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Abstract

We derive and investigate the S-matrix for the su(2|3) dynamic spin
chain and for planar N = 4 super Yang–Mills. Due to the large amount
of residual symmetry in the excitation picture, the S-matrix turns out to
be fully constrained up to an overall phase. We carry on by diagonalizing
it and obtain Bethe equations for periodic states. This proves an earlier
proposal for the asymptotic Bethe equations for the su(2|3) dynamic spin
chain and for N = 4 SYM.

1 Introduction and conclusions

In general, computations in perturbative field theories are notoriously intri-
cate. Recently, the discovery and application of integrable structures in
planar four-dimensional gauge theories, primarily in conformal N = 4 super
Yang–Mills theory, has led to drastic simplifications in determining some
quantities. In particular, planar anomalous dimensions of local operators
can be mapped to energies of quantum spin chain states thus establishing
some relation to topics of condensed matter physics. The Hamiltonian of
this system is completely integrable at one loop [1, 2] and apparently even
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at higher loops [3, 4], cf. the reviews [5–7]. This remarkable feature shows
promise that the planar spectrum might be described exactly by some sort
of Bethe equation. Bethe equations at the one-loop level were given in [2].
At higher loops some similarity of the exact gauge theory result [3,4,8] with
the Inozemtsev spin chain [9] being observed and Bethe equations for the
su(2) sector up to three loops were found in [10]. They were then general-
ized to the other two rank-one sectors, su(1|1) and sl(2), in [11]. All-loop
asymptotic Bethe equations for the su(2) sector with some more desirable
features for N = 4 SYM were proposed in [12]. Putting together all these
pieces of a puzzle, asymptotic Bethe equations for the complete model were
finally proposed in [13].

Bethe equations have since proved very fruitful for the study of the
AdS/CFT correspondence [14] and certain limits of it involving large spins
[15, 16]. On the string theory side of the correspondence integrability has
been established for the classical theory in [17] and evidence for quantum
integrability exists [18, 19]. The results for spinning strings [20] and near
plane wave strings [21] have led to new insights into the correspondence, see
the reviews [5–7,22,23] for details and further references.

The Bethe equations for N = 4 SYM mentioned earlier have many desired
features and they seem to work, but it is fair to say that their origin remains
obscure. At the one-loop level the Hamiltonian involves nearest-neighbour
interactions only. One can therefore resort to the well-known R-matrix for-
malism to derive and study the Bethe equations. At higher loops the interac-
tions of the Hamiltonian become more complex: Their range increases with
the loop order [3]. Moreover, the length of the spin chain starts to fluctuate,
sites are created or destroyed dynamically [4]. These types of spin chains
have not been considered extensively and there is no theoretical framework
(yet); the higher-loop Bethe equations are at best well-tested conjectures.
The situation improved somewhat with the proposal of [11]. By applying
the asymptotic coordinate space Bethe ansatz [24], one may extract a two-
particle S-matrix from the perturbative Hamiltonian. Assuming factorized
scattering, this S-matrix is, like the R-matrix, a nearest-neighbour opera-
tor. At this stage one can therefore revert to the familiar framework. The
resulting asymptotic Bethe equations turn out to reproduce the spectrum
accurately [11].

The perturbative S-matrices for all three rank-one sectors, su(2), su(1|1)
and sl(2), were derived in [11] up to three loops. The S-matrix in the
su(2) sector coincides with the all-loop conjecture of [12] which can be read
off directly from the asymptotic Bethe equations. Corresponding all-loop
conjectures for the other two rank-one sectors were set up in [13]; they have
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a similarly concise form. All these rank-one sectors can be joined into one
larger sector with su(1, 1|2) symmetry for which an all-loop S-matrix was
also conjectured. This conjecture agrees with the Hamiltonian derived in [4]
up to three loops in the subsector where both results apply.

It is the purpose of the present investigation to find the complete
S-matrix for planar N = 4 SYM. This will allow to put the asymptotic Bethe
equations conjectured in [13] on a solid footing and hopefully give us a
better understanding of the asymptotic Bethe ansatz as well as the inte-
grable structures in gauge theory in general. The partial results mentioned
here as well as the resulting Bethe equations suggest that also the com-
plete S-matrix might have a simple form valid to all perturbative orders.
A major problem that one has to deal with in finding the S-matrix is that the
complete spin chain is dynamic [4], its length fluctuates. In the excitation
picture this might appear not to be a problem as the number of excitations
is preserved, but even there one finds flavour fluctuations which may appear
problematic [13].

An important property of S-matrices is their symmetry. Often they can
be constructed from symmetry considerations and a few additional prop-
erties. Also the S-matrices appearing in sectors of planar N = 4 SYM are
largely constrained by their symmetry. A somewhat unusual feature of these
particular S-matrices is that the representations in which the excitations
transform obey a dispersion relation [25]. This can be related to the fact
that the Hamiltonian is part of the symmetry algebra and not some central
generator as for most spin chain models. For instance, in the su(1|2) sector
the all-loop form of the S-matrix has manifest su(1|1) symmetry. The full
symmetry algebra of N = 4 SYM is psu(2, 2|4). The S-matrix in the excita-
tion picture, however, is manifestly invariant only under a residual algebra
which preserves the excitation number. In this case the residual algebra is
psu(2|2)2 � R, cf. [5]. The excitations transform in a (2|2) representation
under each psu(2|2) factor. Both factors share a common central charge C

which takes the role of the Hamiltonian. To be precise, we will introduce
two further unphysical central charges related to the dynamic nature of the
spin chain.

For the construction of the S-matrix it turns out to be very helpful that
the algebra splits into two (equal) parts: The complete S-matrix can be con-
structed as a product of two S-matrices, each transforming only under one
of the subalgebras. Moreover, as the particle representations of both subal-
gebras are isomorphic, it is sufficient to construct only one S-matrix with 44

components instead of (42)4. We can therefore work with a reduced set of
(2|2) excitations and an S-matrix transforming under the reduced algebra
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su(2|2). Incidentally, this coincides with the S-matrix of the maximally com-
pact sector of N = 4 SYM which is the su(2|3) dynamic spin chain investi-
gated in [4].

As a first step towards the S-matrix, we investigate the residual algebra
in Section 2 and find a suitable representation for the excitations. On the
one hand, the representation (2|2) is almost the fundamental of su(2|2), but
it requires a trivial central charge C = ±1

2 . On the other hand, the central
charge of su(2|2) represents the energy and we know that it is not quantized
in units of 1

2 . To circumvent this seeming paradox we enlarge the algebra by
two central charges P,K.1 This is indeed possible and allows for a non-trivial
(2|2) representation with one free continuous degree of freedom. We con-
struct this representation subsequently. The two additional central charges
can be related to gauge transformations which act non-trivially on individ-
ual fields; nevertheless they must annihilate gauge invariant combinations
of fields and therefore we can return to su(2|2) as the global symmetry.

Having understood the representation of the symmetry algebra, we con-
struct the S-matrix as an invariant permutation operator on two-excitation
states in Section 3. Astonishingly, the S-matrix is uniquely determined
up to an overall phase. This fact may be attributed to the uniqueness of
N = 4 SYM. An unconstrained overall phase is a common problem of con-
structive methods. In fact, the model in [4] leaves some degrees of freedom
which are reflected by this phase [13]. We then study the properties of the
S-matrix and find that it naturally satisfies the Yang–Baxter equation. This
is a necessary condition for factorized scattering and integrability. Assum-
ing that integrability holds, we outline the construction of eigenstates of the
Hamiltonian.

In Section 4 we perform the nested Bethe ansatz [26] on this S-matrix.
This leads to a completely diagonalized S-matrix which can be employed
for the asymptotic Bethe equations. We then study the symmetry proper-
ties of the equations and the remaining phase. It is also straightforward to
“square” the S-matrix and obtain Bethe equations for N = 4 SYM, cf. Sec-
tion 5. We can thus prove the validity of the conjectured asymptotic Bethe
equations of [13] (up to the unknown abelian phase and under the assump-
tion of integrability). Among other things, this represents a further piece
of evidence for the correctness of the conjecture for the three-loop planar
anomalous dimensions of twist-two operators [27]. The conjecture was based
on an explicit three-loop computation in QCD [28] and a lift to N = 4 SYM

1The letters J,R,L,Q,S,C,P,K of the \mathfrak alphabet correspond to
J, R, L, Q, S, C, P, K.
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by means of “transcendentality” counting. They were subsequently repro-
duced in the asymptotic Bethe ansatz for the sl(2) sector [11]. The derivation
of the latter required a relation to hold between the S-matrices of rank-one
sectors; here we can identify the group theoretical origin of this relation.

