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1. Introduction

The spinning folded string in AdS5 has played an important role in our quantitative un-

derstanding of the AdS/CFT duality. In the large spin limit, the difference between its

energy E and spin S scales like lnS [1]; the proportionality coefficient is the universal

scaling function f(λ) which provided the first controlled example of an interpolating func-

tion between weak and strong coupling. These spin S states are thought to be dual to

the operator tr(ZDSZ) where D is the light-cone covariant derivative and Z is one of the

complex scalar fields of the theory; for such operators the logarithmic scaling has long been

known [2 – 4].

A spinning folded string also exists in sigma models on lower-dimensional AdS spaces,

such as AdS4 × P
3; it was pointed out in [5] that in the large spin limit they have similar

properties as the AdS5 state, that is

E − S ∝ lnS + O(S0) . (1.1)

The gauge theory dual to closed string theory on AdS4×P
3 was recently conjectured to be

a certain N = 6 superconformal three-dimensional Chern-Simons theory [5] (see also [6]).
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At finite N and k, this U(N) × U(N) gauge theory is in fact thought to describe the low-

energy physics of N M2-branes on R
1,2 × C

4/Zk, where k is interpreted as the level of

the Chern-Simons theory (for recent discussions on the M2-brane worldvolume theory see

e.g. [7 – 14]); in the large N limit the gravity dual becomes M-theory on AdS4×S7/Zk where

the orbifold group lies inside a U(1) subgroup of the SO(8) isometry group of S7. This

theory also has an ’t Hooft limit where both k and N are taken to be large with λ = N/k

kept fixed. In this limit the size of the circle fiber acted upon by the Zk orbifold becomes

very small and thus the appropriate description is as type IIA theory on AdS4 × P
3. The

N = 6 Chern-Simons theory [5] exhibits an SU(4)×U(1) global symmetry group, the first

factor of which is the R-symmetry. In addition to the gauge-fields, it also contains eight

bi-fundamental scalar fields Y I and Y †
I which transform as 4+1 and 4̄−1 of SU(4) × U(1).

The representations of the eight fermionic bi-fundamental superpartners follow from the

representation of the supercharges; for the M2-brane theory the supercharges transformed

as the 8c representation of the SO(8) R-symmetry and decompose under the commutant

of the orbifold action as 60 ⊕ 12 ⊕ 1−2. It is natural to expect that the spinning folded

strings should be dual to single trace gauge invariant operators made of a large number of

covariant derivatives and some finite number of other fields.

The twist-two operators tr(ZDSZ) of N = 4 SYM theory are not captured by the

asymptotic Bethe ansatz. To bypass this problem and, at the same time, to make a

cleaner identification between the gauge theory operators and string solutions it is useful

to generalize the rotating folded string by adding a further angular momentum J in the

compact space. The dual operators tr(DSZJ) belong to the sl(2) sector of the theory.

For strings in AdS5×S5 this has been done in [15]. The resulting target space energy,

E(
√
λ, S, J), is a nontrivial function of its arguments and may be expanded in different

regimes, uncovering and testing various aspects of the gauge and string Bethe ansätze.

One can straightforwardly find similar strings moving along an S1 ⊂ P
3 with angular

momentum J . Invariance under U(N)×U(N) gauge transformations, and the requirement

that the operator be charged only under one Cartan generator of the R-symmetry group

suggests that the relevant operators are tr(DS(Y 1Y †
4 )J).1,2

As for the N = 4 theory, the dilatation operator of the Chern-Simons theory appears

to be described by an integrable spin chain at weak coupling [16] (see also [17, 18]). Unlike

that of the N = 4 theory this spin chain is alternating due to the presence of fields in the

bifundamental representation. Given as J roughly corresponds to the spin-chain length,

it is necessary to take it to be large in order to expect an exact Bethe ansatz, which

would therefore be asymptotic. The choice of vacuum for the spin chain leaves unbroken

a symmetry group similar to that of the spin chain of N = 4 SYM theory. Together with

information [19] extracted from a conjectured worldsheet action for strings in AdS4 × P
3

1Here we assigned charges to the fields in the 4 of SU(4) such that Y 4 has equal charges under all three

Cartan generators while Y i with i = 1, 2, 3 has the same charge as (Y4)
† under the i-th generator and the

charge as Y 4 under the other two generators.
2It is worth noting that two scalar fields together with a covariant derivative can carry the same quantum

numbers as a fermion bilinear so that generically such states will mix; with a some care however, it is still

possible to identify a closed sl(2) sector.
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[20 – 22], asymptotic Bethe equations have been conjectured in [23] (see also [24]). To

leading order in the weak coupling expansion these equations reproduce the results of

direct anomalous dimension calculations [16]. Similarly to AdS5×S5 , the study of the

properties of classical string solutions, such as the finite size corrections to their energy,

(see [25 – 30]) may be used to carry out further tests of the Bethe equations.

In this work we will consider the one-loop string corrections to the energy of the

spinning folded string in AdS4 ×P
3 . While the full superstring action on this space is not

known, sigma models based on the coset Osp(6|4)/SU(3)×U(1)×SO(3, 1) and supplied with

an appropriate Wess-Zumino like term [20 – 22] have been suggested to represent partially

κ-gauge fixed Green-Schwarz string actions. Furthermore, it has been shown that these

actions are classically integrable suggesting that it may be possible to study this theory

using similar methods to the AdS5×S5 case. We will however not use these actions. To

one-loop order only the quadratic part of the fermion action is necessary and its structure

is well-known in terms of the supersymmetric covariant derivative.

After recalling the supergravity background [5] in §2 we proceed in §3 to discuss the

spinning string solutions in AdS4 × P
3 , some of their scaling limits as well as the expec-

tations for the semiclassical expansions of their energy, all of which are quite analogous to

those of spinning strings in AdS5×S5 . In §4 we find the spectrum of bosonic and fermionic

fluctuations around the spinning folded string solution in the scaling limit. In §5 we eval-

uate the one-loop correction to the target space energy both for strings with J = 0 and

J 6= 0 in the semi-classical scaling limit. We show that the quadratic and logarithmic di-

vergences cancel and extract the one-loop correction to the generalized scaling function. In

§6 we discuss the comparison with the Bethe ansatz predictions and discuss some possible

future directions.

2. AdS4 × P3 background

Recently, [5], it was pointed out that the near horizon geometry of M2-branes on a special

Zk quotient of flat space is, for large values of k, AdS4 × P
3. Taking the standard M2-

brane near horizon geometry of AdS4×S7 and writing the S7 as a S1 fibration over P
3 the

effect of the Zk quotient is simply to make the radius of the S1 smaller by a factor of k.

