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Abstract: In this paper we investigate the algebraic structure of AdS/CFT in the
strong-coupling limit. We propose an expression for the classical r-matrix with (defor-
med) u(2|2) symmetry, which leads to a quasi-triangular Lie bialgebra as the underlying
symmetry algebra. On the fundamental representation our r-matrix coincides with the
classical limit of the quantum R-matrix.

1. Introduction and Overview

In the last five years since the discovery of integrable structures in the AdS/CFT cor-
respondence [1–4] much progress has been made towards a complete solution of the
two sides of the correspondence, superstring theory on Ad S5 × S5 and N = 4 SYM
theory, in the large-Nc limit. Indeed, assuming integrability, long-range Bethe Ansätze
which fully describe the asymptotic spectrum of long operators or string states with
large spins have been proposed [5]. These Bethe Ansätze use the factorised S-matrix
[6] which describes the scattering of elementary excitations. For a generic integrable
model, where our excitations, or magnons in the spin chain picture, carry momentum or
rapidity u it is not sufficient to work only with an ordinary semi-simple Lie algebra g,
instead we usually work with the loop algebra g[u, u−1], its affinisation ĝ or with related
deformations of these structures to account for the spectral parameter. These deforma-
tions include (double) Yangians DY(g) and quantum affine algebras Uq(ĝ), which lead
to rational and trigonometric S-matrices on evaluation representations, where the loop
variable u simply takes the value of some complex number and has the physical interpre-
tation as the magnon rapidity. We can get these S-matrices on evaluation representations
by solving the invariance equation [�(JA),S] = 0 for a minimal set of generators JA

of the respective algebra. Alternatively they can be obtained from the representation
of the universal R-matrix in case the underlying symmetry is a quasi-triangular Hopf
algebra. This is the case for Yangians and quantum affine algebras. Note that in order
to get a rapidity-dependent S-matrix it is usually not sufficient to demand invariance
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[�(JA),S] = 0 only for JA ∈ g, but also for some JA ∈ DY(g), since the ordinary Lie
generators usually do not depend on a spectral parameter.

For the AdS/CFT correspondence the symmetry algebra in question is psu(2, 2|4),
which is broken to u(1)� psu(2|2)⊕ psu(2|2)� u(1) upon choosing a vacuum state in
the Bethe ansatz. Due to the direct sum structure of this residual symmetry we can work
with one copy of psu(2|2). Interestingly, psu(2|2) seems to be the only basic classical
Lie superalgebra which allows for a non-trivial three-dimensional central extension
psu(2|2)�R

3, and indeed this central extension seems necessary to derive the S-matrix
for our model. This centrally extended algebra arises both on the gauge [7] and string
theory [8] side of the correspondence. Interestingly, the S-matrix is already fully fixed
[7] up to a factor by demanding only invariance under the Lie algebra generators of
psu(2|2) � R

3, without referring to an additional loop algebra or something similar.
One only needs to introduce an additional braiding element [9,10] and identify the
central charges and the braiding such that the central elements are all cocommutative.
In that case, the S-matrix also depends on spectral parameters. The reason why it is
fully fixed by the Lie algebra generators lies in the fact that the tensor product of two
fundamental representations of psu(2|2)�R

3, in which the elementary magnons live, is
generically irreducible [11]. Nevertheless, one might wonder if one can lift thepsu(2|2)�
R

3 symmetry to some loop algebra or one of its deformations. It has been known for
several years that there are some Yangian structures appearing on both sides of the
correspondence [3,12–16]. Indeed, in [17] it has been shown that the S-matrix is invariant
under the braided Yangian Y(psu(2|2) � R

3). Recently there have been lots of other
activities studying the encountered algebraic structures, see [18–21]. Since a Yangian
usually has a universal R-matrix, it is natural to ask if the S-matrix on the fundamental
evaluation representation arises as the representation of this R-matrix. In particular the
overall phase of the S-matrix would directly follow. Due to quasi-triangularity, which
is closely related to crossing symmetry, see [22], the dressing factor of the universal
R-matrix is constrained and perhaps fully fixed. This might lead to a derivation of the
phase factor proposed in [23,24] from first principles.