The only missing piece of information for the complete S-matrix is its
abelian phase. Its determination is prevented here because it is neither
constrained by representation theory nor by the Yang–Baxter relation. A
frequently employed constraint in two-dimensional integrable sigma models,
see e.g., [29], is a crossing relation for the S-matrix whose existence remains
obscure here. Furthermore, the pole structure of the S-matrix might lead to
some constraints. The results in Appendix D concerning a curious singlet
state represent some (failed) attempts in this direction; it is not (yet) clear
how to make sense of them.

A possible direction for future research is to perform a similar investiga-
tion for the S-matrix of the IIB string theory on AdS5 ×S5. The classical
diagonalized S-matrix elements can be read off from an integral representa-
tion of the classical spectral curve in [30] and the proposed Bethe equations
for quantum strings [18,13]. Clearly, the actual non-diagonalized S-matrix is
important as the underlying structure of the Bethe ansatz, cf. [31] for some
results in this direction. Due to the AdS/CFT correspondence, one might
expect the S-matrix to have the same or at least a very similar form and an
explicit derivation would be very valuable. Unless there are more powerful
constraints here, we should again expect an undetermined phase. The phase
can be determined perturbatively by comparison to spinning string states,
cf. [16] and the reviews [22, 7]. Some leading quantum corrections to these
states and methods to deal with them in the Bethe ansatz have recently
become available [32]. A somewhat different approach (for a somewhat dif-
ferent model) might also lead to Bethe equations for quantum strings [33].

Another possible application for the current results is plane wave matrix
theory [15, 34]. This theory leads to a very similar spin chain model [35],
which is however not completely integrable beyond leading order [36]. Never-
theless, it has an su(3|2) sector and the present result about the two-particle
S-matrix certainly does apply. This S-matrix satisfies the YBE, factorized
scattering is thus self-consistent. The important question however is whether
the multi-particle S-matrix does indeed factorize; is the su(3|2) sector of
PWMT integrable?

Finally, we should point out that the current analyses are justified only
in the asymptotic region: At high orders in perturbation theory there are
interactions whose range may exceed the length of a spin chain state, the
so-called wrapping interactions [4, 10, 12]. The asymptotic Bethe equations
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should only be trusted up to to this perturbative order which depends on the
length of the chain (which itself if somewhat ill-defined in dynamic chains).
Unfortunately, it is very hard to make precise statements because wrap-
ping interactions are practically inaccessible by constructive methods of the
planar Hamiltonian (and four-loop field theory computations are somewhat
beyond our current possibilities). Nevertheless when considering the finite-N
algebra, they should be incorporated naturally [37]. It is very likely that
the asymptotic Bethe equations receive corrections, either in the form of
corrections to the undetermined phase in an effective field theory sense or,
preferably, by improved equations. The thermodynamic Bethe ansatz may
provide a suitable framework here [38].

2 The asymptotic su(2|2) algebra

In the following we introduce the spin chain model. We then consider asymp-
totic states of an infinitely long spin chain and investigate the residual sym-
metry which preserves the number of excitations of states.

2.1 The su(2|3) dynamic spin chain model

In [4] a spin chain with su(2|3) symmetry and fundamental matter was
considered. This spin chain arises as a sector of perturbative U(N) N = 4
super Yang–Mills theory in the large-N limit. The spin X at each site can
take one out of five orientations, X ∈ {Z, φ1, φ2|ψ1, ψ2}. The first three are
bosonic states, the remaining two are fermions; in a N = 1 notation they
represent the three scalar fields and the two spin orientations of the gluino.
A generic state

∣
∣Ψ

〉

is a linear combination of basic states, e.g.,
∣
∣Ψ

〉

= ∗
∣
∣Zφ1ZZψ2Z . . . φ1〉 + ∗

∣
∣ψ1φ2ZZψ2 . . . Z

〉

+ · · · . (2.1)

Such a state represents a single-trace gauge invariant local operator. The
spin chain is closed and physical states are cyclic, they must be invariant
under cyclic permutations of the spin sites taking into account the statistics
of the fields. This corresponds to cyclicity of the trace in gauge theory.

The states transform under a symmetry algebra su(2|3) which is a sub-
algebra of the superconformal algebra psu(2, 2|4) of N = 4 SYM. The gl(1)
generator of this algebra is associated with the energy, we shall call it the
Hamiltonian; in N = 4 SYM it is related to the dilatation generator. Thus,
finding the spectrum of this operator is physically interesting, it contains
the planar anomalous dimensions of the local operators in the su(2|3) sector.
A family of representations of su(2|3) on spin chain states was constructed
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in [4]. The family was parametrized by the coupling constant g related to
the ’t Hooft coupling constant by

g2 =
λ

8π2 =
g2

YMN

8π2 . (2.2)

At g = 0 the representation is merely the tensor product of fundamental
representations. The deformations around this point can be constructed
in perturbation theory. This was done in [4] up to fourth order for all
generators and up to sixth order for the Hamiltonian. The constraining
property of the representation was that the generators must act locally on
the spin chain with a maximum range determined by the order in g. At
a finite value of g, the action is therefore long-ranged. The action is also
dynamic, the generators are allowed to change the number of spin chain
sites L: the length L fluctuates.

2.2 Asymptotic states

Let us define a vacuum state composed from only Zs. We shall start with
an infinitely long vacuum

∣
∣0

〉I =
∣
∣ . . .ZZ . . .ZZ . . .

〉

. (2.3)

In fact, physical states have a finite length and are periodically identified.
As pointed out in [11], it is however sufficient to consider periodic states on
an infinite chain to obtain the correct spectrum up to a certain accuracy.
This is what will be called the asymptotic regime. We might then consider
a generic asymptotic state as an excitation of the vacuum, such as

∣
∣X1 . . .X ′′

K

〉I =
∑

n1�...�nK

eip1n1 . . . eipKnK

×
∣
∣ . . .ZZ . . .

n1
↓
X . . .

...
↓

X ′ . . .

nK
↓

X ′′ . . .ZZ . . .
〉

. (2.4)

The superscript “I” of the state implies that we have screened out all vacuum
fields Z. Here “I” refers to the first level of screening; later, at higher levels,
more fields will be screened. The excitations X ∈ {φ1, φ2|ψ1, ψ2} have the
same order with which they appear in the original spin chain. The subscript
k = 1, . . . , K of an excitation indicates that Xk carries a definite momentum
pk along the original spin chain.

In (2.4) we have assumed that the excitations are well-separated, nk �
nk+1, so that the range of interactions is always smaller than the minimum
separation. Then the interactions act on only one excitation at a time
which is a major simplification; this is our notion of asymptotic states. Of
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course also the states with nearby excitations are important, but for the
determination of asymptotic eigenstates and energies their contribution can
be summarized by the S-matrix which will be considered in Section 3.

2.3 The algebra

The spin chain states transform under the full symmetry algebra su(2|3)
and so do the asymptotic states. However, the number of excitations, K,
is not preserved. It is only preserved by a subalgebra of su(2|3), namely
su(2|2), let us therefore restrict to it. This algebra su(2|2) consists of the
su(2) × su(2) rotation generators Ra

b, Lα
β, the supersymmetry generators

Qα
b, Sa

β and the central charge C. The non-trivial commutators are

[Ra
b, J

c] = δc
bJ

a − 1
2δa

b J
c,

[Lα
β, Jγ ] = δγ

βJ
α − 1

2δα
β J

γ ,
{

Q
α

a,S
b
β

}

= δb
aL

α
β + δα

β R
b
a + δb

aδ
α
β C, (2.5)

where J represents any generator with the appropriate index. For later
convenience we enlarge the algebra by two central charges2 P,K [39] to
su(2|2) � R

2

{

Q
α

a,Q
β

b

}

= εαβεabP,
{

S
a
α,Sb

β

}

= εabεαβK. (2.6)

These shall have zero eigenvalue on physical states and thus the algebra on
physical states is effectively su(2|2). The extension is necessary because the
representations of su(2, 2) are too restrictive for the excitation picture.

The enlarged algebra psu(2|2) � R
3 is a contraction of the exceptional

superalgebra d(2, 1; ε, R) with ε → 0. The triplet of central charges P, K and
C is the contraction of the sp(2, R) factor while the rotation generators R,L
form the so(4) = su(2)2 part. See Appendix A for details of this construction.