The compactification from eleven to ten dimensions gives rise to a two form flux which is

proportional to the Kähler form on the P
3 and the four form flux is unaffected except that

the number of units of flux is reduced by a factor of k. To be more explicit the background

fields after the quotient are

ds2 =
R3

4k

(
ds2AdS4

+ 4ds2
P3

)
e2φ =

R3

k3

F2 = k JP3 F4 =
3

8
R3VolAdS4

(2.1)

Above, the metric and the forms are written in terms of those of spaces of unit radius. For

AdS4 we use global coordinates, (t, ρ, θ, φ) and the resulting metric is the standard

ds2AdS4
= − cosh2 ρ dt2 + dρ2 + sinh2 ρ

(
dθ2 + sin2 θdφ2

)
(2.2)
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and we make use of the parameterization, [31], of the P
3 geometry in terms of the coordi-

nates (ζ1, ζ2, ζ3, τ1, τ2, τ3),

ds2
P3 = dζ2

1 + sin2 ζ1

[
dζ2

2 + cos2 ζ1
(
dτ1 + sin2 ζ2

(
dτ2 + sin2 ζ3dτ3

))2
(2.3)

+ sin2 ζ2

(
dζ2

3 + cos2 ζ2
(
dτ2 + sin2 ζ3dτ3

)2
+ sin2 ζ3 cos2 ζ3dτ

2
3

)]

where we have pulled out an overall factor of R2
AdS = R3/4k with R being the radius of the

original AdS4×S7 geometry. This expression for the P
3 metric can be found by iteratively

embedding P
n−1 in P

n. The two-form can be written as the exterior derivative, F2 = kdω,

of a one-form defined locally by

ω = sin2 ζ1
(
dτ1 + sin2 ζ2

(
dτ2 + sin2 ζ3dτ3

))
. (2.4)

In physical coordinates one has:

(F2)µν = 2
k2

R3
Jµν (F4)abcd = 6

k2

R3
ǫabcd (2.5)

or

eφ(F2)µν =
1

RAdS
Jµν eφ(F4)abcd =

3

RAdS
ǫabcd (2.6)

where J and ǫ are numerical tensors with entries ±1 and 0. They are, respectively, the

entries of the Kähler form and of the volume form on unit P
3 and AdS4. Finally the

ten-dimensional radius of curvature will be related to the ’t Hooft coupling by

R2
string =

R3

k
= 25/2π

√
λ. (2.7)

We now turn to the study of a particular class of spinning strings in this background.

3. Spinning string solution and scaling limits

Many of the spinning string solutions of Frolov and Tseytlin [15, 32, 33] are again solutions

of strings on AdS4 × P
3 and indeed many of their calculations, including that of the quan-

tum correction to the long spinning string, are modified only very slightly. Let us briefly

summarize some of the relevant details about spinning strings. We wish to consider folded

closed strings that have two non-vanishing charges: one spin, S, in the AdS4 space and

one angular momentum, J , in the compact P
3 and that are solutions of the equations of

motion of the action

I = IAdS4
+ IP3

=
R2

AdS

4π

∫
dτdσ

√
hhab

(
GAdS

µν ∂aX
µ∂bX

ν + 4GP
3

µν∂aX
µ∂bX

ν
)

. (3.1)

Due to the choice of spins, the solution fits inside an AdS3×S1 subspace and it is in fact

identical to that of GKP, [1] and further studied in [15], except for a multiplication of the
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S1 angular momentum parameter by 1
2 . This is a consequence of the numerical factor in

the second term in the action (3.1).

As in AdS5×S5 , the worldsheet semiclassical expansion about these spinning string

solutions is naturally organised as an expansion in 1√
2λ

(which is proportional to the inverse

string tension) which keeps fixed the charge densities S = S√
2λ

and J = J√
2λ

. The target

space energy of the string is given by

E =
√

2λ E
(
S,J , 1√

2λ

)
=

√
2λ

[
E0 (S,J ) +

1√
2λ

E1 (S,J ) + . . .

]
. (3.2)

Given the complexity of the solution [15] additional limits are useful. We will consider

the so-called “semi-classical scaling” or long-string limit of the spinning string solutions,

see [15, 34] and also [35],

S ≫ J ≫ 1, with ℓ ≡ J
2 lnS fixed. (3.3)

Since we are interested in the limits lnS ≫ lnJ and S ≫
√

2λ this equivalent to

S ≫ J ≫ 1, with ℓ ≈ J

2
√

2λ lnS
fixed. (3.4)

As discussed at length in [34, 35] , in this limit the solution simplifies dramatically

becoming homogeneous. Choosing3 the angle ϕ3 parametrizing the circle S1 ⊂ P
3 as

ϕ3 = 1
2(τ1 + τ2 + τ3), the relevant part of the action is given by the metric

ds2 = R2
AdS

(
dρ2 − cosh2 ρ dt2 + sinh2 ρ dφ2 + 4dϕ2

3

)
. (3.6)

Then, the solution is just

t̄ = κτ φ̄ = κτ ρ̄ = µσ ϕ̄3 =
1

2
ντ µ =

√
κ2 − ν2 ; (3.7)

the other AdS4 × P
3 coordinates take constant values, the nonvanishing ones being

θ̄ =
π

2
, ζ̄1 =

π

4
, ζ̄2 =

π

2
, ζ̄3 =

π

2
. (3.8)

As with all classical solutions, two-dimensional Lorentz invariance is spontaneously broken.

As we shall see it turns out to be convenient to express the solution in terms of constant

vectors. In this way, Lorentz invariance is apparently preserved (and it would be if one

allowed these constant vectors to transform as implied by the indices they carry). In

analogy with the spinning string solution in AdS5×S5, we define the vectors n̂, ñ and m̂

dt̄ = n̂ ·dσ dφ̄ = n̂ ·dσ dρ̄ = ñ ·dσ dϕ̄3 =
1

2
m̂ ·dσ σ = (σ0, σ1) ≡ (τ, σ). (3.9)

3There are many different S1 factors that one may pick inside P
3. A particularly useful choice, which

leads to the vanishing of some components of the spin connection, may be identified by introducing new

coordinates

τ1 = ϕ3 − β, τ2 = β − γ, τ3 = ϕ3 + γ . (3.5)

with all the other coordinates set to zero.
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The Virasoro constraint relates these vectors as follows:

ηabn̂an̂b + ηabñañb = ηabm̂am̂b = −ν2 . (3.10)

We must also impose periodicity in the σ direction, ρ̄(σ+2π) = ρ̄(σ), which is satisfied

by interpreting the solution (3.7) as a string folded onto itself. The string is thus made of

four segments: for, 0 ≤ σ ≤ π
2 , ρ̄ increases from 0 to its maximum ρ0, while for π

2 ≤ σ ≤ π

it decreases from its maximum value back to zero and then repeats. The relation between

the parameters of the solution, κ, µ and ν, is a consequence of the Virasoro constraint.

