Journal of Physics: Conference Series 122 (2008) 012006

The Japanese Space Gravitational Wave Antenna - DECIGO

Seiji Kawamura¹, Masaki Ando², Takashi Nakamura³, Kimio Tsubono², Takahiro Tanaka³, Ikkoh Funaki⁴, Naoki Seto¹, Kenji Numata⁵, Shuichi Sato¹, Kunihito Ioka⁶, Nobuyuki Kanda⁷, Takeshi Takashima⁴, Kazuhiro Agatsuma², Tomotada Akutsu², Tomomi Akutsu², Koh-suke Aoyanagi⁸, Koji Arai¹, Yuta Arase², Akito Araya⁹, Hideki Asada¹⁰, Yoichi Aso¹¹, Takeshi Chiba¹², Toshikazu Ebisuzaki¹³, Motohiro Enoki¹⁴, Yoshiharu Eriguchi¹⁵, Masa-Katsu Fujimoto¹, Ryuichi Fujita¹⁶, Mitsuhiro Fukushima¹, Toshifumi Futamase¹⁷, Katsuhiko Ganzu³, Tomohiro Harada¹⁸, Tatsuaki Hashimoto⁴, Kazuhiro Hayama¹⁹, Wataru Hikida¹⁶, Yoshiaki Himemoto²⁰, Hisashi Hirabayashi²¹, Takashi Hiramatsu², Feng-Lei Hong²², Hideyuki Horisawa²³, Mizuhiko Hosokawa²⁴, Kiyotomo Ichiki², Takeshi Ikegami²², Kaiki T. Inoue²⁵, Koji Ishidoshiro², Hideki Ishihara⁷, Takehiko Ishikawa²⁶, Hideharu Ishizaki¹, Hiroyuki Ito²⁴, Yousuke Itoh²⁷, Shogo Kamagasako², Nobuki Kawashima²⁵, Fumiko Kawazoe²⁸, Hiroyuki Kirihara², Naoko Kishimoto⁴, Kenta Kiuchi⁸, Shiho Kobayashi²⁹, Kazunori Kohri³⁰, Hiroyuki Koizumi², Yasufumi Kojima³¹, Keiko Kokeyama²⁸, Wataru Kokuyama², Kei Kotake¹, Yoshihide Kozai³², Hideaki Kudoh², Hiroo Kunimori³³, Hitoshi Kuninaka⁴, Kazuaki Kuroda³⁴, Kei-ichi Maeda⁸, Hideo Matsuhara⁴, Yasushi Mino³⁵, Osamu Miyakawa³⁵, Shinji Miyoki³⁴, Mutsuko Y. Morimoto⁴, Tomoko Morioka², Toshiyuki Morisawa³, Shigenori Moriwaki³⁶, Shinji Mukohyama², Mitsuru Musha³⁷, Shigeo Nagano²⁴, Isao Naito³⁸, Noriyasu Nakagawa², Kouji Nakamura¹, Hiroyuki Nakano³⁹, Kenichi Nakao⁷, Shinichi Nakasuka², Yoshinori Nakayama⁴⁰, Erina Nishida²⁸, Kazutaka Nishiyama⁴, Atsushi Nishizawa⁴¹, Yoshito Niwa⁴¹, Masatake Ohashi³⁴, Naoko Ohishi¹, Masashi Ohkawa⁴², Akira Okutomi², Kouji Onozato², Kenichi Oohara⁴², Norichika Sago⁴³, Motoyuki Saijo⁴³, Masaaki Sakagami⁴¹, Shin-ichiro Sakai⁴, Shihori Sakata²⁸, Misao Sasaki⁴⁴, Takashi Sato⁴², Masaru Shibata¹⁵, Hisaaki Shinkai⁴⁵, Kentaro Somiya⁴⁶, Hajime Sotani⁴⁷, Naoshi Sugiyama⁴⁸, Yudai Suwa², Hideyuki Tagoshi¹⁶, Kakeru Takahashi², Keitaro Takahashi⁴⁴, Tadayuki Takahashi⁴, Hirotaka Takahashi⁴⁹, Ryuichi Takahashi⁴⁸, Ryutaro Takahashi¹, Akiteru Takamori⁹, Tadashi Takano⁴, Keisuke Taniguchi⁵⁰, Atsushi Taruya², Hiroyuki Tashiro³, Mitsuru Tokuda⁷, Masao Tokunari², Morio Toyoshima²⁴, Shinji Tsujikawa⁵¹, Yoshiki Tsunesada⁵², Ken-ichi Ueda³⁷, Masayoshi Utashima⁵³, Hiroshi Yamakawa⁵⁴, Kazuhiro Yamamoto¹, Toshitaka Yamazaki¹, Jun'ichi Yokoyama², Chul-Moon Yoo⁴⁴, Shijun Yoshida¹⁷, Taizoh Yoshino⁵⁵