Even though there are standard methods how to construct the Yangian including its
universal R-matrix for simple Lie algebras [25], there are several reasons why we cannot
apply them in a simple fashion for our system. The main one seems to be the peculiar
situation that our algebra psu(2|2)�R

3 has a non-trivial centre. This implies that the al-
gebra is not simple and does not even admit a non-degenerate invariant supersymmetric
bilinear form.1 Then there is the braiding element, which has to be related to the central
charges in order to have cocommutativity on the centre. Furthermore, the ordinary Yan-
gian spectral parameter also needs to be related to the central charges and the braiding.
This makes the situation pretty complicated. Hence, investigating the classical bialgebra
seems a promising way to study the underlying full quantum Hopf algebra and get an
idea how to obtain its universal R-matrix. The crucial ingredient for the bialgebra is the
classical r-matrix, which for our system was first investigated in [26]. In fact, a similar
classical r-matrix, where the momentum scales differently with the coupling constant,
was obtained directly from perturbation theory on the world sheet in [27], and in subse-
quent papers [28] the two-loop correction to the classical r-matrix have been computed.
In [29], an algebraic expression for the classical r-matrix in the limit performed in [26]
was written down which seems to indicate that the bialgebra is not the standard loop
algebra of psu(2|2). This would probably imply that the universal R-matrix cannot be

1 One can obtain a non-degenerate form by adjoining outer automorphisms, which however do not live on
the fundamental representation.
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obtained by the standard methods. However, in this paper we argue that the classical
r-matrix of psu(2|2)� R

3 and the quasi-triangular Lie bialgebra which arises from this
classical r-matrix are almost given by the standard formulae.

We begin by reviewing Lie bialgebras and their relation to Yangian doubles in Sect.
2. In Sect. 3 we apply these methods to psu(2|2) � R

3. We give explicit expressions
for the corresponding Lie bialgebra and its classical r-matrix in Sect. 4 and relate it to
standard algebras in Sect. 5. Different classical limits are investigated in Sect. 6. Finally,
we provide first steps in lifting the classical bialgebra structure to the quantum case in
Sect. 7.

2. Classical r-Matrix and Lie Bialgebras

In this section we will review the basic construction of bialgebras, classical r-matrices
and how they arise as limiting cases of certain Hopf algebras. In particular, we are
interested in the bialgebra structure of polynomials (or Laurent series) with values in a
semi-simple Lie algebra, which lead upon quantisation to (double) Yangians, which in
turn lead to rational solutions of the Yang-Baxter equation (YBE). We will deal only with
the case of simple Lie algebras; the interested reader will find more details and proofs for
this case in the textbook of Chari and Pressley [30] or in Drinfeld’s original report [31].
For later purposes let us note that the generalisation to the case of Lie superalgebras as
well as to non-simple Lie algebras; and superalgebras is straightforward provided they
allow for a non-degenerate supersymmetric invariant bilinear form.

2.1. R-matrix and double Yangian.

Double Yangian. Consider a semi-simple Lie algebra g spanned by the generators JA

obeying the Lie bracket

[JA, JB] = F AB
C JC (2.1)

with the structure constants F AB
C . Define furthermore the Cartan–Killing matrix C AB ∼

F AC
D F B D

C , its inverse CAB and the conjugated structure constants F A
BC = F AD

B CDC .
Then the double Yangian DY(g) is a deformation of the universal enveloping algebra

U(g[u, u−1]) of the loop algebra g[u, u−1]. It is generated by the level-n generators JA
n ,

n ∈ Z, with level-zero defined to span the Lie algebra, JA
0 = JA. The commutation

relations of these generators read

[JA
m, J

B
n ] = F AB

C JC
n+m + O(�), (2.2)

where � is the deformation parameter. The precise form of the deformations for the
algebra does not appear very enlightening, and we have not made it explicit here. Their
coproduct takes the standard form

�(JA
n ) = JA

n ⊗ 1 + 1 ⊗ JA
n + �

n−1∑

m=0

1
2 F A

BCJB
n−1−m ⊗ JC

m + O(�2). (2.3)
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Universal R-matrix. The double Yangian is quasi-triangular, it has been constructed
as a quantum double of the original Yangian in [25]. This means it has an R-matrix
R ∈ DY(g)⊗ DY(g) obeying the cocommutativity relation

�̃(JA
n )R = R�(JA

n ) (2.4)

with �̃ := P ◦� being the opposite coproduct and P the permutation operator. Addi-
tional relations ensure that the YBE holds. We neither spell out these relations nor the
explicit form of the universal R-matrix as we do not need them in what follows.

Evaluation representations. Often one considers evaluation representations of the
Yangian. These representations are most relevant for integrable spin chains and most
transparent. On a state |u〉 an evaluation representation of the double Yangian is defined
by the action

JA
n |u〉 = unJA

0 |u〉 + O(�) i.e. JA
n � unJA

0 + O(�). (2.5)

The representation of R on a state |u1〉 ⊗ |u2〉 then becomes the matrix-valued function
R(u1, u2) which is typically of a difference form R(u1 − u2), and leads to rational
solutions of YBE. For invariance of R(u1, u2) one merely needs to check invariance
under JA

0 and JA
1 for invariance under JA

n follows from an identity

�(JA
n ) � un−1

1 − un−1
2

u−1
1 − u−1

2

�(JA
0 ) +

un
1 − un

2

u1 − u2
�(JA

1 ) + O(�) (2.6)

which holds for evaluation representations.

