1þP

i¼1m
p
½i�=ð2j~r� ~r½i�jÞ,

where the sum is over all punctures, mp
½i� is the mass

parameter of puncture i (mp
½i� is not the horizon mass

associated with puncture i), and ~r½i� is the coordinate

location of puncture i (we use the notation ½i� to distinguish
the puncture label from the tensor indices in the equations
below). The extrinsic curvatureKab is given by the Bowen-
York (BY) ansatz [58] and has the form Kab ¼ ’�10 ~Kab,
where

~Kab ¼ X
i

3

2j~r� ~r½i�j2
ð2Pða

½i�n
bÞ
½i� � ð�ab � na½i�n

b
½i�ÞPci n½i�cÞ

þ 3

j~r� ~r½i�j3
ð2S½i�cn½i�d�cdðanbÞ½i�Þ; (29)

−0.1 −0.05 0 0.05 0.1
x/M

1

10

100

u(
x,

y=
0,

z=
0)

mp=0.4
mp=0.2
mp=0.1
mp=0.05
mp=0.025
1/sqrt(r)

FIG. 2 (color online). The function u for finite mp in the
neighborhood of the puncture. Here the data consists of two BH
(the second BH is located at x=M ¼ �20 and is not shown). The
BH at the origin has spin parameter S=M2 ¼ 1. Note that u
approaches 1=

ffiffiffi
r

p
as mp tends to zero.

10 15 20 25 30
t/M

0.93

0.935

0.94

0.945

0.95

0.955

0.96

a/mH

a/
m

H
m

/M
H

1.025

1.029

1.033

1.037
mH

FIG. 3 (color online). The horizon mass and specific spin for a
maximal BY black hole. Here S ¼ 1M2 and mp ¼ 0. Note that
the spin drops rapidly to about a=mH ¼ 0:934 (and is still
dropping) after the hole absorbs significant mass. The expected
asymptotic value is a=mH ¼ 0:928.
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’ ¼  BL þ u, ~n½i� ¼ ð~r� ~r½i�Þ=j~r� ~r½i�j, and ~P½i� and ~S½i�
are the linear and angular momenta of puncture i. As

shown in Sec. II A, for a single puncture, if mp ¼ 0, ~P ¼
0, and ~S � 0 then u is no longer finite at the puncture
location, but has a 1=

ffiffiffi
r

p
singularity. Under these condi-

tions, the resulting black hole will have the maximum
possible specific spin for Bowen-York-type data.

We compute and evolve the black-hole-binary data de-
scribed above. The ratio a=mH is a quasilocal quantity
which is well defined for individual black holes in a binary
system (in contrast with the ratio �S in which appears the
ADM mass which is a global quantity). We can obtain
specific ratios a=mH nearly equal to the maximum allowed
for BY holes by setting mp sufficiently small. For the runs
presented below, we use the puncture approach [60] along
with the TWOPUNCTURES [72] thorn to compute initial data
for black-hole binaries. In Fig. 4 we show the isolated
horizon spin for the individual holes in a near maximally
spinning BY binary (configuration MR0 described below).
Note that the spins drop significantly within 10M–20M of
evolution.

III. NUMERICAL TECHNIQUES

We evolve the black-hole-binary data sets using the
LAZEV [9,73] implementation of the moving-puncture ap-

proach [9,10]. In our version of the moving-puncture ap-
proach we replace the BSSN [74–76] conformal exponent
�, which has logarithmic singularities at the punctures,
with the initially C4 field 	 ¼ expð�4�Þ. This new vari-

able, along with the other BSSN variables, will remain
finite provided that one uses a suitable choice for the
gauge. An alternative approach uses standard finite differ-
encing of � [10].
We use the CARPET [77] mesh refinement driver to

provide a ‘‘moving boxes’’ style mesh refinement. In this
approach refined grids of fixed size are arranged about the
coordinate centers of both holes. The CARPET code then
moves these fine grids about the computational domain by
following the trajectories of the two black holes.
We obtain accurate, convergent waveforms and horizon

parameters by evolving this system in conjunction with a
modified 1þ log lapse and a modified Gamma-driver shift
condition [9,78], and an initial lapse �ðt¼0Þ¼
2=ð1þ 4