¹ National Astronomical Observatory of Japan, Mitaka, Tokyo, 181-8588, Japan

² The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan

³ Kyoto University, Kyoto, Kyoto, 606-8502, Japan

⁴ Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, 229-8510, Japan

⁵ NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA

⁶ High Energy Accelerator Research Organization, Tsukuba, Ibaraki, 305-0801, Japan

7th Edoardo Amaldi Conference on Gravitational Waves (Amaldi7)

Journal of Physics: Conference Series 122 (2008) 012006

IOP Publishing

doi:10.1088/1742-6596/122/1/012006

⁷ Osaka City University, Osaka, Osaka, 558-8585, Japan

⁸ Waseda University, Shinjuku, Tokyo, 169-8555, Japan

⁹ Earthquake Research Institute, The University of Tokyo, Bunkyo, Tokyo, 113-0032,

Japan

¹⁰ Hirosaki University, Hirosaki, Aomori, 036-8560, Japan

¹¹ Columbia University, New York, NY 10027, USA

¹² Nihon University, Setagaya, Tokyo, 156-8550, Japan

¹³ RIKEN, Wako, Saitama, 351-0198, Japan

¹⁴ Tokyo Keizai University, Kokubunji, Tokyo, 185-8502, Japan

¹⁵ The University of Tokyo, Meguro, Tokyo, 153-8902, Japan

¹⁶ Osaka University, Toyonaka, Osaka, 560-0043, Japan

¹⁷ Tohoku University, Sendai, Miyagi, 980-8578, Japan

¹⁸ Rikkyo University, Toshima, Tokyo, 171-8501, Japan

¹⁹ University of Texas, Brownsville, Texas, 78520, USA

²⁰ Shibaura Institute of Technology, Saitama, Saitama, 337-8570, Japan

²¹ Space Educations Center, Japan Aerospace Exploration Agency, Sagamihara,

Kanagawa, 229-8510, Japan

²² National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 305-8563, Japan

²³ Tokai University, Hiratsuka, Kanagawa, 259-1292, Japan

²⁴ National Institute of Information and Communications Technology, Koganei, Tokyo, 184-8795, Japan

²⁵ Kinki University, Higashi-Osaka, Osaka, 577-8502, Japan

²⁶ Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Tsukuba, Ibaraki, 305-8505, Japan

²⁷ University of Wisconsin - Milwaukee, Milwaukee, WI 53201-0413, USA

²⁸ Ochanomizu University, Bunkyo, Tokyo, 112-8610, Japan

²⁹ Astrophysics Research Institute, Liverpool John Moores University, Egerton Wharf, Birkenhead L41 1LD, UK

³⁰ Lancaster University, LA1 4YB, UK

³¹ Hiroshima University, Higashi-hiroshima, Hiroshima, 739-8526, Japan

³² Gunma Astronomical Observatory, Agatsuma, Gunma, 377-0702, Japan

³³ National Institute of Information and Communications Technology, Bunkyo, Tokyo, 113-0001, Japan

³⁴ Institute for Cosmic Ray Research, The University of Tokyo, Kashiwa, Chiba, 277-8582, Japan

³⁵ California Institute of Technology, Pasadena, CA 91125, USA

³⁶ The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan

³⁷ Institute for Laser Science, The University of Electro-Communications, Chofu, Tokyo, 182-8585, Japan

³⁸ Numakage, Saitama, Saitama, 336-0027, Japan

³⁹ Rochester Institute of Technology, Rochester, NY 14623, USA

⁴⁰ National Defense Academy, Yokosuka, Kanagawa, 239-8686, Japan

⁴¹ Kyoto University, Kyoto, Kyoto, 606-8501, Japan

⁴² Niigata University, Niigata, Niigata, 950-2181, Japan

⁴³ University of Southampton , Southampton SO17 1BJ, UK

⁴⁴ Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, Kyoto, 606-8502, Japan

⁴⁵ Osaka Institute of Technology, Hirakata, Osaka, 573-0196, Japan

⁴⁶ Albert Einstein Institute, Max Planck Institute for Gravitational Physics, D-14476 Potsdam, Germany 7th Edoardo Amaldi Conference on Gravitational Waves (Amaldi7) Journal of Physics: Conference Series 122 (2008) 012006 doi:10.1088/1742-6596/122/1/012006