2.4 The representation

Let us represent su(2|2) on a 2|2-dimensional space. We label the states by
∣
∣φa

〉I and
∣
∣ψα

〉I. These should be considered single excitations (2.4) of the

2Central extensions of Lie superalgebras were investigated in [40]. The psu(2|2) algebra
constitutes a special case with up to three central extensions. I thank F. Spill for pointing
out this reference to me.
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level-I vacuum
∣
∣0

〉I in (2.3). Each su(2) factor should act canonically on
either of the two-dimensional subspaces3

R
a
b

∣
∣φc

〉I = δc
b

∣
∣φa

〉I − 1
2δa

b

∣
∣φc

〉I
,

L
α

β

∣
∣ψγ

〉I = δγ
β

∣
∣ψα

〉I − 1
2δα

β

∣
∣ψγ

〉I
. (2.7)

The supersymmetry generators should also act in a manifestly su(2) × su(2)
covariant way. The most general transformation rules are thus

Q
α

a

∣
∣φb

〉I = a δb
a

∣
∣ψα

〉I
,

Q
α

a

∣
∣ψβ

〉I = b εαβεab

∣
∣φbZ+〉I

,

S
a
α

∣
∣φb

〉I = c εabεαβ

∣
∣ψβZ−〉I

,

S
a
α

∣
∣ψβ

〉I = d δβ
α

∣
∣φa

〉I
. (2.8)

For the moment we shall ignore the symbols Z± inserted into the states.
We find that the closure of

{

Q,S
}

= . . . (2.5,2.6) requires ad − bc = 1. The
central charge is then given by

C
∣
∣X

〉I = C
∣
∣X

〉I = 1
2(ad + bc)

∣
∣X

〉I (2.9)

where
∣
∣X

〉I is any of the states
∣
∣φa

〉I or
∣
∣ψα

〉I. For su(2|2) we should further-
more impose

{

Q,Q
}

=
{

S,S
}

= 0 which fixes ab = 0 and cd = 0. The two
solutions to these equations lead to a central charge C = ±1

2 and correspond
to the fundamental representations of su(2|2). This would lead to the model
introduced in [41] which is the correct description of gauge theory at leading
order, but not at higher loops.

In order to find more interesting solutions with non-trivial central charge
we relax the condition

{

Q,Q
}

=
{

S,S
}

= 0 and allow for non-trivial central
charges P,K. Closure of the symmetry algebra requires the action of the
additional generators to be

P
∣
∣X

〉

= ab
∣
∣XZ+〉

,

K
∣
∣X

〉

= cd
∣
∣XZ−〉

. (2.10)

Of course we are interested in representations of the original su(2|2) algebra
and not of some enlarged one. Therefore we are bound to constrain the
action of P and K to zero. For this representation we are back at where we
started and there is only the fundamental representation. The improvement
of this point of view comes about when we consider tensor products. Then,
only the action of the overall generators P and K must be zero leaving some
degrees of freedom among the individual representations.

3The su(2) algebra generates a compact group whose unitary/finite-dimensional repre-
sentations cannot be deformed continuously.
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2.5 Dynamic spin chains

To match the representation to excitations of the dynamic su(2|3) spin chain
[4], we note that Z+ should be considered as the insertion of a field Z into
the original chain; likewise Z− removes a field. Let us consider an excitation
with a definite momentum on an infinite spin chain

∣
∣X

〉I =
∑

n

eipn
∣
∣ . . .ZZ . . .

n
↓
X . . .ZZ . . .

〉

. (2.11)

When we insert or remove a background field Z in front of the excitation
we obtain

∣
∣Z±X

〉I =
∑

n
eipn

∣
∣ . . .ZZ . . .

n±1
↓
X . . .ZZ . . .

〉

=
∑

n

eipn∓ip
∣
∣ . . .ZZ . . .

n
↓
X . . .ZZ . . .

〉

, (2.12)

i.e., we can always shift the operation Z± to the very right of the asymptotic
state and pick up factors of exp(∓ip)

∣
∣Z±X

〉I = e∓ip
∣
∣XZ±〉I

. (2.13)

The action of P on a tensor product gives

P
∣
∣X1 . . .XK

〉I = P
∣
∣X1 . . .XKZ+〉I

, P =
K∑

k=1

akbk

K∏

l=k+1

e−ipl (2.14)

and should vanish on physical states. Physical states are thus defined by the
condition that the central charge P vanishes. On the other hand we know
that physical states are cyclic, they have zero total momentum. Indeed
P = 0 coincides with the zero momentum condition provided that we set
akbk = α(e−ipk − 1). Then the sum telescopes and becomes

P = α

K∑

k=1

(e−ipk − 1)
K∏

l=k+1

e−ipl = α

(
K∏

k=1

e−ipk − 1

)

. (2.15)

The first term is the eigenvalue of the right shift operator. When we set
ckdk = β(eipk − 1) we obtain the same constraint from a vanishing action of K

K
∣
∣X1 . . .XK

〉I = β

(
K∏

k=1

eipk − 1

)

∣
∣X1 . . .XKZ−〉I

. (2.16)
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We can now write the action of P,K in (2.10) as

P
∣
∣X

〉I = α
∣
∣Z+X

〉I − α
∣
∣XZ+〉I

,

K
∣
∣X

〉I = β
∣
∣Z−X

〉I − β
∣
∣XZ−〉I

. (2.17)

Note that this reveals their nature as a gauge transformation, P generates
the transformation Ψ �→ α [Z, Ψ ]. Similarly, K generates a somewhat unusual
transformation Ψ �→ β [Z−, Ψ ], which removes a field Z. Of course, physical
states are gauge invariant and therefore should be annihilated by P and K.

2.6 Solution for the coefficients

Next we solve the central charge in terms of the momenta and obtain

C =
K∑

k=1

Ck, Ck = ±1
2

√

1 + 16αβ sin2(1
2pk). (2.18)

The central charge is the energy and consequently we have derived the BMN-
like energy formula [15] up to the value of the product αβ which should play
the role of the coupling constant.4 To adjust to the correct coupling constant
for N = 4 SYM and the one used in [4] we set β = g2/2α. We introduce new
variables x+

k , x−
k to replace the momenta pk and solve5

ak = γk, bk = − α

γkx
+
k

(x+
k − x−

k ), ck =
ig2γk

2αx−
k

, dk = − i

γk
(x+

k − x−
k ).

(2.19)
For a hermitian representation we should choose

|γk| =
∣
∣ix−

k − ix+
k

∣
∣1/2, |α| =

√

g2/2. (2.20)

The condition akdk − bkck = 1 for the closure of the algebra translates to

x+
k +

g2

2x+
k

− x−
k − g2

2x−
k

= i. (2.21)

Finally, the momentum and central charge are given by

eipk =
x+

k

x−
k

, Ck =
1
2

+
ig2

2x+
k

− ig2

2x−
k

= −ix+
k + ix−

k − 1
2
. (2.22)

4This derivation of the energy formula should be similar to the one in [42].
5The parameter γk corresponds to a (momentum dependent) relative rescaling of

∣
∣φa

〉

and
∣
∣ψα

〉

whereas α corresponds to a rescaling of Z.
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The physicality constraint P
∣
∣Ψ

〉

= K
∣
∣Ψ

〉

= 0 is the zero-momentum
condition

1 =
K∏

k=1

eipk =
K∏

k=1

x+
k

x−
k

. (2.23)

Interestingly, the dispersion relation (2.18) admits two solutions with
a given momentum but opposite energies. This is a common feature of
relativistic quantum mechanics: the two solutions can be interpreted as a
regular particle and a conjugate one propagating backwards in time. The
conjugate excitation can be obtained from a regular one by the substitution
x±

k �→ −g2/2x∓
k (or by x±

k �→ g2/2x±
k which inverts the momentum as well).

We might solve (2.21) by [12]

x±
k = x(uk ± i

2), x(u) = 1
2u + 1

2u
√

1 − 2g2/u2 , u(x) = x +
g2

2x
. (2.24)

This may appear to yield only the positive energy solution, it is however not
possible to exclude the negative energy solution rigorously: In general x±

are complex variables and the negative energy solution will always sneak in
as the other branch of (2.24). The branch cut may only be avoided in the
non-relativistic regime at g ≈ 0, where the perturbative gauge theory and
the underlying spin chain are to be found.