We note that for the above solution, being in the scaling limit (3.3), κ and µ are both

large while ℓ = ν
µ is kept fixed. This can be seen clearly by relating the parameters of the

solution to the global charges of the string which are given by, E =
√

2λ E etc, with

E =

∫ 2π

0
dσ

κ

2
cosh2 ρ̄, S =

∫ 2π

0
dσ

κ

2
sinh2 ρ̄,

J =

∫ 2π

0
dσ ν. (3.11)

We thus have

µ =
1

π
lnS, µ≫ 1, ℓ =

ν

µ
= fixed. (3.12)

If we rescale σ by µ we get ρ = σ but now the worldsheet has length L = 2πµ ∼ lnS ≫ 1

and in the strict L→ ∞ limit the closed string can be thought of as two infinite overlapping

open strings. In this limit we can neglect all effects of the string end points where from

the closed string point of view the worldsheet curvature becomes infinite. In the scaling

limit (3.3) we have E = S + κ π and thus to leading order

E0 − S = µπ
√

1 + ℓ2 = lnS
√

1 +
J 2

4 ln2 S (3.13)

or using the fact that S ≫ J and S√
2λ

≫ 1

E0 − S =
√

2λ lnS

√
1 +

J2

8λ ln2 S

=
√

2λf0(ℓ) lnS . (3.14)

We can of course consider the limit in which the angular momentum in the compact space

is vanishing, or more precisely the limit J
lnS ≪ 1, the “semi-classical scaling small” limit.

In this limit at leading order E0 − S =
√

2λ lnS which is the result from [5].

Our aim here is to extend this result to include the next-to-leading order correction to

the spinning string energy which, as we shall explicitly see, takes the form

E1 = f1(ℓ) lnS + . . . . (3.15)

Thus, just as for the AdS5×S5 string, it appears that the strong coupling expansion in the

scaling limit can be organised as

E − S =
√

2λ f(ℓ, λ) lnS + . . . (3.16)
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and the function, f(ℓ, λ) can be expanded in inverse powers of
√

2λ to give the coefficients

f0(ℓ), f1(ℓ), etc or alternatively one can first expand in powers of ℓ

f(ℓ, λ) = f(λ) + ℓ2q(ℓ, λ) + ℓ4p(ℓ, λ) + . . . . (3.17)

The function f(λ) is the three-dimensional analogue of the universal scaling function

f(λ) of N = 4 super-Yang-Mills in four dimensions. Similarly to that case, we expect

that the functions q(ℓ, λ) and p(ℓ, λ) exhibit logarithmic dependence on ℓ in the string

coupling expansion.

It is perhaps worth mentioning that the relationship between GKP spinning strings [1]

and the open strings dual to light-like Wilson loops with a cusp, [36], that is known to

exist in AdS5, persists in this context at least at the level of the classical worldsheet. The

argument, [37], that in the scaling limit, after an analytic continuation combined with the

use of the AdS isometries, these two string solutions correspond to the same minimal surface

is essentially unchanged. Thus we expect the anomalous dimension of twist-two operators

and the cusp anomaly to be equal also in the dual three-dimensional Chern-Simons theory.

Their common value should define the scaling function fCS(λ).4 This equivalence for the

N = 4 theory was proven in weak coupling perturbation theory [2 – 4] and in addition to

the arguments cited above has been partially confirmed by direct calculation [36, 15, 37,

38]. It is also worthwhile mentioning that the same scaling function f(λ) governs the IR

asymptotics of the gluon amplitude in the N = 4 theory [39 – 45]. Furthermore for the four-

point gluon amplitude it determines the finite part of the exponentiated all-loop expression

found in [45, 46]. In the context of the AdS/CFT correspondence the same functional

dependence for the scattering amplitude was found at strong coupling by [47]. In large

part this is entirely determined by the symmetries of the problem [48, 49]. For AdS4 we

can, at least at strong coupling, formally find a similar relation though the interpretation,

which makes use of several T-duality like transformations, is perhaps less clear.

4. Fluctuation spectrum

4.1 Bosonic action to quadratic order

In this section we calculate the spectrum of bosonic quantum fluctuations about the spin-

ning string solutions, at least in the homogeneous scaling limit. In this we will again follow

very closely [15, 34] and so we will not belabor the details - the calculations are essentially

identical though with one less transverse degree of freedom in the AdS space and one more

in the slightly more complicated P
3 space. The fluctuations about the classical spinning

string solution in the AdS4 space are

t = n̂ · σ +
t̃

λ̃
1

4

, ρ = ñ · σ +
ρ̃

λ̃
1

4

, θ =
π

2
+

θ̃

λ̃
1

4

, φ = n̂ · σ +
φ̃

λ̃
1

4

. (4.1)

4The coordinate transformations relating the spinning folded string the the Wilson line with a cusp can

also be carried out in the presence of nonvanishing angular momentum on S5.
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In the above we have used as our expansion parameter5 λ̃ = 2π2λ. The bosonic action

quadratic in fluctuations in the AdS4 space becomes

IAdS4
= − 1

4π

∫
d2σ

[
(∂ρ)2 − cosh2 ρ̄(∂t)2 +

[
(∂φ)2 + (∂θ)2 − n̂ · n̂ θ2

]
sinh2 ρ̄ (4.2)

−2(n̂ · ∂t− n̂ · ∂θ)κ ρ sinh(2ρ̄)
]

where we have dropped the tildes. To eliminate the explicit dependence on ρ̄ it is useful

to redefine the fields as

t̂ = cosh ρ̄ t, θ̂ = sinh ρ̄ θ, φ̂ = sinh ρ̄ φ, ρ̂ = ρ (4.3)

and do a further rotation in the (t̂, φ̂) plane

χ = φ̂ cosh ρ̄− t̂ sinh ρ̄, ζ = −φ̂ sinh ρ̄+ t̂ cosh ρ̄ (4.4)

after which the action becomes

IAdS4
= − 1

4π

∫
d2σ

[
− (∂ζ)2 + (∂χ)2 + (∂ρ̂)2 + 4ζ ñ · ∂χ+ 4ρ̂ n̂ · ∂χ+ (∂θ̂)2 (4.5)

+(ñ · ñ − n̂ · n̂)θ̂2
]
.

The spectrum is more conveniently expressed in terms of κ and ν rather than in terms

of n̂ and ñ. Similarly to the spectrum of bosonic fluctuations in AdS5×S5, we find one

combination χ, ζ and ρ̂ being massless and one each with dispersion relation

ω±(n) =

√
n2 + 2κ2 ± 2

√
κ4 + n2ν2, (4.6)

where here n denotes the mode number. There is additionally one transverse mode with

mass squared 2κ2 − ν2. For the string moving on an S1 inside the P
3 masses of the

fluctuations are quite straightforward with one longitudinal massless degree of freedom,

four with mass squared ν2

4 and one with mass squared ν2.6 Note that in the absence of an

angular momentum on P
3, the spectrum exhibits the SO(6) ≃ SU(4) symmetry of P

3. For

J ∝ ν 6= 0 this symmetry is broken to SO(4).

