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Abstract. For nonlinear wave equations with a potential term, we prove pointwise
space-time decay estimates and develop a perturbation theory for small initial data. We
show that the perturbation series has a positive convergence radius by a method which
reduces the wave equation to an algebraic one. We demonstrate that already first and
second perturbation orders, satisfying linear equations, can provide precise information
about the decay of the full solution to the nonlinear wave equation.
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1. Introduction

It is a well-known fact that the presence of a long-range potential term (power-law
decay at spatial infinity) in the wave equation violates Huygens principle and gives
rise to a late-time tail in the solution with a power-law decay (both powers are
related) [3, 5]. It is not so well-known that nonlinear terms like up cause the same
effect. We study equations where both these effects are present and give pointwise
decay estimates on the solutions. Further, we develop a perturbation theory for these
equations and, by its means, argue that presented estimates should give optimal
decay rates at late times. A rigorous proof of this fact will appear in a following
publication [6] (Part II).

We consider linear and nonlinear wave equations with a potential term of the
general form

�u + V u = F (u) (1.1)
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in 3 spatial dimensions, i.e. u : (t, x) ∈ R+ × R
3 ≡ R

1+3
+ → R, and solve the initial

value problem with

u(0, x) = f(x), ∂tu(0, x) = g(x). (1.2)

First, we construct an iteration scheme and show its convergence in a weighted
space-time L∞-norm what reproduces the decay estimate from [3, 5]

|u(t, x)| ≤ C

(1 + t + |x|)(1 + |t − |x||)q−1
∀(t, x) ∈ R

1+3
+

with q := min(m − 1, k, p − 1) provided the potential V and the initial data f, g

satisfy pointwise bounds

|V (x)| ≤ V0

(1 + |x|)k
, k > 2

|f(x)| ≤ f0

(1 + |x|)m−1
, |∇f(x)| ≤ f1

(1 + |x|)m
, |g(x)| ≤ g0

(1 + |x|)m
, m > 3,

with small V0, f0, f1, f2 and the nonlinearity is analytic and satisfies for p > 1 +
√

2

|F (u)| ≤ F1|u|p, |F (u) − F (v)| ≤ F2|u − v|max(|u|, |v|)p−1 for |u|, |v| < 1.

Next, we construct a perturbation series representing the solution u and prove
its convergence (with finite convergence radius) in the same weighted space-time
L∞-norm. It implies pointwise convergence in R

1+3
+ what allows us to control the

decay at every perturbation order and obtain estimate on the remainder of the per-
turbation series for any order. Finally, if we can show that at some perturbation
level our decay estimate is optimal, i.e. we know the true asymptotics for late times
(what is not very difficult because the perturbation equations are linear), then we
immediately know the asymptotics of u. It is the same as that of the given pertur-
bation order because all higher terms in the perturbation series, summed up, are
too small to be able to modify the asymptotics. The issue of optimal decay esti-
mates and precise asymptotics compared with numerical results will be addressed
in a forthcoming publication [6] which will be focused on spherical symmetry where
the perturbation equations can be solved almost exactly.

The proof of convergence of the perturbation series is essential for justifying the
perturbation scheme as a rigorous approximation and being able to provide exact
decay rates. We show it by relating the (inverted) wave equation

u = �−1F (u) − �−1(V u) + εI(f, g)

(where εI(f, g) stands for initial data contribution to the solution of the free wave
equation �u = 0) to an algebraic equation of a similar form

W = CF̃ (W ) + δW + εD
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(F̃ is obtained from F by transformation of its Taylor series), which arises from
comparison of the perturbation schemes for both problems. We make an interesting
observation that the nonlinear wave equation has a solution u(ε) analytic in ε, and
hence representable by a convergent series in ε, if the same holds for the solution
W (ε) of the corresponding algebraic equation. The latter, however, is always true
when F (u) is analytic at u = 0 what we assume.

Regarding regularity, we can go a safe way and consider only the classical solu-
tions, i.e. assume (f, g) ∈ C3(R3) × C2(R3), V ∈ C2(R3) and F ∈ C2(R) and
obtain u ∈ C2(R1+3

+ ). However, all results remain true also for weak solutions where
(f, g) ∈ C1(R3) × C0(R3), V ∈ C0(R3) and F ∈ C0(R) and we have u ∈ C0(R1+3

+ ),
because Lemmas A.1–A.4, which constitute the main “engine” of all estimates,
preserve the continuity (see [5] for a detailed discussion of the weak solutions).

This paper is organized as follows. It has three main sections addressing the
linear wave equation with potential, nonlinear wave equation with and without
potential, respectively. The idea is to develop tools for the simplest, linear problem
and then to generalize them to the nonlinear situation. Every section has subsections
presenting an iterative and a perturbative approach to the construction of solutions
and a discussion of the optimal decay rates. Appendix collects some lemmas used
in the proofs, cited from other works.

Notation

With the symbol 〈x〉 := 1 + |x|, we define spatial and space-time weighted-L∞

norms

‖f‖L∞
m

:= ‖〈x〉mf(x)‖L∞(R3),

‖u‖L∞
q,p

:= ‖〈t + |x|〉q〈t − |x|〉p−qu(t, x)‖L∞(R1+3
+ ),

of which we will most frequently use

‖u‖L∞
1,p

:= ‖〈t + |x|〉〈t − |x|〉p−1u(t, x)‖L∞(R1+3
+ ).

Its finiteness guarantees the decay of u like 1/t on the lightcone t ∼ |x| and like 1/tp

for fixed x as well as 1/|x|p for fixed t. Note that functions with compact support
in R

3 belong to all spaces L∞
m with any m > 0.

We introduce the following notation for solutions of the wave equations. Let IV

be a linear map from the space of initial data to the space of solutions of the wave
equations (1.1) and (1.2) with F (u) = 0, so that u = IV (f, g). For wave equations
with a source term and null initial data

�u + V u = F, u(0, x) = 0, ∂tu(0, x) = 0,

let us denote the solutions by u = LV (F ), where LV is a linear map from the space
of source functions to the space of solutions to the above problem. Note that, due to
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linearity, the solution u of a wave equation with source F and non-vanishing initial
data f, g is a sum of these two contributions

u = LV (F ) + IV (f, g).

Observe that if we put the potential term on the right-hand side, we obtain

�u = −V u + F

which, treated as a wave equation without potential (on the left-hand side), is
formally solved by

u = −L0(V u) + L0(F ) + I0(f, g).

Here the solution u appears on both sides what seems to make the formula useless,
but it will allow us to formulate various iteration schemes, e.g.

un+1 = −L0(V un) + L0(F (un)) + I0(f, g)

for which we will prove convergence in suitable L∞
1,q norms.

Finally, we define constants which arise from estimates proved in [5], improved
in [4]

Cm := max
(

9
2(m − 2)

, 5
)

,

Cp,q := 2 +
8

p − 1
+

2
q − 1

.

The latter will be referred to as a bound on the allowed strength V0 of the potential.
Our purpose is to emphasize that this bound, although not optimal, is finite and
not arbitrarily small what is crucial when a potential with a given value V0 is
studied (like e.g. in the Regge–Wheeler equation describing waves on Schwarzschild
geometry).