BLÞ. The lapse and shift are evolved with

ð@t � 
i@iÞ� ¼ �2�K (30a)

@t

a ¼ Ba (30b)

@tB
a ¼ 3=4@t~�

a � �Ba: (30c)

These gauge conditions require careful treatment of 	, the
inverse of the three-metric conformal factor, near the
puncture in order for the system to remain stable
[9,71,79]. In Ref. [12] it was shown that this choice of
gauge leads to a strongly hyperbolic evolution system
provided that the shift does not become too large.
We use AHFINDERDIRECT [80] to locate apparent hori-

zons. We measure the magnitude of the horizon spin using
the isolated horizon [15,16,19–22] algorithm detailed in
[81]. This algorithm is based on finding an approximate
rotational Killing vector (i.e. an approximate rotational
symmetry) on the horizon, and given this approximate
Killing vector �a, the spin magnitude is

S½�� ¼ 1

8


I
AH

ð�aRbKabÞd2V (31)

where Kab is the extrinsic curvature of the 3D slice, d2V is
the natural volume element intrinsic to the horizon, and Ra

is the outward pointing unit vector normal to the horizon
on the 3D slice. We measure the direction of the spin by
finding the coordinate line joining the poles of this Killing
vector field using the technique introduced in [16]. Our
algorithm for finding the poles of the Killing vector field
has an accuracy of �2� (see [16] for details).
We measure radiated energy, linear momentum, and

angular momentum, in terms of  4, using the formulas
provided in Refs. [82,83]. However, rather than using the
full  4 we decompose it into ‘ and m modes and solve for
the radiated linear momentum, dropping terms with ‘ � 5.
The formulas in Refs. [82,83] are valid at r ¼ 1. We
obtain highly accurate values for these quantities by solv-
ing for them on spheres of finite radius (typically r=M ¼
25, 30, 35, 40), fitting the results to a polynomial depen-
dence in l ¼ 1=r, and extrapolating to l ¼ 0. We perform
fits based on a linear and quadratic dependence on l, and

10 20 30 40 50 60
t/M
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a/mH 
a/mH 

0.5054

0.5055

0.5056

0.5057

0.5058

0.5059

mH

mH

FIG. 4 (color online). The specific spins and horizon masses
for a binary containing nearly maximal BY spinning holes. The
initial spins of the two holes are a=mH ¼ 0:967. The individual
horizon masses increase rapidly near t� 15M as the black holes
absorb the spurious radiation. The spin drops to a=mH ¼ 0:924
since the spurious radiation does not increase the angular mo-
mentum of the holes.
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take the final values to be the average of these two extrap-
olations with the differences being the extrapolation error.

IV. RESULTS

Evolving black holes with specific spins of a=mH �
0:92 is challenging because the horizons appear quite
small. In our coordinates, the initial horizon radii were
0:04M. We evolved these data using 14 levels of refine-
ment with a finest resolution of h ¼ M=320 (the highest
resolution reported so far in numerical simulations of
binary black holes). The outer boundaries were located at
�640M in all directions and the resolution on the coarsest
grid was h ¼ 12:8M. We obtained the spin, position, and
momentum parameters of the initial data using third-order
post-Newtonian parameters for equal-mass quasicircular
binaries with spins aligned with the linear momentum of
the two holes, and aligned with the orbital angular mo-
mentum. In all cases we took the spin of the two holes to be
a=mH ¼ 0:92. We set the puncture mass parameters of the
two holes such that the total ADM mass was 1M. The
initial data parameters are summarized in Table I. Note that
we normalize the MR0 configuration to ADMmass of 1M,
but keep the same mass parameters when we rotate the
spin. Hence MR45-MR315 have slightly different ADM
masses.