As is the case for the AdS5×S5 string, two of the massless modes cancel against the

contribution of the diffeomorphism ghosts that arise from fixing conformal gauge. For a

string spinning entirely in AdS4 we take ν to zero and in this case the bosonic spectrum

is particularly simple: we get one massive excitation with m2 = 4κ2, one with m2 = 2κ2

and six massless modes so that
∑

bosonsm
2 = 6κ2. As discussed in [49] we can consider

the fluctuations as the Goldstone bosons (or fermions for the fermionic fluctuations to be

discussed in the next section). Thus we expect the six massless modes from the P
3 to

remain massless to all orders in worldsheet perturbation theory.

5There is some ambiguity in exactly what we use as the expansion parameter however we fix this by

demanding that for the analogous expansion about the BMN string the energy of a single massive excitation

is E − J = 1 + O (λ).
6It should be mentioned that, due to the numerical factor in the second term on the right hand side of

the equation (3.1), the normalization of the quadratic term of the P
3 fluctuations is non-standard. While

this is irrelevant at one-loop order, it must be carefully accounted for in higher-loop calculations.
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4.2 Fermionic action to quadratic order

We now turn to the construction of the spectrum of fermionic fluctuations. As men-

tioned previously, the complete κ-gauge-invariant Green-Schwarz action on AdS4 × P
3 is

not known. Recently, however, Green-Schwarz [20, 21] and pure spinor [22] models based

on the coset OSp(6|4)/SU(3) × U(1) × SO(1, 3) have been constructed. The resulting

sigma model possesses twenty-four fermionic degrees of freedom and may be interpreted as

a partial κ-gauge fixing of an action with thirty-two fermionic degrees of freedom. The re-

maining κ-symmetry generically removes eight of the fermions. For strings moving entirely

in AdS4, such as the spinning folded string, a larger number of degrees of freedom becomes

unphysical; the remaining κ-symmetry is enhanced and becomes capable of removing twelve

fermionic degrees of freedom, instead of eight [20].

Such a small number of physical fermionic degrees of freedom is not allowed by the

usual rules for the Green-Schwarz string; one would therefore expect that it is possible

to use the supercoset models for the generalized spinning solutions with J 6= 0 but not

for J = 0. Such a conclusion is, however, somewhat puzzling as we expect the energy to

be a smooth function of J . This motivates, in part, our consideration of the generalized

solutions where we can analyze the J → 0 behavior and, separately, the J = 0 solution.7

For our purposes we fortunately need only the the quadratic-in-fermions part of the

gauge-invariant Green-Schwarz action and this is well known to have a standard expression

in terms of the target space covariant derivative:

L2F = i(ηabδIJ − ǫabsIJ)θ̄Ie/aD
JK
b θK (4.7)

where s = diag(1,−1) and eAa is the pullback of the vielbein

eAa = ∂aX
MEA

M (4.8)

(here XM denote generic target space coordinates). In type IIB theory in the presence

of a 5-form flux this expression was analyzed in [15] and brought to a form resembling a

two-dimensional fermionic action.

We will analyze here the type IIA string theory, with additional restrictions on the

form of DJK
a due to the fluxes present in the background (2.1). The structure of the

action bears certain similarities with that in the type IIB theory due to the fact that the

background RR fluxes are constant on the tangent space. Here however, the two fermions

θ1 and θ2 have opposite chiralities. Defining F/(n) = 1
n!Γ

N1N2...NnFN1N2...Nn
the covariant

derivative is

DJK
a =

(
∂a +

1

4
∂aX

MωM
ABΓAB

)
δJK − 1

8
∂aX

MEA
MHABCΓBC(σ3)

JK

+
1

8
eφ

[
F(0)(σ1)

JK + F/(2)(iσ2)
JK + F/(4)

′ (σ1)
JK

]
e/a (4.9)

with σi being the Pauli matrices and the modified form field strength F ′
4 given, as usual, by

F ′
4 = F4 −H ∧ C1 . (4.10)

7After this work appeared a similar calculation using the coset approach [50] was submitted which found

that the J → 0 limit was smooth and in agreement with our calculation.
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In the coordinates (2.2) the spin connection reads:

ω01 = −ω10 = sinh ρ dt ω21 = −ω12 = cosh ρ dθ (4.11)

ω31 = −ω13 = cosh ρ sin θ dφ ω32 = −ω23 = cos θ dφ. (4.12)

With regard to the spin connection for the compact P
3 we note that using local Lorentz

transformations it is always possible to choose the spin connection to vanish along a chosen

direction — in particular ϕ3. It turns out that the coordinates (2.3) together with the

choice of ϕ3 mentioned above realize this observation. Thus, for spinning string solutions

carrying a single charge in the space transverse to AdS, the explicit form of the spin

connection is not necessary for the calculation of the spectrum of quadratic fluctuations.

If the profile in the transverse space involves a single (isometric) field, then one also does

not — for the same purpose – need to make sure that the full metric is written in the

coordinates adapted to the vanishing spin connection. Indeed, the spectrum is invariant

under coordinate transformations, so one can compute the bosonic spectrum in any suitable

coordinate system.

4.2.1 The (S, J = 0) string

Let us consider first the solution with vanishing angular momentum in the transverse

space. A reason for analyzing this configuration separately (rather than as a limit of

J 6= 0 configurations which will be discussed later) is to test explicitly the continuity of

the energy and of the natural κ-gauge condition as a function of J . Moreover, the details

of the calculation compared to those for the J 6= 0 configurations may point the origin of

the enhancement of the κ symmetry of the OSp(6|4) models. As was exploited extensively

in the calculation of one-loop corrections to the energy of classical strings in AdS5×S5 ,

no bosonic fluctuations appear in the quadratic fermion action; one simply evaluates (4.7)

on the classical solution. Using the fact that from (3.9) we have n̂ = (κ, 0), ñ = (0, κ) and

m̂ = (0, 0) it follows that

e/a =
Rstring

2
[n̂a(cosh ρ̄Γ0 + sinh ρ̄Γ3) + ñaΓ1] . (4.13)

Also, the spin connection evaluated on the background solution is:

∂aX
MωM

ABΓAB = 2n̂a(sinh ρ̄Γ0 + cosh ρ̄Γ3)Γ1 (4.14)

The ρ̄ dependence may be removed by a rotation (boost) in the (03) plane:

S = cosh
ρ̄

2
+ sinh

ρ̄

2
Γ03 (4.15)

(cosh ρ̄Γ0 + sinh ρ̄Γ3) = SΓ0S
−1

(sinh ρ̄Γ0 + cosh ρ̄Γ3) = SΓ3S
−1 .

