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On the basis of many coorbital phenomena in astronomy and spacecraft motion, a
dynamics model is proposed in this paper — treating the coorbital restricted prob-
lem together with method for obtaining a general approximate solution. The design of

the LISA spacecraft orbits is a special 2+3 coorbital restricted problem. The problem is
analyzed in two steps. First, the motion of the barycenter of the three spacecraft is ana-
lyzed, which is a planar coorbital restricted three-body problem. And an approximate
analytical solution of the radius and the argument of the center is obtained consequently.
Secondly, the configuration of the three spacecraft with minimum arm-length variation
is analyzed. The motion of a single spacecraft is a near-planar coorbital restricted three-
body problem, allowing approximate analytical solutions for the orbit radius and the
argument of a spacecraft. Thus approximative expressions for the arm-length are given.

Keywords: Restricted problem; coorbital restricted problem; LISA Constellation; orbital
design.

1. Introduction

As early as 1776, Lagrange proved theoretically that there are particular solutions
of the equilateral triangle for the three-body problem.1 Then he indicated that
there are such particular solutions for the circular or elliptical restricted three-
body problem also. Thus, this is the theoretical proof of the existence of the coor-
bital particular solutions. The asteroid Achilles (588),2 which was found by Wolf
in 1906, is coorbital with Jupiter and forms a nearly equilateral triangle with the
Sun and Jupiter. More than ten asteroids with similar orbits were found during the
50 years hereafter, which compose the famous Trojan group. In 1918 the Japanese
astronomer T. Hirayama found that among some asteroids, their orbit semi-major
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axis, eccentricity and inclination are very close to each other. He named these aster-
oids an asteroid family,3 and doubted that they had a common origin. The asteroids
in the same family are almost coorbital. Until the 1980s, J. G. Williams et al. at
JPL have identified more than 80 asteroid families.4 In recent years more and more
asteroids in the main belt were found. As a result, it would be expected that many
more families will be recognized correspondingly. The phenomenon of the coorbital
motion also exists in the Kuiper belt objects (KBO),5 which have been found since
1992. There are many coorbital phenomena in the star motion in the spiral arms
of the Galaxy. In other words, the coorbital phenomenon has a certain universality
in the motion of celestial bodies.

The so-called restricted problem is opposite to the general problems. Classical
restricted problems include the restricted three-body problems, which were dis-
cussed in many celestial mechanics textbooks,6,7 two fixed-center problem,8 the Hill
problem,9 the Fatou problem,10 and so on. In the 1980s, the American astronomer
V. Szebehely proposed the concept of the general N+K restricted problem,11 which
is a problem including N bodies with big mass and K bodies with very small mass.
The gravity of the big mass bodies must be considered, while the gravity of the
small mass bodies to the big mass bodies can be ignored. Whether to include or
ignore the gravity among the small mass bodies should be determined according to
the real situation. His proposal was supported by most people.

In this paper the coorbital problem, which is a 2+3 restricted problem, is dis-
cussed by using the orbit design of the planned Laser Interferometer Space Antenna
(LISA)12 as a typical example. In this problem, the barycenter of three spacecraft
moves in the orbit in which the Earth moves around the Sun, under the influence
of the gravity of the Sun and the Earth (including the Moon). This is an example
of a planar restricted three-body problem. In addition to that, the motion of the
three spacecraft themselves under the influence of the gravity of the Sun and the
Earth (including the Moon) is an example of a 2+3 near-planar restricted problem.

Both LISA and ASTROD13 use interferometric laser ranging, and the Doppler
effects on transmitted and received frequencies need to be addressed. LISA′s strat-
egy is to minimize arm-length variation and relative velocity of the spacecraft. For
ASTROD, the arm-length changes of the three spacecraft are in the same order
as the distances between the three spacecraft and the relative velocities go up to
70 km/s with line-of-sight velocities varying from −20 to +20 km/s. For 1064 nm
(532 nm) laser light, the Doppler frequency change goes up to 40 (80) GHz. For
ASTROD, a different strategy, which relies on technology, is used. The recent devel-
opment of optical clocks and frequency synthesizers using optical combs makes this
heterodyne problem tractable.