It seems that the appearance of conjugate excitations is related to the
puzzle observed in [43]: the su(2) sector of N = 4 SYM does not have a
direct counterpart in string theory, but it is merely embedded in a larger
su(2) × su(2) sector representing the isometry algebra of an S3. This larger
sector has excitations corresponding to a second su(2) which are related to
the original ones by the map x �→ g2/2x. The reason why the conjugate
excitations do not appear in gauge theory is related to perturbation theory.
They would have a non-vanishing anomalous dimension −2 at g = 0 which
is in conflict with the perturbative setup. An interesting application of the
conjugate excitations is presented in Appendix D where a peculiar composite
of a regular excitation and its conjugate is investigated.

3 The S-matrix

So far we have concentrated on asymptotic states (IR) and discarded the
contributions from states with nearby excitations (UV). The latter become
important when considering eigenstates of the central charge C alias the
Hamiltonian. Luckily their inclusion can be summarized in the S-matrix of
the model.
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3.1 Sewing eigenstates

The symmetry algebra acts on the asymptotic states (2.4) as a tensor prod-
uct representation: all excitations are treated individually and do not influ-
ence each other. This can however be true only in an asymptotic sense; there
are additional contributions from the boundaries of the asymptotic regions
where excitations come too close. When interested in the exact action of
the algebra we must take these into account. This is achieved by sewing
together the asymptotic regions in a way compatible with the algebra, e.g.,

∣
∣Ψ

〉

= a
∣
∣ . . .XkX ′

l . . .
〉I + b

∣
∣ . . . (XX )kl . . .

〉I + c
∣
∣ . . .X ′′

l X ′′′
k . . .

〉I
. (3.1)

Here the left-hand state is some asymptotic state, the middle one represents
contributions with nearby excitations k, l and in the right-hand state the
momenta of the excitations k, l are interchanged. There may be various
linear combinations of different flavours X ,X ′, . . . which we do not specify
here. Clearly, the exact algebra transforms the coefficients a, c independently
according to the asymptotic rules in Section 2.4. In addition, b must be
adjusted so that it yields the correct contributions to the boundaries of the
asymptotic regions. This relates b to a and b to c and therefore a with c.
This means that asymptotic states can be completed to exact states in a
unique way compatible with the algebra. In particular, the coefficients of
all asymptotic regions, a, c in the example, are related among each other.
As soon as this relation is known, it is no longer necessary to consider the
non-asymptotic contributions.

The completion of asymptotic states can be performed by the S-matrix.
The S-matrix SI

kl is an operator which interchanges two adjacent sites of the
spin chain at level I. The affected sites are labelled by their momenta pk, pl

which are exchanged by SI
kl

SI
kl

∣
∣ . . .XkX ′

l . . .
〉I �→ ∗

∣
∣ . . .X ′′

l X ′′′
k . . .

〉I
. (3.2)

The consistent completion of this asymptotic state is then
∣
∣Ψ

〉

= a
(∣
∣ . . .XkX ′

l . . .
〉I + non-asymp. + SI

kl

∣
∣ . . .XkX ′

l . . .
〉I

)

. (3.3)

The requirement for asymptotic consistency is that the S-matrix commutes
with the algebra,

[

Jk + Jl,SI
kl

]

= 0, where Jk is a generator of su(2|2) � R
2

acting on site k.

3.2 Invariance

Let us now construct the S-matrix by acting on the state
∣
∣X1X ′

2
〉

with
all possible combinations of spins X ,X ′. We demand the exact invariance
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under su(2|2) � R
2

[

J1 + J2,SI
12

]

= 0. (3.4)

The commutators with the central charges C,P,K are automatically satis-
fied. From commutators with the kinematic generators R,L the S-matrix
takes a generic form determined by ten coefficient functions A12 = A(x1, x2)
to L12. The form is presented at the top of table 1. Remarkably, invariance

Table 1: The dynamic su(2|2) S-matrix

SI
12

∣
∣φa

1φ
b
2
〉I = A12

∣
∣φ

{a
2 φ

b}
1

〉I + B12
∣
∣φ

[a
2 φ

b]
1
〉I + 1

2C12ε
abεαβ

∣
∣ψα

2 ψβ
1 Z−〉I,

SI
12

∣
∣ψα

1 ψβ
2
〉I= D12

∣
∣ψ

{α
2 ψ

β}
1

〉I + E12
∣
∣ψ

[α
2 ψ

β]
1

〉I + 1
2F12ε

αβεab

∣
∣φa

2φ
b
1Z+

〉I,

SI
12

∣
∣φa

1ψ
β
2
〉I = G12

∣
∣ψβ

2 φa
1
〉I + H12

∣
∣φa

2ψ
β
1
〉I,

SI
12

∣
∣ψα

1 φb
2
〉I = K12

∣
∣ψα

2 φb
1
〉I + L12

∣
∣φb

2ψ
α
1
〉I.

A12 = S0
12

x+
2 − x−

1

x−
2 − x+

1
,

B12 = S0
12

x+
2 − x−

1

x−
2 − x+

1

(

1 − 2
1 − g2/2x−

2 x+
1

1 − g2/2x−
2 x−

1

x+
2 − x+

1

x+
2 − x−

1

)

,

C12 = S0
12

g2γ2γ1

αx−
2 x−

1

1
1 − g2/2x−

2 x−
1

x+
2 − x+

1

x−
2 − x+

1
,

D12 = −S0
12,

E12 = −S0
12

(

1 − 2
1 − g2/2x+

2 x−
1

1 − g2/2x+
2 x+

1

x−
2 − x−

1

x−
2 − x+

1

)

,

F12 = −S0
12

2α(x+
2 − x−

2 )(x+
1 − x−

1 )
γ2γ1x

+
2 x+

1

1
1 − g2/2x+

2 x+
1

x−
2 − x−

1

x−
2 − x+

1
,

G12 = S0
12

x+
2 − x+

1

x−
2 − x+

1
,

H12 = S0
12

γ1

γ2

x+
2 − x−

2

x−
2 − x+

1
,

K12 = S0
12

γ2

γ1

x+
1 − x−

1

x−
2 − x+

1
,

L12 = S0
12

x−
2 − x−

1

x−
2 − x+

1
.
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under the dynamic generators Q,S leads to a unique solution up to an unde-
termined overall function S0

12. To obtain the solution is straightforward but
somewhat laborious; we merely state the final result at the bottom of table 1.

One may wonder why this S-matrix is uniquely determined. It inter-
twines two modules and one should expect one degree of freedom for each
irreducible module in the tensor product. Intriguingly, it appears that the
tensor product is indeed irreducible. This may be the case because both
factors are short (atypical). Their tensor product on the other hand has
8|8 components which is the smallest typical multiplet. Note that the usual
symmetrizations cannot be applied here, because both factors transform
in distinct representations labelled by their momenta pk. In verifying the
invariance of the S-matrix, the following identities have proved useful

x+
1 − x+

2

1 − g2/2x−
1 x−

2
=

x−
1 − x−

2

1 − g2/2x+
1 x+

2
,

x+
2 − x−

2 − x+
1 + x−

1

x+
1 x+

2 − x−
1 x−

2
=

g2

2x+
1 x−

1 x+
2 x−

2

x+
1 − x+

2

1 − g2/2x−
1 x−

2
,

B12

S0
12

= −1 +
g2

2x+
1 x−

1 x+
2 x−

2

x+
1 x+

2 − 2x−
1 x+

2 + x−
1 x−

2

1 − g2/2x−
1 x−

2

x+
1 − x+

2

x−
2 − x+

1
,

E12

S0
12

=
x+

2 − x−
1

x−
2 − x+

1
− g2

2x+
1 x−

1 x+
2 x−

2

× x+
1 x+

2 − 2x+
1 x−

2 + x−
1 x−

2

1 − g2/2x−
1 x−

2

x+
1 − x+

2

x−
2 − x+

1
. (3.5)

They can be derived from the quadratic constraint (2.21) between x+ and x−.

Let us compare to the results in [13] for the S-matrix in the su(1|2) sector
of N = 4 SYM. The S-matrix has manifest su(1|1) symmetry as explained
in [25] and we obtain it by restricting to the spin components a, b, α, β = 1.
Then only the elements A, D, G, H, K, L in table 1 are relevant and the
S-matrix agrees with [13,25].