This is absorbed by a field redefinition of the fermions

θI = SψI (4.16)
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which in turn introduces an additional connection component:

S−1∂aS =
1

2
ñaΓ03 (4.17)

Thus, we need to expand:

LIJ
ab = θ̄Ie/a

(
∂b +

1

4
ωb

ABΓAB

)
θJ +

1

8
eφθ̄Ie/a

[
F/(2)(iσ2)

JK + F/(4)(σ1)
JK

]
e/bθ

K

=
Rstring

2

[
ψ̄I(n̂aΓ0 + ñaΓ1)

(
∂b +

1

2
(ñbΓ0 − n̂bΓ1)Γ3

)
ψJ

+
Rstring

16
eφψ̄I

[
F/(2)(iσ2)

JK−F/(4)(σ1)
JK

]
(n̂aΓ0+ñaΓ1)(n̂bΓ0+ñbΓ1)ψ

K

]
. (4.18)

In the flux term we used the fact that F2 does not have components in the AdS direction so

it commutes with Γ0 and Γ1 while F/(4) ∝ Γ0123 so it anticommutes with (n̂aΓ0 + ñaΓ1). In

the second term in the parenthesis, all factors of R and k cancel out once the expressions

of the dilaton and forms are included.

Using the fact that (ηabδIJ − ǫabsIJ) is diagonal in the indices I, J it is possible to

simplify somewhat the first term above, which we will denote by DIJ
ab . Indeed, opening

the parenthesis,

DIJ
ab = ψ̄I(n̂aΓ0 + ñaΓ1)

(
∂b +

1

2
(ñbΓ0 − n̂bΓ1)Γ3

)
ψJ (4.19)

= ψ̄I(n̂aΓ0 + ñaΓ1)∂bψ
J − 1

2
(n̂an̂b + ñañb)ψ̄

IΓ013ψ
J + O(ψ̄IΓ3ψ

J )

it is not hard to identify terms which vanish, if I = J , due to the chirality of fermions.

The two terms arising in the sum the indices I, J in (ηabδIJ − ǫabsIJ)DIJ
ab are both of

the same type:

(ηab + ηǫab)DII
ab = −ψ̄IΓ0(1 − ηΓ0Γ1)∂0ψ

I + ψ̄IΓ1(1 − ηΓ0Γ1)∂1ψ
I (4.20)

where we used the Virasoro constraint n̂ · n̂ + ñ · ñ = 0. Here η = −1 if I = 1 and η = +1

if I = 2. It is useful to note the explicit appearance of projection operators

P± =
1

2
(1 ± Γ01) ; (4.21)

this is a consequence of the κ-symmetry of the action.

The trivial multiplication of vielbeine e/ae/b = (n̂aΓ0 + ñaΓ1)(n̂bΓ0 + ñbΓ1) leads to a

simple expression for the vielbein-dependent factor in the flux-dependent term in (4.18).

It is again a sum of two terms of the type

(ηab + ηǫab)e/ae/b = 2(1 + ηΓ01) (4.22)

where we made use of the explicit expressions of the vectors n and ñ to write ǫabn̂añb = 1

and −n̂ · n̂ + ñ · ñ = +2 and, as before, η = −1 for I = 1 and η = +1 for I = 2. Note again

the appearance of the projectors Pη .
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The action is easy to construct by starting from (4.7); skipping trivial details, the

result is

2

iRstring
L2F =

2

Rstring
(ηabδIJ − sIJǫab)LIJ

ab

= −ψ̄1Γ0(1 + Γ0Γ1)∂0ψ
1 + ψ̄1Γ1(1 + Γ0Γ1)∂1ψ

1

−ψ̄2Γ0(1 − Γ0Γ1)∂0ψ
2 + ψ̄2Γ1(1 − Γ0Γ1)∂1ψ

2

+
Rstring

8
eφψ̄1

[
F/(2)(+1) − F/(4)(+1)

]
(1 − Γ01)ψ

2

+
Rstring

8
eφψ̄2

[
F/(2)(−1) − F/(4)(+1)

]
(1 + Γ01)ψ

1 . (4.23)

At this stage it is useful to recall that ψ1 and ψ2 are spinors of opposite chirality —

with Γ−1 the ten-dimensional chirality operator, Γ−1ψ
1 = ψ1 and Γ−1ψ

2 = −ψ2 — and

thus may be assembled into a single, non-chiral ten-dimensional spinor ψ = ψ1 + ψ2. In

terms of this new field the action takes a very simple form:

L2F =
iRstring

2

(
2ψ̄(−Γ0∂0 + Γ1∂1)P+ψ − Rstring

4
eφψ̄

[
F/(2)Γ−1 + F/(4)

]
P+ψ

)
.(4.24)

This action is still invariant under local κ-transformations, a fact reflected by the

manifest appearance of a projector P+ in all terms in the action. It is only natural to

choose the gauge

P+ψ = ψ , (4.25)

which eliminates from the fermion fields the components not appearing in the Lagrangian.

This algebraic gauge, which is similar to the light-cone gauge, introduces no κ-symmetry

ghosts.

For explicit calculations it is necessary to expand also the last term in the action (4.24)

using the explicit form of the form fields; the relative factor of Rstring with the derivative

term cancels out and we find

−Rstring

4
eφψ̄

[
F/(2)Γ−1 + F/(4)

]
ψ = −1

4
[+2(Γ45 − Γ67 + Γ89)Γ−1 + 6Γ0123] . (4.26)

The spectrum of fermion quadratic operator (4.24) may be found by evaluating its

eigenvalues and setting them to zero. It turns out that there are two massless and six

massive modes with unit mass:

ω1,2(n) = |n| ω3,4,5,6,7,8(n) =
√
n2 + κ2 . (4.27)

Note that, similarly to the bosonic spectrum,
∑8

i=1m
2
i = 6κ2; therefore, the one-loop

correction to the energy of the (S, J = 0) string is finite. We will evaluate it in section (5).

The structure of this spectrum could have been anticipated from symmetry consider-

ations. Indeed, as reviewed in the introduction, the supersymmetries form a 60 ⊕ 12 ⊕ 1−2

representation of the global symmetry group SU(4) × U(1). Thus, we should expect six

modes of equal masses. An additional Z2 (charge conjugation) symmetry changing the sign

of the U(1) charges suggests that the remaining two modes should also have equal masses.
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4.2.2 The (S, J 6= 0) string

The inclusion of a single angular momentum on P
3 is technically quite straightforward. The

main difference is that now all three vectors (3.9) are nontrivial and given by n̂ = (κ, 0),

ñ = (0, µ) and m̂ = (ν, 0).

