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Abstract. We study solutions of the decoupled Maxwell equations in the exterior
region of a Schwarzschild black hole. In stationary regions, where the Schwarzschild
radial coordinate takes values in a bounded interval away from the event horizon, we
obtain decay for all components of the Maxwell field at a rate which is bounded by the
inverse of the standard time coordinate. We use vector field methods and no not require
a spherical harmonic decomposition.

In outgoing regions, where the Regge–Wheeler tortoise coordinate grows at least
linearly with the time coordinate, we obtain decay rates for each of the null components.
These rates are similar to the rates in flat space but weaker. Along the event horizon

and in ingoing regions, where the Regge–Wheeler coordinate is negative and the outgo-
ing, Eddington–Finkelstein null-coordinate is positive, all components (normalized with
respect to an ingoing null basis) decay at a rate which is bounded by the inverse of the
outgoing null coordinate.
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1. Introduction

The subject of this paper is the decay of solutions to the decoupled Maxwell equa-
tions in the exterior of a Schwarzschild black hole. The Maxwell field is a 2-form
which we may write in abstract index notation as an antisymmetric (0, 2)-tensor
field on a manifold M,

F ∈ Ω2(M) or Fαβ = −Fβα.

It satisfies the Maxwell equations:

∗d ∗ F = 0 or ∇αFαβ = 0 (1.1)

dF = 0 ∇[αFβγ] = 0. (1.2)
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The exterior region of the Schwarzschild solution is a Lorentz manifold on which
the metric is given in terms of coordinates t ∈ R, r > 2M , (θ, φ) ∈ S2 by

g = −(1 − 2M/r)dt2 + (1 − 2M/r)−1dr2 + r2(dθ2 + sin2 θdφ2). (1.3)

This problem comes from general relativity. In general relativity, a model of
the universe consists of a space-time manifold M, possibly fields describing mat-
ter, and a Lorentz (pseudo-) metric g which satisfies Einstein’s equations. Gravity
is described by the curvature of g. The simplest and longest-known solution is
Minkowski space, R1+3 with the flat metric −dt2 + dx2 + dy2 + dz2. After this,
the Schwarzschild manifold is the longest-known solution to Einstein’s equations.
It is the paradigmatic example of the class of black hole solutions, which play an
important role in relativity. The Maxwell field describes electromagnetic radiation.
In Einstein’s equations, the energy-momentum tensor of the matter fields should
influence the curvature. By decoupled, we mean that the electromagnetic field does
not influence the Schwarzschild solution, which is taken as a fixed background man-
ifold. We call the Schwarzschild solution the Schwarzschild manifold and use the
word solution to refer to solutions of the Maxwell equations (1.1)–(1.2).

Since F is a tensor, on a general manifold, there is no coordinate independent
norm with which to measure it (or, at least, not all components of it). To discuss
the decay of F , we make a choice of basis and show that the corresponding compo-
nents decay. The geometry of the Schwarzschild manifold suggests certain choices.
A simple choice of basis consists of the coordinate vector fields rescaled so that they
have unit length (|g(X, X)| = 1). The rescaled vectors are

T̂ = (1−2M/r)−1/2∂t, R̂ = (1−2M/r)1/2∂r, Θ̂ = r−1∂θ, Φ̂ = r−1 sin(θ)−1∂φ.

This is a convenient choice of basis because it is well adapted to the geometry and
symmetries of the Schwarzschild manifold, as well as having a simple representation
in terms of the coordinate vector fields.

Given a time-like vector, there is a natural decomposition of the Maxwell field
into electric and magnetic components. Since the Schwarzschild manifold has a
time-translation symmetry, this provides a natural choice of time-like direction, T̂ .
The corresponding electric and magnetic components are

�EX = FT̂X , X ∈ {R̂, Θ̂, Φ̂},
�BX = FY Z , X, Y, Z a cyclic permutation of R̂, Θ̂, Φ̂,

| �E|2 = | �ER̂|2 + | �EΘ̂|2 + | �EΦ̂|2,
| �B|2 = | �BR̂|2 + | �BΘ̂|2 + | �BΦ̂|2.

Now that we have a choice of components for the Maxwell field, it is possible to
state the main decay result of this paper.
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Theorem 1.1 (Decay in stationary regions). Let 2M < r1 < r2 < ∞. There
is a constant C and a norma H [F ](0) depending only on F and its derivatives on
the hyper-surface {0} × (2M,∞) × S2 such that if F is a solution to the Maxwell
equations (1.1)–(1.2), then for all t ∈ R, r ∈ [r1, r2], (θ, φ) ∈ S2,

| �E| + | �B| ≤ C(1 + |t|)−1H [F ](0).

The major advance of this work is to find decay rates which govern all compo-
nents of the (decoupled) Maxwell field explicitly. The rates we obtain for stationary
regions with r ∈ (r1, r2) are significantly slower than the rate of t−5/2 which can
be obtained in Minkowski space using vector field methods [5] and the rate of t−3

which was derived formally for the Schwarzschild manifold [22,23]. Outside of out-
going light-cones, i.e. where t < r∗ = r + ln((r − 2M)/2M) + C, decay rates at
the same rate as in Minkowski space have already been obtained [18]. In the outgo-
ing region, we obtain similar results, which we explain below. Certain components
of the Maxwell tensor satisfy a scalar wave equation. These components are the
zero-weight (spinor or null) components. Previous results for wave equations were
sufficiently strong to prove decay for the zero-weight component with a rate of t−1

in stationary regions and the appropriate decay in outgoing regions [4], although
this application was not explicitly stated. L∞

loc decay without a rate has also been
explicitly obtained using very different techniques [14]. The existence and asymp-
totic completeness of wave operators taking data on the initial surface t = 0 to the
surfaces at r = 2M and at infinity has also been shown [1].

Our method starts by using the energy-momentum tensor to generate a positive,
conserved energy from the time translation symmetry and a stronger “conformal
energy” from a vector field K. This follows ideas in [5] and is very closely related to
the analysis of the wave equation in [2,4,9]. Before the wave estimates were known,
a similar method was used [18]. The growth of the conformal energy is bounded
by a “trapping term” consisting of the �ER̂ and �BR̂ components localized near the
photon sphere, r = 3M . In the geometric optics limit, electromagnetic radiation
follows null geodesics, which can orbit at r = 3M . Energy can decay arbitrarily
slowly from this region, at least for the wave equation [24]. Thus, it should be
expected that there is an obstruction to dispersion near this surface. The trapping
term can be controlled because the �ER̂ and �BR̂ components each satisfy a scalar
wave equation of a type that’s been previously studied [4]. This wave equation and
the terminology “zero-weight components” for �ER̂ and �BR̂ follow from the analysis
of the Price equations (3.23)–(3.26) first appearing in [22]. We refer to this reduction

aThe norms used are stated explicitly in Sec. 4. For this norm to be finite, it is sufficient that the
initial data and its first eight derivatives are bounded and decay like r−(5/2+ε) (see Remark 5.3).
The initial data does not need to decay at the bifurcation sphere, r → 2M . We do not use a spheri-
cal harmonic decomposition in our analysis; however, from the structure of the Maxwell equations,
spherically symmetric solutions can have no time dependence and cannot decay sufficiently rapidly
for the norm H[F ](0) to be finite (see Appendix A).
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to scalar wave equations as “spin reduction”. The control on the conformal energy
allows us to conclude:

Lemma 1.2. There is a constant C and a norm H [F ](0) depending only on F

and its derivatives on the hyper-surface {0} × (2M,∞) × S2 such that if F is a
solution to the Maxwell equations (1.1)–(1.2), then for any 2M < r1 < r2 < ∞ and
t sufficiently large, on the surfaceb S = {t} × [r1, r2] × S2,∫

S
(| �E|2 + | �B|2)(1 − 2M/r)r2dr∗d2ω ≤ Ct−2H [F ](0)2.

From Sobolev estimates and integrated decay estimates, like Lemma 1.2, for the
Lie derivative of F , it is possible to prove pointwise decay estimates. In Minkowski
space, the four coordinate directions generate symmetries, so that the Lie derivatives
of a Maxwell field also satisfies the Maxwell equations. Although we lack a full
set of symmetries, we do have 3 from the time-translation and angular-rotation
symmetries. To control a fourth direction, we use the Maxwell equations to “trade”
the derivatives in the directions of the three symmetries for a radial derivative. With
Lie derivatives in all directions controlled, we conclude that Theorem 1.1 holds.

The use of the energy-momentum tensor to generate energies is part of the
standard Lagrangian theory. For a general field φ on a general manifold M , one
tries to study solutions to partial differential equations as minimizers of an action.
The action is defined in terms of a scalar Lagrangian L[x, φ,∇φ] as

S =
∫

M

L[x, φ,∇φ]d4x.

If φ is a minimizer (or, more generally, a critical point) of the action, then φ will
satisfy the Euler–Lagrange equation

δL

δφ
−∇α δL

δ∇αφ
= 0.

One can then define the energy-momentum tensor from this

Tαβ =
1
2

(
∇αφ

δL

δ∇βφ
− gαβL

)
,

which, by the Euler–Lagrange equation, satisfies

∇αTαβ = 0. (1.4)

(We now introduce the notation X for the 1-form generated from lowering a vector
field X with the metric.) For any vector field X , the generalized momentum vector

bA more general surface is permitted in the statement of Lemma 3.2.
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(X)P and deformation 2-tensor (X)π are
(X)P (Y ) = T(X, Y ), (X)Pα = TαβXβ,

(X)π(Y, Z) = (∇Y X)(Z) + (∇ZX)(Y ), (X)παβ = ∇αXβ + ∇βXα,

which are related by Stokes’ theorem∫
∂Ω

(X)Pαdνα =
1
2

∫
Ω

(X)παβTαβd4x.

This is particularly useful when X generates a symmetry of the manifold. In this
case, the vector field is called a Killing vector field, and the deformation tensor
vanishes. For any vector field X , the corresponding energy is defined to be the
hyper-surface integral of the corresponding generalized momentum

EX [φ](S) =
∫
S

(X)Pαdνα.

As explained in Sec. 3, this formalism can be applied to analyze the Maxwell
equations. In the first four sections of this paper, we will be interested in t = const
hyper-surfaces, for which we define

EX [F ](t) =
∫
{t}×(2M,∞)×S2

(X)Pαdνα

=
∫
{t}×(2M,∞)×S2

(X)PαT̂ α(1 − 2M/r)−
1
2 r2drd2ω.

When the deformation tensor vanishes, by integrating over a space-time region,
[t1, t2] × (2M,∞) × S2 (and taking an appropriate limit), one gets a conserved
quantity from Stokes’ theoem:

EX [F ](t2) − EX [F ](t1) = 0.

If X is a time-like vector field, then the integrand in this energy is a non-negative
quantity. If Y generates a symmetry, then LY F will also be a solution to the Maxwell
equations, for which we can also define energies,

EX [LY F ](t).

Thus, from a time-like vector X and a symmetry Y , we can construct a non-negative
integral involving derivatives of the Maxwell field. If X is also a symmetry, then
this will be a conserved quantity.

It is well-known that the energy corresponding to the time-translation symmetry
∂/∂t defines a positive, conserved quantity. The vector field K is time-like, so it
generates a positive quantity, but it is not a Killing vector. The contribution from
the non-vanishing deformation tensor on the right-hand side of Stokes’ theorem
generates the trapping term. It is these terms which are controlled by the spin
reduction argument. This is the strategy for proving Lemma 1.2. Lie derivatives
and derivative trading are then used to control the K based energy for all the Lie
derivatives of the Maxwell field to prove Theorem 1.1.
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To further explain our results and those of others, we describe the geometry of
the Schwarzschild manifold and its importance. This description can be found in
most introductory relativity texts (i.e. [17,20]). The Lorentz metric is most simply
given in terms of coordinates (t, r, θ, φ) by (1.3). As r → ∞, this metric approaches
the flat, Minkowski metric written in spherical coordinates, ds2 = −dt2 + dr2 +
r2(dθ2 + sin2 θdφ2). For r > r0 > 2M , the Schwarzschild solution describes the
space-time of a vacuum outside a star of radius r0 and mass M . The restriction on r

can be relaxed by considering extensions of this manifold. The metric is clearly well-
defined in the exterior region t ∈ R, r ∈ (2M,∞), (θ, φ) ∈ S2, and in the interior
region t ∈ R, r ∈ (0, 2M), (θ, φ) ∈ S2. In the interior region, since (1 − 2M/r)
is negative, r is a time-like coordinate, and t is space-like. The maximal analytic
extension of any open subset of the Schwarzschild solution is illustrated in the
conformal diagram in Fig. 1, in which the angular variables are suppressed. There
are two exterior regions (I and III) and two interior regions (II and IV). By an
appropriate choice of coordinates, each interior can be smoothly joined to each
exterior along a null surface r = 2M . The manifold is also smooth at the bifurcation
sphere where the four regions meet. However, as r → 0, the curvature polynomial
RαβγδR

αβγδ diverges.
The Schwarzschild manifold is a prototypical solution to Einstein’s equation

which has inspired many key concepts in general relativity. The asymptotic approach
of the metric to the flat, Minkowski metric is known as asymptotic flatness. In the
conformal compactification of each exterior region of the Schwarzschild solution,
each outgoing geodesic (with r → ∞ as t → ∞) ends on future null infinity I+, and

Fig. 1. A conformal diagram for the maximal extension of the Schwarzschild manifold (suppressing
the spherical coordinates). Thin lines represent boundary points at infinity. Thick lines represent
the singularity at r → 0. Dotted lines represent the event horizon. Regions I and III are exterior
regions, and regions II and IV are interior regions. The surfaces I± represent future and past null
infinity. The points i± represent future and past time-like infinity. The points i0 represent spatial
infinity.
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each ingoing null geodesic (with r → ∞ as t → −∞) starts on past null infinity I−.
In essence, an asymptotically flat manifold is defined to be one with a future null
infinity. A black hole is a region of space-time which cannot be joined by future-
directed, null or time-like curves to I+, and an event horizon is its boundary. The
future, interior region of the Schwarzschild solution is a black hole, and the surfaces
where r = 2M are the event horizons. In the Schwarzschild manifold, the (future)
singularity at r → 0 is separated from I+ by the event horizon. The singularity
theorems state that under a broad range of conditions, future singularities must
form [17]. The weak cosmic censorship conjecture asserts that under some genericity
condition, which is not yet known, future singularities are always separated from I+

by an event horizon. There is a three parameter family of asymptotically flat, known,
exact solutions to Einstein’s solutions which represent massive, rotating, charged
black holes. This is the Kerr–Newman class, and the Schwarzschild solutions are
the solutions with positive mass and zero angular momentum and charge. These are
stationary, in the sense that they have a time-translation symmetry sufficiently close
to null infinity. These solutions also have singularities, but if the angular momentum
and charge are beneath a critical threshold, then the singularities are separated from
the asymptotically flat regions, in the sense that a future-directed, time-like curve
from a point in an exterior region will either escape to null or time-like infinity or
cross the event horizon, but not both. The Kerr–Newman solutions are believed
to be the only asymptotically flat, stationary solutions. Physicists believe that all
black holes should approach one of the stationary, Kerr–Newman solutions. It is
not yet known if a small perturbation of a Cauchy surface for one of the Kerr–
Newman solutions will evolve into a solution which remains similar to one of the
known solutions. This is the question of black hole stability.