In Sec. 2, the motion equations of a body in the rotating or synodic coordinate
system14 are given. In Sec. 3, the motion of the barycenter of the LISA constellation
with three spacecraft is discussed. In Sec. 4, the motion of a single spacecraft and the
variation of the arm-length in the constellation is analyzed. It has been found that
the inclination between the plane determined by the triangle of the three spacecraft
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and the ecliptic plane is a key parameter for the optimization of the orbit design of
the spacecraft. And its optimum value is presented in another paper.15

2. Equations of Motion in the Rotating Coordinate System

The first step is to analyze the motion of a particle P with negligible mass under
the influence of gravitational forces of the Sun and the earth-moon barycenter. For
simplification, S and E are used to stand for the location of the Sun and earth-
moon barycenter, respectively, and their masses are ms and me. Setting the sun S

as origin, the orbital plane, along which the earth-moon barycenter rotates around
the Sun, as base plane, and the direction to the earth-moon barycenter E as x-axis,
a heliocentric rotating or synodic coordinate system is set up and shown as Fig. 1.
This is a non-inertial system, in which the frame vectors are {i, j, k}.

Fig. 1. Heliocentric rotating coordinate system.

For an approximation, it could be assumed that the earth-moon barycenter
takes uniform circular motion around the Sun with 1AU radius and 1 sidereal year
period. Thus the motion of particle P could be analyzed on the base of the circular
restricted three-body problem. The radius vector to the earth-moon barycenter
rse = i is the unit vector of the x-axis. Using the astronomical unit AU as the
unit of distance gives rse = |rse| = 1. The angle velocity of the vector rse rotating
around the Sun is

ω = nk , (1)

where the mean motion6 n =
√

G(me + ms) and G is the gravitational constant.
It is also the angle velocity of the barycentric rotating coordinate system, which is
relative to the inertial system in the definition.

Let the radius vector of particle P be r = (x, y, z)τ , where τ denotes the trans-
pose operation of a matrix. In the aforementioned coordinate system the equation
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of motion of the particle P is

r̈ = −n2
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Denoting rep=(x − 1, y, z)τ it can be written in the following coordinate form
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where

µ =
me

ms + me
. (4)

Normalizing the unit of mass with the Sun mass gives Gms = G = 0.0002959122082
85591, Gme = 8.997011346712499×10−10 (gravitational constant of the earth-moon
system). Hence, it can be derived that µ = 3.04 × 10−6, n = 0.0172021251 radian
per day. Let

Ω = n2

{
1
2
[
(x − µ)2 + y2

]
+

(
1 − µ√

x2 + y2 + z2
+

µ√
(1 − x)2 + y2 + z2

)}
, (5)

then Eq. (2) can be written as

r̈ − 2n


 ẏ

−ẋ

0


 =

dΩ
dr

. (6)

3. Motion of the Barycenter of the LISA Constellation

3.1. Planar coorbital circular restricted three-body problem

The motion of the barycenter C of the LISA constellation is a special example of the
circular restricted three-body problem, mentioned in the last section. The initial
status of point C, which is regarded as a particle with zero mass, is

r(0) = (cos θ0, sin θ0, 0)τ . (7)

That is to say, when t = 0, C is located at the orbit of the earth-moon barycenter
trailing the barycenter by the angle −θ0. (See Fig. 1. Now the particle P is replaced
by the barycenter C). This problem can be considered as a planar coorbital circu-
lar restricted three-body problem, namely, a planar circular restricted three-body
problem with a zero-mass body coorbital with another body.
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Generally, assuming the argument angle is θ, the radius is r(0) =
(cos θ0, sin θ0, 0)τ . According to Eq. (6), the equation of motion in the polar coor-
dinate system (r, θ) can be deduced to:

r̈ − rθ̇2 − 2nrθ̇ =
∂Ω
∂r

,

d

dt
[r2(θ̇ + n)] =

∂Ω
∂θ

.