2. Linear Case with Potential

First, we consider a linear wave equation

�u + λV (x)u = 0, (2.1)

where λ > 0 is a small parameter, bounded by some finite constant CV > 0 (which
will be defined later). We first show that a standard iteration scheme converges for
all λ < CV to a solution in L∞

1,p, i.e. there exists a constant C such that

|u(t, x)| ≤ C

〈t + |x|〉〈t − |x|〉p−1
∀(t, x) ∈ R+ × R

3
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with some p > 2 provided the potential V and the initial data f,∇f, g are (at least)
continuous and satisfy pointwise bounds

|V (x)| ≤ 1
〈x〉k , k > 2 (2.2)

and

|f(x)| ≤ f0

〈x〉m−1
, |∇f(x)| ≤ f1

〈x〉m , |g(x)| ≤ g0

〈x〉m , m > 3. (2.3)

Then, we show that a perturbation scheme based on expansion in powers of λ is,
due to linearity, equivalent to the iteration scheme and the perturbation series has
convergence radius CV .

As next, we show that the lowest order u0 has, in general, a different decay
estimate than all higher orders, starting from u1. Finally, we prove that either u0

or u1 gives precise information about the decay rate of the full solution u.

2.1. Iteration

We define an iteration by

u−1 := 0

un := I0(f, g) − λL0(V un−1), n = 0, 1, 2, . . .

Then we have the following

Theorem 2.1. With f, g and V as above for any m > 3 and k > 2 the sequence
un converges (in norm) in L∞

1,p for p = min(k, m− 1) provided λ < C−1
p,k. The limit

u := limn→∞ un satisfies

|u(t, x)| ≤ C

〈t + |x|〉〈t − |x|〉p−1
, ∀(t, x) ∈ R

1+3
+

with some positive constant C depending only on f0, f1, g0, λ and k, m.

This theorem was proved first for classical solutions in [3] and later generalized
to weak solutions in [5] and stated in a more detailed form, which will be important
here. We cite the essential part of the proof because some of the presented estimates
will be used later.

Proof. For g,∇f ∈ L∞
m and f ∈ L∞

m−1 with m > 3, from Lemma A.1, we get
u0 = I0(f, g) ∈ L∞

1,m−1. Next, observe that if un ∈ L∞
1,p with some p > 1, then

‖〈x〉kV un‖L∞
1,p

≤ ‖〈x〉kV ‖L∞‖un‖L∞
1,p

= ‖un‖L∞
1,p

< ∞
and from Lemma A.2 with F ≡ V un, we get L0(V un) ∈ L∞

1,p when p ≤ k.
Because L∞

1,p1
⊂ L∞

1,p2
when p1 ≥ p2, we get un+1 ∈ L∞

1,p with p ≤ min(m − 1, k).
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By induction we obtain un ∈ L∞
1,p for every n = 0, 1, 2, . . . with the optimal value

p := min(m − 1, k). Then, we have

‖un+1 − un‖L∞
1,p

= λ‖L0(−V (un − un−1))‖L∞
1,p

≤ λCp,k‖〈x〉kV (un − un−1)‖L∞
1,p

≤ λCp,k‖〈x〉kV ‖L∞‖un − un−1‖L∞
1,p

≤ λCp,k‖un − un−1‖L∞
1,p

again making use of Lemma A.2 with 〈x〉kF ≡ −〈x〉kV (un − un−1) ∈ L∞
1,p. For

δ := λCp,k < 1, the iteration is a contraction in the normed space L∞
1,p. A simple

argument shows that the sequence un is Cauchy. We have

‖un+1 − un‖L∞
1,p

≤ δn+1‖u0 − u−1‖L∞
1,p

= δn+1‖I0(f, g)‖L∞
1,p

(2.4)

and for n′ > n

‖un′ − un‖L∞
1,p

≤
n′−n−1∑

j=0

‖un+j+1 − un+j‖L∞
1,p

≤
n′−n−1∑

j=0

δj+n+1‖I0(f, g)‖L∞
1,p

≤ δn+1

1 − δ
‖I0(f, g)‖L∞

1,p
. (2.5)

This expression can be made arbitrarily small (smaller than any ε > 0) for all
n, m > M(ε). Hence, un is a Cauchy sequence in L∞

1,p which is Banach and un has
a limit u ∈ L∞

1,p satisfying

u = I0(f, g) − λL0(V u). (2.6)

This equation is equivalent to the wave equation (2.1) with the initial data (2.3).
Finally, we find the L∞

1,p-norm of u

‖u‖L∞
1,p

≤ ‖I0(f, g)‖L∞
1,p

+ λ‖L0(V u)‖L∞
1,p

≤ Cm(f0 + f1 + g0) + λCp,k‖u‖L∞
1,p

,

thus

‖u‖L∞
1,p

≤ Cm(f0 + f1 + g0)
1 − λCp,k

≡ C.

2.2. Perturbation series

Now, we define a perturbation series by

u =
∞∑

n=0

λnvn

and insert into the wave equation (2.1). It leads to the following perturbation scheme

�v0 = 0, (v0, v̇0)(0) = (f, g) → v0 = I0(f, g), (2.7)

�vn+1 = −V vn, (vn+1, v̇n+1)(0) = (0, 0) → vn+1 = −L0(V vn). (2.8)

Due to linearity of (2.1), it turns out that the partial sums
n∑

k=0

λkvk = un
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give the elements un obtained above by the iteration technique, so both methods
(if they work) are equivalent. Theorem 2.1 implies convergence in L∞

1,p for λ < C−1
p,k

with k > 2, m > 3 and p := min(k, m − 1).
From (2.4) in the proof of Theorem 2.1, it follows that

‖vn‖L∞
1,p

=
‖un − un−1‖L∞

1,p

λn
≤ (Cp,k)n‖I0(f, g)‖L∞

1,p
,

hence vn ∈ L∞
1,p for all n ≥ 0. Observe, however, that in the case when m−1 > k = p,

we have at the lowest order v0 = u0 a better decay estimate, namely v0 ∈ L∞
1,m−1

(see first line of the proof). The reason that v0 decays faster is that its decay comes
only from initial data and is not influenced by the potential. At all higher orders,
vn(n = 1, 2, . . .) contain the contribution from the scattering on the potential and
are only in L∞

1,k. Since u ∈ L∞
1,p = L∞

1,k, we expect that all un starting from u1 ∈ L∞
1,k

predict qualitatively correct asymptotic behavior of u while the lowest order u0 ∈
L∞

1,m−1 fails in this. This becomes especially evident for initial data with compact
support, for which u0 ∈ L∞

1,q with arbitrarily big q, but u1, u2, . . . ∈ L∞
1,k � u.

Knowing that the perturbation series converges for some λ, we can estimate the
error of the nth perturbation’s order relative to the exact solution by estimating the
sum of all higher order terms. For the convergent sequence un we use the relation
(2.5) which holds also in the limit n′ → ∞, un′ → u and gives

‖u − un‖L∞
1,p

≤ δn+1

1 − δ
‖I0(f, g)‖L∞

1,p
.

It provides a pointwise bound on the error

|u(t, x) − un(t, x)| ≤ (Cp,kλ)n+1

1 − Cp,kλ
· Cm · (f0 + f1 + g0)
〈t + |x|〉〈t − |x|〉p−1

∀(t, x) ∈ R
1+3
+ . (2.9)

2.3. Optimal decay estimate

In this section, we sketch a proof how, under some conditions, the optimal decay
estimate and precise asymptotic behavior of the solution u can be deduced from
the behavior of low order perturbations. This will be studied in more detail in
a forthcoming publication [6] dealing with spherical symmetry where the lowest
perturbation orders can be calculated almost explicitly.