Since the angular momentum on P
3 is described by a linear profile along an isometry

direction, it introduces no additional worldsheet coordinate dependence in the fermion

action besides the one due to the AdS4 part of the solution. As for J = 0 this latter

dependence may be eliminated by the rotation (4.15). After this rotation, the vielbein and

the spin connection modified to include the effects of the rotation (4.17) are:

e/a =
Rstring

2
[n̂aΓ0 + ñaΓ1 + m̂aΓ9]

1

4
ω̃a

ABΓAB =
1

2
(ñaΓ0 − n̂aΓ1) Γ3 (4.28)

1

4
e/aω̃b

ABΓAB =
Rstring

2

[
−1

2
(n̂an̂b + ñañb)Γ013 +

1

2
m̂añbΓ039 −

1

2
m̂anbΓ139

]
. (4.29)

The two terms arising from the gravitational covariant derivative continue to have a

similar structure, up to some signs (denoted by η) which again related to the chirality of

the spinors:

2

Rstring
(ηab + ηǫab)DII

ab = (ηab + ηǫab)ψ̄I(n̂aΓ0 + ñaΓ1 + m̂aΓ9)∂bψ
I (4.30)

−1

2
(n̂ · n̂ + ñ · ñ) ψ̄IΓ013ψ

I

−1

2
m̂ · n̂ ψ̄IΓ139ψ

I +
η

2
m̂ × ñ ψ̄IΓ039ψ

I

= −ψ̄I(κΓ0 + ηµΓ1 + νΓ9)∂0ψ
I + ψ̄I(ηκΓ0 + µΓ1 + ηνΓ9)∂1ψ

I

+
1

2
ν2 ψ̄IΓ013ψ

I +
1

2
κν ψ̄IΓ139ψ

I +
η

2
νµ ψ̄IΓ039ψ

I . (4.31)

It is easy to identify in the derivative terms a projector (P2
η = Pη) analogous to the one in

equation (4.21); it is:

Pη =
1

2

(
1 + η

(
κ

µ
Γ0 +

ν

µ
Γ9

)
Γ1

)
η = ± . (4.32)

Using it and introducing the same unconstrained, non-chiral ten-dimensional spinor as

before ψ = ψ1 + ψ2 the equation (4.30) can be reorganized as:

(ηabδIJ − ǫabsIJ)DIJ
ab =

Rstring

2
ψ̄

[
− 2(κΓ0 + νΓ9)P+ ∂0 + 2µΓ1 P+ ∂1

+
1

2
ν (νΓ0 + κΓ9) Γ13 −

1

2
νµΓ039

]
ψ. (4.33)

Note that, unlike the string spinning only in AdS, there is a nontrivial connection term;

these terms vanish as ν ∼ J → 0 and the derivative terms reduce to those of the previous

section.

– 13 –



J
H
E
P
1
2
(
2
0
0
8
)
1
0
1

To simplify the flux contribution it is useful to use the explicit forms of the vectors

n, ñ and m and to split the 2-form into a part depending on the P
3 isometry direction (i.e.

Γ9), F/
(1)
2 , and the rest, F/

(2)
2 :

F/2 = F/
(1)
2 + F/

(2)
2 . (4.34)

In terms of these components, the flux terms are:

(
2

Rstring

)2

eφ(ηabδIJ − ǫabǫIJ)ψ̄Ie/a

[
F/(2)(iσ2)

JK + F/(4)(σ1)
JK

]
e/bψ

K

= ψ̄F/
(2)
2 Γ−1

(
2µ2 + 2κµΓ01Γ−1 − 2µνΓ19Γ−1

)
ψ

+ψ̄(F/
(2)
2 Γ−1 − F/4)

(
2κ2 − 2κνΓ09 + 2κµΓ01Γ−1

)
ψ (4.35)

It is not hard to expose the projectors in this expression; restoring the numerical coeffi-

cient of the flux term in the covariant derivative and making use of the explicit expressions

for the form fields we find that the contribution of the form fields to the fermion action to

quadratic order in fermions and to leading order in the expansion in bosonic fluctuations is

1

8
eφ(ηabδIJ − ǫabǫIJ)ψ̄Ie/a

[
F/(2)(iσ2)

JK + F/(4)(σ1)
JK

]
e/bψ

K (4.36)

=
Rstring

2

[
1

16
(4µ2)ψ̄(−Γ57 + Γ68)Γ−1P+ψ +

1

16
(4µκ)ψ̄(−Γ49Γ−1 + 3Γ0123)P+ψ

]
.

Combining the derivative (4.33) and the flux terms (4.36) it is easy to find the relevant

gauge-invariant Lagrangian (a constant rotation in the (09) plane may be used to slightly

simplify the derivative term):

2

iRstring
L2F = ψ̄

[
−2(κΓ0 + νΓ9)P+ ∂0 + 2µΓ1 P+ ∂1 +

1

2
ν (νΓ0 + κΓ9) Γ13 −

1

2
κµΓ039

]
ψ

− 1

16

[
(4µ2)ψ̄(−2Γ57 + 2Γ68)Γ−1P+ψ + (4µκ)ψ̄(−2Γ49Γ−1 + 6Γ0123)P+ψ

]
.

(4.37)

As before, the manifest appearance of P+ suggests that a natural gauge condition is

P+ψ = ψ , (4.38)

in analogy to the J = 0 analysis. As in that case, this gauge condition does not introduce

any κ-symmetry ghosts. It is moreover easy to see that the limit ν → 0 quickly leads to

the equation (4.24), implying that the gauge condition is a smooth function of J .

The energy spectrum of quadratic fluctuations can be found by first setting to zero the

eigenvalues of the quadratic fluctuations operator; the result, which may be checked by a

variety of means, is that

ω1,2,±(n) = ±ν
2

+
√
n2 + κ2

ω3,4,±(n) =
1√
2

√
κ2 + 2n2 ±

√
κ4 + 4ν2n2 (4.39)
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Thus, we find four modes with unit mass and the other four modes have more com-

plicated dispersion relations which are similar to those for some of the bosonic AdS

fluctuations (4.6).

It is interesting to note that the massless fermion modes present at J = 0 are now

lifted. The fact that four modes continue to have equal masses (up to a time-dependent

rotation of their wave functions) is consistent with (and in fact should be expected from)

the fact that the worldsheet background breaks the symmetry of P
3 from SO(6) to SO(4).

5. One-loop correction to string energies

Given the spectrum of fluctuations we found in previous sections, the one-loop correction

to the string energy may be computed in a variety of ways. An important subtlety is that

the relation between the parameters of the solution and the field theory charges may receive

quantum corrections. Such effects may be captured either in the Hamiltonian formalism [15]

or in the Lagrangian formalism [35]. In the latter approach the fundamental quantity is

the worldsheet partition function in the presence of chemical potentials for all charges.

The target space energy is found by Legendre-transforming the logarithm of the partition

function with respect to the chemical potentials. In the process one also uses the quantum

Virasoro constraint, which sets to zero the quantum expectation value of the worldsheet

Hamiltonian.