3.3 Properties

We have already made use of the invariance of the S-matrix in its construction

[

J1 + J2,SI
12

]

= 0. (3.6)
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It however obeys a host of other important identities. First of all, it is an
involution

SI
12SI

21 = 1 (3.7)

assuming that the undetermined phase obeys S0(x1, x2)S0(x2, x1) = 1. We
have also verified that it satisfies the Yang–Baxter equation6

SI
12SI

13SI
23 = SI

23SI
13SI

12. (3.8)

This is very tedious and we have made use of Mathematica to evaluate (3.8)
on all three-particle states. Note that the appearance of Z± in table 1 can
lead to additional phases due to (2.13), e.g.,

SI
12

∣
∣φ1φ2ψ3

〉I →
∣
∣ψ2ψ1Z−ψ3

〉I + · · · =
x+

3

x−
3

∣
∣ψ2ψ1ψ3Z−〉I + · · · . (3.9)

It is also worth considering the g = 0 limit corresponding to one-loop
gauge theory. Here all the particle representations have central charge C = 1

2
and transform as fundamentals under su(2|2). When we set α = O(g), it is
easy to see that

SI
12

∣
∣
g=0 = Pu

12S
0
12

(
u2 − u1

u2 − u1 − i
+

i

u2 − u1 − i
P12

)

(3.10)

where P12 is a graded permutation of the spin labels a, b, α, β and Pu
12 inter-

changes the spectral parameters u1, u2. This agrees with the well-known
S-matrix in the fundamental representation of su(2|2). We recover the model
found in [41].

3.4 Eigenstates

A generic eigenstate
∣
∣Ψ

〉

of the spin chain can now be represented by a set
of numbers {x1, . . . , xK} and a residual wave function

∣
∣Ψ I

〉

. This residual
wave function is given as a state of a new inhomogeneous spin chain with
only four spin states {φ1, φ2|ψ1, ψ2} such that spin site k has momentum
pk = p(xk) along the original spin chain. The eigenstate is

∣
∣Ψ

〉

= SI∣∣Ψ I〉. (3.11)

Here SI is the multi-particle S-matrix at level I. In the case of infinitely many
conserved charges, the set of momenta is preserved in the scattering process,

6M. Staudacher has confirmed that the YBE is satisfied at the first few perturbative
orders in g.
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i.e., only the momenta can be permuted. Indications that this might be true
were found in [4, 44]. The S-matrix can thus be written as

SI =
∑

π∈SK

SI
π. (3.12)

The S-matrix Sπ interchanges the sites and momenta of the spin chain
∣
∣Ψ I

〉

according to the permutation π. If the S-matrix factorizes, it can be written
as a product over pairwise permutations of adjacent excitations

SI
π =

∏

(k,l)∈π

SI
kl. (3.13)

Due to the YBE (3.8) this product can be defined self-consistently. Let us
therefore assume that the S-matrix factorizes and that the Hamiltonian C is
integrable. An indirect verification of this assumption is that the resulting
Bethe equations indeed reproduce several energies correctly [13]. This solves
the problem of finding asymptotic eigenstates

∣
∣Ψ

〉

of the infinite spin chain.

4 Diagonalizing the S-Matrix

The previous solution for the infinite chain is complete, but it requires a
residual wave function

∣
∣Ψ I

〉

to be specified. In other words, we have replaced
the level-0 wave function

∣
∣Ψ

〉

by a set of parameters {x1, . . . , xK} and a
level-I wave function

∣
∣Ψ I

〉

. We can now try to repeat this process and rep-
resent the spin chain

∣
∣Ψ I

〉

by a set of parameters {y1, . . . , yK′} and a level-II
wave function

∣
∣Ψ II

〉

. This is the so-called nested Bethe ansatz [26].

4.1 Vacuum

We start by choosing a level-II vacuum state consisting only of φ1s

∣
∣0

〉II =
∣
∣φ1

1 . . . φ1
K

〉I
. (4.1)

For any permutation π, the S-matrix SI
π yields a total phase SI

π times a
vacuum of the inhomogeneous chain with permuted momenta

SI
π

∣
∣0

〉II = SI
π

∣
∣0

〉II
π
,

∣
∣0

〉II
π

=
∣
∣φ1

π(1) . . . φ1
π(K)

〉I
. (4.2)
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The total phase is given by a product over two-particle phases

SI
π =

∏

(k,l)∈π

SI,I(xk, xl), SI,I(xk, xl) = A(xk, xl)

= S0(xk, xl)
x−

k − x+
l

x+
k − x−

l

. (4.3)

4.2 Propagation

Now let us insert one excitation which might be of type ψ1, ψ2 or φ2. If it
is of type ψ1 or ψ2, an action of the S-matrix shifts this excitation around.
If it is of type φ2, however, the S-matrix can shift it around, but it can also
convert it into one excitation of type ψ1 and ψ2 each. Subsequently, these
two will be propagated by the S-matrix on an individual basis. Therefore
φ2 is a non-elementary double excitation whereas ψ1, ψ2 are the only two
elementary excitations of the vacuum

∣
∣0

〉II.

A generic one-excitation state is given by

∣
∣ψα

〉II =
K∑

k=1

Ψk(y)
∣
∣φ1

1 . . . ψα
k . . . φ1

K

〉I (4.4)

with some wave function Ψk(y). For this wave function we make a plane
wave ansatz in the inhomogeneous background which is determined through
the xls

Ψk(y) = f(y, xk)
k−1∏

l=1

SII,I(y, xl). (4.5)

Here SII,I(y, xk′) represents the phase when permuting the excitation past a
background field and f(y, xk) is a factor for the combination of the excitation
with the background field.

We demand compatibility of the wave function with the S-matrix. This
means that SI

π merely multiplies the state by the previous SI
π in (4.3) and

permutes the momenta

SI
π

∣
∣ψα

〉II = SI
π

∣
∣ψα

〉II
π
,

∣
∣ψα

〉II
π

=
K∑

k=1

Ψπ,k(y)
∣
∣φ1

π(1) . . . ψα
π(k) . . . φ1

π(K)
〉I

.

(4.6)
with

Ψπ,k(y) = f(y, xπ(k))
k−1∏

l=1

SII,I(y, xπ(l)). (4.7)
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To solve this problem, it is sufficient to consider a spin chain with only two
sites

∣
∣ψα

〉II = f(y, x1)
∣
∣ψα

1 φ1
2
〉I + f(y, x2)SII,I(y, x1)

∣
∣φ1

1ψ
α
2
〉I

,
∣
∣ψα

〉II
π

= f(y, x2)
∣
∣ψα

2 φ1
1
〉I + f(y, x1)SII,I(y, x2)

∣
∣φ1

2ψ
α
1
〉I

. (4.8)

We thus demand

SI
12

∣
∣ψα

〉II = SI,I(x1, x2)
∣
∣ψα

〉II
π

(4.9)

which amounts to

f(y, x1) K(x1, x2) + f(y, x2) SII,I(y, x1) G(x1, x2) = f(y, x2) A(x1, x2),

f(y, x1) L(x1, x2) + f(y, x2) SII,I(y, x1) H(x1, x2)

= f(y, x1) SII,I(y, x2) A(x1, x2). (4.10)

These two equations are solved by

SII,I(y, xk) =
y − x−

k

y − x+
k

, f(y, xk) =
yγk

y − x+
k

. (4.11)

4.3 Scattering

For a two-excitation state we make an ansatz of two superimposed plane
waves

∣
∣ψα

1 ψβ
2
〉II =

K∑

k<l=1

Ψk(y1)Ψl(y2)
∣
∣φ1

1 . . . ψα
k . . . ψβ

l . . . φ1
K

〉I
. (4.12)

This solves the compatibility condition SI
π

∣
∣ψα

1 ψβ
2
〉II = SI

π

∣
∣ψα

1 ψβ
2
〉II
π

except
when the two excitations are neighbours. We should also consider a state
with one excitation φ2Z+ which can undergo mixing with the previous state

∣
∣φ2

12Z+〉II =
K∑

k=1

Ψk(y1)Ψk(y2)f(y1, y2, xk)
∣
∣φ1

1 . . . φ2
kZ+ . . . φ1

K

〉I
. (4.13)

Here, f(y1, y2, xk) represents a factor which occurs when two excitations
reside on the same site. A generic two-excitation eigenstate must be of
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the form
∣
∣Ψ II〉 =