(8)

From expression (5),

Ω = n2

{
1
2
[
r2 − 2µr cos θ + µ2

]
+

(
1 − µ

r
+

µ

rec

)}
,

or

Ω = Ω0 + µΩ1 , (9)

where

Ω0 = n2

(
1
2
r2 +

1
r

)
,

Ω1 = n2

(
−r cos θ − 1

r
+

1
rec

)
,

(10)

and the length of the vector from the Earth to the barycenter C is rec =√
1 − 2r cos θ + r2. Because µ is a small parameter (in this case, 3.04×10−6), Eq. (8)

can be regarded as a perturbed problem with µΩ1 as the perturbation or disturbing
term. It can be solved by two steps. First, regarding the equation as an unperturbed
problem, i.e Ω = Ω0, the solution is given out in Sec. 3.2. Secondly, on the base of
the unperturbed solution, an approximate analytical solution is derived in Sec. 3.3.

3.2. The unperturbed solution

For illustrative purposes, we provisionally neglect the perturbation due to the earth-
moon system, namely setting µ = 0, gives Ω = Ω0. The equation of motion can be
written as

r̈ − r(θ̇ + n)2 = −n2

r2
,

d

dt
[r2(θ̇ + n)] = 0 .

(11)

This is the so-called restricted two-body problem, which can be solved by means of
a similar method used in the general two-body problem. Integrating Eq. (11) gives

r2(θ̇ + n) = h , (12)

r =
(h/n)2

1 + e cos (θ + nt + β)
, (13)
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where h, e, β are the integration constants. Obviously,

r = 1, θ = θ0 = constant (14)

satisfies Eq. (11). Therefore Eq. (14) is a particular solution which corresponds to
the initial value (7).

Hence the center C moves along the same circular orbit of earth-moon with the
equivalent angle velocity in this case, and in the general solutions (12) and (13),
this particular solution has the particular integration constants:

e = 0, h = n . (15)

For each value of θ0, (14) is a static point on the circular orbit of earth-moon, in
the rotating coordinate system. These particular solutions are named the coorbital
solutions.

3.3. Approximate analytical solution

When µ �= 0, Ω = Ω0 + µΩ1 and the equation becomes

r̈ − r(θ̇ + n)2 = −n2

r2
+ µn2

(
1
r2

− cos θ − r − cos θ

r3
ec

)
,

d

dt
[r2(θ̇ + n)] = µn2r sin θ

(
1 − 1

r3
ec

)
.

(16)

The iterative method is used to obtain the approximate analytical solution. Replac-
ing r in the right-hand side of Eq. (16) with the unperturbed particular solu-
tion (14), and rec = 2 sin |θ|

2 (when r = 1, rec =
√

2 − 2 cos θ = 2
∣∣sin θ

2

∣∣ = 2 sin |θ|
2 )

gives the following solution with the accuracy of first-order perturbation of µ

r̈ − r(θ̇ + n)2 = −n2

r2
+ µn2

(
2 sin2 θ

2
− 1

4
csc

|θ|
2

)
,

d

dt
[r2(θ̇ + n)] = µn2 sin θ

(
1 − 1

8
csc3 |θ|

2

)
.

(17)

Putting the second equation in a different form, we have

dh

dt
= µn2 sin θ

(
1 − 1

8
csc3 |θ|

2

)
. (18)

Equation (13) is the expression of r when there is no perturbation. On the basis
of the variation of arbitrary constants,6 it is still true when there is perturbation.
However h, e and β are not constants any more, and should be regarded as functions
of t instead.

Replacing θ in the perturbation terms with the unperturbed particular solu-
tion (14), and putting

k = µ sin θ0

(
1 − 1

8
csc3 |θ0|

2

)
(19)
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in Eq. (18) gives

dh

dt
= kn2 . (20)

If h0 = n in the case of initial value (14), the particular solution of Eq. (20) is

h

n
≡ 1 + τ = 1 + knt , (21)

where τ = knt.
Next, the approximate solution for the argument angle θ will be presented.

Taking e = 0, from Eqs. (12) and (13)

θ̇ =
h

r2
− n = n

[(
h

n

)−3

− 1

]
. (22)

Substituting the approximate solution (21) into (22) and considering that k contains
a small factor µ, yields θ̇ = −3kn2t. Integrating it we have

∆θ ≡ θ − θ0 = −3
2
k(nt)2 . (23)

The comparison of Expression (23) with an accurate numerical integration is
shown in Fig. 2. At the end of the mission lifetime, the variation of θ has been more
than 1 degrees. The accuracy of this expression still does not meet our requirement.
Iteration of θ is needed.