Stability for Minkowski space was a major and difficult result [6]. Einstein’s
equations are a complicated system of nonlinear equations in which the geometry
is dynamic. The linearization of Einstein’s equations about Minkowski space forms
a system called the spin 2 field equations. Obtaining decay estimates for the spin
2 field was one step in this proof [5]. Decay estimates for the decoupled Maxwell
equations were proven at the same time.

The question of stability of the Schwarzschild solution has also inspired the study
of linear fields. In the linearization of Einstein’s equations, certain components are
determined by the solution to a simple wave equation [25], and the remaining com-
ponents are determined by the solution to a more complicated wave equation [29].
Using spinors, Price was able to present a more unified presentation for all com-
ponents of several important, physical systems, according to their spin. Any wave
equation is said to have spin 0. The Dirac system has spin 1/2. The Maxwell field
has spin 1. For any solution of Einstein’s equations in vacuum, the non-vanishing
components of the curvature satisfy certain relations from the Bianchi identities
and Einstein’s equations. In Minkowski space, since the curvature is zero, solutions
to the linearization of Einstein’s equations satisfy the same relations, which are
called the spin 2 field equations. In the Schwarzschild manifold, since the curvature



November 19, 2008 14:22 WSPC/JHDE 00171

814 P. Blue

is non-vanishing, in the linearization of Einstein’s equations, there are additional
terms arising from the derivative with respect to the perturbed metric of the original
Christoffel terms. Thus, Price distinguishes between the spin 2 field equations and
the linearization of Einstein’s equations. Formal arguments suggest a rate of t−3 for
fields of all integer spin and for the linearization of Einstein’s equations [22]. A sim-
ilar, spinorial presentation of these systems has been made for the Kerr–Newman
solutions [27]. In each case, certain components were found to satisfy scalar wave
equations and then acted as forcing terms in the equations governing the remaining
components.

Most of the subsequent analysis of fields around black holes has been focused
on the decoupled wave equation. The literature is vast, and we list only some of
the results. Solutions are known to remain uniformly bounded in time [19]. The
scattering theory, concerning the map from the initial data to the the limit on I+

and the event horizon, has also been studied on the Schwarzschild manifold [11] and
on the more general Kerr–Newman solutions [15]. On the Schwarzschild manifold,
vector-field techniques have been used to obtain decay results in three main steps
[4, 2, 9]. First, the vector field K is used to introduce a conformal energy, which is
not conserved because of trapping. Second, a radial vector field is used to prove a
local decay estimate to control the trapping term. In R1+3, the radial derivative can
be used to make a somewhat similar estimate [21]. In R1+3, estimates involving K

and the radial vector field are both referred to as Morawetz estimates. In this step,
a spherical harmonic decomposition was used in the proofs, but this is no longer
necessary [8]. Because the scalar equation governing the zero-weight components of
the Maxwell field has a simple structure, in Appendix B, we are able to modify the
earlier method to obtain decay without using a spherical harmonic decomposition.
Third, the conformal energy is used to control norms. In [4,9], a strong local decay
estimate was proven and additional angular derivatives are used to obtain a L∞

loc

decay rate of t−1 and a similar decay rate in outgoing regions. In [9], an additional
vector field, Y , was used to also prove decay estimates along the event horizon.
These required weighted H4 or H5 norms of the initial data to be bounded. By
an Hk norm, we mean, roughly speaking, that the kth derivative of a solution
u is square integrable. In [2], only weighted H1+ε norms of the initial data were
needed, but a weaker local decay estimate was obtained, which led to less control
on the conformal energy and a decay rate of t−1/3 for a weighted, spatial L6 norm.
Using an entirely different technique, based on a representation of the propagator,
L∞

loc decay has been proven for the wave equation on subcritical Kerr–Newman
solutions [13].

The spin 1/2 system is the Dirac model for the electron. On the sub-critical
Kerr–Newman solutions, scattering results [16] and L∞

loc decay [12] have also been
proven.

For the linearization of Einstein’s equations about the Kerr–Newman solutions,
the equations found in [27] were found to have no unstable modes [28]. For the
linearization about the Schwarzschild solution, the simpler equations in [25] satisfy
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an integrated decay estimate [3] and L∞
loc decay [14]. Although the application is

not explicitly stated, decay at a rate of t−1 follows from [4].
For the full Einstein equations on a black hole background, decay results are

known in the spherically symmetric case when Einstein’s equations are coupled to
a scalar wave equation and the Maxwell field [10]. By Birkhoff’s theorem (see [17]),
the Schwarzschild manifold is the only spherically symmetric solution to Einstein’s
equation (treating Minkowski space as the special sub-case with M = 0). The
decay rate obtained for the scalar field is u+

−3+ε along the event horizon. (u+

is a commonly used coordinate long the event horizon and described below.) The
u+

−3+ε decay rate is known as Price’s law and has important implications for the
strong cosmic censorship conjecture [7].

To discuss decay outside regions of fixed r, it is necessary to introduce com-
ponents with respect to a null tetrad, a basis built from null vectors with certain
properties. Physicists may know these as spinor components [22, 26], and mathe-
maticians, as the null decomposition [5]. We present one tetrad here and discuss
exactly what we mean by a null tetrad in Sec. 2.

We start by introducing the Regge–Wheeler radial coordinate, r∗, defined by

dr

dr∗
= (1 − 2M/r), r(0) = 3M.

The exterior region of the Schwarzschild solution is given by (t, r∗, θ, φ) ranging over
R × R × S2. In these coordinates, the Lorentz metric becomes

g = −(1 − 2M/r)dt2 + (1 − 2M/r)dr∗2 + r2(dθ2 + sin2 θdφ2).

From this form of the metric, it is clear that any multiple of the vectors ∂t ±∂r∗ are
null. To define our null tetrad, we use eA and eB to denote an orthonormal basis
of tangents vectors to S2 and ε to denote the antisymmetric, Levi–Civita tensor on
S2. The null tetrad we will use to state our results is

(∂t + ∂r∗), (1 − 2M/r)−1(∂t − ∂r∗), r−1eA, r−1eB.

The covariant derivative of this null tetrad along ingoing, radial, null geodesics is
zero. Thus, having found a natural choice of null tetrad on the initial surface t = 0,
we have extended it to the entire future of the initial surface by parallel transport
along null geodesics falling into the black hole. This is useful for considering limits
as r → 2M . Had we extended the basis by parallel transport along outgoing null
geodesics, to study the problem as r → ∞, the factor of (1 − 2M/r)−1 would have
been on (∂t + ∂r∗) instead of (∂t − ∂r∗). However, since (1− 2M/r) → 1 as r → ∞,
the difference between our choice of null tetrad and the natural choice is vanishingly
small. Therefore, we use our choice of null tetrad throughout the future, t ≥ 0.

The decay of these spinor or null components is not simply a decay in time. This
is known from the behavior in R1+3. In that case, the heuristic is that the bulk of
solutions to the Maxwell equations travel out along the light-cone t ∼ |�x|. In any
fixed region, there is decay because the wave leaves the region. As the light-cone
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expands, the average value of the wave intensity drops. Moving with the wave, the
intensity decays as it is spread over the increasing area of the light-cone. Thus, some
of the decay occurs as a result of the wave being far from the light cone, and some
occurs as a result of the light-cone being very large. Similar behavior occurs on the
Schwarzschild manifold. The null coordinates

u+ = t + r∗ and u− = t − r∗

are used to measure the distance from the light-cone, and r is used to measure the
size of the light-cone in the outgoing direction. The null coordinates are also known
as Eddington–Finkelstein coordinates. In the ingoing direction, the radius of the
surface of the light-cone also goes like r, but since this approaches 2M , the decay
occurs only in the null coordinates.

Theorem 1.3 (Decay outside stationary regions). There is a constant C

and a norm H [F ](0) depending only on F and its derivatives on the hyper-surface
{0}×(2M,∞)×S2 such that if F is a solution to the Maxwell equations (1.1)–(1.2),
then for all t ≥ 0, r∗ > 1, (θ, φ) ∈ S2,

|F (∂t + ∂r∗ , r
−1eA)| ≤ Cr−3/2u+

−1H [F ](0),

|F (∂t + ∂r∗ , (1 − 2M/r)−1(∂t − ∂r∗))| + |F (r−1eA, r−1eB)εAB|

≤ Cr−2

(
u+ − |u−|

u+(1 + |u−|)
)1/2

H [F ](0),

|F ((1 − 2M/r)−1(∂t − ∂r∗), r
−1eA)| ≤ Cr−1(1 + |u−|)−1H [F ](0).

If we restrict to u− ≤ 0, then

|F ((1 − 2M/r)−1(∂t − ∂r∗), r
−1eA)| ≤ Cr−1(1 + |u−|)−3/2H [F ](0).

Under the same hypotheses, then for all t ≥ 0, r∗ < −1, (θ, φ) ∈ S2 such that
u+ > 1,

|F (∂t + ∂r∗ , r
−1eA)| ≤ Cu+

−1H [F ](0),

|F (∂t + ∂r∗ , (1 − 2M/r)−1(∂t − ∂r∗))| + |F (r−1eA, r−1eB)εAB| ≤ Cu+
−1H [F ](0),

|F ((1 − 2M/r)−1(∂t − ∂r∗), r
−1eA)| ≤ Cu+

−1H [F ](0).

The components on the left-hand side of these estimates are often referred to
as |φ1|, |φ0| and |φ−1| or as |α|, |ρ| + |σ| and |α|. These are more fully explained
in Sec. 2. The results of this theorem can be stated as: in outgoing regions where
|r∗| > εt, the components decay at rates of |φ1| � r−3/2u+

−1, |φ0| � r−2u−−1/2,
and |φ−1| � r−1u−−1, and ingoing regions, where r∗ < 0, all components decay
like u+

−1.
This theorem gives a u+

−1 decay rate for all components (since, either r > Cu+

or u− > Cu+ in the far region r∗ > 1). Outside the outgoing light-cone, where
0 < t < r∗ − 1, the decay rates are r−5/2, r−2u−−1/2, and r−1u−−3/2. These are
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the same rates as can be obtained in Minkowski space using vector field methods,
with u− = t − |�x| in Minkowski space. (Faster decay rates can be obtained using
conformal compactification and other methods.) Approaching null infinity inside the
light-cone, with (1 + ε)r∗ > t > r∗ > 0, the decay rates are r−3/2u+

−1, r−2u−−1/2,
and r−1u−−1. Thus, the decay rates for the first two components are the same as
in Minkowski space, but the last component decays more slowly than in Minkowski
space. The slow decay for this component comes from the slow decay rate of t−1 in
stationary regions.

In addition to the Maxwell equations, one can imagine studying the spin 2 field
equations. A spin 2 field is a (0, 4) tensor with the following symmetries

Wβαγδ = −Wαβγδ, (1.5)

Wαβδγ = −Wαβγδ, (1.6)

W[αβγ]δ = 0, (1.7)

Wαβγ
α = 0, (1.8)

and which satisfies the spin 2 field equations

∇γWγδαβ = 0, (1.9)

∇[εWγδ]αβ = 0. (1.10)

The symmetries of a spin 2 field are similar to the antisymmetry of a Maxwell field,
and the spin 2 field equations are similar to the Maxwell equations. If the vacuum
Einstein equations are satisfied, then the Ricci curvature vanishes, and the Weyl
curvature satisfies the spin 2 field equations. In R1+3, the spin 2 field equations
are a good model for the linearization of Einstein’s equation about the Minkowski
solution, but this is not true for the linearization about other solutions. In Cartesian
coordinates on R1+3, the Christoffel symbols and the curvature are zero. If one
introduces a perturbed metric on Minkowski space and treats the Weyl tensor as
a tensor field on the original space-time, then the difference between the covariant
derivative of the Weyl tensor with respect to the perturbed metric and the original
metric will be second order in the perturbation. Thus, ignoring second order terms,
the perturbed Weyl tensor satisfies the spin 2 field equations on the original metric.
In this sense, the spin 2 field equations are the linearization of the vacuum-Einstein
equation about Minkowski space. This is the motivation for studying the spin 2
field in [5]. When linearizing around a curved space-time, the Christoffel symbols
do not vanish, and the linearized Einstein equations do not reduce to the spin 2
field equations. More drastically, there is a Buchdahl constraint [26] from applying
two covariant derivatives, two contractions, and the spin 2 field equations,

Riemγδε
(αWβ)εγδ = 0,

where Riem is the Riemann curvature of the background. On the Schwarzschild
manifold, this forces W (T̂ + R̂, T̂ − R̂, T̂ ± R̂, r−1eA) to vanish everywhere. This
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forces the derivative of other components to vanish, so that there is only a finite-
dimensional family of spherically symmetric solution. These are similar to the spher-
ically, and non-decaying solutions, which are discussed in Appendix A.

