Physics Letters B 670 (2008) 161-164

www.elsevier.com/locate/physletb —

Contents lists available at ScienceDirect

Physics Letters B

et

Brans-Dicke geometry

Raffaele Punzi?, Frederic P. Schuller?, Mattias N.R. Wohlfarth ®*

a Zentrum fiir Mathematische Physik und II. Institut fiir Theoretische Physik, Universitdt Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
b Max Planck Institut fiir Gravitationsphysik, Albert Einstein Institut, Am Miihlenberg 1, 14467 Potsdam, Germany

ARTICLE INFO ABSTRACT

Article history:

Received 9 May 2008

Received in revised form 27 August 2008
Accepted 27 October 2008

Available online 30 October 2008

Editor: A. Ringwald constraints.

We reveal the non-metric geometry underlying @ — 0 Brans-Dicke theory by unifying the metric and
scalar field into a single geometric structure. Taking this structure seriously as the geometry to which
matter universally couples, we show that the theory is fully consistent with solar system tests. This is in
striking contrast with the standard metric coupling, which grossly violates post-Newtonian experimental
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Brans-Dicke gravity theory aims at describing the dynamics
of a spacetime metric g by employing an additional scalar de-
gree of freedom ¢ in order to model a dynamical gravitational
constant [1]. Brans-Dicke theory and, more generally, scalar ten-
sor theories of gravity, have many interesting properties, and have
been extensively discussed in the literature. Perhaps the most
fruitful area of their application is cosmology, e.g. in [2-6], where
the scalar field is often employed as a quintessence field to drive
accelerating phases of the universe; scalar-tensor theories natu-
rally appear in brane-world scenarios [7,8], or arise as equivalent
formulations of f(R) gravity theories with Ricci scalar corrections
[9-12].

The original family of Brans-Dicke actions is

Swlg. ¢1= f d*x /=g [¢pR — wp~ g7 (o, dg)]. (1)

parameterized by the dimensionless parameter w. This is com-
pleted into a theory of gravity by the prescription that matter
couple to the metric g only, but not to the scalar field ¢. While
the theory as such is not inconsistent or experimentally falsified,
the long history of its study has turned up a number of concerns,
that lessen the appeal of Brans-Dicke theory, and more general
scalar-tensor theories, as alternatives to general relativity:

Problem of naturalness: there is no fundamental principle that
distinguishes the form of the Brans-Dicke action, or indeed any
other scalar-tensor theory. In contrast, general relativity is distin-
guished as the unique metric gravity theory with second order
field equations, up to a cosmological constant.

Problem of indeterminacy: there are no principles dictating the
value of the Brans-Dicke parameter w, nor experimental results
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bounding it away from the Einstein limit @ — oc. In contrast, the
only free parameter in Einstein gravity, the cosmological constant,
is nowadays very precisely bounded from both sides.

Problem of experimental consistency: increasing precision of solar
system tests alone have shifted w over the years by many orders of
magnitude to now over 4 x 10% [13]. In contrast, the predictions of
general relativity have remained consistent with increasingly pre-
cise experimental data in the solar system over the decades. Also
in more general scalar-tensor theories the additional scalar fields
usually turn out to be very dangerous for the consistency of the
gravity theory with solar system observations [14].

Problem of geometric interpretation: no geometric meaning is at-
tached to the pair of background fields (g, ¢), which could explain
the specific interplay of the metric and the scalar field in the
gravitational part of the action and justify a particular coupling
prescription for matter. In contrast, the understanding of the gravi-
tational degrees of freedom in general relativity as the components
of a single metric tensor allows for a compelling geometric formu-
lation of the theory.

In this Letter, we show that all of the above problems are re-
lated, and indeed can be resolved in one stroke, by combining the
metric and scalar field into a gravitational multiplet in form of
a higher rank geometric structure. From this fact everything else
follows without further assumptions. In particular, we will demon-
strate that the refinement of Einstein-Hilbert gravity based on this
higher rank tensor naturally singles out w — 0 Brans-Dicke the-
ory under all scalar-tensor theories, but also requires a specific
coupling of matter to the data (g, ¢), which is different from the
standard coupling. The central point of this Letter is that, in strik-
ing contrast with the standard coupling to matter, the theory now
agrees precisely with general relativity in the solar system, up to
the experimentally accessible first post-Newtonian order.