The results obtained through these two methods imply that such modifications to the

relation between charges and parameters of the classical solution are irrelevant in a one-

loop calculation. It is perhaps more convenient to use the expression for the string energy

in conformal gauge in terms of the fluctuation fields derived in appendix A of [15]:

E1 =
1

κ
〈Ψ|H2|Ψ〉 (5.1)

with H2 =
∫

dσ
2πH2(t̃, φ̃, . . . ) being the quadratic worldsheet Hamiltonian corresponding the

fluctuation action at this order. For the spinning string the classical solution spontaneously

breaks supersymmetry and we expect to find a non-trivial correction at one-loop. We begin

with the simpler (S, J = 0) case and then proceed to the general solution.

5.1 (S, J = 0)

For the case (S, J = 0) we have in the scaling limit that the energy is given by the sum

over frequencies

E1 =
1

2κ

∞∑

n=−∞
Kn + O

(
κ0

)
(5.2)

withKn =
√
n2 + 4κ2+

√
n2 + 2κ2+6

√
n2−6

√
n2 + κ2−2

√
n2. It is worth noting that while

the series in the equation above is absolutely convergent, the partial sums over individual

frequencies are divergent. The organization of frequencies shown in (5.2) is dictated by the

form of the Hamiltonian derived from the worldsheet theory. Moreover, the same analysis

implies that, as is usual for field theories, any regularization should be carried out at the
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level of the action rather than in a particular frequency sum. While without a worldsheet

justification, one may nonetheless make different choices for combining the individual terms

in the infinite sum and this can give rise to finite differences (for a discussion of this point

in the current context see [51, 52]). The O(κ0) terms become subleading in the scaling

limit, κ ≫ 1, and further, the sum can be replaced by an integral. After rescaling the

worldsheet mode numbers, n, and introducing the continuous worldsheet momentum, p,

we have

E1 = κ

∫ ∞

0
dp

√
p2 + 4 +

√
p2 + 2 + 6

√
p2 − 6

√
p2 + 1 − 2

√
p2 + O

(
κ0

)
. (5.3)

It is straightforward to evaluate this integral by imposing a cutoff, performing the individual

integrals and taking the cutoff to infinity. Expanding at large values of the cutoff one can

check that the quadratic and logarithmic UV divergences vanish. The leading finite piece

is given by

E1 = −κ 5

2
ln 2 + O

(
κ0

)

= −5 ln 2

2π
lnS + O

(
ln0 S

)
. (5.4)

Thus we see that, as for the AdS5 case, the one-loop piece continues to scale as lnS

and there is no stronger lnα S, α > 1, dependence. In fact we expect, not least on simple

dimensional grounds, that this structure will continue to all orders at strong coupling and

can be interpolated to match the weak coupling result.

5.2 (S, J 6= 0)

We can now use essentially the same method for the generalized (S, J) string solution with

two non-vanishing charges. In this case the sum of frequencies of the bosonic fluctua-

tions, (4.6) and below, and the fermionic fluctuations, (4.39), is

Kn =

√
n2 + 2κ2 + 2

√
κ4 + n2ν2 +

√
n2 + 2κ2 − 2

√
κ4 + n2ν2

+
√
n2 + 2κ2 − ν2 + 4

√
n2 +

ν2

4
+

√
n2 + ν2 − 4

√
n2 + κ2

−2

(
1√
2

√
2n2 + κ2 +

√
κ4 + 4n2ν2 +

1√
2

√
2n2 + κ2 −

√
κ4 + 4n2ν2

)
. (5.5)

We again replace the discrete sum over mode numbers by an integral which, with the help

of identities and changes of variables from appendix A, results in a one-loop correction to

the energy of

E1 =
ν

2u

[
− (1 − u2) +

√
1 − u2 − 2u2 lnu

−(2 − u2) ln
(√

2 − u2(1 +
√

1 − u2)
)
− 2(1 − u2) ln 2

]
. (5.6)

which is seen to be remarkably similar to the AdS5×S5 result though with some modifica-

tions. Here we have used the parameter

u =
ν

κ
=

ℓ√
1 + ℓ2

, ℓ =
ν

µ
=

J
2 lnS (5.7)
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and it is straightforward to see that in the u → 0 limit it reduces to equation (5.4). This

generalized scaling function is a useful tool in studying the AdS5/CFT4 duality and it is

to be expected that it will also be so in the case at hand.

6. Comparison with the Bethe ansatz and outlook

The dilatation operator of the N = 6 Chern-Simons theory was shown [16, 18], to leading

order in the scalar sector, to be equivalent to the Hamiltonian of an integrable (alternating)

spin chain. It was moreover argued that the worldsheet theory in the dual supergravity

background is also classically integrable [20, 21]. It is tempting to infer that integrability

potentially exists for finite values of the ’t Hooft coupling as well. This conjecture is based

on the nontrivial assumption that the anomaly of the conservation of the hidden charges

present in the bosonic P
3 sigma model is canceled in the full Green-Schwarz theory. It

would be important to have direct tests of this assumption.

With this starting point, and using the observation that the transformation rules of

the spin chain excitations are similar to those of the spin chain excitations in N = 4 SYM,

all-order Bethe equations have been conjectured [23] for the N = 6 Chern-Simons theory.

As in N = 4 SYM, the tensor structure of the relevant scattering matrices is fixed by

symmetries. The difference compared to the four-dimensional case is that the magnon

dispersion relation acquires an overall numerical factor and in both the magnon dispersion

relation and the S-matrix the ’t Hooft coupling enters through an arbitrary function h(λ)8

ǫ(p) =
1

2

√
1 + 16h(λ)2 sin2 p

2
. (6.1)

In N = 4 SYM one has h(λ) =
√
λ/4π while in the N = 6 Chern-Simons theory

h(λ) =

{
λ+ O(λ3) λ≪ 1√

λ
2 + O(1) λ≫ 1

. (6.2)

It was further argued that, up to the same function h(λ), the dressing phase is the same

as that of the scattering matrix of the N = 4 SYM spin chain.

This relation between scattering matrices and dispersion relations implies in turn that

most anomalous dimensions in the N = 6 Chern-Simons theory enjoy simple relations

with those of N = 4 SYM theory. For example, it was argued in [23] that for the universal

scaling functions this relation is

fCS(λ) =
1

2
fN=4(λ)

∣∣∣√
λ7→4πh(λ)

. (6.3)

Using the result from the algebraic curve calculation [53] that the constant term in h(λ)

vanishes in the regularization scheme adapted to the algebraic curve calculation9 and of

8This function may be fixed by a direct calculation of the magnon dispersion relation in the N = 6

Chern-Simons theory.
9Different regularization schemes, such as one more natural from the worldsheet perspective, can give

rise to finite differences which in turn can be interpreted, in part, as an O(1) corrections to the function

h(λ); this possibility was discussed at length in [51, 52] which appeared after this paper. An important

unsolved question is the consistency of the various regularization schemes with integrability and the ABA.
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the known strong coupling expansion of the universal scaling function,

fN=4(λ) =
1

π

(√
λ− 3 ln 2 + O

(
1√
λ

))
, (6.4)

it is easy to find that

fCS(λ) =
1

2
fN=4(λ)

∣∣∣√
λ7→4πh(λ)

=
√

2λ− 3 ln 2

2π
+ O

(
1√
λ

)
(6.5)

The first term matches (by construction) the leading order in the strong coupling expansion

of the spinning folded string energy (3.14). The second term above however departs from

the worldsheet predictions (5.4) for the next-to-leading order correction to the universal

scaling function.