⁴⁷ Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece

- ⁴⁸ Nagoya University, Nagoya, Aichi, 464-8602, Japan
- ⁴⁹ Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan
- ⁵⁰ University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- ⁵¹ Gunma National College of Technology, Maebashi, Gunma, 371-8530, Japan
- ⁵² Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan

⁵³ Japan Aerospace Exploration Agency, Tsukuba, Ibaraki, 305-8505, Japan

⁵⁴ Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011

⁵⁵ Nakamura-minami, Nerima, Tokyo, 176-0025, Japan

Corresponding author e-mail address: seiji.kawamura@nao.ac.jp

Abstract. DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future Japanese space gravitational wave antenna. The goal of DECIGO is to detect gravitational waves from various kinds of sources mainly between 0.1 Hz and 10 Hz and thus to open a new window of observation for gravitational wave astronomy. DECIGO will consist of three dragfree spacecraft, 1000 km apart from each other, whose relative displacements are measured by a Fabry-Perot Michelson interferometer. We plan to launch DECIGO pathfinder first to demonstrate the technologies required to realize DECIGO and, if possible, to detect gravitational waves from our galaxy or nearby galaxies.

1. What is DECIGO?

DECIGO is the future Japanese space gravitational wave antenna. It stands for DECi-hertz Interferometer Gravitational wave Observatory [1][2]. The goal of DECIGO is to detect various kinds of gravitational waves mainly between 0.1 Hz and 10 Hz and open a new window of observation for gravitational wave astronomy.

DECIGO will bridge the frequency gap between LISA [3] and terrestrial detectors such as LCGT [4], somewhat similarly with BBO [5]. It can play a role of follow-up for LISA by observing inspiral sources that have moved above the LISA band, and can also play a role of predictor for terrestrial detectors by observing inspiral sources that have not yet moved into the terrestrial detector band.

The more important advantage of DECIGO specializing in this frequency band is that the confusion limiting noise caused by irresolvable gravitational wave signals from many compact binaries is expected to be very low above 0.1 Hz [6]. Therefore, DECIGO can reach an extremely high sensitivity.

2. Pre-conceptual design

The pre-conceptual design of DECIGO consists of three drag-free spacecraft, whose relative displacements are measured by a differential Fabry-Perot (FP) Michelson interferometer (see Fig. 1). The arm length was chosen to be 1,000 km in order to realize a finesse of 10 with a 1 m diameter mirror and 0.5 µm laser light. The mass of the mirror is 100 kg and the laser power is 10 W. Three sets of such interferometers sharing the mirrors as arm cavities comprise one cluster of DECIGO. As shown in Fig. 2, the constellation of DECIGO is composed of four clusters of DECIGO located separately in the heliocentric orbit with two of them nearly at the same position.

The FP configuration requires the distance between two mirrors, thus, the distance between two spacecraft to be constant during continuous operations. This makes DECIGO very different from a possible counterpart with the transponder-type detector (e.g. LISA), where the spacecraft, which are much farther apart, are freely falling according to their local gravitational field. We adopted the FP configuration because it can provide a better shot-noise-limited sensitivity than the transponder configuration due to the enhanced gravitational wave signals.

Journal of Physics: Conference Series 122 (2008) 012006

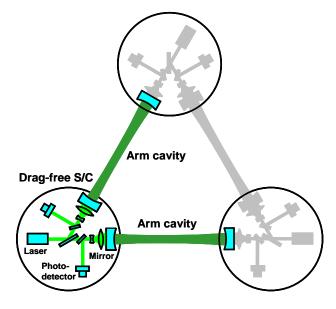


Fig.1. Pre-conceptual design of DECIGO.

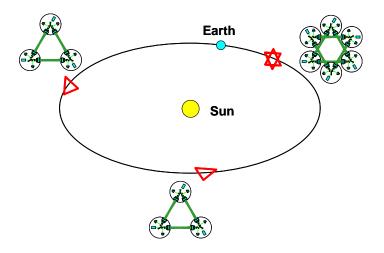


Fig. 2. Constellation of DECIGO.