We now make the above technically precise. The pivotal geo-
metric construction is the definition of the fourth rank tensor field
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Gabcd — gacgbd _ gadgbc + é(_g)fl/zeubcd’ 2)

where € is the Levi-Civita tensor density with €%123 = —1, and
¢ is a function of ¢, whose precise form (4) will be determined
shortly. This fourth rank tensor encodes the scalar-tensor data
(g, ¢) in a geometrically distinguished way: the tensor field Geb¢d
has an inverse Ggpeq in the sense that locally G™ G ppeq = 46%“63],
and both G and its inverse share the symmetries Ggpcqg = Gedap
and Ggpcg = Giap)ica)- These properties identify (2) as a special
case of an (inverse) area metric on the manifold M, see [15]. In-
deed, GareaX°YPXCY? yields the area squared of a parallelogram
spanned by vectors X and Y at the same point, as measured by the
metric g, wherever on M the scalar field ¢ vanishes. Conversely,
a non-zero value for ¢ modifies the area measure at a point in a
way that could not be achieved by a different metric alone, since
that could not affect the totally antisymmetric part of G.

Area metric differential geometry now gives us excellent techni-
cal control over this structure. Employing, in particular, the recent
construction of an area metric volume form wg and curvature
scalar R¢, one immediately finds the area metric refinement of the
Einstein-Hilbert action,

SIGl = (2k)~! /chc, 3)

whose formulation obviously does not require the introduction of
any new parameters. Variation of this action with respect to a
generic area metric G yields equations of motion, which for the
area metrics (2) of interest to this Letter reduce to the vacuum
field equations of Brans-Dicke theory for w — 0, identifying
p =0 (1+¢2) 7 (4)
For full technical detail of the area metric variation of the Einstein—
Hilbert action, we refer the reader to [16]. Thus at the level of
vacuum field equations, Brans-Dicke theory with vanishing param-
eter w is singled out as the area metric refinement of Einstein-
Hilbert theory for an area metric defined by (2).

We emphasize that without specifying the coupling of matter
to the gravitational degrees of freedom, any dynamics for the lat-
ter are void of physical meaning; not even vacuum solutions can
be interpreted without studying the motion of matter [17]. Indeed,
it is the question of the matter coupling which truly distinguishes
the otherwise equivalent views of w — 0 Brans-Dicke theory as
dynamics for a metric or an area metric spacetime. We will show
that coupling matter minimally to the area metric multiplet ren-
ders the theory consistent with classical tests. To this end, but also
for further theoretical considerations, we now explore the subtle
issue of matter coupling in some detail.

Taking seriously the intriguing role the area metric point
of view plays in the vacuum theory, we include a matter ac-
tion Sp[G, ¥] for matter fields ¥. By variation with respect to G
we obtain field equations of the form Kgpcq = Tqpeq, Where the
gravitational tensor K and the source tensor T are the functional
derivatives of the gravity action S and the chosen matter ac-
tion S, respectively. With the Brans-Dicke ansatz (2) for the area
metric G, the tensor K reduces algebraically to a scalar and a sec-
ond rank tensor. This ansatz for the area metric geometry couples
consistently only to matter with source tensor

1 1=
Tabed = 2T(ac Eayp) — §Tga[cgd]b - ﬂT\/ —&€abcd> (5)

i.e., to matter sources determined by a symmetric tensor Tgp,
where T = g%Tg, and a scalar T that controls the totally anti-
symmetric part Tigpcq), Where €gi23 = 1. Matter fields, e.g., electro-
dynamics, on area metric backgrounds will not generically possess
such a simplified source tensor, and hence will not generically
give rise to area metric backgrounds of the Brans-Dicke form. The

simplified source tensor above, however, is a sufficiently general
ansatz for modelling fluids in cosmology and, more importantly
for the present Letter, in the solar system; both Ty, and T are
then determined by the macroscopic parameters of the fluid in-
volved. Therefore we restrict our attention here to area metrics
of the Brans-Dicke form (2) and simplified source tensors of the
form (5); the fourth rank field equations Kgpcq = Tgpeqg then reduce
to a pair of equations, one scalar and one second rank tensor equa-
tion [16,18]:

1 1y 7
Gap = 2 (Vadhd — g LIg) + K (4Tab + §¢gabT>s

1 — 8k2¢? 7
2(1 — 4k2¢2)1/2 -
Note that while the standard «w — 0 Brans-Dicke equations are
recovered in vacuo, the matter coupling becomes non-standard.
This is a consequence of our identification of the area metric as
the gravitational degrees of freedom, and the thus induced defini-
tion of the source tensor as the functional derivative of the matter
action with respect to the area metric. This structurally coherent
inclusion of matter completes the specification of all elements of
the theory at a formal level, and we now turn to physical predic-
tions.