Nonetheless, one can ignore the Buchdahl constraint and study the spin 2 field
equations. The system has been studied formally as a system of transport equa-
tions [22]. Here we report that it is possible to use a method similar to that we
used for the Maxwell equations. It is well-known in the literature that the Bel–
Robinson tensor can be used to define a conserved, positive-definite quantity from
a time-like Killing vector in the same way that the energy-momentum tensor can
for the Maxwell field. In addition to the conserved energy generated this way, one
can use a quantity defined in terms of the time-translation symmetry and the vector
field K. One can again use a method of “spin-reduction” to introduce a “pseudo-
Maxwell tensor”, F̃αβ = WαβγδT̂

γR̂δ, which satisfies the Maxwell equations. One
can use control of the pseudo-Maxwell tensor to control the trapping terms for
the spin 2 field to control integrated norms of the spin 2 field. One can then use
the symmetries of the Schwarzschild space-time, the field equations, and Sobolev
estimates to prove t−1 pointwise-in-time decay for the non-spherically symmetric
components of the spin 2 field. Clearly this is pointless, since the dynamics of the
spin 2 field are trivial. However, we expect that a similar analysis will apply to the
genuine, linearized gravity system. The linearized gravity equations are more com-
plicated than the spin 2 field equations because there are terms involving the per-
turbed Christoffel symbols contracted against the unperturbed and non-vanishing
Weyl tensor.

In Sec. 2, we introduce several sets of vector fields to provide a simpler notation
for discussing the null decomposition of the Maxwell field and symmetries. The null
decomposition and spinor decomposition are essentially equivalent. We estimate
energies in Sec. 3. We use the energy-momentum tensor to define an energy and a
weighted, conformal energy. The growth of the conformal energy is controlled by a
trapping term which depends only on the zero-weight component. These satisfy a
simple wave equation, which allows us to bound the conformal energy. In Sec. 4, we
use this bound and trade Lie derivatives to prove Theorem 1.1. In Sec. 5, we use
the bounds and integration along null geodesics to prove Theorem 1.3. In Appendix
A, we show that there are no spherically symmetric components of the Maxwell
field which decay sufficiently rapidly at infinity. In Appendix B, we analyze the
wave equation governing the zero-weight component using a simplified version of
the arguments in [4]. This simplified version does not require a spherical harmonic
decomposition.

2. Notation

The main purpose of this section is to collect various vector fields and components
of the Maxwell field, so that the reader can compare the notation used in different
places in this paper and elsewhere.
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We begin with some simple notation. We sometimes use vectors as indices on
tensors to denote the corresponding component. We use the notation g to denote the
metric, ω = (θ, φ) ∈ S2 for the angular coordinate, 	∇ for the angular derivative, and
Ω to denote the metric on S2. Except in the statement of results, we use (t, r∗, θ, φ)
coordinates, unless otherwise specified. We use X to denote the one form generated
by lowering a vector field X with the metric. We use C to denote an arbitrary
constant which may change from line to line in a calculation.

We will prove estimates for t ≥ 0. Because the Schwarzschild manifold is time
symmetric, similar estimates hold for t ∈ R. In particular, estimates in stationary
regions will remain the same, and in ingoing and outgoing directions, t and ∂t must
be replaced by −t and −∂t.

2.1. Coordinates, bases and field components

Recall the definition of the coordinates t, r∗, θ, φ, u− and u+ from the introduction.
We frequently use the coordinate vector fields

T = ∂t, R = ∂r∗ , Θ = ∂θ, Φ = ∂φ,

and the corresponding normalized vector fields

T̂ = (1 − 2M/r)−1/2∂t, R̂ = (1 − 2M/r)−1/2∂r∗ ,

Θ̂ = r−1∂θ, Φ̂ = r−1 sin(θ)−1∂φ.

From the definition of r∗, the definition of R̂ given here is the same as the one given
in the introduction.

We also use null tetrads. In the standard presentation of a null tetrad, the
tangent space is complexified. A tetrad is a basis {lex, nex, m, m̄} in which lex and
nex are (real) null vectors, m̄ is the complex conjugate of m, g(lex, nex) = −2,
g(m, m̄) = 2, and all other inner products between the basis vectors are zero. If X

and Y are unit vectors orthogonal to lex and nex, a null tetrad can be defined by
taking m = X + iY . Because of this, we will also call a basis {lex, nex, X, Y } a null
tetrad if g(lex, nex) = −2, g(X, X) = g(Y, Y ) = 1, and all other inner products are
zero. We will generally ignore the distinction between the two definitions of a null
tetrad.

One advantage of null tetrads is that they assign weights to certain quantities.
Rescaling lex and nex by λ and λ−1 respectively preserves the null tetrad structure,
as does rescaling m by eis (and m̄ by the conjugate, e−is). If, under such a change
of basis, a quantity transforms as a power of λ or of e−is then the corresponding
powers are the conformal and spin weights of the quantity.

We use several null tetrads. The first is the “stationary” tetrad:

l̂ = T̂ + R̂ = (1 − 2M/r)−1/2(∂t + ∂r∗),

n̂ = T̂ − R̂ = (1 − 2M/r)−1/2(∂t − ∂r∗),
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m = Θ̂ + iΦ̂ =
1
r
∂θ +

i

r sin θ
∂φ,

m̄ = Θ̂ − iΦ̂ =
1
r
∂θ − i

r sin θ
∂φ.

Price [22] uses a basis which is parallelly transported along outgoing, radial, null
geodesics, γ(s) = (s, s + C, θ0, φ0) (in the (t, r∗, θ, φ) coordinates). The null vectors
are

l̃ = (1 − 2M/r)−1(T + R),

ñ = T − R,

and the angular basis vectors remain the same. To prove Theorem 1.3, in Sec. 5,
we use a basis adapted to ingoing, radial, null geodesics. Certain expressions are
simplified by using the following coordinate-like vector fields.

L = ∂t + ∂r∗ = T + R,

N = ∂t − ∂r∗ = T − R,

M = Θ +
i

sin θ
Φ = ∂θ +

i

sin θ
∂φ.

Christodoulou and Klainerman [5] avoid complexifying the tangent space by using
an orthonormal basis tangent to the sphere at each point. We use eA and eB to
denote an orthonormal basis on S2. Thus, r−1eA and r−1eB are unit vectors in the
Schwarzschild manifold. The indices A, B, . . . are used for directions tangent to the
sphere. In summary, we have three null tetrads and a coordinate null basis,

{l̂, n̂, m, m̄}, (2.11)

{l̃, ñ, m, m̄}, (2.12)

{l̂, n̂, r−1eA, r−1eB}, (2.13)

{L, N, M, M̄}. (2.14)

The bases can be used to define the corresponding components of the Maxwell
field. The electric and magnetic decomposition was already explained in the intro-
duction. We now introduce a null decomposition and spinor components. These are
very closely related but differ in the notation and slightly in the definition. The null
decomposition consists of two scalars, ρ and σ, and two 1-forms tangent to spheres,
α and α. The spinor components are three complex-valued functions. These are
defined in terms of the tetrad in (2.13) and in (2.11) by

α(eA) = F (l̂, eA), φ1 = F (l̂, m),

ρ =
1
2
F (l̂, n̂), φ0 =

1
2
(F (l̂, n̂) + iF (m̄, m)),
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σ =
1
2
F (eA, eB)εAB,

α(eA) = F (n̂, eA), φ−1 = F (n̂, m̄).

The spin component index in φi refers to both the conformal and spin weight. These
components are related by

φ1 = α(m), |φ1|2 = |α|2,
φ0 = ρ + iσ, |φ0|2 = |ρ|2 + |σ|2,

φ−1 = α(m̄), |φ−1|2 = |α|2.
The null decomposition, α, ρ, σ and α, more accurately represents the geometric
behavior of the components. The spinor notation reveals the spin and conformal
weight more easily, simplifies several expressions, and suggests connections between
the spin 0 wave equation, the spin 1 Maxwell equation, and the spin 2 equations.
We typically write expressions in terms of the spinor components but think in terms
of the null decomposition.

The spinor components in [22] are slightly different from the ones we use. Since
φi has conformal weight i, replacing the null tetrad (2.11) by (2.12) will take φi to
(1 − 2M/r)i/2φi. These are the components initially used in [22].

The spinor components are related to the electric and magnetic components by

φ1 = ( �EΘ̂ + �BΦ̂) + i( �EΦ̂ − �BΘ̂),

φ0 = �ER̂ + i �BR̂,

φ−1 = ( �EΘ̂ − �BΦ̂) − i( �EΦ̂ + �BΘ̂),

|φ1|2 + 2|φ0|2 + |φ−1|2 = |α|2 + 2(|ρ2| + |σ|2) + |α|2 = 2(| �E|2 + | �B|2).
Certain calculations are simplified by using the null basis (2.14). We define

Maxwell field components associated to this null basis by

Φ1 = F (L, M) = r(1 − 2M/r)1/2φ1,

Φ0 =
1
2
(F (L, N)(1 − 2M/r)−1r2 + F (M̄, M)) = r2φ0,

Φ−1 = F (N, M̄) = r(1 − 2M/r)1/2φ−1.

To discuss the maximally extended Schwarzschild solution in a neighborhood of
the bifurcation sphere, it is typical to introduce coordinates

U+ = eu+/4M ,

U− = −e−u−/4M .

In the exterior region, these range over U+ ∈ (0,∞) and U− ∈ (−∞, 0). The
coordinates (U+, U−, θ, φ) can be used in a neighborhood of the bifurcation sphere,
and the bifurcation sphere corresponds to (U+, U−) = (0, 0). The surface t = 0
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corresponds to U+U− = −1. This surface extends through the bifurcation sphere to
the surface t = 0 in the other exterior region. Since

e
u+−u−

4M = Cre
r

2M (1 − 2M/r),

on the initial surface t = 0, the coordinate vector fields are

∂

∂U+
= Cr−1/2e

−r
4M (1 − 2M/r)−1/2(T + R),

∂

∂U−
= Cr−1/2e

−r
4M (1 − 2M/r)−1/2(T − R).

Thus, on the initial data surface and near the bifurcation sphere, the coordinate vec-
tor fields ∂

∂U+
and ∂

∂U− are related to l̂ and n̂ by bounded, non-vanishing functions.
If { ∂

∂U+
, ∂

∂U− , Θ, Φ} are used to define a tetrad, the corresponding components of
the Maxwell field are equivalent to φi, on the initial data surface and near the bifur-
cation sphere. Since these vector fields are coordinate vector fields, they commute.
To restrict attention to the region near the bifurcation sphere, we will often apply
smooth, cut-off functions χ<0(u+) and χ>0(u−) which are smooth, identically zero
for 1 < u+ and u− < −1 respectively, and identically one for u+ < 0 and 0 < u−
respectively. The vector fields {χ<0(u+) ∂

∂U+
, χ>0(u−) ∂

∂U−
, Θ, Φ} still commute.

2.2. Norms and Lie derivatives

With the goal of applying derivatives to the components of the Maxwell tensor, we
introduce several collections of vector fields. Since the vector fields Θ and Φ are not
smooth, we use the three rotations of S2 about the coordinate axes, Θi. We treat
these as vector fields on the Schwarzschild manifold. The collections of vector fields
we will use are

O = {Θi},
Ô = {r−1Θi},
T = {T, Θi},
X = {R, T, Θi},
X̂ = {R̂, T̂ , r−1Θi},
ˆ̃
X =

{
χ<0(u+)

∂

∂U+
, χ>0(u−)

∂

∂U−
, Θi

}
.

Since the Schwarzschild manifold is static and spherically symmetric, T generates
symmetries of the space-time. The normalized vectors in X̂ are used to define the
norms of the electric and magnetic components of the Maxwell tensor. (The three
Θi’s can be used to define corresponding components of the electric and magnetic
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field. Taken together these give the angular components.) On the initial data hyper-
surface t = 0 and near the bifurcation sphere (i.e. where r∗ < 0), the coordinate

vectors in ˆ̃
X can also be used to define the Maxwell field components.

We now recall some convenient notation for discussing collections of vectors and
scalar functions from [5]. For two sets of vector fields, Ai, the covariant and Lie
derivatives are

LA1A2 = {LX1X2|Xi ∈ Ai},
∇A1A2 = {∇X1X2|Xi ∈ Ai}.

For two such sets and a (0, 2) tensor A, the components of A with respect to
the vector fields are the collection of scalar functions

A(A1, A2) = {A(X1, X2)|Xi ∈ Ai}.
Similarly, for a set of vectors A and a collection of scalar functions {fi}, the deriva-
tives are defined as

LA{fi} = ∇A{fi} = A{fi} = {Xf |X ∈ A, f ∈ {fi}}.
This definition holds since the Lie, covariant, and directional derivatives are the
same operation when applied to scalar functions. For tensor fields, a similar notation
can be used to generate collections of tensor fields and to consider their components.
For example,

(LA1A)(A2, A3) = {(LX1A)(X2, X3)|Xi ∈ Ai}.
The same can be defined for iterated Lie or covariant derivatives.

The norm of a 1-form or a (0, 2) tensor with respect to a set of vector fields is

|Z|A =
∑
X∈A

|Z(X)|,

|A|A =
∑

X,Y ∈A

|A(X, Y )|.

The n-derivative norms of a (0, m) tensor with respect to components in A1 and
derivatives in the A2 directions are defined to be

|A|2A1,n,A2
=

n∑
k=0

|Lk
A2

A|2A1

=
n∑

k=0

∑
X1,...,Xk∈A2;Y1,...,Ym∈A1

|(LXk
. . .LX1A)(Y1, . . . , Ym)|2.

We note that this notation can be applied equally well with S2 tangent 1-forms,
such as α and α as any other forms.
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3. Control of Energies

3.1. Quantitative effect of trapping

The energy-momentum tensor for the Maxwell field is

Tαβ = FαγFβ
γ − 1

4
gαβF γδFγδ (3.15)

=
1
2
(FαγFβ

γ + (∗F )αγ(∗F )β
γ). (3.16)

It satisfies (1.4) and is trace-free

gαβTαβ = 0.

Formally, one may assume that the Maxwell field is generated from a vector
potential Aα by F = dA, Fαβ = ∇αAβ − ∇βAα and take the Lagrangian to
be L = (1/2)F γδFγδ = 2(∇γAδ)(∇γAδ), in which case, the Lagrangian theory
for the field A gives the Maxwell equations (1.1) as the Euler–Lagrange equa-
tionsc and (3.16) as the energy-momentum, which satisfies (1.4). Unfortunately,
not all Maxwell fields can be represented in this way as an exterior derivative.d

However, by direct computation from the Maxwell equation, it follows that the
energy-momentum tensor in (3.16) satisfies (1.4) so that Stokes’ theorem can still
be applied.

The energy corresponding to a vector X can be written in terms of the r∗ variable
as

EX [F ](t) =
∫
{t}×R×S2

(X)Pαdνα =
∫
{t}×R×S2

(X)PαT̂ α(1 − 2M/r)
1
2 r2dr∗d2ω.

