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Abstract. DECIGO pathfinder (DPF) is a milestone satellite mission for DECIGO (DECi-hertz 
Interferometer Gravitational wave Observatory) which is a future space gravitational wave 
antenna. DECIGO is expected to provide us fruitful insights into the universe, in particular 
about dark energy, a formation mechanism of supermassive black holes, and the inflation of 
the universe. Since DECIGO will be an extremely large mission which will formed by three 
drag-free spacecraft with 1000m separation, it is significant to gain the technical feasibility of 
DECIGO before its planned launch in 2024. Thus, we are planning to launch two milestone 
missions: DPF and pre-DECIGO. The conceptual design and current status of the first 
milestone mission, DPF, are reviewed in this article. 

1. Introduction 
 

DECIGO, a DECi-hertz Interferometer Gravitational wave Observatory, is a space gravitational wave 
antenna planned to be launched in 2024 [1][2]. The purpose of DECIGO is to observe gravitational 
waves at the frequency band mainly between 0.1 Hz and 10 Hz, and thus, to open a new window of 
gravitational wave astronomy. Since the observation band of DECIGO is between LISA [3] and 
terrestrial detectors such as LCGT [4], it can be a follow-up of LISA by observing inspiral sources that 
have moved above the LISA band, and can also be a predictor for terrestrial detectors by observing 
inspiral sources that have not yet moved into the terrestrial detector band. Moreover, since DECIGO’s 
observation band is free from foreground noises caused by unresolved gravitational-waves from many 
galactic binaries, it can play an important role in the observation of stochastic background 
gravitational waves from the early universe. 

In the pre-conceptual design, DECIGO will be formed by three drag-free spacecraft which are 
separated by 1000km to one another. The gravitational-wave signals are detected by measuring the 
relative displacements with differential Fabry–Perot interferometers. The arm length was chosen so as 
to realize a finesse of 10 with a 1 m diameter mirror and 0.5 μm laser light. The mass of the mirror is 
100 kg and the laser power is 10 W.  

Since DECIGO will be an extremely large mission, it is significant to gain the technical feasibility 
before its planned launch in 2024. Thus, we have a roadmap to launch two milestone missions before 
DECIGO. DECIGO pathfinder (DPF) is the first milestone mission to test the key technologies with 
one spacecraft. Pre-DECIGO is supposed to detect gravitational waves with minimum specifications. 
In this article, we review the conceptual design and current status of DPF. 
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Fig.1. Conceptual design of the mission part of the DECIGO pathfinder (DPF).  
 

2. Purpose and conceptual design of  DECIGO pathfinder 
 
The purposes of DPF are to test the key technologies and to make observations at 0.1-1Hz 

frequency band. The key technologies tested in DPF will be the followings: (1) low-noise operation 
and observation with a Fabry-Perot interferometer in space (2) operation of a laser source and its 
stabilization system, (3) demonstration of a drag-free control system (4) demonstration of a launch-
lock system for the test-mass mirrors. All of these technologies are critical in the realization of 
DECIGO. As for the scientific purpose of DPF, DPF targets at 0.1-1Hz gravitational waves from 
intermediate-mass blackhole inspirals. If merger or ringdown events occur at around the center of our 
galaxy, DPF will have a sufficient sensitivity to detect them. 

DPF will be a small satellite with weight of about 300kg, orbiting the earth along a sun-
synchronous orbit with an altitude of 500km. The mission part of DPF is designed to be a prototype of 
DECIGO, being comprised of a short Fabry-Perot (FP) cavity, a stabilized laser source, and a dreg-
free control system (Fig.1). The FP cavity is formed by two mirrors which act as free test masses. 
Each mirror is placed inside a module called housing. The housing has local sensors and local 
actuators, which are used to monitor and to control the relative motion between the housing and the 
mirror. In addition, the housing has a function of launch lock, which clumps the mirror at the launch of 
the satellite and releases it in the orbit with small initial velocity. The cavity has a baseline length of 
about 30cm and a finesse of about 100.  The length change in the FP cavity, which would be caused by 
gravitational waves or external disturbances, is measured by means of a stabilized laser beam. In DPF, 
we use a Nd:YAG laser source in which the frequency is stabilized using an external reference. The 
requirement for the frequency stabilization is 1Hz/Hz1/2. The laser source has an output power of 
100mW at a wavelength of 1064nm. The drag-free control of the satellite position works as a shield 
against external forces such as solar radiations and air drags. The drag-free control is realized by 
measuring the relative fluctuations between the mirrors and the satellite, and feeding these signals 
back to the satellite position actuated by low-noise thrusters of the satellite. 

With the configuration described above, DPF will have a sensitivity limit of about h~10-15 at 
around the frequency band of 0.1-1Hz (Fig.2 left). The sensitivity is mainly limited by the laser 
frequency noise at the high-frequency band and acceleration noises from various kinds of external 
forces on the test-mass mirrors at the low-frequency band. From this noise curve, we estimated the 
observable range for blackhole inspirals and ringdowns of a blackhole quasi-normal mode as a 
function of blackhole mass (Fig.2 right). In this estimation of the observable range of DPF, we used  
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Fig.2. Sensitivity (left) and observable range (right) of DPF. The observable range of DPF for  
intermediate-mass blackholes will cover the center of our galaxy. 

 
the calculated waveform of gravitational-wave signal by post-Newtonian approximation, and set the 
detection threshold to be a signal-to-noise ratio of 5. As shown in Fig.2, DPF has a sensitivity to detect 
gravitational-wave signals, if there is a blackhole inspiral event with 103-104 solar-masses, or a 
ringdown event of a quasi-normal mode for 104-4x105 solar-mass blackhole at the center of our galaxy. 
 

3. Current status of DPF 
 

Currently, DPF is selected as one of the candidates of small satellite missions of JAXA (Japan 
Aerospace Exploration Agency). JAXA have a program to launch at least 3 small satellites in this 5 
years, using standard bus systems. The standard bus module has a 200kg weight and a 900mm cubic 
shape. It will provide a 900W power with 6 solar-cell puddles at maximum, and a 2Mbps downlink 
telecommunication ability. A Mission module is attached on the upside of the bus module. The bus 
and mission modules are connected with power lines and communication lines using the SpaceWire 
standard.  

The first mission of the three missions has already decided to be TOPS, which is for the observation 
of inferior planets. TOPS will be launched in 2011. DPF is now one of the several high-ranked 
mission candidates for the second or third missions, and will be launched in 2012 in the best and 
earliest case. 
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