Fig. 2. Comparison of Eq. (23) with numerical integration
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3.4. A useful solution for the LISA mission

Next, we find a more accurate expression for θ. The quantity τ , given by (21), is
solved at first. Because of dh

dt = θ̇ dh
dθ , from Eqs. (18) and (22), we have[(

h

n

)−3

− 1

]
d

(
h

n

)
= µ cos

θ

2

(
2 sin

θ

2
− 1

4
csc

θ

2
csc

|θ|
2

)
dθ . (24)

Integrating it

1
2

(
h

n

)−2

+
h

n
=

3
2
− µ

(
cos θ0 − 1

2
csc

|θ0|
2

)
+ µ

(
cos θ − 1

2
csc

|θ|
2

)
. (25)

Taking note of h/n = 1 + τ , the solution with the accuracy of terms of τ2 is

τ =
{

2µ

3

[(
cos θ − 1

2
csc

|θ|
2

)
−

(
cos θ0 − 1

2
csc

|θ0|
2

)]} 1
2

. (26)

Simplifying it by using θ = θ0 + ∆θ and ∆θ = − 3
2µk(nt)2, and putting

k1 = µ

[
8 cos θ0 + csc

|θ0|
2

(
1 + 2 cot2

θ0

2

)]
, (27)

gives

τ = knt

(
1 − 3

64
k1(nt)2

)
. (28)

Then from Eq. (22), θ̇ = n(−3τ + 6τ2) . Substituting (28) into it, we have

θ̇ = n

[
−3k(nt) + 6k2(nt)2 +

9
64

kk1(nt)3
]

. (29)

Integrating it we find

∆θ = −3
2
k(nt)2 + 2k2(nt)3 +

9
256

kk1(nt)4 . (30)

Finally, back to the radius expression (13), substitute the approximate expres-
sions of h/n, θ into it. As to the parameters e and β, considering the initial
values gotten from Eq. (14) and comparing with numerical integration, we have
e = 5 × 10−5, β = 3π

2 − θ0. The final result is

r =
1 + 2knt

(
1 − 3

64k1(nt)2
)

1 + e sin (∆θ + nt)
. (31)

The comparison of Eqs. (30), (31) with an accurate numerical integration is
shown in Fig. 3. Obviously, the accuracy of this expression can meet our requirement
during the mission lifetime.
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Fig. 3. Comparison of Eqs. (30), (31) with numerical integration, the upper two diagrams show
the (almost identical) curves themselves in different colors (color online), the lower two diagrams
show the differences between the equations and numerical integration.

4. Variation of the Arm-Length of the LISA Constellation

4.1. Motion of a single spacecraft

First, the motion of a single spacecraft will be analyzed. The formation of the con-
stellation and the variation of the arm-length will be discussed subsequently. It is
evident that the motion of a spacecraft in the rotating coordinate system can still
be described by Eq. (6). The difference from the barycenter C is that the space-
craft, which moves around the Sun, is not restricted to the ecliptic plane. In other
words, it is no longer a planar problem. However, because the orbit inclination of
a LISA spacecraft is small (less than 0.02 radian), its motion can be regarded as a
near-planar coorbital circular restricted three-body problem, which will be proved
later.
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In cylindrical coordinates

x = r̂ cos θ ,

y = r̂ sin θ ,

z = z ,

(32)

Eq. (6) becomes

¨̂r − r̂θ̇2 − 2nr̂θ̇ =
∂Ω
∂r̂

,

d

dt
(r̂2(θ̇ + n)) =

∂Ω
∂θ

,

z̈ =
∂Ω
∂z

,

(33)

where Ω = Ω0 + µΩ1 and

Ω0 = n2

[
1
2
r̂2 +

1√
r̂2 + z2

]
,

Ω1 = n2

[
−r̂ cos θ − 1√

r̂2 + z2
+

1√
r̂2 + z2 − 2r̂ cos θ + 1

]
.