2.2. Classical limit and Lie bialgebra.

Classical Limit. Now let us consider the classical limit of the above algebra where we
restrict to the first order in � everywhere. We first expand the coproduct and opposite
coproduct

� = �0 + ��1 + O(�2), �̃ = �0 + ��̃1 + O(�2). (2.7)

The classical r-matrix is obtained from the quantum R-matrix by expansion in the
deformation parameter �,

R = 1 ⊗ 1 + � r + O(�)2. (2.8)

By substituting these two expressions into the quasi-cocommutativity (2.4) relation we
obtain

[�0(J
A
n ), r ] = �1(J

A
n )− �̃1(J

A
n ). (2.9)

Similarly, if R satisfies the quantum YBE R12R13R23 = R23R13R12, it is straightfor-
ward to check that the classical r-matrix will satisfy

[[r, r ]] := [r12, r13] + [r12, r23] + [r13, r23] = 0, (2.10)

which is called the classical Yang-Baxter equation (CYBE).



Classical r-Matrix of AdS/CFT and its Lie Bialgebra Structure 541

Lie bialgebras. The above expansion can be cast into the framework of a Lie bialgebra.
In general, a Lie bialgebra is a Lie algebra g equipped with an antisymmetric linear map,
called the cobracket,

δ : g → g ⊗ g, (2.11)

such that the dual map δ∗ : g∗ ⊗ g∗ → g∗ is an ordinary Lie bracket. This means
that if (F∗)AB

C are structure constants of the cobracket, i.e. δJA = (F∗)BC
AJB ⊗ JC ,

then the same constants define the Lie bracket of g∗ for the corresponding dual basis,
[JA, JB] = (F∗)AB

CJC . Similarly, the structure constants of g define a cobracket on
g∗. Furthermore the cobracket δ is a cocycle, i.e.

δ([J1, J2]) = [J1, δ(J2)] − [J2, δ(J1)], (2.12)

where one extends the Lie bracket canonically to the space g⊗g by defining (with proper
signs due to fermi statistics implicit)

[J1, J2 ⊗ J3] = −[J2 ⊗ J3, J1] := [J1, J2] ⊗ J3 + J2 ⊗ [J1, J3]. (2.13)

We will be especially interested in coboundary bialgebras where the cobracket is
obtained by commuting with a classical r-matrix r ,

δ(J) = [J, r ]. (2.14)

The properties of the Lie bialgebra are satisfied if [[r, r ]], cf. (2.10), is invariant under
the Lie algebra. In particular, if the r-matrix satisfies the classical Yang-Baxter equation
[[r, r ]] = 0 the Lie bialgebra is called quasi-triangular.

The relation (2.14) matches Eq. (2.9) if we relate the cobracket as

δ(JA
n ) = �1(J

A
n )− �̃1(J

A
n ) (2.15)

for according to (2.13) we have [�0(J
A
n ), r ] = [JA

n , r ]. Note that our cobracket (2.15)
is obviously antisymmetric. Thus we have now formulated the relations in the classical
limit purely in terms of a quasi-triangular Lie bialgebra.

In fact, what we presented in this paragraph is quite generic: whenever we have a
quasi-triangular Hopf algebra which is a deformation of a universal enveloping algebra,
we obtain a corresponding quasi-triangular Lie bialgebra by considering the properties
of the Hopf algebra at the lowest orders in the deformation parameter �, see [30].

Loop Algebra. The classical limit of a double Yangian leads to a Lie bialgebra based
on the loop algebra g[u, u−1] of g. It has the standard bracket

[JA
m, J

B
n ] = F AB

C JC
n+m . (2.16)

The cobracket is defined as

δ(JA
n ) = 1

2 F A
BC

n−1∑

m=0

JB
n−1−m ∧ JC

m, (2.17)

with the antisymmetric tensor product

J1 ∧ J2 := J1 ⊗ J2 − J2 ⊗ J1. (2.18)
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It is not hard to confirm that the antisymmetric classical r-matrix

r =
∞∑

n=0

1
2 CC DJC−1−n ∧ JD

n (2.19)

obeys the relation (2.14). Furthermore, [[r, r ]] is algebra-invariant and therefore the
bialgebra is coboundary. In order to satisfy the CYBE [[r, r ]] = 0 we have to choose an
asymmetric form for the r-matrix

r =
∞∑

n=0

CC DJC−1−n ⊗ JD
n or r = −

∞∑

n=0

CC DJC
n ⊗ JD−1−n . (2.20)

In both cases the Lie bialgebra is quasi-triangular.