Consider first the case m − 1 > k = p, i.e. when the rate of decay of u is
dominated by scattering on the potential (and not by decay of the initial data).
We have u0 = v0 ∈ L∞

1,m−1 and vn ∈ L∞
1,p for n ≥ 1. Below, we show that if the

asymptotic behavior of v1 is such as provided by its estimate (i.e. p in the norm L∞
1,p

is optimal), then Theorem 2.1 gives an optimal estimate for u ∈ L∞
1,p with the same

decay rate p. Here, we consider only the asymptotics in direction of timelike infinity
(the case of spatial infinity can be treated similarly). Assume, we are able to show
(by some explicit calculation, like in [6]) that v1(t, x) = L0(V v0) ∼= c1(x)t−p �= 0
for t � 1, where c1(x) is independent on λ. The approximation sign means that
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for every small η > 0 and every x ∈ R
3 there is a T0(x, η) > 0 such that for all

t > T0(x, η) the relative error is small, i.e.∣∣∣∣v1(t, x) − c1(x)
tp

∣∣∣∣ ≤ η
|c1(x)|

tp
. (2.10)

From (2.9) with u1 = v0 + λv1, we have

|u(t, x) − v0(t, x) − λv1(t, x)| ≤ (Cp,kλ)2

1 − Cp,kλ
· Cm · (f0 + f1 + g0)
〈t + |x|〉〈t − |x|〉p−1

=: ∆1(t, x)

for all (t, x) ∈ R
1+3
+ . A simple inequalitya

1
(1 − ζ)σ

≤ 1
1 − σζ

= 1 +
σζ

1 − σζ
≤ 2, ∀ζ ≤ 1/(2σ), σ > 1 (2.11)

implies

1
〈t − |x|〉q =

1

(1 + t)q
(
1 − |x|

1+t

)q ≤ 2
(1 + t)q

for ζ := |x|/(1 + t) ≤ 1/(2q), hence is true for all t ≥ 2q|x|. The error term can be
estimated

∆1(t, x) ≤ 2 (Cp,kλ)2
2 Cm · (f0 + f1 + g0)

(1 + t)p
≡ C̃

λ2

(1 + t)p
,

where we have twice used (2.11) for t ≥ 2(p − 1)|x| and λ ≤ 1/(2 Cp,k). Further,

C̃
λ2

(1 + t)p
≤ ηλ

|c1(x)|
tp

provided λ is small enough such that λ ≤ Λη(x) := ηc1(x)/C̃. Again from (2.11),
we get

|v0(t, x)| ≤ c0

〈t + |x|〉〈t − |x|〉m−2
≤ 2c0

(1 + t)m−1

for all t ≥ 2(m − 2)|x|. Then,

|v0(t, x)| ≤ 2c0

(1 + t)m−1
≤ ηλ

|c1(x)|
tp

provided t > T1(x, η, λ) is big enough, such that tm−1−p ≥ 2c0/(η λ |c1(x)|).
Finally, we arrive at the statement that for every small η > 0 and every x ∈

R
3, for sufficiently small λ ≤ min[Λη(x), 1/(2 Cp,k)], and for sufficiently big t >

aIt follows immediately from the Bernoulli’s inequality.
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max[T0(x, η), T1(x, η, λ), 2(m − 2)|x|], we have∣∣∣∣u(t, x) − λ
c1(x)

tp

∣∣∣∣ ≤ |u(t, x) − v0(t, x) − λv1(t, x)| + |v0(t, x)| + λ

∣∣∣∣v1(t, x) − c1(x)
tp

∣∣∣∣
≤ 3ηλ

|c1(x)|
tp

,

that is, for p = k,

u(t, x) ∼= λ
c1(x)

tk
.

That gives a precise information about the time-decay of u(t, x) and shows that the
estimate in Theorem 2.1 is optimal (for t � |x|).

In the case p = m − 1 ≤ k, the decay rate of u is determined by the decay
of (long range) initial data and all vn ∈ L∞

1,p. Analogously, if we can show that
v0(t, x) ∼= c0(x)t−p �= 0 for t � 1, then we can bound all higher perturbation orders
for sufficiently small λ and big t by the same expression multiplied by an arbitrarily
small η. To this aim we use again (2.9)

|u(t, x) − v0(t, x)| ≤ Cp,kλ

1 − Cp,kλ
· Cm · (f0 + f1 + g0)
〈t + |x|〉〈t − |x|〉p−1

=: ∆0(t, x) ∀(t, x) ∈ R
1+3
+ ,

and bound ∆0(t, x) by η |c0(x)|t−p as above. It leads to∣∣∣∣u(t, x) − c0(x)
tp

∣∣∣∣ ≤ |u(t, x) − v0(t, x)| +
∣∣∣∣v0(t, x) − c0(x)

tp

∣∣∣∣ ≤ 2η
|c0(x)|

tp
,

what for p = m − 1 gives

u(t, x) ∼= c0(x)
tm−1

.

That again gives a precise information about the time-decay of u(t, x) and shows
that the estimate in Theorem 2.1 is optimal (for t � |x|).

3. Nonlinear Case without the Potential Term

Now, we consider a nonlinear wave equation of the form

�u = F (u) (3.1)

subject to initial data (f, g) satisfying (2.3) with f0, f1, g0 < ε. The nonlinear term
obeys |F (u)| ≤ F1|u|p for |u| < 1 and |F (u) − F (v)| ≤ F2|u − v|max(|u|, |v|)p−1.
The second condition is satisfied e.g. for F (u) = up with F2 = p or for F ∈ C1 such
that |F ′(u)| ≤ F2|u|p−1 for |u| < 1.
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3.1. Iteration

We define an iteration scheme

u0 := 0,

un+1 := I0(f, g) + L0(F (un)), n ≥ 0. (3.2)

For it we have the following

Theorem 3.1. With f, g and F (u) as above for any m > 3, p > 1 +
√

2 and
sufficiently small ε the sequence un converges (in norm) in L∞

1,q for q = min(p− 1,

m − 1) to the solution u of Eq. (3.1). The limit u := limn→∞ un satisfies

|u(t, x)| ≤ C

〈t + |x|〉〈t − |x|〉q−1
, ∀(t, x) ∈ R

1+3
+

with some positive constant C depending only on p, m and ε.

Proof. For g,∇f ∈ L∞
m and f ∈ L∞

m−1 with m > 3 from Lemma A.1, we get
u1 = I0(f, g) ∈ L∞

1,m−1. Next, if some un ∈ L∞
1,q with some q > 1 then, since L0

is a positive operator,b we have |L0(F (un))| ≤ F1L0(|un|p) and from Lemma A.3,
we get

‖L0(F (un))‖L∞
1,q

≤ F1‖L0(|un|p)‖L∞
1,q

≤ F1C‖un‖p
L∞

1,q
,

and hence L0(F (un)) ∈ L∞
1,q when q ≤ p − 1. Then, un+1 ∈ L∞

1,m−1 ∩ L∞
1,q = L∞

1,q

for q := min(m − 1, p − 1). Hence, by induction we obtain un ∈ L∞
1,q for every

n = 0, 1, 2, . . . and

‖u1‖L∞
1,q

≤ ‖I0(f, g)‖L∞
1,q

≤ Cm(f0 + f1 + g0) ≤ 3Cmε

‖un+1‖L∞
1,q

≤ ‖I0(f, g)‖L∞
1,q

+ ‖L0(F (un))‖L∞
1,q

≤ 3Cmε + F1C‖un‖p
L∞

1,q
.