∣
∣ψα

1 ψβ
2
〉II + εαβ

∣
∣φ2

12Z+〉II + SII
12

∣
∣ψα

1 ψβ
2
〉II (4.14)

with an su(2) symmetric S-matrix

SII
12

∣
∣ψα

1 ψβ
2
〉II = M12

∣
∣ψα

2 ψβ
1
〉II + N12

∣
∣ψβ

2 ψα
1
〉II

. (4.15)

Again we impose the compatibility condition

SI
π

∣
∣Ψ II〉 = Sπ

∣
∣Ψ II〉

π
(4.16)

which is trivially satisfied when the two excitations are not neighbours. To
solve the relation exactly we need to consider only a two-site state
∣
∣Ψ II〉 = f(y1, x1)f(y2, x2)SII,I(y2, x1)

∣
∣ψα

1 ψβ
2
〉I

+ f(y1, x1)f(y2, x1)f(y1, y2, x1)(x−
2 /x+

2 ) εαβ
∣
∣φ2

1φ
1
2Z+〉I

+ f(y1, x2)f(y2, x2)SII,I(y1, x1)SII,I(y2, x1)f(y1, y2, x2) εαβ
∣
∣φ1

1φ
2
2Z+〉I

+ M(y1, y2)f(y2, x1)f(y1, x2)SII,I(y1, x1)
∣
∣ψα

1 ψβ
2
〉I

+ N(y1, y2)f(y2, x1)f(y1, x2)SII,I(y1, x1)
∣
∣ψβ

1 ψα
2
〉I (4.17)

and the state
∣
∣Ψ II

〉

π
where x1 and x2 are interchanged. We find the unique

solution of (4.16)

M12 = − i

y1 + g2/2y1 − y2 − g2/2y2 + i
= − i

v1 − v2 + i
,

N12 = − y1 + g2/2y1 − y2 − g2/2y2

y1 + g2/2y1 − y2 − g2/2y2 + i
= − v1 − v2

v1 − v2 + i
, (4.18)

where the new spectral parameter vk is related to yk as

vk = yk +
g2

2yk
. (4.19)

The factor for two coincident excitations in (4.13) is

f(y1, y2, xk) =
α

γ2
k

x−
k − x+

k

x+
k

y1y2 − x−
k x+

k

y1y2

y1 − y2

y1 + g2/2y1 − y2 − g2/2y2 + i
.

(4.20)

In Appendix C we will present an alternative notation for wave functions
which is somewhat more transparent and should naturally generalize to more
than two excitations.
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4.4 Final level

The level-II S-matrix SII
12 has the standard form of a su(2) invariant

S-matrix with spectral parameters vk = yk + g2

2yk
. It is therefore clear that

the remaining elements of the diagonalized S-matrix are7

SII,II(y1, y2) = −M(y1, y2) − N(y1, y2) = 1,

SIII,II(w1, y2) =
w1 − y2 − g2/2y2 − i

2

w1 − y2 − g2/2y2 + i
2

=
w1 − v2 − i

2

w1 − v2 + i
2
,

SIII,III(w1, w2) =
w1 − w2 + i

w1 − w2 − i
. (4.21)

Eigenstates of the Hamiltonian are now determined through a set of main
parameters {x1, . . . , xKI} as well as several auxiliary parameters
{y1, . . . , yKII} and {w1, . . . , wKIII}. The spin chain picture has completely
dissolved.

4.5 Bethe equations

Bethe equations are periodicity conditions for a state of the original spin
chain. As the length fluctuates, we cannot define the period, but if we also
impose cyclicity this is not a problem. The generic Bethe equations for a
diagonalized S-matrix SAB

(

xA
k , xB

l

)

read

1 =
III∏

B=0

KB
∏

l=1
(B,l) �=(A,k)

SBA
(

xB
l , xA

k

)

. (4.22)

Here KA is the number of excitations of type A ∈ {0, I, II, III}. So far we
have not introduced the quasi-excitations of type 0: These are sites of the
original spin chain and they do not carry an individual momentum param-
eter for this homogeneous spin chain. They only scatter with excitations of
type I defining the wave function of a homogeneous plane wave

SI,0(xk, ·) =
x+

k

x−
k

= eipk . (4.23)

Imposing a Bethe equation at level 0 implies that sites can be permuted
around the chain without a net phase shift. This operation is a global
shift and invariance is equivalent to the zero-momentum condition (2.23),

7Note that the excitation of type II is fermionic. For the diagonalized S-matrix we shall
use the convention that scattering of two fermions introduces an additional factor of −1.
Hence SII,II = 1.
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i.e. the physicality constraint P
∣
∣Ψ

〉

= K
∣
∣Ψ

〉

= 0 in Section 2.5. Clearly, the
S-matrix satisfies the involution condition

SA,B
(

xA
k , xB

l

)

=
1

SB,A
(

xB
l , xA

k

) (4.24)

from which the remaining matrix elements can be read off. The asymptotic
Bethe equations are summarized in table 2. Here vk = yk+g2

2yk
and x±

k are
related by (2.21).

In order to understand the number of excitations KA, we first of all
convert all fields φ2 into ψ1ψ2

Zφ1 . Then we follow through the earlier nested
Bethe ansatz and find

K0 = N(Z) + N(φ1) + N(ψ1) + N(ψ2) = p + 2q + 2r − s = r1 + 2r2 − r3,
KI = N(φ1) + N(ψ1) + N(ψ2) + N(φ2) = q + 2r − s = r2 + r4,
KII = N(ψ1) + N(ψ2) + 2N(φ2) = 2r − s = r3 + 2r4,
KIII = N(ψ2) + N(φ2) = r − s = r4.

(4.25)

Here,
[

p, q; r + 1
2δD; s

]

are the Dynkin labels of the state when the Dynkin
diagram is O–O–X–O and

[

r1; r2 + 1
2δD; r3; r4 + 1

2δD
]

are the Dynkin labels
when the diagram is O–X–O–X. These are related by p = r1, q = r2 −
r3 − r4; s = r3; r = r3 + r4. Note that the highest-weight state in a multiplet
is determined using the Dynkin diagram O–X–O–X.

The derived Bethe equations agree with the equations conjectured in [13].
To see this, we first eliminate the flavours 1, 2, 3 to restrict to the su(2|3)

Table 2: Asymptotic Bethe equations for the dynamic su(2|3)
spin chain

1 =
KI
∏

l=1

x+
l

x−
l

,

1 =
(

x−
k

x+
k

)K0
KI
∏

l=1
l �=k

(

S0(xl, xk)
x+

k − x−
l

x−
k − x+

l

)
KII
∏

l=1

x−
k − yl

x+
k − yl

,

1 =
KI
∏

l=1

yk − x+
l

yk − x−
l

KIII
∏

l=1

vk − wl + i
2

vk − wl − i
2
,

1 =
KII
∏

l=1

wk − vl + i
2

wk − vl − i
2

KIII
∏

l=1
l �=k

wk − wl − i

wk − wl + i
.
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sector. Then we trade in all Bethe roots of type 7 for Bethe roots of type
5 by means of the duality transformation. Finally, we identify flavours I,
II, III with 4, 5, 6, respectively. In other words, the Bethe roots x, u, y, v, w
correspond to x4, u4, x5, u5, u6.

4.6 Symmetry enhancement

Superficially, the Bethe equations in table 2 look as though they originate
from the Dynkin diagram O–X–O, i.e., a spin chain with su(2|2) symmetry.
However, the full symmetry algebra of the considered spin chain is su(3|2)
by construction. This means that some of the symmetry must be hidden.

Symmetries in the Bethe equations are represented by Bethe roots at
special positions, conventionally at ∞. Indeed, one can add a Bethe root
x± → ∞ (flavour I), y, v → ∞ (flavour II) or w → ∞ (flavour III) to any
existing set of Bethe roots. If the original set satisfies the Bethe equations,
the new set does so as well, because the scattering between these special
excitations and any other excitation is trivial, S = 1.

Symmetry enhancement for the Bethe equations in table 2 works as fol-
lows: one adds a Bethe root y = 0 and removes a quasi-excitation of type 0
at the same time. In the Bethe equation for xk, the effect of adding y = 0
and removing a quasi-excitation cancels. In the Bethe equation for a wk,
the scattering with y = 0 is trivial, because v = y+g2

2y = ∞. The equation
for some other yk is not modified due to the absence of self-scattering terms
for fermions. Finally, in the equation for y itself, the net scattering with
all xls is equivalent to the zero-momentum condition (2.23). The latter is
effectively the Bethe equation for the (removed) quasi-excitation.