Applications to the geometrically simplest case of a spatially
homogeneous and isotropic background, and the relevance of the
emerging refined notion of cosmological perfect fluids, described
by three rather than two macroscopic parameters, have been dis-
cussed in earlier work [18,19]. Here, we will address the crucial
question of the compatibility of the theory with solar system ex-
periments, which in general is a delicate issue in theories with
additional scalar fields [14].

We will demonstrate that the area metric interpretation of the
Brans-Dicke data ensures precise agreement with general relativity
to first post-Newtonian order, and thus passes the classical solar
system tests. In order to see this, we employ the result that the
local null structure of area metric manifolds [20] is governed by
the totally symmetric Fresnel tensor

30¢ =49k T + (6)

1 k, A A A
GGabed = —ﬂa)’é wrgnpqcijm(acblknlccd)lpq’ (7)
which is fully determined by the cyclic part 6abcd = Gabed — Giabed)
of the area metric G. Moreover, the propagation of light in the
geometric-optical limit of Maxwell theory on an area metric back-

ground is governed by stationary paths x of the functional
Lix = f 47 Go (. %, . %), (8)

that are also Gg-null, as was shown from first principles in [21].
In the point particle idealization, planetary motion is described by
non-null geodesics in the same Finsler geometry defined by L[x],
see [21]. For our Brans-Dicke geometry (2), one finds that the Fres-
nel tensor takes the simple form

Go (%, %, %, %) = (2 g%, 0))°. (9)

This implies that the Finsler geodesics derived from (8) coincide
with the geodesics of the conformally rescaled metric

Stest =2k P g, (10)

which is thus the effective background seen by light and mas-
sive test particles. This fact immediately allows us to apply the
post-Newtonian formalism to this effective background g for a
comparison of the predictions of the theory with those of general
relativity.

We define post-Newtonian parameters as usual by an expansion
of the physically relevant metric gt seen by light and massive
test particles in terms of the Newtonian potential U,
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Stest = — (1+2U +2pU%)dt>
+ (1 =2yU)(dr* +r*d2?), (11)

assuming a spherically symmetric situation. The parameters 8 and
y displayed here are the relevant parameters for testing theo-
ries without preferred-frame effects, with global conservation of
momentum, in the solar system range. General relativity corre-
sponds to 8 =y =1; any departure from these values is tightly
constrained. The best current bound for y comes from Doppler
tracking of Cassini, and is |y — 1| < 2.3 x 107>, while data on the
perihelion shift of Mercury yields the bound |8 — 1] <3 x 1073
[13].

The post-Newtonian parameters for our theory, i.e., for the met-
ric Zrest = 2k g seen by test matter, are now easily obtained
from the well-known static spherically symmetric vacuum solu-
tions for g and ¢ of w — 0 Brans-Dicke theory. These are dis-
played as the type I solutions (types II, IIl and IV are not consistent
with w — 0) in the appendix of [22]. The metric g takes the form

g=—e*Dde* + e (dr? +r? d2?) (12)

in isotropic coordinates. The functions «, 8 and the Brans-Dicke
scalar ¢ depend on r as

%N — o0 f(l’))”, P — eﬁoh(r)Zf(r)l—)»(l+C)’

o (r)=go f ()€ (13)

in terms of the functions

f =18 hay=148r (14)
( T 14 B/r )=1+B/r.

and constants «g, Bo, ¢o, B, C; we used the shorthand A = (c? +
C +1)~1/2 (in contrast to [22] where A — A~1). Requiring that the
effective metric gest = 2k ¢ g reduces to the Minkowski metric at
spatial infinity implies that e=2% —e~2f0 = 2k . Using this re-
sult, one collects

Stest = _f(r))»(C+2) dtz 4 h(r)4f(r)2—)»(C+2) (drz 4 T2 dQZ)

B B2
= —<1 —2x(c+2)7 +2,\2(c+2)2r—2 +~-~>dt2

+(1+2A(C+2)§+~-~>(dr2+r2d92). (15)

Thus the expansion of g in powers of B/r and comparison
with (11) yields the Newtonian potential U(r) = —M/r with cen-
tral mass M = A(C +2)B, and

B=1,

This result is in precise agreement with general relativity at first
post-Newtonian order, so that solar system tests are passed with
flying colors by the entire family of vacuum Brans-Dicke solutions,
independent of the value of the integration constant C. This is in
pleasant contrast to the problems with the commonly stipulated
coupling of matter to the metric data g only, which gives g =1,
but y =(w+1)/(w+2), and is utterly inconsistent with w — 0
Brans-Dicke dynamics.