(34)

Due to z being a small quantity, z was allowed to be set to zero approximately in
the first two equations of (33). The two equations could be regarded as the motion
equations of the projection point of the spacecraft (r̂, θ) on the xy plane

¨̂r − r̂θ̇2 − 2nr̂θ̇ =
∂Ω̂
∂r̂

,

d

dt

(
r̂2(θ̇ + n)

)
=

∂Ω̂
∂θ

,

(35)

where Ω̂ = Ω̂0 + µΩ̂1 and

Ω̂0 = n2

(
1
2
r̂2 +

1
r̂

)
,

Ω̂1 = n2

(
−r̂ cos θ − 1

r̂
+

1√
r̂2 − 2r̂ cos θ + 1

)
.

(36)

The form of Eqs. (35) and (36) is completely identical to that of Eqs. (8) and
(10), except that the initial value (14) is no longer true. Hence the conclusion on
the planar problem in the previous section requires further detailed analysis, when
applied to the motion of the projected point of the spacecraft onto the ecliptic
plane.

For the non-perturbed motion of µ = 0, Eqs. (12) and (13) are still valid if only
the heliocentric distance r is replaced with its projection r̂ on the ecliptic plane.

r̂2(θ̇ + n) = ĥ , (37)

r̂ =
(ĥ/n)2

1 + e cos (θ + nt + β)
=

(ĥ/n)2

1 + e cos f
, (38)
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where

f = θ + nt + β (39)

and β is an integration constant that can be determined by the initial position of
the spacecraft, as will be discussed in detail in Sec. 4.2 later. The curve (38) is
the projection of the spacecraft orbit onto the ecliptic plane. It is an ellipse in the
(r̂, f) coordinate with a cos I as the semi-major axis and a(1+e) cos I as the aphelic
distance, where a, I are the semi-major axis and inclination of the spacecraft orbit,
respectively, so that the eccentricity e remains constant. Regarding f as the true
anomaly of the projection point, the mean anomaly M and eccentric anomaly6 E

could be defined in the same way as dealing with the two-body problem:

M = M0 + nt = E − e sinE ,

r̂ cos f = cosE − e ,

r̂ sin f =
√

1 − e2 sin E .

(40)

The relation (39) can be written as

θ = f − (nt + β) = f − (nt + f0 − θ0) = (f − M) + (f0 − M0) + θ0 , (41)

where the subscript 0 denotes the value of the variable when t = 0. Substituting
the equation of the center6

δ ≡ f − M =
(

2e − e3

4

)
sin M +

5
4
e2 sin 2M +

13
12

e3 sin 3M + · · · (42)

into (41) yields

∆θ ≡ θ − θ0 = δ − δ0 . (43)

This is the expression of the increment of the argument angle. In Eq. (38), when
f=π, r̂ reaches its maximum value 1 + e. Therefore, h/n =

√
1 − e2. Consequently

the expression of the radius is

r̂ =
1 − e2

1 + e cos f
. (44)

Furthermore, when µ �= 0, the second equation of (16) now becomes

d

dt
[r̂2(θ̇ + n)] = µn2r̂ sin θ

(
1 − 1

r3
e

)
, (45)

where re is the distance of the spacecraft to the Earth, which can be replaced by
the distance of the barycenter to the Earth rec = 2 sin |θc|

2 . Setting r̂ = 1 and
θ = θc = θc0, Eq. (45) degenerates into the form of Eq. (18), and the solution (21)
becomes

ĥ = ĥ0 + kn2t , (46)

where the parameter k is given by definition (19), in which the symbol θ0 should
be written as θc0 now.
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In the following, the expressions of radius r̂ and argument angle θ will be
deduced. From expressions (37) and (46),

θ̇ + n =
ĥ

r̂2
=

ĥ0 + kn2t

r̂2
. (47)

Setting ĥ = ĥ0 = n approximately, the equation can be simplified to θ̇ + n =
ĥ4r̂−2(ĥ0 + kn2t)−3 = n(1 − 3knt), namely

θ̇ = −3kn2t . (48)

From (43) and (48),

θ = θ0 + ∆θ − 3
2
k(nt)2 . (49)

Substituting relation (41) into (38), the final result is

r̂ =
1 + 2knt

(
1 − 3

64k1(nt)2
)

1 + e cos (θ + nt + β)
. (50)

Iteration with Eqs. (47) and (50) will increase the accuracy further.
As to z, the distance from the spacecraft to the ecliptic plane, can be solved as

the two-body problem:

z = (cosE − e) sin I . (51)