In applying Stokes’ theorem to relate the difference of the energy at t1 and t2, we
require decay of the Maxwell field as r∗ → ∞, but merely smoothness as r∗ → −∞,
since in the maximal extension of the Schwarzschild manifold, for all values of t,
the limit r → 2M , tends towards the same limiting sphere, the bifurcation sphere.

The energy-momentum tensor is strictly positive when evaluated on time-like
vectors, if the Maxwell field is non-vanishing. We will mainly be interested in time-
like vectors with no angular components. Since any time-like vector with no angular
component is a linear combination of l̂ and n̂, to show the positivity of the stress-
energy tensor, it is sufficient to compute the components in these null directions.
These components are

T(l̂, l̂) = |φ1|2, (3.17)

T(l̂, n̂) = |φ0|2, (3.18)

T(n̂, n̂) = |φ−1|2. (3.19)

cThe other equation, (1.2), holds because d2 = 0.
dThe “magnetically charged solution”, F = qB sin(θ)dθ ∧ dφ is not an exterior derivative. See
Appendix A.



November 19, 2008 14:22 WSPC/JHDE 00171

Decay of the Maxwell Field on the Schwarzschild Manifold 825

The Schwarzschild manifold is static, so there is a conserved energy. The energy
associated to the generator of t-translation, ∂t, is strictly positive,

ET [F ](t) =
1
2

∫
{t}×R×S2

(| �E|2 + | �B|2)(1 − 2M/r)r2dr∗d2ω

=
1
4

∫
{t}×R×S2

(|α|2 + 2|ρ|2 + 2|σ|2 + |α|2)(1 − 2M/r)r2dr∗d2ω

=
1
4

∫
{t}×R×S2

(|φ1|2 + 2|φ0|2 + |φ−1|2)(1 − 2M/r)r2dr∗d2ω.

The corresponding deformation tensor is

∇T = −(1 − 2M/r)−1T ⊗
(
−M

r2

)
R + (1 − 2M/r)−1R ⊗

(
−M

r2

)
T ,

(T )π = 0.

(We will need to compute deformation tensors later, but, in this case, we could
simply have argued that the deformation tensor must vanish since ∂t generates a
symmetry of the metric.) From the vanishing of the deformation tensor, we have a
conservation law

ET [F ](t) = ET [F ](0).

This immediately gives an upper bound on the average value of the components of
the Maxwell tensor in any region bounded away from the event horizon.

By applying Lie derivatives, we can get additional conservation laws. If X gen-
erates a symmetry and F solves the Maxwell equations, then LXF will also be a
solution of the Maxwell equations. For each set of symmetries and integer k, we
have the conserved quantities

ET [Lk
OF ](t) = ET [Lk

OF ](0),

ET [Lk
TF ](t) = ET [Lk

TF ](0).

We now improve these estimates and reveal the effect of trapping, by considering
the conformal energy. Following earlier work [5, 2, 4, 9], we let

K = (t2 + r∗2)∂t + 2tr∗∂r∗

=
1
2
(u+

2L + u−2N).

We will call this the conformal vector field, but it is also one of the vector fields
known as the Morawetz vector field. It is an analogue of a vector field used in R1+n

to prove decay for the wave equation, the Maxwell equation, and the spin 2 field.
The analogue in R1+n generates a positive quantity, so it is not surprising that the
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same holds on the Schwarzschild manifold. We define the conformal energy to be

EK [F ](t)

=
∫
{t}×R×S2

(K)Pαdνα

=
∫
{t}×R×S2

((1/2)(t2 + r∗2)(| �E|2 + | �B|2) + 2tr∗( �EΘ̂
�BΦ̂ − �EΦ̂

�BΘ̂))r2drd2ω

=
1
4

∫
{t}×R×S2

((t + r∗)2|α|2 + 2(t2 + r∗2)(|ρ|2 + |σ|2) + (t − r∗)2|α|2)r2drd2ω

=
1
4

∫
{t}×R×S2

(u+
2|φ1|2 + (u+

2 + u−2)|φ0|2 + u−2|φ−1|2)(1 − 2M/r)r2dr∗d2ω.

(3.20)

(We have used the alternate expression for the measure r2drd2ω = (1 −
2M/r)r2dr∗d2ω simply for typographical reasons.) In the null decomposition or
spinor representation, all the terms in the integrand are clearly non-negative, and,
inside the light-cone |r∗| < (1−ε)t, the coefficients on the Maxwell field components
grow like t2. Thus, once we show that the conformal energy is bounded, there will
be decay for the local average of the field components.

The following lemma gives an almost conservation law for the conformal energy.
It states that, to bound the conformal energy, it is sufficient to prove sufficiently
strong decay in a particular region bounded away from the event horizon. There
are two important observations to make from this lemma and its proof: (i) an esti-
mate for the two field components �ER̂ and �BR̂ will control all the field components
through the conformal charge, and (ii) it is sufficient to control these field compo-
nents only in a region near the photon sphere r = 3M .

Lemma 3.1 (Trapping lemma). There is a positive function χtrap supported in
a bounded range of r∗ values such that if F is a solution to the Maxwell equations
(1.1)–(1.2), then

EK [F ](t2) − EK [F ](t1) ≤
∫

[t1,t2]×R×S2
tχtrap( �E2

R̂
+ �B2

R̂
)(1 − 2M/r)r2dr∗d2ωdt

≤
∫

[t1,t2]×R×S2
tχtrap|φ0|2(1 − 2M/r)r2dr∗d2ωdt. (3.21)

Proof. The deformation tensor for K is given by

∇R = r−1(1 − 2M/r)g− r−1(1 − 3M/r)(−T̂ ⊗ T̂ + R̂ ⊗ R̂),

∇K = (t2 + r∗2)∇T + 2tr∗∇R

− (1 − 2M/r)−1T ⊗ 2tT + (1 − 2M/r)−1R ⊗ 2r∗T
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− (1 − 2M/r)−1T ⊗ 2r∗R + (1 − 2M/r)−1R ⊗ 2tR,

(K)π = 2tr∗(R)π + 4t(−T̂ ⊗ T̂ + R̂ ⊗ R̂)

= 4t
r∗
r

(1 − 2M/r)g + 4t
(
1 − r∗

r
(1 − 3M/r)

)
(−T̂ ⊗ T̂ + R̂ ⊗ R̂).

Because the Maxwell energy-momentum tensor is trace-free, the contraction of the
first term against T is zero at each point. The importance of r = 3M , where the
orbiting geodesics are located, is immediate from the second term. The contraction
against the energy-momentum tensor is

(K)παβTαβ = 4t
(r∗

r
(1 − 3M/r) − 1

)
(TT̂ T̂ − TR̂R̂),

= 4t
(r∗

r
(1 − 3M/r) − 1

)
T(l̂, n̂).

From this, we have the following almost-conservation law

EK [F ](t2) − EK [F ](t1)

= 2
∫

[t1,t2]×R×S2
t
(
1 − r∗

r
(1 − 3M/r)

)(
�E2

R̂
+ �B2

R̂

)
(1 − 2M/r)r2dr∗d2ωdt

= 2
∫

[t1,t2]×R×S2
t
(
1 − r∗

r
(1 − 3M/r)

)
|φ0|2(1 − 2M/r)r2dr∗d2ωdt. (3.22)

We refer to 1 − r∗
r (1 − 3M/r) as the trapping potential.

For r → 2M , r∗ → −∞ and 1 − 3M/r → −1/2, so 1 − (1 − 3M/r)r∗/r is
negative. The explicit expression for r∗ in terms of r is

r∗ = r + 2M log
(

r − 2M

2M

)
− 3M + 2M log 2.

Because of the logarithmic term, as r → ∞, (1 − r∗
r (1 − 3M/r)) = (r − r∗)/r +

O(1/r) < −2M log(r)/r + O(1/r) which is negative for sufficiently large r. Since
the trapping potential has negative limit at ±∞, it is positive only in a compact
interval.

We now introduce a smooth, compactly supported function χtrap which dom-
inates the trapping potential. This function is chosen to satisfy 4((1 − 3M/r)
r∗/r − 1) < χtrap. This gives the desired result.

3.2. Spin reduction

In this section, we obtain a decay result for the zero-weight component. From the
previous section, we know this is enough to control energies involving all the com-
ponents. It is known that the evolution of the zero-weight component can be deter-
mined from a wave equation without referring to the other components. Thus,
we can reduce the problem from the Maxwell equations to a wave equation. Since
physicists refer to wave equations as spin 0 equations and the system of the Maxwell
equations as a spin 1 system, we use “spin reduction” to refer to this reduction.
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The Maxwell equations can be written as a fairly simple system in terms of the
null coordinate bases and the corresponding components. This is a result due to
Price [22], although, he uses a null tetrad, which makes the corresponding expres-
sions look significantly different. By direct computation and application of the
Maxwell equations,

NΦ1 = MΦ0(1 − 2M/r)r−2, (3.23)

LΦ0 = M̄Φ1 + cot θΦ1, (3.24)

NΦ0 = −MΦ−1 − cot θΦ−1, (3.25)

LΦ−1 = −M̄Φ0(1 − 2M/r)r−2. (3.26)

We refer to these as the “Price equations”.
The cotangent terms appear to be singular; however, if Φ1 is treated as spherical

1-forms, then the combination of the angular derivative and the cotangent term can
be written simply as

M̄Φ1 + cot θΦ1 = (1 − 2M/r)−1/2(divα + icurlα), (3.27)

MΦ−1 + cot θΦ−1 = (1 − 2M/r)−1/2(divα − icurlα), (3.28)

where div and curl are the spherical divergence and curl. If we had defined a coordi-
nate based null decomposition A(eA) = F (L, eA) = (1 − 2M/r)−1/2α(eA), then we
would have exactly M̄Φ1+cot θΦ1 = divA+icurlA, and similarly for the other com-
ponents. One important consequence of this is that the right-hand sides of (3.24)
and (3.25) are controlled by

|M̄Φ1 + cot θΦ1| + |MΦ−1 + cot θΦ−1| ≤ (1 − 2M/r)−1/2r|F |
X̂,1,O.

Another important consequence of the Price equations is that the zero weight
term satisfies a wave equation. From (3.25) and (3.26),

LNΦ0 = (M + cot θ)M̄Φ0(1 − 2M/r)r−2,

−∂2
t Φ0 = −∂2

r∗Φ0 + r−2(1 − 2M/r)(−∆S2)Φ0.

If there were an additional (2M/r3)(1−2M/r)Φ0 term on the right, then Φ0 would
be a solution to the wave equation on the Schwarzschild manifold, ∇α∇α(r−1Φ0).
Even in the absence of this term, the previous analysis of wave equations is suffi-
ciently general to apply to a wave equation of this form [4]. In fact, the wave equation
under consideration is simpler than the true wave equatione ∇α∇α(r−1u) = 0, and,
in Appendix B, we provide a stream-lined version of the method from [4].

eIf ∇α∇α(r−1u) = 0, then u satisfies −∂2
t u = −∂2

r∗u + V u + VL(−∆S2)u with V = 2Mr−3(1 −
2M/r), thus, the equation governing Φ0 is closer to ∇α∇α(r−1u) = 0 than to ∇α∇αu = 0.
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For solutions to a wave equation, there are estimates on the weighted space-time
integral we need to control for the conformal estimate. If u is a solution to

−∂2
t u = −∂2

r∗u + VL(−∆S2)u (3.29)

with

VL = r−2(1 − 2M/r),

then the energy and conformal charge are defined in terms of their densities by

e = |∂tu|2 + |∂r∗u|2 + VL|	∇u|2,

eC =
1
4
|(t + r)(∂t + ∂r∗)u|2 +

1
4
|(t − r)(∂t − ∂r∗)u|2

+
1
2
(t2 + r∗2)VL|	∇u|2 + e,

E[u](t) =
1
2

∫
{t}×R×S2

edr∗d2ω,

EC [u](t) =
1
2

∫
{t}×R×S2

eCdr∗d2ω.

The energy and conformal energy are generated from T and K. (In fact, the con-
formal energy is generated by K + T to provide better control near the light-cone.)
Since T generates a symmetry, the energy is conserved. As with the conformal
energy for the Maxwell field, the conformal energy is not conserved, and the energy
density near the photon sphere r = 3M must be controlled. The important results
for this discussion are that, at any time t > 0, k ∈ N, and any compactly supported
function χ,

E[u](t) = E[u](0),

E[	∇ku](t) = E[	∇ku](0),

EC [u(t)] ≤ EC [u(0)] + CE[∆2
S2u(0)], (3.30)∫

[0,∞)×R×S2

|u|2
(1 + r∗2)2

dr∗d2ωdt ≤ CE[u](0),∫
[0,∞)×R×S2

tχ|	∇u|2dr∗d2ωdt ≤ C(EC [u](0) + E[∆2
S2u](0)).

In Appendix A, we exclude spherically symmetric harmonics, so, from dropping the
angular derivatives on the left-hand side of the previous estimate,∫

[0,∞)×R×S2 tχtrap|u|2(1 − 2M/r)r2dr∗d2ωdt ≤ C(EC [u](0) + CE[∆2
S2u](0)).

(3.31)

We apply this with u = Φ0 in the following lemma.
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Lemma 3.2. If F is a solution to the Maxwell equations (1.1)–(1.2) and n ≥ 0,

then

EK [Ln
TF ](t) ≤ C

(
n+1∑
k=0

EK [Lk
TF ](0) +

n+5∑
k=0

ET [Lk
TF ](0)

)
, (3.32)

∫
[0,∞)×R×S2

tχtrap|φ0|2(1 − 2M/r)r2dr∗d2ωdt

≤ C

(
1∑

k=0

EK [Lk
OF ](0) +

5∑
k=0

ET [Lk
OF ](0)

)
. (3.33)

Furthermore, if the normal to S has uniformly bounded below l̂ and n̂ components,
then ∫

S
(|φ1|2 + 2|φ0|2 + |φ−1|2)(1 − 2M/r)r2dr∗d2ω

≤ C max
S

(u−−2, u+
−2)

(
1∑

k=0

EK [Lk
TF ](0) +

5∑
k=0

ET [Lk
TF ](0)

)
.