Choose ε > 0 such that F1C(6Cm)pεp−1 < 3Cm · min(1, 2F1/F2). Then,

‖u1‖L∞
1,q

≤ 6Cmε

‖un‖L∞
1,q

≤ 6Cmε ⇒ ‖un+1‖L∞
1,q

≤ 3Cmε + F1C(6Cmε)p ≤ 6Cmε,

hence ‖un‖L∞
1,q

≤ 6Cmε for all n ≥ 1. As next, we show convergence of the sequence
un by demonstrating that it is Cauchy.

‖un+1 − un‖L∞
1,q

= ‖L0(F (un) − F (un−1))‖L∞
1,q

≤ F2‖L0(|un − un−1|max(|un|, |un−1|)p−1)‖L∞
1,q

≤ F2C‖|un − un−1|max(|un|, |un−1|)p−1‖L∞
1,q

≤ F2C(6Cmε)p−1‖un − un−1‖L∞
1,q

= δ‖un − un−1‖L∞
1,q

,

bIn fact L0 = �−1 is a measure on R
1+3
+ and therefore has a positive kernel. Then, L0(F ) ≥ 0 if

F ≥ 0.
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with δ := F2C(6Cmε)p−1 < 1, hence the iteration is a contraction in the normed
space L∞

1,q and un is a Cauchy sequence, because

‖un+1 − un‖L∞
1,q

≤ δn‖u1 − u0‖L∞
1,q

= δn‖I0(f, g)‖L∞
1,q

≤ δn 3Cmε (3.3)

and for any n′ > n

‖un′ − un‖L∞
1,q

≤
n′−n−1∑

j=0

‖un+j+1 − un+j‖L∞
1,q

≤
n′−n−1∑

j=0

δj+n 3Cmε ≤ δn

1 − δ
3Cmε. (3.4)

Since L∞
1,q is Banach, un has a limit u ∈ L∞

1,q satisfying

u = I0(f, g) + L0(F (u)) (3.5)

and solving the wave equation (3.1) with the initial data (2.3). Its L∞
1,q-norm satisfies

‖u‖L∞
1,q

≤ 6Cmε. (3.6)

From (3.4) it follows, in the limit n′ → ∞ an error bound

‖u − un‖L∞
1,q

≤ δn

1 − δ
3Cmε ≤ Cε(p−1)n+1 (3.7)

for small ε.

3.2. Perturbation series

In order to be able to construct a well-defined perturbation scheme to all orders, we
have to assume additionally that F (u) is analytic at u = 0, its Taylor series starts
at power p ≥ 3 and has convergence radius RF > 0. Then, for small initial data

(u, u̇)(0) = (εf, εg), (3.8)

we introduce a perturbation series for representing the solution of (3.1)

u =
∞∑

n=1

εnvn. (3.9)

After inserting it into (3.1) and collecting terms according to powers of ε, we obtain
the following perturbation scheme

�v1 = 0, (v1, v̇1)(0) = (f, g) → v1 = I0(f, g) (3.10)

�vn+1 = Fn(v1, . . . , vn), (vn+1, v̇n+1)(0) = (0, 0) → vn+1 = L0(Fn(v1, . . . , vn)),

(3.11)
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for n ≥ 1, where Fn result from collecting the nonlinear terms with the same powers
of ε

Fn(v1, . . . , vn) =
∑

k

an
kv

αn,1
k

1 · · · vαn,n
k

n , (3.12)

where αn,m
k ∈ N satisfy

∑n
m=1 mαn,m

k = n + 1 and
∑n

m=1 αn,m
k ≥ p for every n, k.

We call this expansion a “zero background” case because the zero-order term
v0 is absent. If a v0 term were present in the series above (i.e. the summation
started at n = 0), we would have an additional equation �v0 = F (v0) which is
truly nonlinear (opposite to the above system of linear wave equations with source
terms). Its solution v0 represents a “background” around which the perturbations
vn are calculated.

Below we show that the perturbation series converges to the solution u of the
nonlinear wave equation (3.1) and has a positive convergence radius.

Theorem 3.2. With f, g and F (u) as above for any m > 3, p > 1 +
√

2 and
sufficiently small ε the series defined in (3.9)–(3.11) converges (in norm) in L∞

1,q

for q = min(p − 1, m − 1) to the solution of Eq. (3.1) with initial data (3.8).

Proof. For g,∇f ∈ L∞
m and f ∈ L∞

m−1 with m > 3 from Lemma A.1, we get
v1 = I0(f, g) ∈ L∞

1,m−1 with

‖v1‖L∞
1,m−1

≤ Cm(f0 + f1 + g0) =: D < ∞.

Next, we prove by induction L∞
1,q bounds for all n ≥ 1 with some q > 1. Assume

that for a given n ≥ 1 we have vm ∈ L∞
1,q for all m ≤ n. Then, using (3.12), we get

‖vn+1‖L∞
1,q

= ‖L0(Fn(v1, . . . , vn))‖L∞
1,q

≤
∑

k

|an
k | · ‖L0(|vαn,1

k
1 · · · vαn,n

k
n |)‖L∞

1,q
.

Observe, that |vαn,1
k

1 · · · vαn,n
k

n | = (
p

√
|vαn,1

k
1 · · · vαn,n

k
n |)p and

p

√
|vαn,1

k
1 · · · vαn,n

k
n | ∈ L∞

1,q,
because of the following estimate for b1+ · · ·+bn = B ≥ 1 and bm ≥ 0, m = 1, . . . , n

‖wb1
1 · · ·wbn

n ‖L∞
1,q

= ‖〈t + |x|〉〈t − |x|〉q−1wb1
1 · · ·wbn

n ‖L∞

≤ ‖〈t + |x|〉b1/B〈t − |x|〉(q−1)b1/Bwb1
1 ‖L∞ · · ·

× ‖〈t + |x|〉bn/B〈t − |x|〉(q−1)bn/Bwbn
n ‖L∞

= ‖〈t + |x|〉1/B〈t − |x|〉(q−1)/Bw1‖b1
L∞ · · ·

× ‖〈t + |x|〉1/B〈t − |x|〉(q−1)/Bwn‖bn

L∞

≤ ‖〈t + |x|〉〈t − |x|〉(q−1)w1‖b1
L∞ · · · ‖〈t + |x|〉〈t − |x|〉(q−1)wn‖bn

L∞

= ‖w1‖b1
L∞

1,q
· · · ‖wn‖bn

L∞
1,q

,
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which used for bm := αn,m
k /p with B := αn,1

k /p + · · · + αn,n
k /p ≥ 1 gives∥∥∥∥ p

√
|vαn,1

k
1 · · · vαn,n

k
n |

∥∥∥∥
L∞

1,q

=
∥∥∥|v1|α

n,1
k /p · · · |vn|α

n,n
k /p

∥∥∥
L∞

1,q

≤ ‖v1‖αn,1
k /p

L∞
1,q

· · · ‖vn‖αn,n
k /p

L∞
1,q

< ∞.