Evaluation representations. Consider now evaluation representations as above in (2.5).
The representation of the r-matrix on a state |u1〉 ⊗ |u2〉 becomes

r � r(u1, u2) = CC DJC
0 ⊗ JD

0

u1 − u2
. (2.21)

In fact all three forms (2.19), (2.20) are equivalent up to contact terms at u1 = u2.
The above action is proportional to the quadratic Casimir operator of the Lie algebra at
level-0 and therefore obviously

[JA
0 , r ] � 0 = δ(JA

0 ). (2.22)

For the level-one generator JA
1 one also finds that the coboundary relation holds:

[JA
1 , r ] � F A

BCJB
0 ⊗ JC

0 = δ(JA
1 ). (2.23)

For evaluation representations, the coboundary property for the remaining generator JA
n

follows from the level-zero and level-one relations by means of the identity

δ(JA
n ) � un−1

1 − un−1
2

u−1
1 − u−1

2

δ(JA
0 ) +

un
1 − un

2

u1 − u2
δ(JA

1 ). (2.24)

3. Centrally Extended su(2|2)

3.1. Yangian double. We would like to understand the R-matrix that appears in the
context of AdS/CFT on an algebraic level. Its symmetry is based on centrally extended
su(2|2) symmetry [32,7]

h := su(2|2)� R
2 = psu(2|2)� R

3, (3.1)

and it acts on two four-dimensional fundamental representations of h. It is generated
by the su(2)× su(2) generators Ra

b, Lαβ , the supercharges Qα
b, Sa

β and the central
charges C, P, K. Where appropriate, we shall use the collective symbol JA for these
generators. The R-matrix also displays Yangian symmetry Y(h) [17] and by means of
(2.6) double Yangian symmetry DY(h). The level-n generators corresponding to JA

shall be denoted by JA
n .
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Commutators. The Lie brackets of the su(2)× su(2) generators take the standard form

[Ra
b,R

c
d ] = δc

bR
a

d − δa
dRc

b, [Lαβ,Lγ δ] = δ
γ
βLαδ − δαδ Lγ β,

[Ra
b,Q

γ
d ] = −δa

dQγ
b + 1

2δ
a
bQγ

d , [Lαβ,Qγ
d ] = +δγβQα

d − 1
2δ
α
βQγ

d ,

[Ra
b,S

c
δ] = +δc

bS
a
δ − 1

2δ
a
bSc

δ, [Lαβ,Sc
δ] = −δαδ Sc

β + 1
2δ
α
βSc

δ. (3.2)

The Lie brackets of two supercharges yield

{Qα
b,S

c
δ} = δc

bL
α
δ + δαδ Rc

b + δc
bδ
α
δ C,

{Qα
b,Q

γ
d} = εαγ εbdP,

{Sa
β,S

c
δ} = εacεβδK. (3.3)

The remaining Lie brackets vanish. Again, we do not write the commutators of the
level-one generators explicitly.

Coproduct. For the coproduct one should introduce a non-trivial braiding [9,10,17]

�(JA
n ) = JA

n ⊗ 1 + U [A] ⊗ JA
n + 1

2 g−1 F A
BC

n−1∑

k=0

JB
k U [C] ⊗ JC

n−1−k + O(g−2),

�(U) = U ⊗ U , (3.4)

with some abelian generator U (a priori unrelated to the algebra) and the grading

[K] = −2, [S] = −1, [R] = [L] = [C] = 0, [Q] = +1, [P] = +2. (3.5)

This “braid charge” is proportional to the charge under the external u(1) automorphism
B̄ acting as [B̄, JA] = [A]JA, and therefore the coproduct is compatible with the algebra
relations.

To achieve a quasi-cocommutative algebra, the central charges P0,K0,P1,K1 must
be identified with the braiding factor U and the central charge C0 as follows [10,17] 2

P0 = gα
(
1 − U+2

)
, K0 = gα−1

(
1 − U−2

)
,

P1 = αC0
(
1 + U+2

)
, K1 = −α−1C0

(
1 + U−2

)
. (3.6)

From these identifications it follows that the evaluation parameter iu for any evaluation
representation is fixed in terms of the eigenvalues of C and U ,

JA
n � (iu)nJA

0 , iu � g−1C0
1 + U+2

1 − U+2 . (3.7)

2 We set the inessential shift parameter u0 in [17] to zero.
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Fundamental representation. The algebra h has a four-dimensional representation [7]
which we will call fundamental. The corresponding multiplet has two bosonic states
|φa〉 and two fermionic states |ψα〉. The action of the two sets of su(2) generators has
to be canonical

Ra
b|φc〉 = δc

b|φa〉 − 1
2δ

a
b |φc〉, Lαβ |ψγ 〉 = δ

γ
β |ψα〉 − 1

2δ
α
β |ψγ 〉. (3.8)

The supersymmetry generators must also act in a manifestly su(2) × su(2) covariant
way:

Qα
a |φb〉 = a δb

a |ψα〉, Qα
a |ψβ〉 = b εαβεab|φb〉,

Sa
α|φb〉 = c εabεαβ |ψβ〉, Sa

α|ψβ〉 = d δβα |φa〉. (3.9)

We can write the four parameters a, b, c, d using the parameters x±, γ and the constants
g, α as

a = √
g γ, b = √

g
α

γ

(
1 − x+

x−

)
, c = √

g
iγ

αx+ , d = √
g

x+

iγ

(
1 − x−

x+

)
.