4.2. Formation of the constellation and variation of arm-length

As shown in Fig. 4, three spacecraft form the LISA constellation, and its barycenter
C is in coorbital motion along the Earth orbit. In this paper, we assume that the
masses of the three spacecraft are identical, so the barycenter of the constellation
coincides with its geometrical center. The inclined ellipse is the osculating orbit
of the spacecraft SC1 at the initial epoch. Assuming φ is the inclination between
the constellation plane, on which the spacecraft move, and the ecliptic plane, the
important relationship16 between the eccentricity e of the spacecraft orbit, the
inclination I to the ecliptic plane, the arm-length l of the constellation, and the
angle φ is shown as Fig. 4.

e =

√
1 +

l2

3
+

2l√
3

cosφ − 1 , (52)

sin I =
l√

3 (1 + e)
sinφ , (53)

cos I =
√

3 + l cosφ√
3 (1 + e)

. (54)

As mentioned in another paper,15 the inclination φ is one of the key parameters to
the optimization of the orbits design of the spacecraft.
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Fig. 4. The geometrical relationship among the inclination I, arm-length l and angle φ.

The discussion regarding a single spacecraft in Sec. 4.1, especially the expression
of argument (49), the expression of radius (50) and the expression of distance (51)
are all valid for any of the three spacecraft in the constellation. For convenience, in
this section the mechanical variables of the given spacecraft are marked with the
subscripts i, j = 1, 2, 3, i.e., ri, r̂i, θi, etc; the mechanical variables of the barycenter
of the constellation are marked with the subscript c, i.e. rc, θc etc; and the initial
values of these variables are still marked with subscript 0, i.e. θc0 etc.

The next step is to determine the integration constant in relation (39). Figure 5
shows the projection of the LISA constellation onto the ecliptic plane. The x-axis
points to the direction of SE (Sun-Earth), and θc is the argument angle between
the barycenter C of the constellation and the x-axis. It is evident from the figure
that the angle ν ≈ 6l/(12 − √

3l) = 0◦.962048. At the initial epoch t = 0, θ10 =
θc0, θ20 = θc0 + ν, and θ30 = θc0 − ν. From relation (39),

βi = fi0 − θi0 (55)

at t = 0, and thus f10 = 180◦, f20 = 60◦.963335 and f30 = −60◦.963335 could
be derived.15 Substituting these parameters into relation (55), the integration con-
stants βi become β1 = 180◦ − θc, β2 = 60◦.001287− θc, β3 = −60◦.001287− θc.

From the previous section, the position vectors of the spacecraft are

ri = (r̂i cos θi, r̂i sin θi, zi)τ , (56)

where the variables are given by expressions (49), (50) and (51), respectively. The
vector of the arm between any two spacecraft is

rij = (r̂j cos θj − r̂i cos θi, r̂j sin θj − r̂i sin θi, zj − zi)
τ . (57)

Hence the square of the arm-length is

r2
ij = rij · rij = (r̂j cos θj − r̂i cos θi)

2 + (r̂j sin θj − r̂i sin θi)
2 + (zj − zi)

2 . (58)
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Fig. 5. The projection of LISA constellation on the ecliptic plane.

5. Discussion

A dynamical model — coorbital restricted problem together with the method for
obtaining a general approximate solution — is proposed in this paper and applied to
the design of the LISA spacecraft orbits, which is a special 2+3 coorbital restricted
problem. This is a simplified approximate model. Besides the gravitational force of
the Sun, only the perturbation of the gravitational force of the Earth-Moon system
which is moving along a circle orbit for simplification, is considered. In fact, there
are many very complicated perturbation effects in the LISA spacecraft motion.
The perturbation of the gravitational force of other planets will be considered to
optimize the orbits of LISA spacecraft to the accuracy of thousands of kilometers in
another paper.15 For further accurate research other important perturbation effects
need to be taken into account carefully, including the perturbation from asteroids
and general relativity, the non-gravitational effects on the orbits,17,18 the solar-
radiation pressure,18−20 which depends on the reflectivities, the shapes, and the
orientations of various surfaces of the spacecraft,21,22 and the back-reaction from
blackbody radiation emitted from the spacecraft.23
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