Then, for q ≤ p − 1, we can use Lemma A.3 with u :=
p

√
|vαn,1

k
1 · · · vαn,n

k
n | to obtain

‖vn+1‖L∞
1,q

≤ C
∑

k

|an
k | ·
∥∥∥∥ p

√
|vαn,1

k
1 · · · vαn,n

k
n |

∥∥∥∥p

L∞
1,q

= C
∑

k

|an
k | ·
∥∥∥vαn,1

k
1 · · · vαn,n

k
n

∥∥∥
L∞

1,q

≤ C
∑

k

|an
k | · ‖v1‖αn,1

k

L∞
1,q

· · · ‖vn‖αn,n
k

L∞
1,q

.

Unfortunately, we were not able to find an estimate for
∑

k |an
k | being good enough

to prove a geometric growth of ‖vn‖L∞
1,q

and guaranteeing convergence of the series
(3.9). If one tries so, e.g. assuming ‖vm‖L∞

1,q
≤ Dm for all m ≤ n, then

‖vn+1‖L∞
1,q

≤ C
∑

k

|an
k | · ‖v1‖αn,1

k

L∞
1,q

· · · ‖vn‖αn,n
k

L∞
1,q

≤ C
∑

k

|an
k | · D(1αn,1

k +···+nαn,n
k )

= CDn+1
∑

k

|an
k |.

The best estimate we were able to find is
∑

k |an
k | ≤ C̃np (imposing further assump-

tions on F (u)) which does not allow to close the induction argument. Therefore, we
choose a different way and use some trick, relating the wave equation to an algebraic
one.

To this goal, we need to relate the coefficients of the power series for F (u)

F (u) =
∞∑

n=p

bnun,

which converges for |u| < RF , to the expansion coefficients an
k which result from a

formal insertion of the series u =
∑∞

k=1 εkvk into F (u)

F

( ∞∑
k=1

εkvk

)
≡

∞∑
n=p−1

εn+1Fn(v1, . . . , vn)

≡
∞∑

n=p−1

εn+1
∑

k

an
k v

αn,1
k

1 · · · vαn,n
k

n . (3.13)

By some manipulation of sums, we obtain

an
k = bαn,1

k +···+αn,n
k

(
αn,1

k + · · · + αn,n
k

αn,1
k , . . . , αn,n

k

)
,
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where the symbol in delimiters represents the multinomial coefficient. Since there
is an analogous relation between the absolute values of the coefficients

|an
k | = |bαn,1

k
+···+αn,n

k
|
(

αn,1
k + · · · + αn,n

k

αn,1
k , . . . , αn,n

k

)
we observe that the series (3.13) with an

k replaced by |an
k | gives rise to a new

function F̃

∞∑
n=p−1

εn+1
∑

k

|an
k | v

αn,1
k

1 · · · vαn,n
k

n = F̃

( ∞∑
k=1

εkvk

)

such that

F̃ (u) =
∞∑

n=p

|bn|un. (3.14)

F̃ (u) is also analytic at u = 0 and the convergence radius is the same as that of
F (u), i.e. R eF = RF what follows from standard theory of analytic functions.

Now, instead of the system of estimates

‖v1‖L∞
1,q

≤ D, (3.15)

‖vn+1‖L∞
1,q

≤ C
∑

k

|an
k | · ‖v1‖αn,1

k

L∞
1,q

· · · ‖vn‖αn,n
k

L∞
1,q

(3.16)

with q := min(m − 1, p− 1), we consider a system of equations

w1 = D, (3.17)

wn+1 = C
∑

k

|an
k | · wαn,1

k
1 · · ·wαn,n

k
n (3.18)

and it is easy to see (e.g. by induction) that ‖vn‖L∞
1,q

≤ wn for all n ≥ 1. Now comes
the trick. Using the above relations we can find that this system is equivalent to

∞∑
n=1

εnwn = CF̃

( ∞∑
n=1

εnwn

)
+ Dε. (3.19)

Introducing W =
∑∞

n=1 εnwn, we can write

W = CF̃ (W ) + Dε. (3.20)

Since F̃ (W ) is analytic at W = 0, so is G(W )

G(W ) :=
W − CF̃

D
= ε

and also its inverse G−1(ε) at ε = 0, because G′(0) = 1/D > 0 (see e.g. (real)
analytic inverse function theorem in [2]), what follows from the fact that the Taylor
series for F̃ starts (as that for F ) at the power at least p > 2. Then G−1(ε) has a



November 19, 2008 11:49 WSPC/JHDE 00168

Linear and Nonlinear Tails I 755

Taylor series with a positive convergence radius RG−1 > 0. The solution W (ε) of
(3.20) can be then represented by a convergent series for |ε| < RG−1

W (ε) = G−1(ε) =
∞∑

n=1

εnwn. (3.21)

In order to guarantee that this series can act as a good argument of F̃ , we choose
a possibly smaller radius R̃ ≤ RG−1 such that |W (ε)| < RF for all |ε| < R̃. Then
F̃ (W (ε)) can be represented by a convergent series (3.14) in W (ε). Finally, this
allows us to insert this series into (3.20) and obtain first (3.19) and then the system
(3.17) and (3.18).

Essential for the trick is that the series in (3.21) converges for all |ε| < R̃. Now,
since ‖vn‖L∞

1,q
≤ wn for all n ≥ 1, we get from the comparison criterion that the

series
∑∞

n=1 εn‖vn‖L∞
1,q

converges as well for all |ε| < R̃. Thus, the series (3.9)

converges in norm in L∞
1,q for all |ε| < R̃ to some ũ ∈ L∞

1,q which satisfies

ũ :=
∞∑

n=1

εnvn = εI0(f, g) +
∞∑

n=1

εn+1L0(Fn(v1, . . . , vn))

= εI0(f, g) + L0

(
F

( ∞∑
n=1

εnvn

))
= I0(εf, εg) + L0(F (ũ))

what is equivalent to the wave equation (3.1) with initial data (3.8). Uniqueness of
solutions follows easily from Theorem 3.1.

An important consequence of the convergence of
∑∞

n=1 εn‖vn‖L∞
1,q

is that there

exist constants 0 < M < ∞ and R̃−1 < ρ < ∞ such that ‖vn‖L∞
1,q

< Mρn for every
n ≥ 1.

Since the introduction of the auxiliary parameter ε in the series expansion is
only a way to generate the system of linear equations equivalent to the original
nonlinear equation, we can now remove the parameter ε and replace the condition
on the initial data by requiring f0, f1, g0 < R̃. If we solve the system (3.10)–(3.11),
then we obtain a solution of the nonlinear wave equation (3.1) by summing up the
convergent series

∑∞
n=1 vn = u.

3.3. Optimal decay estimate

In the nonlinear case, the iteration sequence un is different than the perturbation
sequence ũn :=

∑n
m=1 vn, therefore, the question whether information about the

decay rate of u can be read-off from the low order terms must be studied separately
for both cases. On the one hand, in the iterative scheme the form of the source
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terms F (un) is much simpler than that in the perturbative scheme, Fn(v1, . . . , vn).
On the other hand, in practise, it is much easier to calculate vn’s than un’s. Below,
we address both situations.