A. Large recoil velocities

In Ref. [33] we proposed a semiempirical formula for
the dependence of the merger recoil velocity on the spins
and mass ratio of the two black holes in a binary. Our
formula predicts that the largest recoils occur for two
equal-mass, equal-spin black holes with spins pointing in
the orbital plane and counteraligned with each other. In this
configuration the recoil is proportional to the spin ampli-
tude and varies sinusoidally with the angle between the
direction of the spins at merger and the linear momentum

direction. The resulting recoil will be perpendicular to the
orbital plane. We were able to test this prediction [35] by
evolving a binary with spins a=mH ¼ 0:5 (initially point-
ing in the direction of the linear momentum) and then
evolving a set of binary configuration with the same orbital
parameter, but with the initial spin directions rotated by an
angle �. We found that we could fit the resulting recoil
velocities to a cosð���0Þ dependence to high accuracy.
Implicit in this approach is that the angle between the spins
and linear momentum at merger is given by the angle at
merger for the � ¼ 0 configuration plus �. This, in turn,
requires that the xy projection of the trajectories be inde-
pendent of �.
Unlike in Ref. [35], here we found for the MR0-MR315

configurations that rotating the initial spin direction alters
the xy projection of the trajectories by introducing varying
ellipticity to the orbit and possibly due to spin-orbit cou-
pling. However, after rotating the xy-projected trajectories
for M45-M315 by an angle �rot (see Fig. 5, and Ref. [84]
for a description of the technique), we found that they
overlap for the late inspiral and plunge with the projected
MR0 trajectory. We then take the initial spin orientation,
plus this trajectory rotation, as the angle between MR45-
MR315 spin direction at merger with the MR0 spin direc-
tion at merger. We then fit the z component of the recoil
versus this angle. The results are summarized in Table II
and Fig. 6 (with several runs having significantly higher
recoil velocities than any previous simulation). A fit of vz
versus �cor (where �cor is the corrected angle between
MR45-MR315) and MR0 gives: vzðkms�1Þ¼
3290:14cosð�cor�0:765885Þ, where �cor is measured in
radians and the confidence interval for the amplitude is
(3243, 3337). Our empirical formula predicts an amplitude
of 3461� 58. These results are with 2:3� of the prediction
for a=mH ¼ 0:923. A relatively large error is not unex-
pected due to the difficulty in evolving systems with such
small scale features and the ellipticity introduced by the
spurious radiation. On the other hand, this may also in-

TABLE I. Initial data parameters for the maximum recoil configurations MR0-MR315 and the maximum hangup configuration MH.
For MR0-MR315 the punctures are located at ~x=M ¼ ð�3:564 036 838; 0; 0Þ, with momenta ~p=M ¼ ð0;�0:125 486 885 9; 0Þ and
spins ~S ¼ �ðSx; Sy; 0Þ. In all cases the orbital frequency is M! ¼ 0:045 and the puncture mass parameters are mp=M ¼ 0:089 67.

For MH the punctures are located at ~X=M ¼ ð�4:083 304 018; 0; 0Þ, with momenta ~P ¼ ð0;�0:104 628 556 1; 0Þ and spin ~S=M2 ¼
þð0; 0; 0:236 233 000 1Þ. The orbital frequency is M! ¼ 0:035 and the puncture mass parameters are mp=M ¼ 0:107 949.

Configuration MADM Sx=M
2 Sy=M

2

MR0 1.000 000 0 0.236 424 97

MR45 0.999 493 �0:167 177 70 0.167 177 70

MR90 0.998 982 �0:236 424 97 0

MR135 0.999 493 �0:167 177 70 �0:167 177 70
MR180 1.000 000 0 �0:236 424 97
MR225 0.999 493 0.167 177 70 �0:167 177 70
MR270 0.998 982 0.236 424 97 0

MR315 0.999 493 0.167 177 70 0.167 177 70

MH 1.000 000
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dicate a nonlinear (in a=mH) term is present that reduces
the maximum possible recoil.