In the same spirit one may compare (5.6) with the consequence of the conjectured

Bethe ansatz for the N = 6 Chern-Simons theory. Instead of10

fCS

(
λ,

J

lnS

)
=

1

2
fN=4

(
λ,

J

lnS

)∣∣∣√
λ7→4πh(λ)

, (6.6)

it is easy to see that the leading and next-to-leading terms in the string coupling expansion

of the generalized scaling function fCS(λ, ℓ) are consistent with

fCS

(
λ,

J
lnS

)
=

1

2
fN=4

(
λ,

J
lnS

)∣∣∣√
λ7→4πh(λ)

− ν

u
(1 − u2) ln 2 (6.7)

where fN=4(λ,
J

lnS ) is given in [34, 15].

Though the resolution of this puzzle is not immediately apparent, several possibilities

present themselves. For example, it may be possible that twist-two operators dual to the

spinning folded string have been misidentified. It may also be possible that the problem

lies either with the assumption that integrability survives beyond the leading order in

the strong coupling expansion or with the precise expression for the scattering matrix.

Since its tensor structure is determined by symmetries whose action is closely related to

the action of symmetry generators in N = 4 SYM, it may be that the dressing phase

receives additional next-to-leading order corrections. Perhaps a profitable route to finding

these corrections is to follow the strategy of [54] and construct the phase by matching it

with the one-loop corrections to the circular string rotating entirely in AdS4. Another

approach would, of course, be a direct solution of the crossing equation. The similarity of

the symmetry groups of the scattering matrix of the worldsheet theory in AdS4 × P
3 and

AdS5×S5 suggests however that the correction to the dressing phase, if any, is a solution

of the homogeneous crossing equation.

For the spinning string in AdS5 × S5 it has proven possible to extend the calculation

of the quantum corrections to two-loops [55, 56, 35] and it would certainly be interesting

to repeat that calculation in the current context (for related discussions and some unre-

solved issues in the comparison of the two-loop strong coupling calculation and the ABA

10We are grateful to P. Vieira for pointing out a difference of 2 in our definition of J and that used in [23].

– 18 –



J
H
E
P
1
2
(
2
0
0
8
)
1
0
1

in AdS5×S5 see [57, 58]). In the absence of an argument that there exists a κ-gauge in

which the action becomes quadratic in fermions, a prerequisite for a higher-loop calculation

is knowledge of the contributions to the string action from terms quartic (and higher) in

fermions. One could hope to possibly use the OSp(6|4) coset sigma-model [20 – 22] though

due to the enhanced κ-symmetry at J = 0, such a calculation appears challenging at first

sight. Alternatively one can derive the type IIA string action by doubly dimensionally

reducing the supermembrane action [59 – 61]

S = −
∫
d3ζ

√
−det g(Z(ζ)) +

∫

M3

B (6.8)

where Z = (Xµ, θα) are the eleven dimensional target superspace coordinates, ζ = (τ, σ, σ3)

are the worldvolume coordinates,

gîĵ = ∂îZ
M∂ĵZ

NE r̂
ME

ŝ
Nηr̂ŝ (6.9)

is the pullback of the supervielbein to the worldvolume and B is the pullback of the super-

three-form. This procedure can be somewhat involved and has been explicitly done only

to quadratic order in fermions for generic bosonic backgrounds. However for the case of

AdS4 × S7/Zk due to the large degree of symmetry it may be possible to carry it out to

higher orders starting from the supermembrane action of [62] where explicit expressions

for the supervielbein and B are given to all orders in fermions.

A further appeal of such an approach relates to the exactness of the AdS4×S7 geom-

etry and its consequences. As was argued by Kallosh and Rajaraman [63] the AdS4 × S7

geometry is exact in that it cannot receive ℓp corrections which are consistent with super-

symmetry. While the Zk orbifold relating it to AdS4×P
3 breaks some of the supersymmetry

for k > 2, it is reasonable to expect that this geometry remains unchanged and thus that

the type IIA solution AdS4 × P
3 does not receive α′ corrections (up to perhaps a finite

renormalization of the radius of the space).

Another possible approach to extracting higher-loop information is suggested by the

work of Alday and Maldacena who showed, [49], that for AdS5×S5 the leading logarithmic

dependence on u is described by a two-dimensional O(6) sigma model. At the level of the

string worldsheet one may justify this by integrating out the massive modes and construct-

ing in this way an effective action for the light modes.11 Similar reasoning suggests that

here the leading logarithmic dependence in u may be captured by a P
3 model coupled to

two light fermions - the light degrees of freedom in the current model. While it is known

that the bosonic P
3 model is not integrable at the quantum level due to an anomaly in the

conservation of the non-local charges, [64], it is possible to couple the theory to fermions

such that the anomaly cancels. Such are the minimal or the supersymmetric couplings, see

for example [65]; it would be interesting to check whether the same is true in this case.

One would then be able to predict the coefficients of the leading and first subleading lnu

terms to all orders in the strong coupling expansion.

11“Light” stands for masses of order ν or u.
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A. Integrals

The sum of frequencies of bosonic and fermionic fluctions can be put in a form which can

be integrated without difficulty using the following identities [34]:

SB(p) =

√
2 + p2 + 2

√
1 + p2u2 +

√
2 + p2 − 2

√
1 + p2u2

=

√
4u2 + (p+

√
p2 + 4(1 − u2))2 (A.1)

SF (p) =
1√
2

√
1 + 2p2 +

√
1 + 4p2u2 +

1√
2

√
1 + 2p2 −

√
1 + 4p2u2

=

√
u2 + (p +

√
p2 + (1 − u2))2 . (A.2)

Using a cutoff regularization for the integral over p and changing the integration variable

z = p+
√
p2 + 4(1 − u2) and z = p+

√
p2 + (1 − u2), respectively, the integrals become

∫ L

0
dpSB(p) =

∫ L+
√

L2+4−4u2

√
4(1−u2)

dz

z

(
4 − 4u2

z
+ z

)√
4u2 + z2

∫ L

0
dpSF (p) =

∫ L+
√

L2+1−u2

√
1−u2

dz

z

(
1 − u2

z
+ z

)√
u2 + z2 (A.3)

which can be straightforwardly evaluated.
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