(3.10)

The parameters x± (together with γ ) label the representation3 and they must obey the
constraint

x+ +
1

x+ − x− − 1

x− = i

g
. (3.11)

The three central charges C,P,K and U are represented by the values C, P, K and U
which read

C = 1

2

1 + 1/x+x−

1 − 1/x+x− , P = gα

(
1 − x+

x−

)
, K = g

α

(
1 − x−

x+

)
,

U = eip/2 =
√

x+

x− . (3.12)

The coefficient U is most immediately related to the particle momentum p used in
the scattering matrix by U = eip/2. These eigenvalues obey the quadratic relation
C2 − P K = 1

4 by virtue of (3.11). Note that the corresponding quadratic combination
of central charges C2 − PK is singled out by being invariant under the external sl(2)
automorphism of h, see Sect. 5.2.

The representation of the Yangian DY(h) is of evaluation type JA
n � (iu)nJA

0 [17].
The evaluation parameter u is related to the x± parameters by

u = x+ +
1

x+ − i

2g
= x− +

1

x− +
i

2g
= 1

2 (x
+ + x−)(1 + 1/x+x−) . (3.13)

3 For a hermitian representation we should set |γ | = |√−i x+ + i x−| and |α| = 1.
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Fundamental R-matrix. In [7,11] an S-matrix acting on the tensor product of two fun-
damental representations was derived. It was constructed by imposing invariance under
the algebra h [7,11], and it was shown to be invariant under Yangian generators [17]

[�(JA
n ),S] = 0. (3.14)

The S-matrix also satisfies the YBE [7,11]. We will not reproduce the result here, it is
given in [11]. Note that we have to fix the parameters ξ = U = √

x+/x− in order to
make the action of the generators compatible with the coproduct (3.4). 4

From the S-matrix we can read off a fundamental R-matrix

S = PR, (3.15)

where P is a (graded) permutation operator. Upon this identification, invariance of the
S-matrix in (3.14) is equivalent to quasi-cocommutativity (2.4) of the R-matrix.

The next step would be to construct the universal R-matrix for the algebra h. Our
centrally extended algebra h is however not semi-simple and therefore the standard
construction of the universal R-matrix cannot be applied. The main reason for the failure
is that the Cartan–Killing matrix C AB is singular and its inverse CAB , which plays an
important role in the construction, does not exist. Similarly, for the standard construction
of the classical r-matrix one would need the quadratic Casimir 1

2 CABJAJB which does
not exist for our algebra. 5

The R-matrix has one overall phase factor S0,

S0
12 = exp(iθ21)

√
1 − 1/x+

2 x−
1

1 − 1/x−
2 x+

1

x−
2 − x+

1

x+
2 − x−

1

, (3.16)

where θ is the so-called dressing phase. The phase cannot be determined from quasi-
cocommutativity. Quasi-triangularity, however, imposes some constraint which is be-
lieved to give the crossing symmetry relation found in [22]. In [23,24] a proposal for a
crossing-symmetric phase was made. The proposal is fully consistent with perturbative
results from gauge theory [14] and from string theory [34–37].

For simplicity we shall choose a specific dressing factor which does not obey crossing.
It turns out that the light cone string S-matrix [38] leads to convenient and symmetric
expressions. The dressing factor for this case is

S0
12 =

√√√√
√

x+
1 x−

2

x−
1 x+

2

x−
2 − x+

1

x+
2 − x−

1

, (A12)
2 =

√
x+

1 x−
2

x−
1 x+

2

x+
2 − x−

1

x−
2 − x+

1

. (3.17)

At leading order at strong coupling (on which we will focus our attention in the remainder
of the paper) this phase factor agrees with the correct physical result up to a term which
can be absorbed into the definition of the length of the string. Another useful choice is

S0
12 = exp(iθ21)

√
x+

1 x−
2

x−
1 x+

2

1 − 1/x+
2 x−

1

1 − 1/x−
2 x+

1

x−
2 − x+

1

x+
2 − x−

1

, (3.18)

which differs from (3.16) by some factors of the particle momenta leading to a redefini-
tion of the length of a state.

4 This identification removes all braiding factors from the S-matrix in [11] which will thus satisfy the
standard Yang-Baxter (matrix) equation, see also [7,18,33].

5 Due to the deformed coproduct for Lie generators, this is actually not what one really wants.
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3.2. Classical limit and Lie bialgebra. A suitable classical limit for the above S-matrix
is the limit where the particle momenta p scale like � while the coupling constant g
approaches infinity like 1/�. This limit is well-known as the (near) plane wave limit
[39–41,1] (for finitely many excitations above the vacuum) or as the classical limit for
spinning strings [42–45] (for coherent states of infinitely many excitations). In this limit
the evaluation parameter u becomes large as 1/� as for typical classical limits.