The control of the mirrors/spacecraft to keep the resonant condition of the FP cavity is compatible with the drag free control system. Figure 3 demonstrates the compatibility in a simplified system. One of the two spacecraft (S/C I) has only a drag free system; the relative position of the mirror with respect to the spacecraft is measured with a local sensor and the signal is fed back to the thruster. The other spacecraft (S/C II) has the mirror control system in addition to the drag free system; the relative position of the mirror with respect to the mirror in S/C I is measured with the FP interferometer and the signal is fed back to the mirror, while the relative position of the mirror with respect to the spacecraft is measured with a local sensor and the signal is fed back to the thruster. As a result, the mirror in S/C II dictates the motion of S/C I, the other mirror, and S/C II. It should be also noted that the FP interferometer output, which includes gravitational wave signals, is not contaminated by the local sensor output, which is noisy because of drag forces exerted on the spacecraft. In reality, however, each spacecraft has two mirrors and each cluster has three arm cavities.

sophisticated control authority for all the degrees of freedom of all the mirrors and spacecraft is required to operate the whole system compatibly.

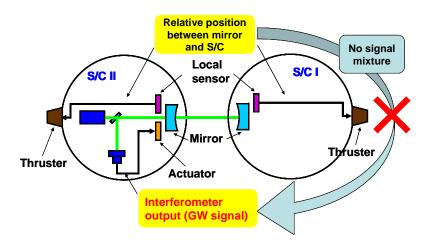


Fig. 3. Compatibility of the drag-free system and the FP Michelson system.

3. Sensitivity goal and science

The sensitivity goal of DECIGO, as shown in Fig. 4, is limited by the radiation pressure noise below 0.15 Hz, and by the shot noise above 0.15 Hz. In order to realize this goal, all the practical noise should be suppressed well below this level. This imposes stringent requirements for the subsystems of DECIGO. We anticipate that extremely rigorous investigations are required to attain the requirements especially in the acceleration noise and frequency noise.

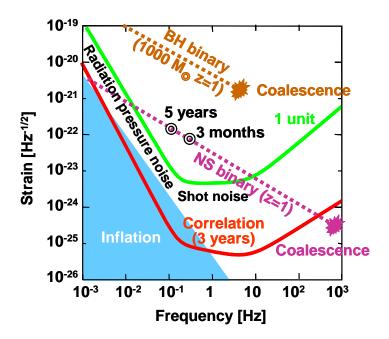


Fig. 4. Sensitivity goal of DECIGO and expected gravitational wave signals.

Nevertheless, accomplishing the goal sensitivity of DECIGO will ensure a variety of fruitful sciences to be obtained.

(1) Characterization of dark energy

DECIGO can detect gravitational waves coming from neutron star binaries at z=1 for five years prior to coalescences. It is expected that within this range about 50,000 neutron star binaries will coalesce every year [7]. Therefore, DECIGO will detect gravitational waves coming from a large number of neutron star binaries at the same time. By analyzing the waveforms of these gravitational wave signals precisely, it is possible to determine the acceleration of the expansion of the universe [1]. The acceleration of the expansion of the universe can be also measured by finding host galaxies of each binary, which is possible with the expected angular resolution of about 1 arcsec, and determining their red shifts optically [8]. This will lead to better characterization of dark energy.

(2) Formation mechanism of supermassive black holes in the center of galaxies

DECIGO can detect gravitational waves coming from coalescences of intermediate-mass black hole binaries with an extremely high fidelity. For example the coalescences of black hole binaries of 1,000 solar masses at z=1 give a signal to noise ratio of 6,000. This will make it possible to collect numerous data about the relationship between the mass of the black holes and the frequency of the coalescences, which will reveal the formation mechanism of supermassive black holes in the center of galaxies.

(3) Verification and characterization of inflation

DECIGO can detect stochastic background corresponding to $\Omega_{GW}=2\times10^{-16}$ by correlating the data from the two clusters of DECIGO, which are placed nearly at the same position, for three years. According to the standard inflation model, it is expected that we could detect gravitational waves produced at the inflation period of the universe with DECIGO. This is extremely significant because gravitational waves are the only means which make it possible to directly observe the inflation of the universe.

While the inflation background is the primary target for the correlation analysis with the two clusters, it would be important to carefully design the system so that we can disclose various aspects of stochastic gravitational wave backgrounds. One of the interesting measures from fundamental physics is the Stokes V parameter. This parameter characterizes the asymmetry of the amplitudes of the right-and left-handed waves, and it is a powerful measure to probe violation of parity symmetry that interchanges the two circular-polarization modes. By slightly adjusting the relative configuration of the two clusters, we can set sensitivity to the Stokes V parameter [9].