B. Orbital hangup

Of particular interest is the spin-orbit hangup effect
[14,17,85] when the two spins are aligned with the orbital
angular momentum. Here we examine configuration MH,
where the two spins have near maximal (for BY data)
spins. We evolved configuration MH with 14 levels of
refinement, maximum resolution of h ¼ M=320, and outer
boundaries at 1281M. In Fig. 7 we show the xy trajectories
of the punctures as well as the first common apparent
horizon. Note that the binary completes�7:5 orbits before
the first common apparent horizon forms. In Fig. 8 we
show r ¼ j~r1 � ~r2j (where ~ri is the location of puncture i)
versus orbital phase �orbit. The initial eccentricity, as is

evident by the oscillation in rð�orbitÞ, damp with time. The
hangup effect is clearly seen in Fig. 9, which shows the xy
projections of the trajectory difference ~r1 � ~r2 for the MH
andMR0 configurations. In Fig. 10 we show the real part of
the (‘ ¼ 2, m ¼ 2) mode of  4 for the MH configuration.
We measure the remnant mass and spin three different
ways: from the isolated horizon formalism, from the radi-
ated energy and angular momentum, and from the quasi-

TABLE II. Recoil velocity (in the z direction) for the MR0-
MR315 configuration, initial angle �con between the spin
directions of the MR45-MR315 and MR0, and (approximate)
angle �cor between spin directions of MR45-MR315 and MR0
at merger. Here �cor ¼ �con þ�rot.

Configuration �con �cor Vzðkm s�1Þ
MR0 0� 0� 2372� 12
MR45 45� 15� 2887� 27
MR90 90� 40� 3254� 19
MR135 135� 92� 2226� 6
MR180 180� 186� �2563� 8
MR225 225� 195� �2873� 23
MR270 270� 205� �3193� 45
MR315 315� 250� �2910� 1
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FIG. 6 (color online). Recoil velocity versus corrected rotation
angle for the MR0-MR315 configurations and a nonlinear least-
squares fit to a simple sinusoidal behavior. Note that the cor-
rected rotation angles are not distributed uniformly in the range
ð0; 2
Þ.
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FIG. 5 (color online). The xy projections of the puncture
trajectories for MR0 and MR45, the latter rotated by an angle
�cor so that the late inspiral and merger phases overlap.
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FIG. 7 (color online). The puncture trajectories and first com-
mon apparent horizon for the MH configuration. Note that the
binary completes �7:5 orbits prior to merger.
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normal decay of the late-time waveform. Results for the
isolated horizon calculation were affected by late-time
boundary effects due to relatively poor resolution in the
outer zones. The results are summarized in Table III. To
calculate the horizon mass and spin from the quasinormal
modes, we used the results of [86] and a fit to expð�t=�Þ	
sinð!t� �0Þ for the real and imaginary parts of the (‘ ¼

2, m ¼ 2) mode of  4 at r ¼ 40M. We found �=M ¼
15:097� :0074 and M! ¼ 0:765 79� 0:000 06 (the er-
rors reported are the differences in � and ! for the real
and imaginary parts of  4). We also calculated the remnant
mass and spin from the radiated energy and angular mo-
mentum. Here too, inaccuracies due to relatively poor
resolution in the outer zones affect the calculation. For
all three methods, the final spin is in qualitative agreement
with the prediction of a=mH ¼ 0:928 in [14,15], but differs
from the prediction a=mH ¼ 0:9400� 0:0019 in [53] for
initial specific spins of 0.92.