Analogously like for the linear equation, we will have two cases depending on
whether m is smaller or bigger than p. In the first case, the initial data will dominate
the late-time decay rate of u, in the second case the power p of the nonlinearity,
through nonlinear scattering, will determine the the decay rate of u.

3.3.1. Iteration

In analogy to the linear case, basing on a decay information for some low order
term in the iteration sequence and on its error bound we find the exact decay rate
of u. From the error bound (3.7), it follows for large t

|u(t, x) − un(t, x)| ≤ Cε(p−1)n+1

〈t + |x|〉〈t − |x|〉q−1
≤ cn(x)ε(p−1)n+1

(1 + t)q
,

where q := min(p−1, m−1). If we are able to show that some un(t, x) ∼= εdn(x)t−q �=
0 for large t (the asymptotic approximation is to be understood in the following
sense:

∃η0>0∀0<η<η0∃T<∞∀t>T

∣∣∣∣un(t, x) − εdn(x)
tq

∣∣∣∣ < η
εdn(x)

tq
, (3.22)

i.e. the relative error η becomes arbitrarily small for sufficiently big t, cf. (2.10)),
then already un shows the correct decay rate, identical with this of u, because then,
choosing η := ε(p−1)n, we get∣∣∣∣u(t, x) − ε

dn(x)
tq

∣∣∣∣ ≤ |u(t, x) − un(t, x)| +
∣∣∣∣un(t, x) − ε

dn(x)
tq

∣∣∣∣ ≤ ηε
cn(x)

tq
+ ηε

dn(x)
tq

for sufficiently small ε. Hence, the decay rate of u at late times is exactly t−q.
In case when m > p = q + 1, we have u1 = I0(f, g) ∈ L∞

1,m−1 and

|u1(t, x)| ≤ Cm · (f0 + f1 + g0)
〈t + |x|〉〈t − |x|〉m−2

≤ 2Cm · (f0 + f1 + g0)
(1 + t)m−1

for t ≥ 2(m − 2)|x|, hence it decays faster than u and it cannot be shown that
u1(t, x) ∼= εd1(x)t−q. It is expected that it will be true for u2

∼= εd2(x)t−q, what
means, that already u2 would have the same rate of decay as u (see [6] for such
results in spherical symmetry).

In case when m ≤ p, we have q := m − 1. Then it should be possible to show
u1(t, x) ∼= c1(x)t−(m−1), what means, that already u1 would have the same rate of
decay as u.
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3.3.2. Perturbation series

The perturbation scheme (3.10)–(3.11) can be written as

v1 = I0(f, g) (3.23)

v2 = v3 = · · · = vp−1 = 0 (3.24)

vp = L0(Fp−1(v1, . . . , vp−1)) = a0L0((v1)p) (3.25)

vn+1 = L0(Fn(v1, . . . , vn)), n ≥ p. (3.26)

Assume we are in the more interesting case m > p where the tail results from the
nonlinear scattering. Then, v1 = I0(f, g) ∈ L∞

1,m−1 and vn ∈ L∞
1,p−1 for n ≥ 2. If

we can show that a0L0((I(f, g))p) ∼= dp(x)t−(p−1), then already vp has the correct
decay rate, identical with this of u. To prove it, we need to show that εI0(f, g) and
εn+1L0(Fn(v1, . . . , vn)) for n ≥ p are small relative to εpdp(x)t−(p−1).

Again, for v1 = I0(f, g) ∈ L∞
1,m−1 the situation is obvious, ε|v1| =

ε|I0(f, g)(t, x)| ≤ c1(x)ε(1 + t)−(m−1) and it is much smaller than εpdp(x)t−(p−1)

for sufficiently large t.
From the convergence proof for the perturbation series, we know that there

exist constants M, ρ > 0 such that ‖vn‖L∞
1,p−1

≤ Mρn for all n ≥ 1. Hence, we can
estimate the remainder of the perturbation series∥∥∥∥∥

∞∑
m=p+1

εmvm

∥∥∥∥∥
L∞

1,p−1

≤ M

∞∑
m=p+1

εmρm ≤ Mεp+1ρp+1

1 − ερ
≤ Cεp+1,

for sufficiently small ε < 1/ρ. It means that∣∣∣∣∣
∞∑

m=p+1

εmvm(t, x)

∣∣∣∣∣ ≤ Cεp+1

〈t + |x|〉〈t − |x|〉p−2
≤ c(x)εp+1

(1 + t)p−1

for big t (and fixed x). Then

|u(t, x) − εpvp(t, x)| ≤ |εv1(t, x)| +
∣∣∣∣∣

∞∑
m=p+1

εmvm

∣∣∣∣∣ ≤ c1(x)ε
tm−1

+
c(x)εp+1

tp−1
,

hence with vp
∼= dp(x)t−(p−1) and the relative error η := ε (cf. (3.22) for the

definition of “∼=”)∣∣∣∣u(t, x) − dp(x)εp

tp−1

∣∣∣∣ ≤ c1(x)ε
tm−1

+
[c(x) + dp(x)]εp+1

tp−1
.

For small ε and big t such that tm−p ≥ c1(x)
c(x) ε−p, it follows

u(t, x) ∼= dp(x)εp

tp−1
.

Thus, vp dominates the perturbation series for large times and small ε and has the
same decay rate as the full solution of the nonlinear wave equation u.
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4. Nonlinear Case with the Potential Term

Finally, let us consider a nonlinear wave equation with potential

�u + V u = F (u) (4.1)

subject to initial data (f, g) satisfying (2.3) with f0, f1, g0 < ε. The nonlinear term
F (u) is like in the previous section.

4.1. Iteration

4.1.1. Perturbative treatment of V

As in the previous sections, we define an iteration

u0 := 0

un+1 := I0(f, g) − λL0(V un) + L0(F (un)), n ≥ 0.

We have the following

Theorem 4.1. With f, g, V and F (u) as above for any m > 3, k > 2, p > 1 +
√

2,

λ < C−1
q,k and sufficiently small ε the sequence un converges (in norm) in L∞

1,q for
q = min(p − 1, k, m − 1) to the solution u of Eq. (4.1). The limit u := limn→∞ un

satisfies

|u(t, x)| ≤ C

〈t + |x|〉〈t − |x|〉q−1
, ∀(t, x) ∈ R

1+3
+

with some positive constant C depending only on p, k, m, λ and ε.

The proof is a combination of proofs of Theorems 3.1 and 3.2, therefore, we
concentrate only on the points that differ.