Proof. Taking Φ0 = u, the energy associated to the Maxwell field F and that of
the scalar wave u are closely related. From the Price equations (3.23)–(3.26) and
the geometric interpretation of the M + cot θ terms in (3.28),

E[u](t) = ET [LOF ](t), (3.34)

E[∆2
S2u](t) = ET [L5

OF ](t), (3.35)

EC [u](t) = EK [LOF ](t). (3.36)

Estimate (3.31) can be written as
∫

[0,∞)×R×S2
tχtrap|φ0|2(1 − 2M/r)r2dr∗d2ω ≤ C(EK [LOF ](0) +

5∑
k=0

ET [Lk
OF ](0)).

From this estimate and the trapping estimate (3.21), the estimate (3.32) follows.
If one of the derivatives in (3.32) is in the angular direction instead of the time
direction, then it would not be necessary to drop the angular derivative in (3.31), and
only n and n+4 derivatives would be needed on the K and T energies respectively.

Since the integral of the trapping term has been controlled in the entire of the
exterior of the Schwarzschild manifold, we have a uniform bound on the integral
of (K)P on any hyper-surface. If the hyper-surface has a normal with uniformly
bounded below l̂ and n̂ components, then the integral will be bounded below by
C(u+

2|φ1|2 + (u−2 + u+
2)|φ0|2 + u−2|φ−1|2). This provides the final estimate.

We remark that from equations (3.34)–(3.36), we could have bounded the ener-
gies ET [LOF ](t) and EK [LOF ](t) by immediately appealing to results for the wave
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equation. However, we would still need to present the energy and conformal energy
for the spin 0 wave equation and for the spin 1 Maxwell equation, relate them, and
present the Price equations. While it would have been possible for us to omit the
Lagrangian theory and the trapping lemma, this would have removed the motivation
for considering the energy and conformal energy.

4. Pointwise Decay in Stationary Regions

In this section, our goal is to prove L∞ decay in regions where 2M < r1 < r < r2.
We refer to these as stationary regions since the range of the radial coordinate does
not change in t. Restricting attention to a stationary region, the integrand in the
conformal energy behaves like t2 times the Maxwell field components squared. Since
the conformal energy is bounded, the field components decay in L2

loc like t−1.
Control on radial derivatives is the main thing that we need to improve this

from decay in mean to pointwise decay. Sobolev estimates can be used to convert
L2

loc decay for derivatives into L∞
loc decay. For this, we need decay on the spatial

derivatives of the Maxwell field. From spherical symmetry, the Lie derivative of
the Maxwell field in the direction of an angular derivative, LΘiF , also satisfies the
Maxwell equations and has the same type of decay in mean as F . Since R does not
generate a symmetry, the Lie derivative in that direction will not solve the Maxwell
equations.

To control the radial derivatives, we use the structure of the Maxwell equations.
Using the staticity of the Schwarzschild manifold, we can control t derivatives,
LT F , in L2

loc. In a fixed, compact range of r values, the covariant derivatives of the
coordinate basis are controlled by finite multiples of the coordinate bases again. We
are working in L2 where we already control all the components. Thus, we control
the difference between components of the covariant derivative in a direction and the
covariant derivative of the components of the Maxwell tensor (i.e. ∇αFβγXβY γ ∼
∇α(FβγXβY γ)).

The notation in Sec. 2.2 can be used to define a “big-O” notation to estimate the
difference between two functions depending on position and a tensor field. We say
a function of position and a (0, 2)-tensor field is equal to another such function up
to norm terms and in an interval, if, on any bounded interval of r∗ values, there is
a constant such that, for any (0, 2) tensor, the difference between the two functions
is bounded by a constant times the norm of the tensor

f = h + O(|A|X) ⇔ |f(t, r∗, θ, φ, A) − h(t, r∗, θ, φ, A)| ≤ C|A|X.

Similarly, for two collections of such functions, we say

{f} = {h} + O(|A|X)

if for each f there is an h such that f = h + O(|F |X)A and vice versa. We say

{f} � {h} + O(|A|X)
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if, for any bounded interval in r∗, there is a constant C such that each |f | is bounded
by C times the sum of the absolute values of the h’s plus O(|A|X) terms. We make
similar definitions involving O(|A|X,k,T).

The big-O notation used here is local to compact intervals, which allows us to
ignore the difference between normalized and unnormalized vector fields,

|A|
X̂

= O(|A|X),

|A|X = O(|A|
X̂
).

This notation allows us to prove Theorem 1.1. As outlined in the beginning of
this section, our strategy in the proof is to use the Maxwell equations to trade
derivatives along the generators of symmetries for spatial derivatives and then to
apply the Sobolev estimate. In doing this, we use the big-O notation to estimate
error terms generated by converting between Lie and covariant derivatives. This
allows us to improve our decay estimates from decay in mean to pointwise decay.
Here, we use the null decomposition and explicitly state the norms. Clearly, the
same result holds for | �E| + | �B| or |α| + |ρ| + |σ| + |α|.

Theorem 4.1. Let 2M < r1 < r2 < ∞. There is a constant C(r1,r2) such that if
F is a solution of the Maxwell equations (1.1)–(1.2), then for all t ∈ R, r ∈ [r1, r2],
and (θ, φ) ∈ S2,

|φ1| + |φ0| + |φ−1| ≤ C(r1,r2)t
−1

(
4∑

k=0

EK [Lk
TF ](0) +

8∑
k=0

ET [Lk
TF ](0)

)1/2

.

Proof. Using the big-O notation, we can control the difference between the deriva-
tive of a component of the Maxwell field and the corresponding component of the
Lie derivative. Since the Lie derivative of any vector field with respect to any other
is a linear combination of the coordinate vector fields with smooth coefficients,

LX(F (X, X)) = (LXF )(X, X) + O(|F |X).

This process can be iterated, so that

Lk
T(F (X, X)) = O(|F |X,k,T).

Similarly for covariant derivatives,

X(F (X, X)) = (∇XF )(X, X) + O(|F |X).

We note that if we had applied two symmetry-generating derivatives before making
the estimate, we would have

LTLT(X(F (X, X))) = LTLT((∇XF )(X, X)) + O(|F |X,2,T),

and similarly with the Lie derivative replacing the covariant derivative in X.
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To control the radial derivative of components which have no R arguments, we
use (1.2),

LRLTLT(F (T, T)) = LTLTLR(F (T, T))

= LTLT∇R(F (T, T))

= LTLT((∇RF )(T, T)) + O(|F |X,2,T)

= LTLT((∇TF )(R, T)) + O(|F |X,2,T)

= LTLT∇T(F (R, T)) + O(|F |X,2,T)

= LTLTLT(F (R, T)) + O(|F |X,2,T)

= O(|F |X,3,T).

Similarly, to gain control of component with one radial argument, we apply (1.1),

LRLTLT(F (R, T)) � LTLT((∇R̂F )(R̂, T)) + O(|F |X,2,T)

� LTLT((∇TF )(T, T)) + O(|F |X,2,T)

= O(|F |X,3,T).

Since F is antisymmetric, there is no need to control components with two R

arguments.
Control of triple derivative terms, of the form LXLTLT(F (X, X)), is sufficient to

prove L∞ decay. From the boundedness of the conformal charge, for any interval
[r1, r2] in the exterior, there is a constant C, such that (with r∗1 and r∗2 the values
of r∗ corresponding to r = r1 and r = r2)∫

{t}×(r∗1,r∗2)×S2
t2|F |2Xdr∗d2ω ≤ CEK [F ].

A local, inhomogeneous, 1-dimensional Sobolev estimate gives∫
{t}×{r∗}×S2

|LTLT(F (X, X))|2dω

≤ C

∫
{t}×(r∗1,r∗2)×S2

|LRLTLT(F (X, X))|2 + |LTLT(F (X, X))|2dr∗d2ω

≤ C

∫
{t}×(r∗1,r∗2)×S2

|F |2X,3,Tdr∗d2ω

≤ Ct−2
3∑

k=0

EK [L3
TF ].

Now applying a spherical Sobolev estimate, we have

|F (X, X)(t, r∗, θ, φ)| ≤ Ct−1

(
3∑

k=0

EK [Lk
TF ](t)

)1/2

.
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By Lemma 3.2, the conformal energy at any time is bounded by the initial data
(with extra derivatives). This gives, in any stationary region away from the event
horizon, that the components decay like t−1.

5. Decay Outside Stationary Regions

In this section, we prove decay for the field components outside of stationary regions.
In Minkowski space R1+3, it is typical to obtain decay estimates in the regions |�x| <

(1− ε)t and |�x| > (1− ε)t. Because boosts are not symmetries of the Schwarzschild
solution, decay in a stationary region is different from decay along outgoing curves
r∗ ∼ (1 − ε)t. Similarly, since there is no reflection symmetry r∗ → −r∗, the decay
rates in the regions r∗ > 0 and r∗ < 0 are different. Thus, we obtain decay in
stationary regions, outgoing regions, and ingoing regions.

Most of the decay estimates in this section are proven by considering the energy
on ingoing or outgoing null hyper-surfaces. We will use Σ−

u+
and Σ+

u− to refer to
ingoing and outgoing null hyper-surfaces on which u+ and u− are constant respec-
tively. We will restrict these to the future t ≥ 0. To make estimates on Σ+

u− , we
can introduce a parameter t1 and an approximate surface which extends along the
hyper-surface t = 0 from the bifurcation sphere (r∗ → −∞) to the intersection of
t = 0 with Σ+

u− , extends along Σ+
u− until t = t1, and finally continues onto space-like

infinity along t = t1. Since the deformation tensor for T is zero, the surface integral
of the generalized momentum (T )P along this surface will be the same as the integral
along t = 0. Similarly, since estimate (3.33) says that the integral over the entire
exterior region of the positive part of the K deformation tensor is bounded, the
surface integral of the generalized momentum (K)P over the approximating surface
is bounded by the initial data. Dropping the positive contribution from integrating
along t = 0 and t = t1 and taking the limit as t1 → ∞,

∫
Σ+

u−

(K)Pαdνα ≤ C

(
1∑

k=0

EK [Lk
TF ](0) +

5∑
k=0

ET [Lk
TF ](0)

)
.

A similar argument can be made for Σ−
u+

. Since Σ+
u− and Σ−

u+
are null surfaces, we

cannot apply the last part of Lemma 3.2.
These integrals can be expanded in terms of the Maxwell field components.

∫
Σ−

u+

(u+
2|φ0|2 + u−2|φ−1|2)(1 − 2M/r)r2du−d2ω =

∫
Σ−

u+

(K)Pαdνα,

∫
Σ+

u−

(u−2|φ0|2 + u+
2|φ1|2)(1 − 2M/r)r2du+d2ω =

∫
Σ+

u−

(K)Pαdνα.

To obtain estimates for derivatives tangential to this surface, we can convert to the
coordinate based components and apply angular derivatives and the Price equations
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(3.23)–(3.26) to get∫
Σ−

u+

(u+
2|NΦ1|2(1 − 2M/r)−1r2 + u−2|NΦ0|2)du−d2ω (5.37)

≤ C

(
4∑

k=0

EK [Lk
TF ](0) +

8∑
k=0

ET [Lk
TF ](0)

)
, (5.38)

∫
Σ+

u−

(u−2|LΦ−1|2(1 − 2M/r)−1r2 + u+
2|LΦ0|2)du+d2ω (5.39)

≤ C

(
4∑

k=0

EK [Lk
TF ](0) +

8∑
k=0

ET [Lk
TF ](0)

)
. (5.40)

We now prove decay in outgoing regions.

Lemma 5.1 (Decay for r∗ > 1). There is a constant C such that if F is a
solution of the Maxwell equations (1.1)–(1.2), then for all t ≥ 0, r∗ > 1, (θ, φ) ∈ S2,

|φ1| ≤ Cr−3/2|u+|−1H1[F ](0),

|φ0| ≤ Cr−2

(
u+ − |u−|

u+(1 + |u−|)
)1/2

H1[F ](0),

|φ−1| ≤ Cr−1(1 + |u−|)−1H1[F ](0),

where

H1[F ](0) =

(
4∑

k=0

EK [Lk
TF ](0) +

8∑
k=0

ET [Lk
TF ](0) + sup

{0}×R+×S2

∑
i

(r5/2φi)2
)1/2

.

For t < r∗,

|φ−1| ≤ Cr−1(1 + |u−|)−3/2H1[F ](0).

Proof. At any point in the far region, r∗ > 1, we will integrate along a radial, null
ray to prove decay. The bounds on the conformal charge give decay for integrals
along the null rays. The final end point will either be at t = 0, where we already
have decay, or at r∗ = 0, where we have decay by assumption. In this way, each
component of the Maxwell field will be written as the sum of two terms, both of
which decay. The typical null rays which we use are illustrated in Fig. 2.

There are a number of simplifications in the outgoing region. We can ignore
factors of (1 − 2M/r), since the ratio between 1 and (1 − 2M/r) is bounded above
and bounded below by a strictly positive number. Since r∗ > 1, we can ignore
ratios of r∗/r. There is the ordering u+ ≥ r∗. On outgoing null rays, on which u−
is constant, the change in u+ is twice the change in r∗, and similarly, on ingoing
radial, null rays the change in u− is twice the change in r∗.
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Fig. 2. Null rays in the outer region, r∗ > 0. The angular variables have been suppressed. The null
rays go from a point either to the initial hyper-surface t = 0 or to the stationary region r∗ = 0.

The simplest application of our method is for the zero-weight component. First,
we prove an estimate inside the light-cone, for t > r∗. We use a radial, null geodesic
from (t, r∗, θ, φ) to (t + r∗, 0, θ, φ) parameterized by u−,

|Φ0(t, r∗, θ, φ)| ≤
∫

c1

|NΦ0|du− + |Φ0(t + r∗, 0, θ, φ)|

≤
(∫

c1

u−−2du−

)1/2(∫
c1

u−2|NΦ0|2du−

)1/2

+ |Φ0(t + r∗, 0, θ, φ)|

≤
(

1
u−

− 1
u+

)1/2(∫
c1

u−2|NΦ0|2du−

)1/2

+ |Φ0(t + r∗, 0, θ, φ)|.

The end point decays at a rate of t′−1 evaluated at t′ = t + r∗. We now integrate
over the angular variables too (and apply Cauchy–Schwartz, so that the integral
in dω is inside the square root). The integral in the first term is bounded by the
conformal charge as given in (5.38). The second angular derivatives of F will satisfy
the same estimate, and we can use the second angular derivatives to control the
value of the component, through a Sobolev estimate. Hence,

|Φ0(t, r∗, θ, φ)| ≤ C

(∫
{t}×{r∗}×S2

2∑
k=0

|Lk
TΦ0|2dω

)1/2

≤
(

u+ − u−
u+u−

)1/2
(

4∑
k=0

EK [Lk
TF ](0) +

8∑
k=0

ET [Lk
TF ](0)

)1/2

,
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|φ0(t, r∗, θ, φ)| ≤
(

u+ − u−
u+u−

)1/2

r−2

(
4∑

k=0

EK [Lk
TF ](0) +

8∑
k=0

ET [Lk
TF ](0)

)1/2

.