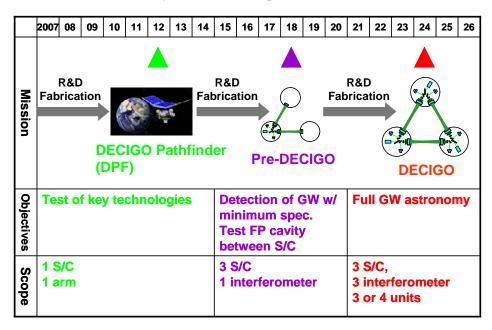


Fig. 5. Roadmap to DECIGO.

7th Edoardo Amaldi Conference on Gravitational Waves (Amaldi7)	IOP Publishing
Journal of Physics: Conference Series 122 (2008) 012006	doi:10.1088/1742-6596/122/1/012006

4. Roadmap

We plan to launch two missions before DECIGO: DECIGO pathfinder (DPF) [10] and pre-DECIGO (See Fig. 5). DPF tests the key technologies for DECIGO just as LISA pathfinder [11] does for LISA. We expect that it will be launched in 2012. Pre-DECIGO is supposed to detect gravitational waves with minimum specifications. We hope that it will be launched in 2018. Finally DECIGO will be launched in 2024 to open a new window of observation for gravitational wave astronomy.

5. DECIGO Pathfinder

As shown in Fig. 6, DPF will employ a small drag-free spacecraft that contains two freely falling masses, whose relative displacement is measured with a Fabry–Perot interferometer, which is illuminated by the frequency-stabilized laser light. The masses are clamped tightly for the launch and released gently in space. DPF will be delivered in the geocentric sun-synchronous orbit with an altitude of 500km. The strain sensitivity of DPF will be $\sim 10^{-15}$ around the frequency band of 0.1-1Hz. The primary objective of DPF is to test the drag-free system, the FP cavity measurement system in space, frequency-stabilized laser in space, and the clamp release system. The scientific objective of DPF is to detect rather unlikely events of intermediate-mass black hole inspirals in our galaxy; it is possible to detect such events with the aimed sensitivity of DPF.

DPF was identified as one of the candidate missions for the small-spacecraft mission series which had been recently initiated by the Japanese space agency, JAXA/ISAS. This small-spacecraft mission series are expected to reduce the cost of missions significantly compared with the conventional large-spacecraft missions. The reduction of the cost also relies on the development of a satellite bus that is common to any mission. We are now in the process of establishing the conceptual design of DPF which is consistent with the common bus system.

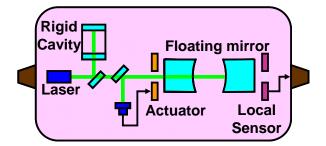


Fig. 6. Pre-conceptual design of DECIGO pathfinder.

6. Conclusions

The future Japanese space gravitational wave antenna, DECIGO, is expected to detect gravitational waves from various kinds of sources and thus to open a new window of observation for gravitational wave astronomy. We have started serious R&D for DPF as one of the candidate missions for the small-spacecraft mission series to demonstrate the technologies required to realize DECIGO.

Acknowledgment

This research was partially supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research.

References

- [1] Seto N, Kawamura S and Nakamura T 2001 Possibility of direct measurement of the acceleration of the universe using 0.1 Hz band laser interferometer gravitational wave antenna in space *Phys. Rev. Lett.* **87** 221103
- [2] Kawamura S *et al* 2006 The Japanese Space Gravitational Wave Antenna DECIGO *Class. Quantum Grav.* 23 S125

7th Edoardo Amaldi Conference on Gravitational Waves (Amaldi7)	IOP Publishing
Journal of Physics: Conference Series 122 (2008) 012006	doi:10.1088/1742-6596/122/1/012006

- [3] LISA: System and Technology Study Report, ESA document ESA-SCI (2000)
- [4] Kuroda K et al 2002 Japanese large-scale interferometers Class. Quantum Grav. 19 1237
- [5] Phinney E S et al 2003 The Big Bang Observer NASA Mission Concept Study
- [6] Farmer A J and Phinney E S 2003 The gravitational wave background from cosmological compact binaries *Mon. Not. R. Astron. Soc.* **346** 1197
- [7] Cutler C and Harms J 2006 Big Bang Observer and the neutron-star-binary subtraction problem *Phys. Rev. D* **73** 042001
- [8] Schutz B F 1986 Determining the Hubble constant from gravitational wave observations *Nature* 323 310
- [9] Seto N 2007 Quest for circular polarization of a gravitational wave background and orbits of laser interferometers in space *Phys. Rev. D* **75** 061302
- [10] Ando M et al DECIGO pathfinder Proc. of TAUP2007 submitted
- [11] Anza S et al 2005 The LTP experiment on the LISA Pathfinder mission Class. Quantum Grav. 22 S125-S138