Proof. For g,∇f ∈ L∞
m and f ∈ L∞

m−1 with m > 3 from Lemma A.1, we get
u1 = I0(f, g) ∈ L∞

1,m−1. Next, for δ := λCq,k < 1, there exists M > 3/(1 − δ) > 0
and if un ∈ L∞

1,q with ‖un‖L∞
1,q

≤ MCmε for some n ≥ 1 and q > 1, then from
Lemmas A.1–A.3, we get

‖un+1‖L∞
1,q

≤ ‖I0(f, g)‖L∞
1,q

+ λ‖V un‖L∞
1,q

+ ‖L0(F (un))‖L∞
1,q

≤ Cm(f0 + f1 + g0) + λCq,k‖un‖L∞
1,q

+ F1C‖un‖p
L∞

1,q

≤ 3Cmε + δMCmε + F1C(MCm)pεp < ∞
and hence un+1 ∈ L∞

1,q if q := min(m − 1, k, p − 1). By induction we obtain un ∈
L∞

1,q for every n ≥ 1. For ε > 0 such that F1C(MCm)pεp−1 ≤ min[(M(1 − δ) −
3)Cm, Mδ(1 − δ)CmF1/F2], we have

‖u1‖L∞
1,q

≤ 3Cmε ≤ MCmε

‖un+1‖L∞
1,q

≤ 3Cmε + δMCmε + (M(1 − δ) − 3)Cmε = MCmε,
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hence ‖un‖L∞
1,q

≤ MCmε for all n ≥ 1. Analogously like in the previous proofs, we
arrive at

‖un+1 − un‖L∞
1,q

≤ ‖L0(V (un − un−1))‖L∞
1,q

+ ‖L0(F (un) − F (un−1))‖L∞
1,q

≤ λCq,k‖un − un−1‖L∞
1,q

+ F2C(MCmε)p−1‖un − un−1‖L∞
1,q

≤ δ‖un − un−1‖L∞
1,q

+ δ(1 − δ)‖un − un−1‖L∞
1,q

= δ′‖un − un−1‖L∞
1,q

,

where δ′ := 2δ − δ2 < 1. It follows that un is a Cauchy sequence (see the above
proofs) in the Banach space L∞

1,q and hence un has a limit u ∈ L∞
1,q satisfying

u = I0(f, g) + L0(V un) + L0(F (u)) (4.2)

and solving the wave equation (4.1) with the initial data (2.3). Its L∞
1,q-norm satisfies

‖u‖L∞
1,q

≤ MCmε (4.3)

with some (finite) constant M > 3/(1 − δ) > 0.

Moreover, by analogous considerations like in the proof of Theorem 3.1, we find
for n′ > n

‖un′ − un‖L∞
1,q

≤ δ′n

1 − δ′
3Cmε,

and in the limit n′ → ∞
‖u − un‖L∞

1,q
≤ δ′n

1 − δ′
3Cmε. (4.4)

4.1.2. Non-perturbative treatment of V

Building on the above results we can also define an alternative iteration scheme

u0 := 0

un+1 := IV (f, g) + LV (F (un)), n ≥ 0

which is based on inversion of the operator � + λV . According to the discussion in
the introduction, it is equivalent to

un+1 = I0(f, g) + L0(F (un)) − λL0(V un+1), n ≥ 0.

It converges under the same conditions as in Theorem 4.1. The proof has the only
difference that now we have

‖un+1‖L∞
1,q

≤ ‖I0(f, g)‖L∞
1,q

+ ‖L0(F (un))‖L∞
1,q

+ λ‖V un+1‖L∞
1,q

≤ Cm(f0 + f1 + g0) + F1C‖un‖p
L∞

1,q
+ λCq,k‖un+1‖L∞

1,q

≤ (1 − δ)MCmε + δ‖un+1‖L∞
1,q
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what gives

‖un+1‖L∞
1,q

≤ (1 − δ)MCmε

1 − δ
= MCmε.

4.2. Perturbation series

Definig a perturbation scheme for the nonlinear wave equation with potential (4.1)

u =
∞∑

n=1

εnvn, (4.5)

one encounters the problem of two scales which are introduced by parameters λ

measuring the strength of the potential and ε measuring the strength of the initial
data. Therefore, we propose two ways of looking at the problem: in first, we treat
the potential non-perturbatively, in second, we assign to λ a scale of some power
of ε.

4.2.1. Non-perturbative treatment of V (λ ∼ ε0)

In this perturbation scheme, we invert the operator � + λV , thus treating V in a
non-perturbative way. For the sequence vn defined by

v1 := IV (f, g) = I0(f, g) − L0(V v1) (4.6)

vn+1 := LV (Fn(v1, . . . , vn)) = L0(Fn(v1, . . . , vn)) − L0(V vn+1), n ≥ 1 (4.7)

we have the following

Theorem 4.2. With f, g, V and F (u) as above for any m > 3, k > 2, p > 1 +
√

2,

λ < C−1
q,k and sufficiently small ε the series defined in (4.5)–(4.7) converges (in

norm) in L∞
1,q for q = min(p − 1, k, m − 1) to the solution of the Eq. (4.1) with

initial data (3.8).

Proof. The proof is essentially identical with this of Theorem 3.2 with the following
differences. For q := min(m − 1, k, p− 1), we obtain

‖v1‖L∞
1,m−1

≤ D + δ‖v1‖L∞
1,m−1

,

where δ := λCq,k and hence

‖v1‖L∞
1,q

≤ ‖v1‖L∞
1,m−1

≤ D

1 − δ
< ∞.

The same modification regards all other inequalities

‖vn+1‖L∞
1,q

≤ C
∑

k

|an
k | · ‖v1‖αn,1

k

L∞
1,q

· · · ‖vn‖αn,n
k

L∞
1,q

+ δ‖vn+1‖L∞
1,q

which leads to

‖vn+1‖L∞
1,q

≤ C

1 − δ

∑
k

|an
k | · ‖v1‖αn,1

k

L∞
1,q

· · · ‖vn‖αn,n
k

L∞
1,q

.
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Repeating the trick used in the proof of Theorem 3.2, we can relate this problem
to the algebraic equation, which now becomes

W =
C

1 − δ
F̃ (W ) +

D

1 − δ
ε. (4.8)

Since G(W ) given by

G(W ) :=
(1 − δ)W − CF̃

D
= ε

is again analytic, so is W (ε) = G−1(ε), because G′(0) = (1 − δ)/D > 0. Repeating
the reasoning, we arrive at the conclusion that

∑∞
n=1 εn‖vn‖L∞

1,q
has a positive

radius of convergence. It follows that the series (4.5) converges in norm in L∞
1,q for

all ε < R̃ to the solution of (4.1) with initial data (3.8). Uniqueness follows easily
from Theorem 4.1.

We can, again, remove the auxiliary parameter ε and replace the condition on
the initial data by f0, f1, g0 < R̃. Then, the series

∑∞
n=1 vn defined by (4.6)–(4.7)

converges to the solution of the nonlinear wave equation (4.1).

4.2.2. Perturbative treatment of V (λ ∼ εa)

If we assume that the small scale of the potential’s strength λ is related to the small
scale of the initial data, say λ = εaλ̃ with a ∈ N+, then the power series Ansatz

u =
∞∑

n=1

εnvn (4.9)

inserted into the wave equation (4.1) gives

v−n := 0, n ≥ 0 (4.10)

v1 := I0(f, g) (4.11)

vn+1 := −λ̃L0(V vn+1−a) + L0(Fn(v1, . . . , vn)), n ≥ 1. (4.12)

This system is much more appropriate for numerical techniques, because the equa-
tion on vn+1 is explicit, in contrast to the previous scheme, which includes implicit
equations for vn+1 (i.e. appearing on both sides). Moreover, if we choose a := p−1,
then the lowest nontrivial order, vp (all lower orders satisfy vn = 0 for 1 < n < p),
contains both contributions from V and F and can be used as a good approximation
to u (assuming the series converges), what will be discussed in the next section.