Outside the light-cone, where t < r∗, we integrate over the curve c4, and the end
point value is replaced by |Φ0(0, t+r∗, θ, φ)|, which decays like r∗′−1/2 = (t+r∗)−1/2

(since φ0 decays like r∗′−5/2). Thus, we have

|φ0(t, r∗, θ, φ)| ≤
(

u+ − |u−|
u+|u−|

)−1/2

r−2H1[F ](0).

In the region where |u−| < 1, instead of using EK , we could have used ET , which
does not have a vanishing factor of u−2. Thus, we may replace (u+ − |u−|)/u+|u−|
by (u+ − |u−|)/u+(1 + |u−|).

Now, we prove decay for φ1 by again integrating along ingoing, radial, null
geodesics again. From any given point, we integrate along c4 to the endpoint where
t = 0,

|Φ1(t, r∗, θ, φ)| ≤
∫

c4

|NΦ1|du− + |Φ1(0, t + r∗, θ, φ)|

≤
(∫

c4

r−2du−

)1/2(∫
c4

u+
2|NΦ1|2r2du−

)1
2

u+
−1

+ |Φ1(0, t + r∗, θ, φ)|

≤
(∫

c4

u+
2|NΦ1|2r2du−

)1/2

u+
−1r−1/2 + |Φ1(0, t + r∗, θ, φ)|.

The endpoint will be bounded by r∗′−3/2 = (t + r∗)−3/2. We now integrate in
the angular variables, differentiate in the angular directions, and apply a spherical
Sobolev estimate to get

|Φ1(t, r∗, θ, φ)| ≤ Cu+
−1r−1/2

(
4∑

k=0

EK [Lk
TF ](0) +

8∑
k=0

ET [Lk
TF ](0)

)1/2

+ Cu+
−3/2 sup

{0}×R+×S2

∑
i

(r5/2φi)2,

|φ1| ≤ Cu+
−1r−3/2H1[F ](0).

Finally, for φ−1, we integrate along outgoing, radial, null rays on which u− is
constant. Inside the light-cone t > r∗, we take the curve c2 from (t, r∗, θ, φ) to
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(t − r∗, 0, θ, φ). The estimate is

|Φ−1(t, r∗, θ, φ)| ≤
∫

c2

|LΦ−1|du+ + |Φ−1(t − r∗, 0, θ, φ)|

≤
(∫

c2

r−2du+

)1/2(∫
c2

u−2|LΦ−1|2r2du+

)1/2

u−−1

+ |Φ−1(t − r∗, 0, θ, φ)|

≤ Cu−−1

(∫
c2

u−2|LΦ−1|2r2du+

)1/2

+ |Φ−1(t − r∗, 0, θ, φ)|.

In the stationary region, the decay rate is also (t′)−1 = (t − r∗)−1, so the decay
rate is

|Φ−1(t, r∗, θ, φ)| ≤ C|u−|−1

(
4∑

k=0

EK [Lk
TF ](0) +

8∑
k=0

ET [Lk
TF ](0)

)1/2

,

|φ−1| ≤ C|u−|−1r−1

(
4∑

k=0

EK [Lk
TF ](0) +

8∑
k=0

ET [Lk
TF ](0)

)1/2

.

For t < r∗, a similar argument can be made by integrating along c3, with the value
at the other end point being Φ−1(0, r∗ − t, θ, φ), where we have faster decay,

|Φ−1(t, r∗, θ, φ)| ≤ C|u−|−1r−1/2

(
4∑

k=0

EK [Lk
TF ](0) +

8∑
k=0

ET [Lk
TF ](0)

)1/2

+ |u−|−3/2 sup
{0}×R+×S2

∑
i

(r5/2φi)2,

|φ−1| ≤ C|u−|−3/2r−1H1[F ](0).

Here we have used that |u−| < Cr. Again, in the region |u−| < 1, we can use ET

instead of EK to get a better bound when u− vanishes.

We now turn to proving decay in the “near” region, r∗ < 0. Since for any fixed
interval 2M < r1 < r < r2, we can apply the results from Sec. 4, the main purpose
of the following lemma is to prove estimates which are uniform in r so that they
can be extended to the event horizon. The coordinate u+ extends smoothly to the
event horizon and is commonly used to parameterize the event horizon [10, 20].

Since the vector fields T and K vanish on the bifurcation sphere, the bound-
edness of the associated energy allows rapid divergence of the (normalized) energy
density near there. Not surprisingly, this is not sufficient to control the Maxwell
field. In light of this, it is somewhat surprising that the energies associated with T

and K are sufficient to prove decay for the correctly normalized components of the
Maxwell field tensor corresponding to φ1.
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As explained in the introduction, the correctly normalized basis for stating
results on or near the event horizon is

∂t + ∂r∗ , (1 − 2M/r)−1(∂t − ∂r∗), r−1eA, r−1eB.

We can equally well replace r−1eA and r−1eB by m and m̄ or by Θ̂ or Φ̂. For large
u+, this is the “correctly normalized” basis, because it is the result of parallelly
transporting the original, normalized basis on the initial data surface, t = 0, along
ingoing null geodesics to reach the event horizon.

The method used in the previous lemma gives decay rates of u+
−1, u+

−1/2,
and u+

−1 for Φ1, Φ0, and Φ−1 respectively. The functions Φ1 and Φ0 are correctly
normalized (except for bounded factors) as r → 2M , but (1 − 2M/r)−1Φ−1 is
the correctly normalized component in this region. For Φ0, we prove a different
preliminary decay rate and then use the divergence theorem to obtain a rate of
u+

−1. For the correctly normalized, negative-weight component, (1−2M/r)−1Φ−1,
we use the u+

−1 decay for Φ0, a transport equation, and an integrating factor to
get u+

−1 decay. We note that the vector field (1 − 2M/r)−1(T − R), which is a
smoothed version of the vector field Y in [9] can be used to prove boundedness for
this component without using a transport equation.

Lemma 5.2 (Decay for r∗ < 0). There is a constant C such that if F is a
solution of the Maxwell equations (1.1)–(1.2), then for all t ≥ 0, r∗ < 0, (θ, φ) ∈ S2

such that u+ > 1,

|F (∂t + ∂r∗ , Θ̂ + iΦ̂)| ≤ Cu+
−1H2[F ](0),

|F (∂t + ∂r∗ , (1 − 2M/r)−1(∂t − ∂r∗))| + |F (Θ̂, Φ̂)| ≤ Cu+
−1H3[F ](0),

F ((1 − 2M/r)−1(∂t − ∂r∗), Θ̂ + iΦ̂) ≤ Cu+
−1H3[F ](0),

where

H2[F ](0) =

(
4∑

k=0

EK [Lk
TF ](0) +

8∑
k=0

ET [Lk
TF ](0)

)1/2

,

H3[F ](0) =

(
4∑

k=0

EK [Lk
TF ](0) +

8∑
k=0

ET [Lk
TF ](0) +

3∑
k=0

ET̂ [Lk
ˆ̃
X
F ](0)

)1/2

.

Proof. The first part of this proof is similar to that of Lemma 5.1. The main dif-
ference is that we must track factors of (1 − 2M/r) carefully, but we may ignore
factors of r since it is bounded above and below by positive constants. When track-
ing factors of (1 − 2M/r), we use (1 − 2M/r)φi(t′, r∗′, θ′, φ′) to denote the value
of (1 − 2M/r)φi at (t′, r∗′θ′, φ′) even if an unprimed set of coordinates is in use
simultaneously. Since we are only considering u+ > 1, the ingoing, radial, null rays
from any point will hit the stationary region r∗ = 0. This is illustrated in Fig. 3.
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Fig. 3. Null rays in the inner region r∗ < 0. The angular variables have been suppressed. The
curve c5 goes from a point in the stationary region r∗ = 0 to an arbitrary point in the regions
t > 0, r∗ < 0, u+ > 1 along an ingoing, null, radial geodesics.

Integrating along an ingoing, radial, null geodesic, c5, from (t, r∗, θ, φ) to (t +
r∗, 0, θ, φ), in the same way as in the proof of Lemma 5.1, we have

|Φ1(t, r∗, θ, φ)|

≤
∫

c5

|NΦ1|du− + |Φ1(t + r∗, 0, θ, φ)|

≤
(∫

c5

(1 − 2M/r)du−

)1/2(∫
c5

|NΦ1|2u+
2r2(1 − 2M/r)−1du−

)1/2

u+
−1

+ |Φ1(t + r∗, 0, θ, φ)|.

The integral of (1 − 2M/r) with respect to du− is, up to a factor of 2, the same as
the integral of (1− 2M/r) with respect to dr∗. By a change of variables, this is the
integral of 1 with respect to dr. Thus, the contribution from the first integral in the
first term is bounded by a constant. After integrating in the angular variables, the
second integral is bounded by the conformal energy of the angular derivatives of F .
The second term is the value of the component in the stationary region, so it decays
like (t+r∗)−1. Applying the angular derivative and Sobolev estimate argument from
the previous lemma,

|Φ1| = |F (∂t + ∂r∗ , Θ̂ + iΦ̂)| ≤ Cu+
−1

(
4∑

k=0

EK [Lk
TF ](0) +

8∑
k=0

ET [Lk
TF ](0)

)1/2

.

This proves the first result.
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For the zero weight component, we first prove an intermediate result for
(1 − 2M/r)1/2φ0. From integrating along a surface of constant t, we have

(1 − 2M/r)1/2|u+|2φ2
0(t, r∗, θ, φ)

= −
∫
{t}×[r∗,0]×{θ}×{φ}

∂r∗((1 − 2M/r)1/2|u+|2φ2
0)dr∗′

+ (1 − 2M/r)1/2u+
2φ2

0(t + r∗, 0, θ, φ).

The integrand can be estimated by dropping negative terms and applying the
Cauchy–Schwartz inequality as

−∂r∗((1 − 2M/r)1/2u+
2|φ0|2) = −1

2
(1 − 2M/r)1/2 2M

r2
u+

2|φ0|2

− 2(1 − 2M/r)1/2u+|φ0|2

− 2(1 − 2M/r)1/2u+
2�(φ0∂r∗φ0)

≤ C(u+
2(1 − 2M/r)|φ0|2 + u+

2|∂r∗φ0|2).

Thus, for u+ > 1, the integrand is controlled by the conformal energy using the
standard Sobolev estimate argument by

−
∫
{t}×[r∗,0]×{θ}×{φ}

∂r∗((1 − 2M/r)1/2|u+|2φ2
0)dr∗′

≤ C

(
4∑

k=0

EK [Lk
TF ](0) +

8∑
k=0

ET [Lk
TF ](0)

)
.

The end point can be controlled by the stationary decay result,

(1 − 2M/r)1/2u+
2|Φ0(t + r∗, 0, θ, φ)|2 ≤ C

(
4∑

k=0

EK [Lk
TF ](0) +

8∑
k=0

ET [Lk
TF ](0)

)
,

so that

φ0(t, r∗, θ, φ) ≤ C(1 − 2M/r)−1/4u+
−1

(
4∑

k=0

EK [Lk
TF ](0) +

8∑
k=0

ET [Lk
TF ](0)

)1/2

.

This estimate can now be improved. For a given point (t, r∗, θ, φ), consider the
two-dimensional surface

Ω(t,r∗) = {(t′, r∗′, θ, φ) : t′ ≥ 0, t′ + r∗′ ≤ t + r∗, t − r∗ ≤ t′ − r∗′ ≤ t + r∗}.



November 19, 2008 14:22 WSPC/JHDE 00171

842 P. Blue

Fig. 4. The region Ω(t,r∗).

This is illustrated in Fig. 4. Applying the (two-dimensional) divergence theorem
with the vector field (NΦ0)N , we have

Φ0(t, r∗, θ, φ) − Φ0(t + r∗, 0, θ, φ) +
∫
{0}×[r∗−t,−t−r∗]×{θ}×{φ}

NΦ0dr∗

= −2
∫

Ω(t,r∗)

LNΦ0dr∗dt.

From the wave equation (3.29) for Φ0, we have

Φ0(t, r∗, θ, φ) = Φ0(t + r∗, 0, θ, φ) +
∫
{0}×[r∗−t,−t−r∗]×{θ}×{φ}

NΦ0dr∗

− 2
∫

Ω(t,r∗)

r−2(1 − 2M/r)(−∆S2)Φ0dr∗dt.

We now estimate the terms on the right. The first is bounded by the stationary
decay result. The second is an integral in the initial data surface t = 0, so it can be
controlled by integrals of the initial data. We have

∣∣∣∣∣
∫

[r∗−t,−t−r∗]

Nφ0dr∗

∣∣∣∣∣ ≤
(∫

[−∞,−t−r∗]

(1 − 2M/r)1/2dr∗

)1/2

×
(∫

[−∞,−t−r∗]

(1 − 2M/r)−1/2|Nφ0|2dr∗

)1/2

.

The first integral is bounded by∫
[−∞,−t−r∗]

(1 − 2M/r)1/2dr∗ ≤ C(1 − 2M/r)1/2 ≤ Ce(−t−r∗)/2M ≤ Cu+
−2.
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Since (1−2M/r)−1/2N and ∂/∂U− differ only by smooth functions of r, the second
can be estimated by∫

[−∞,−t−r∗]

(1 − 2M/r)−1/2|Nφ0|2dr∗ ≤ C

∫
[−∞,−t−r∗]

| ∂

∂U−
φ0|2(1 − 2M/r)1/2dr∗.