One may also consider a different limit u ∼ 1/� but g ∼ 1/�κ with adjustable κ .
The standard classical limit corresponds to κ = 1. For κ > 1 it turns out that limit of
the R-matrix is not of the form R = 1 ⊗ 1 + O(�). Conversely, for κ < 1 the R-matrix
has a classical limit R = 1 ⊗ 1 + O(�), but with an r-matrix which is a twisted version
of the standard u(2|2) r-matrix. We shall review this case in Sect. 6 .

Lie bialgebra. The classical limit described above is the limit g → ∞, i.e. the quantum
parameter is � = g−1, while assuming that

U = exp( i
2 g−1D) (3.19)

with some finite abelian generator D. This ensures that the charges P,K remain finite
in the limit:

P = −iαD + O(g−1), K = iα−1D + O(g−1). (3.20)

The fundamental R-matrix becomes trivial in the limit and the first perturbation yields
the classical r-matrix,

R = 1 ⊗ 1 + g−1r + O(g−2). (3.21)

In the classical limit, the Lie brackets of two supercharges (3.3) read

{Qα
b,S

c
δ} = δc

bL
α
δ + δαδ Rc

b + δc
bδ
α
δ C,

{Qα
b,Q

γ
d} = −iαεαγ εbdD,

{Sa
β,S

c
δ} = iα−1εacεβδD, (3.22)

i.e. the abelian generator D replaces P and K and becomes part of the Lie algebra.
The limit of the coproduct (3.4) yields the cobrackets via (2.15),

δ(JA
n ) = i

2 [A] D ∧ JA
n + 1

2 F A
BC

n−1∑

k=0

JB
k ∧ JC

n−1−k . (3.23)

The grading for the new generator D is obviously trivial [D] = 0.
From these identifications it follows that the evaluation parameter iu for any evalua-

tion representation is fixed in terms of the eigenvalues of C and D,

JA
n � (iu)nJA, u � 2CD−1. (3.24)
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Fundamental representation. The fundamental representation simplifies somewhat in
the classical limit. We choose the following parametrisation [46] for the kinematical
variables x± :

x± = x

√

1 − 1

4g2(x − 1/x)2
± i

2g

x

x − 1/x
, γ = 1√

g
γ̃. (3.25)

The parameters γ̃, x, α are independent of g.
The action of the Lie generators on the 2|2-dimensional representation space spanned

by |φa〉 and |ψα〉 was given in (3.8),(3.9). The limit of the coefficients a, b, c, d are given
as follows:

a = γ̃, b = − iαx

γ̃(x2 − 1)
, c = i γ̃

αx
, d = x2

γ̃(x2 − 1)
. (3.26)

The eigenvalues of the central charges D and C read

D = x

x2 − 1
, C = 1

2

x2 + 1

x2 − 1
. (3.27)

Furthermore, the Yangian spectral parameter u is simply given by u = x + 1/x , so we
immediately confirm (3.24),

u = x +
1

x
= 2C D−1. (3.28)

Finally let us mention that for a hermitian representation we should putα = 1, γ̃ = √
x D.

Fundamental r-matrix. Let us now take the classical limit of the R-matrix in the fun-
damental representation using R = 1 ⊗ 1 + g−1r . The resulting representation of the
classical r-matrix is given in Table 1, see [26]. 6 The choice of the phase corresponds
to the light cone string S-matrix [38] in (3.17). Instead one could also choose the exact
phase factor (3.18) obtained in [34] at the classical level (with a redefinition of length).
In that case one would have to add the term (1 × 1)r0 to r with

r0 � i(x1 − x2)(x1x2 − 1)

4(x2
1 − 1)(x2

2 − 1)
= 1

4 (iu2 − iu1)D1 D2 =(1/ iu2 − 1/ iu1)C1C2. (3.29)

4. A Lie Bialgebra for the Classical r-Matrix

4.1. Moriyama–Torrielli proposal for the classical r-matrix. In [29] the following
expression for the classical r-matrix has been proposed:

rMT =
∞∑

m=0

[
+(Rm)

a
b ⊗ (R̃−1−m)

b
a − (Lm)

α
β ⊗ (L̃−1−m)

β
α

− (R−1−m)
a

b ⊗ (R̃m)
b

a + (L−1−m)
α
β ⊗ (L̃m)

β
α

+ (Qm)
α

a ⊗ (S̃−1−m)
a
α − (Sm)

a
α ⊗ (Q̃−1−m)

α
a

+ Cm ⊗ B̃−1−m + Bm ⊗ C̃−1−m

]
. (4.1)