The fact that conformal changes in the matter coupling, in our
case the conformal change giest = 2k ¢ g, may restore observational
consistency in scalar-tensor theories of gravity has not gone unno-
ticed in the literature; for f(R) theories, which can be reformu-
lated as scalar-tensor theories, this effect is discussed e.g. in [12].
In a similar setup [17] it has been clarified that the physical con-
formal frame must be determined from the effective metric seen
by test matter if the coupling follows from a given fundamental
principle. It can be verified that the theory studied here can be
written as Einstein gravity for a metric gest, with a scalar field ¢

y=1. (16)

and point-like matter both minimally coupled to gist. The key
point is that the area metric structure is recognized as a geometric
principle which distinguishes this matter coupling (and predicts a
different coupling to non-point-like matter, such as gauge fields),
and ensures that the w — 0 theory is as consistent with observa-
tional data in the solar system as general relativity.

For completeness, we remark that the interior solution for any
static spherically symmetric source may be matched to precisely
one member of the above family of vacuum solutions. Consider,
for instance, a weakly self-gravitating body, modelled by a non-
interacting fluid described by its energy density only. Such fluids
in area metric backgrounds were studied in [21], and found to be
composed of idealized point particles moving along the non-null
Finsler geodesics discussed above. Using such a source, the gravity
equations (6) simplify to

1 16K2 _

Gap = P adpp + Tpd)uaub, U¢ =0, (17)
where p is the energy density parameter of the fluid and u is its
velocity field. We now match, at the boundary r = R of the source,
the integration constants of the exterior solution to integrals over
appropriate components of the energy of the source. This can be
done analytically in the weak field approximation. Thus we find
the relations C =0, A =1 and the central mass M = 2B as

R ~
M:/dxxzw. (18)
J 3¢o

The thus defined exterior solution is precisely the Schwarzschild
solution in isotropic coordinates; apart from conventional fac-
tors, the identification of the mass is standard. This exemplary
calculation easily generalizes for any static spherically symmet-
ric source, not necessarily leading to the Schwarzschild solution,
but with all integration constants determined by integrals over
energy-momentum tensor components of the respective source.
Thus matching exterior vacuum solutions to interior solutions for
matter admitted by the Brans-Dicke geometry (2) is always possi-
ble, and the motion of test particles is in agreement with general
relativity up to at least first post-Newtonian order.

Conclusion. The area metric perspective adopted in this Let-
ter successfully resolves a number of pertinent questions in the
context of Brans-Dicke and more general scalar-tensor theories.
Brans-Dicke gravity with vanishing Brans-Dicke parameter w — 0
is singled out among all scalar-tensor theories of gravity as the
simplest area metric refinement of Einstein-Hilbert gravity. As
such it is a rigid extension of Einstein-Hilbert gravity without ad-
ditional freely adjustable parameters in the action. At the level
of the vacuum equations this observation amounts to little more
than a mathematical peculiarity, but this new geometric view of
the theory leads to profound physical consequences: regarding the
area metric multiplet (2) as the gravitational degrees of freedom,
rather than the metric g and the scalar field ¢ individually, re-
quires that matter couple directly to the area metric. The refined
geometric background then results in a refined notion of perfect
fluids, as needed, for example, in the context of cosmology and
planetary models in the solar system. The dynamics of Standard
Model matter for which area metric spacetimes provide an equally
good habitat are subtly generalized: for instance, the coupling of
gauge theories to area metric backgrounds implies that light rays
follow geodesics in a Finsler geometry induced by the area met-
ric. It is the interplay of the gravitational dynamics and the matter
coupling to the Brans-Dicke geometry, which makes the resulting
w — 0 theory fully consistent with all solar system tests.

The success of the area metric interpretation of Brans-Dicke
theory may be taken as a hint towards a more fundamental rel-
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evance of area metric spacetimes. From this point of view, models
of the solar system might arise from sources more complicated
than (5), which would yield area metric backgrounds that cannot
be written in the simple Brans-Dicke form (2). This raises the issue
of possible observable effects; one is tempted to speculate whether
a full area metric treatment could even explain effects such as dark
matter or the Pioneer anomaly in some equally natural fashion.
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