Since, on the t = 0 hyper-surface, the stationary tetrad and the one based on the
(U+, U−, θ, φ) coordinate system differ only by smooth functions of r,∫

[−∞,−t−r∗]

(1 − 2M/r)−1/2|Nφ0|2dr∗

≤ C

∫
[−∞,−t−r∗]

∣∣∣∣ ∂

∂U−

(
1
2
F (l̂, n̂) + iF (Θ̂, Φ̂)

)∣∣∣∣
2

(1 − 2M/r)1/2dr∗

≤ C

∫
[−∞,−t−r∗]

∣∣∣∣ ∂

∂U−

(
1
2
F

(
∂

∂U+
,

∂

∂U−

)
+iF

(
Θ,

1
sin θ

Φ
))∣∣∣∣

2

(1 − 2M/r)1/2dr∗

+ C

∫
[−∞,−t−r∗]

∣∣∣∣12F

(
∂

∂U+
,

∂

∂U−

)
+ iF

(
Θ,

1
sin θ

Φ
)∣∣∣∣

2

(1 − 2M/r)1/2dr∗.

Since coordinate vector fields commute,∫
[−∞,−t−r∗]

(1 − 2M/r)−1/2|Nφ0|2dr∗

≤ C

∫
[−∞,−t−r∗]

1∑
k=0

∣∣∣∣Lk
∂

∂U−
F

∣∣∣∣
2

ˆ̃
X

(1 − 2M/r)1/2dr∗.

The same argument could have been applied to the second angular derivatives of
F , which could have been used in a Sobolev estimate. This would have lead to∫

[−∞,−t−r∗]

(1 − 2M/r)−1/2|Nφ0|2dr∗ ≤ C

3∑
k=0

ET̂ [Lk
ˆ̃
X
F ](0).

Thus, the integral along the initial time slice is bounded by∣∣∣∣∣
∫

[r∗−t,−t−r∗]

Nφ0dr∗

∣∣∣∣∣ ≤ Cu+
−1

(
3∑

k=0

ET̂ [Lk
ˆ̃
X
F ](0)

)1/2

.

Finally, we estimate the integral over Ω(t,r∗) by breaking it into two parts, Ω(t,r∗)A
=

Ω(t,r∗) ∩ {t > 2|r∗|} and Ω(t,r∗)B
= Ω(t,r∗) ∩ {t ≤ 2|r∗|}. In Ω(t,r∗),∣∣∣∣∣

∫
Ω(t,r∗)

r−2(1 − 2M/r)(−∆S2)Φ0dr∗dt

∣∣∣∣∣
≤ sup

Ω(t,r∗)A

(
(1 − 2M/r)1/4(−∆S2)Φ0

)∫
Ω(t,r∗)A

r−2(1 − 2M/r)3/4dr∗dt

+

(∫
Ω(t,r∗)B

r−2(1 − 2M/r)dr∗dt

)1/2(∫
Ω(t,r∗)B

r−2(1 − 2M/r)|∆S2Φ0|2dr∗dt

)1/2

.



November 19, 2008 14:22 WSPC/JHDE 00171

844 P. Blue

On the first line of the right-hand side, the supremum term decays like u+
−1 by the

intermediate result, and the integral term is uniformly bounded by the exponential
decay of (1 − 2M/r) with respect to r∗. In the second line, the second integral
is bounded by estimate (3.30), and the first integral is bounded by (1 − 2M/r)
evaluated at the point (t′, r∗′) = ((2/3)u+, (1/3)u+), and hence decays faster than
u+

−1. Combining all these results gives

φ0 ≤ Cu+
−1

(
4∑

k=0

EK [Lk
TF ](0) +

8∑
k=0

ET [Lk
TF ](0) +

3∑
k=0

ET̂ [Lk
ˆ̃
X
F ](0)

)
.

We begin our analysis of Φ−1 with an intermediate decay result, using the same
sort of simple argument as was used for Φ1. Integrating along an outgoing, radial,
null ray, we have

Φ−1(t, r∗, θ, φ) =
∫

|LΦ−1|du+ + Φ−1(t − r∗, 0, θ, φ),

|Φ−1(t, r∗, θ, φ)| ≤ u−−1

(∫
(1 − 2M/r)du+

)1/2

×
(∫

|LΦ−1|2u−2(1 − 2M/r)−1du+

)−1

+ |Φ−1(t − r∗, 0, θ, φ)|

≤ Cu−−1

(
4∑

k=0

EK [Lk
TF ](0) +

8∑
k=0

ET [Lk
TF ](0)

)1/2

.

Since we are working in the inner region, r∗ ≤ 0, there is the estimate u+ < u−,
and

Φ−1(t, r∗, θ, φ) ≤ Cu+
−1

(
4∑

k=0

EK [Lk
TF ](0) +

8∑
k=0

ET [Lk
TF ](0)

)1/2

.

To obtain stronger estimates, we will need to integrate along outgoing null
geodesics starting near the initial data surface. We work with the U+ and U−
coordinates to control the correctly normalized, negative-weight component near
the bifurcation sphere. If bounded initial data is posed on the surface U+U− = −1,
which corresponds to the union of the t = 0 surfaces in the two exterior regions,
then, at least in some small neighborhood of the bifurcation sphere, the compo-
nents of the Maxwell field with respect to the smooth (U+, U−, θ, φ) coordinate
system must remain bounded by a multiple of their initial value. This is essentially
a Cauchy stability result, as was used for the wave equation [9]. Thus, in some suf-
ficiently small neighborhood of the bifurcation sphere, in the exterior, the outgoing
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component is bounded by

4Meu−/4M |Φ−1| ≤ C1

∣∣∣∣F
(

∂

∂U−
, Θ
)∣∣∣∣+

∣∣∣∣F
(

∂

∂U−
, Φ
)∣∣∣∣

≤ C
3∑

k=0

ET̂ [Lk
ˆ̃
X
F ](0).

In particular, we can pick a u+0 � 0 such that on the hyper-surface u+ = u+0

where t ≥ 0,

(1 − 2M/r)−1|Φ−1| ≤ C

3∑
k=0

ET̂ [Lk
ˆ̃
X
F ](0). (5.41)

This hyper-surface is illustrated in Fig. 5.
We now use the decay for Φ0 and Φ−1 to prove a stronger estimate. From the

Price equation (3.26), we have

L(eu+/4M (1 − 2M/r)−1Φ−1) =
(

1
2M

− 2M

r2

)
(eu+/4M (1 − 2M/r)−1Φ−1)

+ eu+/4Mr−2Φ0.

Since 1/2M − 2M/r2 vanishes linearly at r = 2M , it is bounded by C(1 − 2M/r).
Integrating along an outgoing geodesic starting on u+ = u+0 at (t0, r∗0, θ, φ) and

Fig. 5. An outgoing null ray from the hyper-surface u+ = u+0 to the point under consideration.
The angular variables have been suppressed. The region under consideration contains a portion
near the bifurcation sphere and is near the event horizon. Therefore, the t and r∗ coordinates are
not used. Instead the hyper-surfaces t = 0, r = 2M , and u+ = u+0 are indicated.
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going to (t, r∗, θ, φ), we have

|eu+/4M (1 − 2M/r)−1Φ−1(t, r∗, θ, φ)|

≤ C

∫
c6

eu+/4M (|Φ−1| + |Φ0|)du+ + |eu+0/4M (1 − 2M/r)−1Φ−1(t0, r∗0, θ, φ)|.

The geodesic along which we integrate is illustrated in Fig. 5. We break the integral
into two pieces, with one going from u+0 to u+/2 and the other going from u+/2
to u+. From the boundedness and decay for Φ0 and Φ−1, the integral is bounded
by ∫

c6

eu+/4M (|Φ−1| + |Φ0|)du+ ≤ C(eu+/8M + u+
−1eu+/4M )H3[F ](0).

By estimate (5.41), the end point, (1−2M/r)−1Φ−1(t0, r∗0, θ, φ) is bounded. Thus,

|(1 − 2M/r)−1Φ−1(t, r∗, θ, φ)| ≤ C(e−u+/8M + u+
−1)H3[F ](0)

+ Ce(−u++u+0)/4MH3[F ](0)

≤ Cu+
−1H3[F ](0).

This provides the desired decay.

Combining the two lemmas in this section, we have Theorem 1.3.

Remark 5.3. Finally, we provide a simpler sufficient condition for the initial data
to have finite norm.

The energies ET [F ] and EK [F ] are the integrals of the field components squared,
|φi|2, against the weight (1 − 2M/r)r2 and r∗2(1 − 2M/r)r2 respectively. Thus, if
the field components are bounded everywhere and decay at least as fast as r−(5/2+ε)

(for ε > 0) as r → ∞, these energies will be finite. Thus, if the Maxwell field and
its first eight derivatives decay at this rate, then

4∑
k=0

EK [Lk
TF ](0) +

8∑
k=0

ET [Lk
TF ](0)

will be bounded, and the result of Theorem 4.1 will apply.
Similarly, if the field components decay at least as fast as r−(5/2+ε), then

sup{0}×R+×S2

∑
i(r

5/2φi)2 will be trivially bounded, so that the results of
Lemma 5.1 will give decay in the far region r∗ > 1.

The energy ET̂ is the integral of the field components squared, |φi|2, against the
measure (1 − 2M/r)1/2r2dr∗. Thus, if the components are bounded as r∗ → −∞,

then this energy will be finite. Since (for r∗ < 0), the vector fields in ˆ̃
X are coordinate

vector fields extending in a neighborhood of the bifurcation sphere, they are smooth
vector fields. Thus, if F and its first three derivatives with respect to this collection
of smooth vector fields have finite components, then

3∑
k=0

ET̂ [Lk
ˆ̃
X
F ](0)

will be finite, and the results of Lemma 5.2 will apply.



November 19, 2008 14:22 WSPC/JHDE 00171

Decay of the Maxwell Field on the Schwarzschild Manifold 847

This verifies the footnote to Theorem 1.1 that boundedness and r−5/2+ε decay
for F and its first eight derivatives on the initial data surface t = 0 is sufficient
to prove the decay results in this paper. The same remark applies to the result in
Theorem 1.3.

Appendix A. Exclusion of the Non-Radiatable Mode of the
Maxwell Field

In this section, we show that if the Maxwell field has finite conformal charge, it
has no spherically symmetric part and explain why this is a physically reasonable
assumption. The absence of dynamic, spherically symmetric components is well-
known in the literature [22]. In R1+3, since the electric and magnetic fields are
divergence free, the spherically symmetric component of the Maxwell field is always
zero. While there are spherically symmetric solutions on the Schwarzschild man-
ifold, we show that they have no dynamics, since these solutions are constant in
t. There is a two-parameter family of such solutions described by the central elec-
tric and magnetic charge. These solutions do not vanish on the event horizon and
decay like 1/r2 at infinity, so they fail to be in the finite conformal energy class we
consider.

The Maxwell field F can be written as

F (t, r∗, θ, φ) = ρ(t, r∗, θ, φ)(1 − 2M/r)dt ∧ dr∗

+ r(1 − 2M/r)1/2dt ∧ ω0(t, r∗, θ, φ)

+ r(1 − 2M/r)1/2dr∗ ∧ ω1(t, r∗, θ, φ)

+ σ(t, r∗, θ, φ)r2Ω,

∗F (t, r∗, θ, φ) = −σ(1 − 2M/r)dt ∧ dr∗

− r(1 − 2M/r)1/2dt ∧ (∗S2)ω1

+ r(1 − 2M/r)1/2dr∗ ∧ (∗S2)ω0

+ ρr2Ω,

with ρ and σ scalar functions, with (∗S2) the Hodge dual on S2, with ω0 and
ω1 in Ω1(S2) for each value of t and r∗, and with Ω the standard volume form
on S2. We have used a stationary, instead of null, decomposition, so ω0 and ω1

appear instead of α and α. The scalars ρ and σ are the standard ones from the null
decomposition.

We first remind the reader that there is no ω ∈ Ω1(S2) with dS2ω = (∗S2)C0

and C0 	= 0. (Without loss of generality we may assume C0 > 0.) If there were
one, we could write this condition in coordinates:

ω = ωθdθ + ωφdφ,

dS2ω = (∗S2)C0,

ωθ,φ − ωφ,θ = C0 sin(θ).
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Let f(θ) =
∫

φ∈S1 ωφdφ. Since ω is smooth, f is continuous on [0, 2π] and vanishing
at 0 and π (since the integral is over a single point in S2 in these cases). From
dω = (∗S2)C0, we have f ′(θ) = C0 sin(θ), and f(π) − f(0) =

∫ π

0 C0 sin(θ)dθ > 0.
Thus, the condition that f vanishes at 0 and π implies C0 = 0.

The Maxwell equations are (taking the components orthogonal to various 1-
forms in each equation)

dF = 0 : dt : 0 = r(1 − 2M/r)1/2dr∗ ∧ dS2ω1 + (∂r∗(σr2))dr∗ ∧ Ω,

dr∗ : 0 = r(1 − 2M/r)1/2dt ∧ dS2ω0 + (∂t(σr2))dt ∧ Ω,

d ∗ F = 0 : dt : 0 = r(1 − 2M/r)1/2dr∗ ∧ dS2(∗S2)ω0 + (∂r∗(ρr2))dr∗ ∧ Ω,

dr∗ : 0 = r(1 − 2M/r)1/2dt ∧ dS2(∗S2)ω1 + (∂t(ρr2))dt ∧ Ω.

Since dt and dr∗ are spherically symmetric, these can be projected onto the
l = 0 spherical harmonic (equivalently, we can contract on the S2 volume).
Since there is no l = 0 component for the 1-forms ω0, ω1, (∗S2)ω0 and (∗S2)ω1,
we find,

∂r∗(σl=0r
2) = 0,

∂t(σl=0r
2) = 0,

∂r∗(ρl=0r
2) = 0,

∂t(ρl=0r
2) = 0.

From which it follows that the l = 0 components are given by integration constants
qE and qB,

ρl=0 =
qE

r2
,

σl=0 =
qB

r2
.

Thus, there is no dynamics in the l = 0 mode, since the t derivative is always
zero. These solutions do not decay sufficiently rapidly to have finite conformal
energy.

The exclusion of these spherically symmetric solutions is physically reasonable.
Physically, the solutions represent a perturbation of the Schwarzschild black hole
to a charged Reissner–Nordstrom solution, not an external perturbation by radia-
tion. Price refers to these spherically symmetric solutions as the “non-radiatable”
modes, since the solutions in this two parameter family are static. Since the Maxwell
equations are linear and commute with angular derivatives, the spherically symmet-
ric component does not couple to the other components, so it will not affect the
rest of our analysis to eliminate the spherically symmetric components. In analogy
with the theory of solitons, we might think of the Reissner–Nordstrom solutions
as a manifold in the space of solutions to the Maxwell–Einstein system. In this
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case, the decoupled Maxwell equations with l > 0 correspond to linearized per-
turbations from this manifold, whereas perturbations with l = 0 correspond to
linearized perturbations along the manifold of stationary solutions.