6 One should be able to read off the elements of the diagonalised r-matrix from the integral kernels in [47].



548 N. Beisert, F. Spill

Table 1. The classical (light cone) r-matrix of AdS/CFT

r |φaφb〉 = 1
2 (A12 − B12)|φaφb〉 + 1

2 (A12 + B12)|φbφa〉 + 1
2 C12ε

abεαβ |ψαψβ 〉
r |ψαψβ 〉 = − 1

2 (D12 − E12)|ψαψβ 〉 − 1
2 (D12 + E12)|ψβψα〉 − 1

2 F12ε
αβεab|φaφb〉

r |φaψβ 〉 = G12|φaψβ 〉 + H12|ψβφa〉
r |ψαφb〉 = K12|φbψα〉 + L12|ψαφb〉

1
2 (A12 + B12) = 1

iu1 − iu2

1
2 (A12 − B12) = (x1 − x2)

2(x1x2 + 1)2

4x1x2(x
2
1 − 1)(x2

2 − 1)(iu1 − iu2)
= + 1

2 + 1
4 D1 D−1

2 + 1
4 D−1

1 D2

iu1 − iu2

1
2 C12 = i γ̃1γ̃2(x1 − x2)

αx1x2(iu1 − iu2)
= a1c2 − c1a2

iu1 − iu2

− 1
2 (D12 + E12) = − 1

iu1 − iu2

− 1
2 (D12 − E12) = − (x1 − x2)

2(x1x2 + 1)2

4x1x2(x
2
1 − 1)(x2

2 − 1)(iu1 − iu2)
= − 1

2 − 1
4 D1 D−1

2 − 1
4 D−1

1 D2

iu1 − iu2

− 1
2 F12 = − iαx1x2(x1 − x2)

γ̃1γ̃2(x
2
1 − 1)(x2

2 − 1)(iu1 − iu2)
= d1b2 − b1d2

iu1 − iu2

G12 = (x2
1 − x2

2 )(x
2
1 x2

2 − 1)

4x1x2(x
2
1 − 1)(x2

2 − 1)(iu1 − iu2)
= − 1

4 D1 D−1
2 + 1

4 D−1
1 D2

iu1 − iu2

H12 = γ̃1x2(x1x2 − 1)

γ̃2x1(x
2
2 − 1)(iu1 − iu2)

= a1d2 − c1b2

iu1 − iu2

K12 = γ̃2x1(x1x2 − 1)

γ̃1x2(x
2
1 − 1)(iu1 − iu2)

= d1a2 − b1c2

iu1 − iu2

L12 = − (x2
1 − x2

2 )(x
2
1 x2

2 − 1)

4x1x2(x
2
1 − 1)(x2

2 − 1)(iu1 − iu2)
= + 1

4 D1 D−1
2 − 1

4 D−1
1 D2

iu1 − iu2

Formally, it looks similar to the standard u(2|2) classical r-matrix in (2.20). The only
difference is that for the su(2)×su(2) generators there are additional terms with inverted
level numbers in the second line.

To recover the above fundamental r-matrix in Table 1, a representation quite different
from the standard evaluation representation was used:

(Qm)
α

b � (Q̃m)
α

b � Qα
b(x

m�b + x−m�f),

(Sm)
a
β � (S̃m)

a
β � Sa

β(x
m�f + x−m�b),

(Rm)
a

b � Ra
b

xm+1 − x−m−1

x − x−1 ,

(R̃m)
a

b � −Ra
b

xm−1 − x−m+1

x − x−1 ,

(Lm)
α
β � Lαβ

xm+1 − x−m−1

x − x−1 ,
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(L̃m)
α
β � −Lαβ

xm−1 − x−m+1

x − x−1 ,

Cm � C̃m � 1

2

xm+1 + x−m−1

x − x−1 ,

Bm � B̃m � 1

2
(xm − x−m) . (4.2)

This representation is quite unusual since it does not treat the different generators on an
equal footing and since it makes a distinction between bosons and fermions by means of
the projection operators�b,f . The argument of the authors of [29] not to use the standard
evaluation representation Jn = xnJ was due to the fact that that this would lead to a
classical r-matrix with poles only in x1 = x2 and none at x1 = 1/x2, in agreement with
Table 1. Furthermore, the proposed Lie brackets look quite complicated; they are not of
a standard loop algebra form, and we shall not reproduce them here. We do not know
whether the brackets obey the Jacobi identities and whether the r-matrix satisfies the
CYBE using these brackets; no statement was made in [29].

In contrast, it was shown in [17] that the psu(2|2)�R
3 fundamental R-matrix is inva-

riant under Yangian generators for an ordinary evaluation representation with evaluation
parameter iu with u = x + 1/x . A reason for this superficial mismatch was proposed in
[29]: The work [17] was formulated in Drinfeld’s first realisation of the Yangian, and the
work [29] was formulated in the second. In principle there might be a non-trivial map
between the two realisations which would make the two representations equivalent.