V. CONCLUSION

We have evolved equal-mass, equal-spin black-hole-
binary configuration with nearly maximal BY spin of
a=mH ¼ 0:923, the highest spins simulated thus far, both
for spins pointing in the same direction as the orbital
angular momentum and for spins (counteraligned) pointing
in the orbital plane. In the former case we see a significant
orbital hangup (for seven orbits prior to merger), and
confirmed that the remnant spin is nonmaximal and agrees
with our previous predictions based on a least-squares fit of
remnant spin versus initial spin [14–16,87], while in the
latter case we find that the maximum recoil is vrecoil ¼
3290� 47 km s�1, in qualitative agreement with our pre-
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FIG. 9 (color online). The xy projection of the trajectory
difference ~r1 � ~r2 for the MH and MR0 configurations. Note
the significant hangup effect when the spins are parallel to the
orbital angular momentum (MH).
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the MH configuration showing the orbital dynamics and quasi-
normal decay.
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FIG. 8 (color online). The puncture separation, and first de-
rivative (see inset), versus orbital phase for the MH configura-
tion. Note the decaying oscillations that indicate the ellipticity is
significantly reduced after 2 orbits.

TABLE III. Remnant horizon mass and spin for configuration
MH based on the isolated horizon (IH) calculation, the radiated
energy and angular momentum, and the quasinormal frequency
(QNM).

IH Radiation QNM

mH 0:9095� 0:0005 0:9162� 0:0024 0:9146� 0:0002
a=mH 0:922� 0:001 0:928� 0:015 0:922� 0:001
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diction of 3461� 58 km s�1. The deviation of our mea-
sured recoil velocity from the predicted value is likely due
to the relatively poor effective resolution (i.e. the number
of gridpoints across the initial horizons), as well as eccen-
tricities introduced by the significant amount of spurious
radiation or nonlinear corrections to the kicks formula. We
have confirmed the sinusoidal dependence of the recoil on
the initial spin direction and that the recoil varies essen-
tially linearly with the magnitude of the spin for a fixed
initial spin direction. Note that the measured recoil of
vrecoil ¼ 3254� 19 km s�1 for the MR90 configuration
is the largest recoil velocity measured for an actual simu-
lation to date, and would expel the BH remnant from any
known galaxy.

All our numerical calculations confirm cosmic censor-
ship. In particular, highly spinning black holes, which are
close to the extreme Kerr limit, do not develop naked
singularities. Moreover, the system always decays asymp-
totically in time to a final black hole which satisfies the
inequality between mass and spin of the Kerr black hole.

There is a curious analogous behavior between the
conformal factor of the extreme spinning BY initial data
as r! 0, i.e. ’� 1=

ffiffiffi
r

p
, and the late-time behavior of the

determinant of the 3-metric for a Schwarzschild black hole
[88–91] with the standard moving-puncture choice for the
gauge equations (30). Here r ¼ 0 corresponds to the hori-
zon on the initial slice, which has finite surface area, while

in the case of Schwarzschild, if we take the limit t! 1
and then r! 0, we approach a sphere of finite surface area
inside the horizon. It seems that, as we increase the spin of
the black hole to its maximum allowed value, we find a
new, extreme solution that has a different behavior from
the nonextreme cases (1=r vs 1=

ffiffiffi
r

p
). The limit of statio-

narity, for t! 1 of submaximal data, also leads to a new
behavior for the conformal factor�� 1=

ffiffiffi
r

p
, not present at

finite time. In both cases the data transition from a slicing
that contains two asymptotically flat ends to one that con-
tains one asymptotically flat end and one cylindrical end.
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[34] J. A. González, M.D. Hannam, U. Sperhake, B.
Brugmann, and S. Husa, Phys. Rev. Lett. 98, 231101
(2007).

[35] M. Campanelli, C. O. Lousto, Y. Zlochower, and D.
Merritt, Phys. Rev. Lett. 98, 231102 (2007).

[36] F. Herrmann, I. Hinder, D. Shoemaker, P. Laguna, and
R.A. Matzner, Astrophys. J. 661, 430 (2007).

[37] M. Koppitz et al., Phys. Rev. Lett. 99, 041102 (2007).
[38] F. Herrmann, D. Shoemaker, and P. Laguna, AIP Conf.

Proc. 873, 89 (2006).
[39] J. G. Baker et al., Astrophys. J. 653, L93 (2006).
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P. T. Chruściel and H. Friedrich (Birkhäuser Verlag, Basel-
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