Appendix B. Analysis of the Wave Equation

We now prove decay estimates for solutions to the wave equation (3.29). For this
equation, there is also an energy and conformal energy, which we use in our analy-
sis. As with the Maxwell field, we must control the trapping of u near the photon
sphere to control the growth of the conformal charge. We do this with a local
decay estimate and employ light-cone localization to obtain a local decay esti-
mate of the full strength we require. The arguments and results of this section
are a slight modification of the argument in [4], only, in this case, the situation is
simpler.

For the wave equation on the Schwarzschild manifold, previous analysis [2, 4, 9]
has required a decomposition onto spherical harmonics. On each spherical harmonic,
the wave equation can be treated as a one-dimensional wave equation with an
effective potential. The main estimate uses a vector field, γ, which points away from
the maximum of the effective potential. In the case of the geometrically defined
wave equation, the location of these maxima depend on the spherical harmonic
parameter, and γ has been modified to fit each spherical harmonic. The equation
(3.29) is simpler, with the maxima of the effective potential always at r∗ = 0. Thus,
a very minor modification of the previous analysis allows us to make the estimate
without using a spherical harmonic decomposition.

Since the potential VL = 1
r2 (1 − 2M/r) is real-valued, we may analyze the real

and complex parts, which each satisfy (3.29), separately. Thus, we may assume our
solutions are real-valued.

We use the method of multipliers to analyze (3.29). Although it may be possible
to introduce a Lagrangian formulation and an energy-momentum tensor, we do
not do so because this is not the geometrically defined wave equation ∇α∇α(r−1u)
so the Lagrangian for this equation is quite artificial, because there would be a
confusion between the energy-momentum for u and that of the full Maxwell field,
and because some of the energies would require correction terms. The essence of the
method is to choose a “multiplier” (a differential operator), apply it to the function
u, multiply by the equation, and integrate by parts. The most useful differential
operators are typically those given by the vector fields from the Lagrangian method.

We begin by recalling the energy and conformal energy, which were defined in
Sec. 3. Conservation of energy follows simply from the method of multipliers with
the multiplier T = ∂t. Multiplying (3.29) by ∂tu, we find

0 = (∂tu)
(
−∂2

t u + ∂2
r∗u +

1
r2

(1 − 2M/r)∆S2u

)

= −1
2
∂t(|∂tu|2 + |∂r∗u|2 + VL|	∇u|2) + ∂r∗(∂tu∂r∗u)+ 	∇ · (VL∂tu 	∇u). (B.1)
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Integrating over a space-time slab gives conservation of energy:

E[u](t) − E[u](0) = 0.

Using the method of multipliers with K gives

EC [u](t2) − EC [u](t1) =
∫

[t1,t2]×R×S2
2t(2VL + r∗V ′

L)|	∇u|2dr∗d2ωdt

≤
∫

[t1,t2]×R×S2
tχtrap|	∇u|2dr∗d2ωdt. (B.2)

This is similar to the estimate for the Maxwell equations. For this analysis, it is
useful to introduce an energy localized inside the light cone. We let

Emin =
∫
{t}×[−(3/4)t,(3/4)t]×S2

edr∗d2ω.

We need a variety of Hardy estimates.

Lemma B.1. If t ≥ 1, χH is a non-negative function which is positive in some
open set |r∗| < 1, and α > 0, then if f : R × S2 is a smooth function, and u :
[t1, t2] × R × S2 → R is smooth with t ∈ [t1, t2] and u(t) = f, then∫

{t}×[−(3/4)t,(3/4)t]×S2

|f |2
(1 + r∗2)

dr∗d2ω

≤ CEmin[u](t),∫
{t}×[−(1/2)t,(1/2)t]×S2

|f |2
(1 + |r∗|)α+2

dr∗d2ω

≤ C

∫
{t}×[−(1/2)t,(1/2)t]×S2

|∂r∗f |2
(1 + |r∗|)α

+ χH |f |2dr∗d2ω.

Proof. We start working with α ≥ 0. When r∗1 > 0,

|f(r∗1)|2
(1 + r∗1)α+1

− |f(0)|2 =
∫ r∗1

0

∂r∗
|f |2

(1 + r∗)α+1
dr∗

=
∫ r∗1

0

2f∂r∗f

(1 + r∗)α+1
− (α + 1)

|f |2
(1 + r∗)α+2

dr∗

≤ α + 1
2

∫ r∗1

0

|f |2
(1 + r∗)α+2

dr∗ +
2

α + 1

∫ r∗1

0

|∂r∗f |2
(1 + r∗)α

dr∗

− (α + 1)
∫ r∗1

0

|f |2
(1 + r∗)α+2

dr∗

∫ r∗1

0

|f |2
(1 + r∗)α+2

dr∗ ≤ 4
(α + 1)2

∫ r∗1

0

|∂r∗f |2
(1 + r∗)α

dr∗ +
2

α + 1
|f(0)|2.
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Since, for any exponent β ≥ 0, (1 + r∗)β is equivalent to (1 + r∗2)β/2 on [0,∞), the
powers of (1 + r∗) can be replaced by (1 + r∗2)1/2. By symmetry, the same result
holds on (−r∗1, 0]. Since (1 + r∗2)−β is uniformly equivalent to (1 + (r∗ − r∗0)2)−β

for r∗0 in a finite interval, the |f(0)|2 term can be replaced by |f(r∗0)|2 in any fixed
interval.

For α = 0, we take r∗1 = (3/4)t. By integrating the estimate over r∗0 with r∗0

in (1/2, 3/4), where VL is strictly positive, and then integrating over the angular
variables, we find∫

{t}×[−(3/4)t,(3/4)t]×S2

|f |2
(1 + r∗2)

dr∗d2ω ≤ CEmin[u](t).

Similarly, taking r∗1 = (1/2)t and α > 0, for any non-negative function, χH , which
is positive in some open set inside |r∗| ≤ t,∫

{t}×[−(1/2)t,(1/2)t]×S2

|f |2
(1 + |r∗|)α+2

dr∗d2ω

≤ C

∫
{t}×[−(1/2)t,(1/2)t]×S2

|∂r∗f |2
(1 + |r∗|)α

+ χH |f |2dr∗d2ω.

We now prove a local decay estimate to control the trapping terms. To do this,
we use a radial multiplier γ in terms of a weight g,

γ = g∂r∗ + (∂r∗g)/2.

Assuming that the weight g is a function of the t and r∗ variables only, we have,

−∂t(2u̇γu) = −∂t(2u̇g∂r∗u + u̇(∂r∗g)u)

= −∂r∗
(
g(∂r∗u)2 + (∂r∗u)(∂r∗g)u − VLg(	∇u)2 + g(u̇)2

)
− 	∇ · (VL(	∇u)gu)

+ 2(∂r∗g)(∂r∗u)2 − (∂3
r∗g)u2

2
− (∂r∗VL)g|	∇u|2

− 2u̇ġ(∂r∗u) − u̇(∂r∗ ġ)u.

We use the notation

Eγ [u](t) =
∫
{t}×R×S2

u̇(γu)dr∗d2ω.

Integrating over a space-time slab,

−2Eγ [u](t2) + 2Eγ [u](t1)

=
∫

[t1,t2]×R×S2

(
2(∂r∗g)(∂r∗u)2 − (∂3

r∗g)u2

2
− (∂r∗VL)g|	∇u|2

− 2u̇ġ(∂r∗u) − u̇(∂r∗ ġ)u
)
dr∗d2ωdt. (B.3)
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Taking χ[−3/4,3/4] to be smooth, non-negative, compactly supported in
[−3/4, 3/4], and identically 1 on [−1/2, 1/2], b to be a sufficiently small param-
eter to be chosen later, and σ ∈ (1, 2], we set

χLC = χ[−3/4,3/4](r∗/t),

g̃ =
∫ r∗

0

1
1 + b|y|σ dy,

g(t, r∗) = tg̃χLC.

We now expand and group the terms on the right of (B.3),

−2Eγ [u](t2) + 2Eγ [u](t1)

=
∫

[t1,t2]×R×S2
2tχLC(∂r∗ g̃)(∂r∗u)2 − tχLC(∂r∗VL)g̃|	∇u|2dr∗d2ωdt (B.4)

−
∫

[t1,t2]×R×S2
tχLC

(∂3
r∗ g̃)u2

2
dr∗d2ωdt (B.5)

+
∫

[t1,t2]×R×S2
2tg̃(∂r∗χLC)(∂r∗u)2dr∗d2ωdt (B.6)

−
∫

[t1,t2]×R×S2
t(3(∂r∗χLC)(∂2

r∗ g̃)+ 3(∂2
r∗χLC)(∂r∗ g̃)+ (∂3

r∗χLC)g̃)
u2

2
dr∗d2ωdt

(B.7)

−
∫

[t1,t2]×R×S2
2u̇ġ(∂r∗u) + u̇(∂r∗ ġ)udr∗d2ωdt. (B.8)

The terms on the right in lines (B.6)–(B.8) can be estimated by the local energy.
(In these calculations, remember that t−1 < r∗−1 and inverse powers of t arise from
differentiating χLC.)∫

{t}×R×S2
2tg̃(∂r∗χLC)(∂r∗u)2dr∗d2ω

≤ C

∫
{t}×[−(3/4)t,(3/4)t]×S2

(∂r∗u)2dr∗d2ω < CEmin,

∫
{t}×R×S2

|t(3(∂r∗χLC)(∂2
r∗ g̃) + 3(∂2

r∗χLC)(∂r∗ g̃) + (∂3
r∗χLC)g̃)

u2

2
|dr∗d2ω

≤ C

∫
{t}×[−(3/4)t,(3/4)t]×S2

1
1 + |r∗|2 |u|

2dr∗d2ω ≤ CEmin,

∫
{t}×R×S2

|2u̇ġ(∂r∗u) + u̇(∂r∗ ġ)u|dr∗d2ω

≤ C

∫
{t}×[−(3/4)t,(3/4)t]×S2

|u̇|2 + |∂r∗u|2 +
1

1 + |r∗|2 |u|
2dr∗d2ω

≤ CEmin.
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The left-hand side can be estimated similarly by

Eγ(t) ≤ Ct

∫
{t}×[−(3/4)t,(3/4)t]×S2

|u̇|2 + |∂r∗u|2 +
1

1 + |r∗|2 |u|
2dr∗d2ω

≤ CtEmin.

The two terms on the right appearing in line (B.4) are clearly positive, since g̃ is
increasing and was chosen to go from negative to positive at the same value of r∗
as −V ′

L. To control the term in (B.5) by the terms in (B.4), we note that

∂2
r∗ g̃ = −σbsgn(r∗)(1 + b|r∗|)−(σ+1),

∂3
r∗ g̃ = σ(σ + 1)b2(1 + b|r∗|)−(σ+2) − σbδ(r∗),∫

{t}×[−(3/4)t,(3/4)t]×S2
−tχLC

∂3
r∗ g̃

2
|u|2dr∗d2ω

≥ −t

∫
{t}×[−(3/4)t,(3/4)t]×S2

χLC
σ(σ + 1)b2

2
(1 + b|r∗|)−(σ+2)|u|2dr∗d2ω.

We divide the range of integration into two pieces and use the estimate t/|r∗| < C

when |r∗| > t/2. From this,∫
{t}×R×S2

−tχLC

∂3
r∗ g̃

2
|u|2dr∗d2ω

≥ −t
σ(σ + 1)b2

2

∫
{t}×[−(1/2)t,(1/2)t]×S2

(1 + b|r∗|)−(σ+2)|u|2dr∗d2ω

−σ(σ + 1)b2

2

∫
{t}×{|r∗|∈[(1/2)t,(3/4)t]}×S2

(1 + b|r∗|)−σ+1|u|2dr∗d2ω.

Applying the Hardy estimates, we find∫
{t}×R×S2

−tχLC

∂3
r∗ g̃

2
|u|2dr∗d2ω

≥ −t
Cσ(σ + 1)b2

2

×
∫
{t}×[−(1/2)t,(1/2)t]×S2

χLC((∂r∗ g̃)(∂r∗u)2 − (∂r∗VL)g̃|	∇u|2)dr∗d2ω

−CEmin.

Taking b sufficiently small, we can dominate the integrand by half the terms in line
(B.4). Thus,

1
2

∫
[t1,t2]×R×S2

tχLC(2(∂r∗ g̃)(∂r∗u)2 − (∂r∗VL)g̃|	∇u|2)dr∗d2ωdt

≤ −2Eγ |t2t1 + C

∫ t2

t1

Emin(t)dt.
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The same estimate holds for LΘiu, so that summing over the components, we have

1
2

∫
[t1,t2]×R×S2

tχLC

(
2(∂r∗ g̃)|∂r∗ 	∇u|2 − (∂r∗VL)g̃|∆S2u|2) dr∗d2ωdt

≤ −2Eγ [	∇u]|t2t1 + C

∫ t2

t1

Emin[	∇u](t)dt.

The left-hand side controls the trapping term by the Hardy estimate. Since the
trapping term controls the growth of the conformal charge,

EC [u](t2) ≤ EC [u](0) + | − 2Eγ [	∇u]|t20 | + C

∫ t2

0

Emin[	∇u](t)dt,

≤ CEC [u](0) + sup
t∈[0,t2]

(tEmin[	∇u](t)) + C

∫ t2

0

Emin[	∇u](t)dt.

Since E[	 ∇u] is conserved, there is an immediate linear bound on the conformal
charge. By applying the Cauchy–Schwartz estimate and integration by parts both
twice, we can make the estimate

Emin[	∇u](t) ≤ E[∆2
S2u](t)1/4

(
EC [u](t)

t2

)3/4

.

This allows us to make a self-improving estimate. From the linear bound, the con-
formal energy cannot grow faster than t1/4, and the t1/4 implies a uniform bound.
Thus,

EC [u](t) ≤ C(EC [u](0) + E[∆2
S2u](0)),∫

[0,∞)×R×S2
tχ|	∇u|2dr∗d2ω ≤ C(EC [u](0) + E[∆2

S2u](0)).

Applying the same argument with the factors of t and χLC dropped, so that
g(t, r∗) = g̃(r∗), we find∫

[0,∞)×R×S2

1
(1 + |r∗|4) |u|

2dr∗d2ω ≤ CE[u].
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