In conclusion, the Bethe equations have a hidden su(2|3) symmetry. This
however requires that the physicality constraint holds. One can also derive
the S-matrix and Bethe equations assuming that the residual symmetry at
level I is su(1|2). This avenue is considered in Appendix B.

4.7 Abelian phase

We have solved the asymptotic spectrum of the su(2|3) dynamic spin chain
[4] up to the overall function S0(xk, xl). The analysis of a similar class of
long-range spin chains in [36] has produced a suggestive generic form for this
function. Clearly, it does not necessarily have to apply to this particular spin
chain, but it is worth contemplating the possibility. Here is summary of the
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results of [36]: the overall factor is

S0(xl, xk) =
1 − g2/2x+

k x−
l

1 − g2/2x−
k x+

l

exp
(

2iθkl

)

(4.26)

with the dressing phase

θkl =
∞∑

r=2

∞∑

s=r+1

βrs(g2)
(

qr,k qs,l − qs,k qr,l

)

. (4.27)

and the r-th moment of the k-th excitation

qr,k =
1

r − 1

(
i

(x+
k )r−1

− i

(x−
k )r−1

)

. (4.28)

The coefficient functions βrs(g), r > s, can be chosen freely, but the structure
of the algebra generators imposes some constraints: Compatibility with the
range of the interactions requires βrs(g2) = O(g2s−2). Compatibility with
gauge theory Feynman diagrams imposes the more restrictive constraint
βrs(g2) = O(g2r+2s−4). Finally, the coefficients βrs with odd r + s violate
parity. The author believes that all these coefficients can be realized by the
underlying su(2|3) spin chain. In the analysis of [4] only the first, β23(g2)
can be seen at O(g4).

In [36] two further sequences of parameters related to propagation and
mixing of charges were identified. Here, these degrees of freedom are fixed by
the structure of the algebra, cf. (2.24), and the inclusion of the Hamiltonian
in the algebra. Finally, we note that (2.24) is not the correct map for
the Inozemtsev spin chain [9], cf. the appendix of [12]. This proves that
the Inozemtsev spin chain cannot be an accurate description of the su(2)
sector of planar N = 4 SYM beyond three loops which remained as a logical
possibility after [10]. Conversely, we cannot guarantee that the spin chain
of [12] is the correct (asymptotic) description at starting from four loops;
proper scaling in the thermodynamic limit may be violated in other ways or
even integrability might break (although the latter does not seem likely).

5 Generalization to psu(2, 2|4) and N = 4 SYM

In N = 4 super Yang–Mills, there are (8|8) types of level-I excitations [15].
These transform under the residual algebra psu(2|2)2 � R

3 [5].8 The genera-
tors of the bosonic subalgebra su(2)4 are L,R, L̇, Ṙ, the fermionic generators

8A very similar algebra appeared in the study of mass-deformed M2 branes [45,34]. It
would be interesting to find out if there is a deeper connection. Also the residual algebra
su(2|2) � R

2 for the su(2|3) sector of N = 4 SYM appears to play a for M5 branes [34].
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are Q,S, Q̇, Ṡ. The dotted algebra relations are the same as for the undot-
ted ones (2.5,2.6) with the central charges shared among the two algebras
(Ċ, K̇, Ṗ) = (C,K,P). The set of (8|8) = (2|2) × (2|2) excitations now trans-
forms under each extended psu(2|2) � R

3 subalgebra as (2|2) in Section 2.4.
The (8|8) composite fields are of four types: (φφ̇) is a quartet of scalars, (φψ̇)
and (ψφ̇) are two quartets of fermions and (ψψ̇) is a quartet of covariant
derivatives.

We can now apply these results for the algebra, S-matrix and Bethe equa-
tions to N = 4 SYM. Due to invariance under each factor of the residual
symmetry, the S-matrix should be

SN = 4
kl =

SI
klṠI

kl

Akl
(5.1)

with some overall undetermined phase S0(xk, xl), c.f. the remarks in Sec-
tion 4.7. Similarly, the asymptotic Bethe equations can be composed from
those in table 2. Here, the main Bethe roots x±

k are shared among the two
sectors, but the auxiliary Bethe roots yk, wk are duplicated ẏk, ẇk. The
complete Bethe equations are as in [13].
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Appendix A A contraction of d(2, 1; ε)

The exceptional superalgebra d(2, 1; ε) consists of three triplets of su(2) gen-
erators Ja

b, Jα
β, Jab and an octet of fermionic generators Jaβc. The su(2)3

generators commute canonically

[Ja
b, J

c
d] = δc

bJ
a
d − δa

dJ
c
b,

[Jα
β, Jγ

δ] = δγ
βJ

α
δ − δα

δ J
γ

β,
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[Jab, Jcd] = δcbJ
a
d − δadJ

c
b. (A.1)

The fermionic generators transform in the fundamental representation of
each su(2) factor

[

J
a
b, J

cδe
]

= δc
bJ

aδe − 1
2δa

b J
cδe,

[

J
α

β, Jcδe
]

= δδ
βJ

cαe − 1
2δα

β J
cδe,

[

J
a
b, J

cδe
]

= δebJ
cδa − 1

2δabJ
cδe. (A.2)

Finally, the anticommutator of the fermionic generators is
{

J
aβc, Jdεf

}

= α εakεβεεcfJd
k + β εadεβκεcfJε

κ + γ εadεβεεckJfk. (A.3)

The Jacobi identity requires α + β + γ = 0 and a rescaling of Jaβc leads to
a rescaling of (α, β, γ). The parameter of d(2, 1; ε) is given by ε = γ

α or any
other of the six quotients made from two of the coefficients α, β, γ.

We now derive the algebra in Section 2.3 as a contraction of the algebra
given before. First of all we identify two of the su(2)s

J
a
b = R

a
b, J

α
β = L

α
β. (A.4)

The third su(2) will be contracted, we split up the generator Jab as follows:

J
1
2 = ε−1

P, J
1
1 = −J

2
2 = −ε−1

C, J
2
1 = −ε−1

K. (A.5)

The fermionic generator yields the supersymmetry generators

J
aβ1 = εac

Q
β

c, J
aβ2 = εβγ

S
a
γ . (A.6)

Finally, the three constants of the exceptional algebra are adjusted to
d(2, 1; ε)

α = −1 − ε, β = 1, γ = ε. (A.7)
Sending ε → 0 leads to the commutation relations in Section 2.3.

Appendix B Alternative notation with su(1|2) symmetry

The manifest symmetry of the Bethe equations is su(1|2), i.e., the residual
symmetry at level I appears to be su(1|2) and not su(2|2). In fact, we can
work with su(1|2) as the manifest symmetry of the S-matrix and thereby
avoid the effects of a fluctuating length. Let us outline this picture here.

We first define the two bosonic excitations as φ := φ1 and χ := φ2Z+.
Then the multiplet (φ|ψ1, ψ2|χ) transforms in a typical representation
(1|2|1) of su(1|2). This representation is like the one discussed in Section 2.4
but the index a is restricted to the value 1. There is no complication from
a fluctuating length as in (2.8) for Qα transforms φ = φ1 to ψα and φβ
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to εαβφ2Z+ = εαβχ. Similarly, Sα transforms between (φ|ψ1, ψ2|χ) in the
opposite direction. The spin chain becomes static. Note that for an exci-
tation with central charge C = +1

2 , the representation splits in two parts
(1|2|0) and (0|0|1), i.e., a fundamental and a trivial representation. This is
the common breaking pattern for typical representations of su(2|1).

To understand the possible degrees of freedom of an invariant S-matrix
one should investigate the irreducible representations in the tensor product
(1|2|1)2 [46]. There are three irreps which could be described by the symbols
(1|2|1|0|0), (0|2|4|2|0) and (0|0|1|2|1). The S-matrix thus acts on selected
representatives as

SI
12

∣
∣φ1φ2

〉I = S1
12

∣
∣φ2φ1

〉I
,

SI
12

∣
∣ψ

{α
1 ψ

β}
2

〉I = −S2
12

∣
∣ψ

{α
2 ψ

β}
1

〉I
,

SI
12

∣
∣χ1χ2

〉I = S3
12

∣
∣χ2χ1

〉I
, (B.1)

the action on the other states is determined through su(1|2) invariance.
From symmetry arguments alone the three factors Sk

12 are independent.
It is, however, very likely that they are interrelated by the Yang–Baxter
equation (3.8).