In this case, we also have a convergence result

Theorem 4.3. With f, g, V and F (u) as above for any m > 3, k > 2, p > 1 +
√

2,
λ < C−1

q,k and sufficiently small ε the series defined in (4.9)–(4.12) converges (in
norm) in L∞

1,q for q = min(p − 1, k, m − 1) to the solution of Eq. (4.1) with initial
data (3.8).
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Proof. The proof is again analogous to that of Theorems 3.2 and 4.2 with the
following differences. We have for q := min(m − 1, k, p− 1)

‖v1‖L∞
1,q

≤ ‖v1‖L∞
1,m−1

≤ Cm(f0 + f1 + g0) =: D < ∞
and

‖vn+1‖L∞
1,q

≤ ‖L0(Fn(v1, . . . , vn))‖L∞
1,q

+ λ̃‖L0(V vn+1−a)‖L∞
1,q

≤ C
∑

k

|an
k | · ‖v1‖αn,1

k

L∞
1,q

· · · ‖vn‖αn,n
k

L∞
1,q

+ δ̃‖vn+1−a‖L∞
1,q

with δ̃ := λ̃Cq,k. The corresponding algebraic equation now becomes

W = C F̃ (W ) + δ̃εaW + Dε. (4.13)

It cannot be rewritten, like before, as G(W ) = ε, but it can be written as

G(W, ε) := W − C F̃ (W ) − δ̃εaW − Dε = 0.

Since a is a positive integer number, G(W, ε) is analytic in both variables around the
point G(0, 0) = 0. Moreover, ∂G(W, 0)/∂W |W=0 = 1−δ̃εa = 1−λCq,k > 0. Then, by
(real) analytic implicit function thorem (see e.g. [2]), there exists a unique function
W (ε) such that G(W (ε), ε) = 0. Then, W (ε) has a Taylor series representation with
positive radius of convergence. Repeating the reasoning of the previous proofs, we
arrive at the conclusion that

∑∞
n=1 εn‖vn‖L∞

1,q
has a positive radius of convergence

R̃ > 0. It follows that the series (4.9)–(4.12) converges in norm in L∞
1,q for all

0 < ε < R̃ to the solution of (4.1) with initial data (3.8). Uniqueness follows again
from Theorem 4.1.

4.3. Optimal decay estimate

4.3.1. Iteration with perturbative treatment of V

From (4.4), we have

|u(t, x) − un(t, x)| ≤ δn(2 − δ)n

(1 − δ)2
· 3Cmε

〈t + |x|〉〈t − |x|〉q−1
≤ cn(x)λnε

(1 + t)q

for sufficiently small ε and λ (such that λCq,k = δ < δ0 < 1). If we are able to
show that some un(t, x) ∼= εdn(x)t−q �= 0 for large t (the asymptotic approximation
“∼=” is to be understood in the sense defined in (3.22), with the relative error η),
then already un shows the correct decay rate, identical with this of u, because then,
choosing η := λn, we get∣∣∣∣u(t, x) − dn(x)ε

tq

∣∣∣∣ ≤ [dn(x) + cn(x)]λnε

tq
.

For small λ, it follows

|u(t, x)| ∼= dn(x)ε
tq

.
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Again, in case when m > p, we have u1 = I0(f, g) ∈ L∞
1,m−1 and

|u1(t, x)| ≤ Cm · (f0 + f1 + g0)
〈t + |x|〉〈t − |x|〉m−2

≤ 2Cm · (f0 + f1 + g0)
(1 + t)m−1

for t ≥ 2(m − 2)|x|, hence, it decays faster than u and it cannot be shown that
u1(t, x) ∼= εd1(x)t−q. It is expected that it will be true for u2

∼= εd2(x)t−q, what
means, that already u2 would have the same rate of decay as u (see [6] for such
results in spherical symmetry).

In case when m ≤ p, we have q := m − 1. Then, it should be possible to show
u1(t, x) ∼= d1(x)t−(m−1), what means, that already u1 would have the same rate of
decay as u.

4.3.2. Perturbation series with perturbative treatment of V

Consider the system (4.10)–(4.12) and choose the constant a := p − 1 so that
v2, . . . , vp−1 = 0 and at the order vp both effects, the nonlinear and linear (potential)
scattering, appear simultaneously

v−n := 0, n ≥ 0 (4.14)

v1 = I0(f, g) (4.15)

v2 = v3 = · · · = vp−1 = 0 (4.16)

vp = −λ̃L0(V v1) + L0(Fp−1(v1, . . . , vp−1))

= −λ̃L0(V v1) + a0L0((v1)p) (4.17)

vn+1 = −λ̃L0(V vn−p+2) + L0(Fn(v1, . . . , vn)), n ≥ p. (4.18)

Consider only the more interesting case m− 1 > min(p− 1, k) =: q. If we can show
that vp

∼= dp(x)t−q , then already vp has the correct decay rate, identical with this
of u. To prove it, we can repeat the reasoning from the section when we treated
nonlinear wave equation without the potential term, because the only fact, which we
use is that the perturbation series

∑
n=1 εnvn has a positive radius of convergence

and this is here guaranteed by Theorem 4.3. Analogously, we obtain

u(t, x) ∼= dp(x)εp

tq

for all t > T and sufficiently big T = T (ε), so vp dominates the perturbation series
for large times and small ε and has the same decay rate as the full solution of the
nonlinear wave equation u.

This is the simplest setting for applications. Here, we only need to solve (approx-
imately) two linear wave equations, (4.15) and (4.17), in order to determine the
decay rate for solutions of (4.1) . This is the starting point of [6] where we solve the
two equations under spherical symmetry.
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Appendix A. Some Useful Estimates

The first two lemmas we cite from [5].

Lemma A.1. Let the data (f, g) ∈ L∞
m−1 × L∞

m with m > 3 satisfy

f0 := ‖f‖L∞
m−1

< ∞, f1 := ‖∇f‖L∞
m

< ∞, g0 := ‖g‖L∞
m

< ∞.

Then there exists a unique weak solution v(t, x) = I0(f, g) of the free wave equation

�v = 0, v(0, x) = f(x), ∂tv(0, x) = g(x)

which satisfies

‖v‖L∞
1,m−1

≤ C(f, g) := Cm · (g0 + f1 + f0).

Lemma A.2. Let the source F satisfy for some q > 2 and 1 < p ≤ q

F0 := ‖〈x〉qF‖L∞
1,p

< ∞.

Then there exists a weak solution v(t, x) = L0(F ) of the free wave equation with
source

�v = F,

and null initial data v(0, x) = 0, ∂tv(0, x) = 0. Moreover, it satisfies

‖v‖L∞
1,p

≤ Cp,qF0.

Next lemma we cite after Asakura [1, Corollory 2.4 and Eq. (2.33)] and state in
our notation.

Lemma A.3. Let u ∈ C2(R1+3
+ ) ∩ L∞

1,q for some q > 1. Then for any p > 1 +
√

2

‖L0(|u|p)‖L∞
1,q

≤ C‖u‖p
L∞

1,q

with some C > 0 provided q ≤ p − 1.

Note that it is a consequence of Lemma A.2, but only when p > 3, while for
1 +

√
2 < p ≤ 3, it requires a more general proof. It can be easily deduced, also for

weak solutions u ∈ C0(R1+3
+ ), from a more general estimate [4].

Lemma A.4. If

|F (t, x)| ≤ A

〈t + |x|〉p〈t − |x|〉q
with p > 2, q > 1, then

|L0(F )(t, x)| ≤ C

〈t + |x|〉〈t − |x|〉p−2

with some positive constant C.
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