In the main text we have used invariance under su(2|2) � R
2 to relate the

coefficients and found

S1
12 = S0

12
x+

2 − x−
1

x−
2 − x+

1
,

S2
12 = S0

12,

S3
12 = S0

12
g2/2x+

2 − g2/2x−
1

g2/2x−
2 − g2/2x+

1
= S0

12
x−

2

x+
2

x+
1

x−
1

x+
2 − x−

1

x−
2 − x+

1
. (B.2)

It is straightforward to see that this S-matrix agrees with table 1. For the last
line in (B.1, B.2) one should note that χ = φ2Z+ requires the introduction
of factors of exp(ip) = x+/x− due to shifts of Z+ (2.13).

Spin chains with the same symmetry group and the same type of represen-
tation have been investigated in [46,47]. The expressions (B.2) for the eigen-
values of the S-matrix however do not agree with the expressions in [46,47].
Also the Bethe equations for the same model in [48] are incompatible with
our equations in table 2. The results in [46–48] are certainly correct and
it seems that (B.2) is an exceptional solution of the YBE. The existence of
such a solution might be attributed to the fact that the representation of
the excitations is correlated to the momentum by (2.18), see also [25]. The
distinction to the su(1|1) case in [25] appears to be that we cannot use an
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arbitrary dispersion relation, but only (2.18) is valid. It would be useful to
understand the derivation with manifest su(2|1) symmetry better.

Appendix C Using generators to construct level-II states

In Section 4.1, 4.2, 4.3 we have determined the diagonalized wave functions
of two level-II excitations. Here we will present an alternative notation
which easily generalizes to more than two level-II excitations. This ansatz
makes use of the supersymmetry generators (Qα

1)k to create an excitation
ψα from the vacuum of φ1s

(Qα
1)k

∣
∣0

〉II = ak

∣
∣φ1

1 . . . ψα
k . . . φ1

K

〉I
,

(Qα
1)k(Qβ

1)l

∣
∣0

〉II = akal

∣
∣φ1

1 . . . ψα
k . . . ψβ

l . . . φ1
K

〉I
,

(Qα
1)k(Qβ

1)k

∣
∣0

〉II = akbkε
αβ

∣
∣φ1

1 . . . φ2
kZ+ . . . φ1

K

〉I
. (C.1)

The advantage of this notation is that various factors from the algebra, such
as ak, bk, will be absorbed into the application of the symmetry genera-
tors. The single-excitation state in (4.4) will now be written in a slightly
different way

∣
∣ψα

〉II =
K∑

k=1

x−
k Ψk−1(y) − x+

k Ψk(y)
x−

k − x+
k

(Qα
1)k

∣
∣0

〉II
, Ψk(y) =

k∏

l=1

SII,I(y, xl).

(C.2)

Being somewhat sloppy about the terms at k = 0, K we can rewrite the
one-excitation state as

∣
∣ψα

〉II =
K∑

k=0

Ψk(y)
(

(Qα
1)−

k + (Qα
1)+k+1

)∣
∣0

〉II
. (C.3)

Here we have introduced the dressed generators

(Qα
1)±

k =
x∓

k

x∓
k − x±

k

(Qα
1)k. (C.4)

The formula (C.3) can now be interpreted as follows: the level-II excitation
y is permuted along the level-I chain using the scattering phase SII,I until
it is between xk and xk+1. At this point it can be joined with the vacuum
either to the left by (Qα

1)−
k or to the right by (Qα

1)+k+1.
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It becomes straightforward to write the two-excitation state as

∣
∣ψα

1 ψβ
2
〉II = 1

2

K∑

k=0

Ψk(y1)Ψk(y2)
[(

Q
α

1
)−
k
(Qβ

1)−
k + 2(Qα

1)−
k (Qβ

1)+k+1

+ (Qα
1)+k+1(Q

β
1)+k+1

]∣
∣0

〉II +
K∑

k<l=0

Ψk(y1)Ψl(y2)
(

(Qα
1)−

k

+ (Qα
1)+k+1

)(

(Qβ
1)−

l + (Qβ
1)+l+1

)∣
∣0

〉II
. (C.5)

Here, we have to make sure that the two excitations y1, y2 do not cross when
they are joined with the vacuum. This leads to the slightly asymmetric form
of the first term which should be understood as a chain-ordered version of
the second term. Now the two asymptotic regions are joined by

∣
∣Ψαβ

2
〉

=
∣
∣ψα

1 ψβ
2
〉II + SII

12
∣
∣ψα

1 ψβ
2
〉II

. (C.6)

There is no term for two coincident excitations anymore, the correct factor in
(4.20) has been distributed among the two asymptotic regions. The level-II
S-matrix is

SII
12

∣
∣ψα

1 ψβ
2
〉II = M12

∣
∣ψα

2 ψβ
1
〉II + N12

∣
∣ψβ

2 ψα
1
〉II

. (C.7)

It should be clear how to generalize this framework to more than two exci-
tations.

Appendix D A singlet state

In this appendix we construct and investigate a composite excitation which
transforms as a singlet of the symmetry algebra. We have no direct use for
it, but its existence appears exciting.

D.1 The state

Considerations of the manifest symmetries su(3) and su(2) suggest that the
singlet must be composed from the two building blocks εab

∣
∣φa

1φ
b
2Z+Z+Z+

〉I
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and εαβ

∣
∣ψα

1 ψβ
2 Z+Z+

〉I. To obtain the relative coefficient we demand invari-
ance under the fermionic generators in (2.8) and find

∣
∣112

〉I =
α

γ1γ2

(
x+

1

x−
1

− 1
)

εab

∣
∣φa

1φ
b
2Z+Z+Z+〉I + εαβ

∣
∣ψα

1 ψβ
2 Z+Z+〉I (D.1)

with x±
2 = g2

2x±
1

. Also the central charges C,P,K annihilate this state. It is
clear that one of the excitations is not physical, it has a negative central
charge which balances the positive central charge of the other excitation.
This composite of the two excitations might be interpreted as a particle–
antiparticle pair. One could also say that one of the components is a creation
operator while the other is an annihilation operator.

For N = 4 SYM, the invariant combination essentially consists of two
covariant derivatives. Their total anomalous dimension is −2 which cancels
precisely their contribution to the classical dimension.

D.2 Scattering

We can scatter the compound with any other excitation X . Remarkably,
the compound stays intact and the scattering phase is independent of the
type of excitation. We find

SI
13SI

12
∣
∣X3112

〉I =
x+

3 x+
3

x−
3 x−

3

x+
3 − x+

1

x+
3 − x−

1

1 − g2/2x−
3 x+

1

1 − g2/2x−
3 x−

1

× S0(x3, x1) S0
(

x3,
g2

2x1

)
∣
∣112X3

〉I
. (D.2)

Note that this is not symmetric under the map of x±
1 → g2

2x±
1

. This is okay
as the compound 112 is not symmetric under the interchange of x1 and x2.
In fact, trying to interchange the components of 112 is not well-defined due
to divergencies in the S-matrix.

We can also represent the state by means of diagonalized excitations.
Then it is composed from the excitations (K0, KI, KII, KIII) = (2, 2, 2, 1).
We can obtain trivial scattering for all but the main excitations by setting
w = u, v1 = u + i

2 , v2 = u − i
2 , x±

2 = g2

2x±
1

. When we then set y1 = x+
1 and

y2 = g2

2x−
1

we obtain the same phase as in (D.2).

For the complete N = 4 SYM model we can construct a similar invari-
ant state from the excitations (K0, K̇III, K̇II, KI, KII, KIII) = (0, 1, 2, 2, 2, 1).
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Here, in addition we must set ẇ = u, v̇1 = u + i
2 , v̇2 = u − i

2 . For ẏ1,2 we
have to choose between x±

1 and g2

2x±
1

. Setting as above ẏ1 = g2

2x+
1

and ẏ2 = x−
1

the overall phase is

SI
13SI

12
∣
∣X3112

〉I =
(

x+
3 − x+

1

x+
3 − x−

1

1 − g2/2x−
3 x+

1

1 − g2/2x−
3 x−

1

)2

× S0(x3, x1) S0
(

x3,
g2

2x1

)
∣
∣112X3

〉I
. (D.3)

This particular choice is most likely the correct one because the first term
in the scattering factor matches the function f2

13 obtained in the context of
crossing symmetry [49].
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