We should note that the procedure applied in [29] is not necessarily unique. There
may be several representations leading to the same fundamental r-matrix in Table 1 upon
inserting into the above classical r-matrix because often several terms of the classical
r-matrix contribute to a single matrix element of the fundamental r-matrix. One needs
to make a choice of how to distribute the individual terms to these contributions from
the classical r-matrix. Apparently the choice of a symmetric distribution was made in
[29] which led to the above representation. Furthermore, it was admitted in [29] that the
resulting algebra is not unique.

Here we note that a loop variable iu with u = x + 1/x automatically leads to poles at
x1 = x2 and x1 = 1/x2 as required for the fundamental r-matrix. Instead of producing
just the right poles in each term, one might in this way attempt to cancel the wrong
poles. As the determination of the representation is not unique, this can indeed lead to
the same fundamental r-matrix using the above (or a similar) classical r-matrix. In the
remainder of this section we shall make an alternative proposal for a normal evaluation
representation based on iu, a consistent Lie algebra and a classical r-matrix obeying the
CYBE. This leads to a direct analog of the Yangian considered in [17]. At this point we
cannot say whether the proposal of [29] is consistent with ours and merely represents a
very different choice of basis. A change of basis can indeed lead to superficially quite
different algebras as the example in Sect. 5.1 shows. In any case, we find our proposal
more natural and it is probably easier to deal with because it employs standard evaluation
representations and an (almost) standard loop algebra.

4.2. Observation. The standard form for the classical r-matrix (2.20) makes use of the
quadratic Casimir. Unfortunately, it does not exist for our algebra h because the sl(2)
automorphisms would be required to complement the central charges, see Sect. 5.2.
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Nevertheless the quadratic Casimir operator for psu(2|2) can be written within h,

T = 1
2Rc

dRd
c − 1

2Lγ δL
δ
γ + 1

2Qγ
dSd

γ − 1
2Sc

δQ
δ

c. (4.3)

The corresponding two-site operator reads

T12 = Rc
d ⊗ Rd

c − Lγ δ ⊗ Lδγ + Qγ
d ⊗ Sd

γ − Sc
δ ⊗ Qδ

c. (4.4)

Here we make the crucial observation that all the off-diagonal elements of the
r-matrix in Table 1 are generated by the operator T12/(iu1 − iu2). To make this state-
ment more transparent, we have written the coefficients in Table 1 in an alternative form
using the coefficients a, b, c, d (3.26) which determine the action of supercharges. The
diagonal elements, however, are not reproduced correctly. Nevertheless the remainder
takes a peculiar form in which two signs only depend on whether the state the r-matrix
acts upon consists of bosons or fermions. Formally, we can achieve full agreement with
the fundamental r-matrix by the following expression:

r12 = T12 − T D−1 ⊗ D − D ⊗ T D−1

iu1 − iu2
. (4.5)

However, this is not an element of h⊗h but rather of its enveloping algebra. Furthermore,
the element D is strictly speaking not invertible. That means that formally the expression
(4.5) may be used to compute the r-matrix in evaluation representations, but it is not a
universal r-matrix. Before we continue, let us rewrite the r-matrix in a slightly different
manner:

r12 = T12 − (iu1/ iu2)T C−1 ⊗ C − (iu2/ iu1)C ⊗ T C−1

iu1 − iu2

= T12 − T C−1 ⊗ C − C ⊗ T C−1

iu1 − iu2
− T C−1 ⊗ C

iu2
+

C ⊗ T C−1

iu1
. (4.6)

Clearly we have not gained anything by this transformation, but this will be a more
convenient starting point for our further analysis.

4.3. A deformation of the u(2|2) loop algebra. To accommodate the r-matrix in a Lie
bialgebra it should consist of bilinear terms in the generators only. Instead of T C−1 we
should have a single Lie generator B. Let us therefore examine the commutators of this
combination and see if we can interpret them as Lie brackets

[T C−1,Qα
b] = +Qα

b + iαεαγ εbdDC−1Sd
γ ,

[T C−1,Sa
β ] = −Sa

β + iα−1εacεβδDC−1Qδ
c. (4.7)

The resulting linear terms are clearly okay. For the cubic terms we note that u = 2C D−1,
which means that we may interpret the combination DC−1 as a shift in the level of a loop
algebra generator. If we introduce B such that its brackets coincide with commutators
of T C−1, the loop algebra becomes

[Bm, (Qn)
α

b] = +(Qm+n)
α

b − 2αβεαγ εbd(Sm+n−1)
d
γ ,

[Bm, (Sn)
a
β ] = −(Sm+n)

a
β − 2α−1βεacεβδ(Qm+n−1)

δ
c. (4.8)
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Here we have introduced a parameter β which in our case equals β = 1.7 In fact these
relations are very reminiscent of the automorphism in u(2|2). The deformation parameter
β in fact interpolates between the standard u(2|2) loop algebra, which we get for β = 0,
and our algebra. 8 The remaining brackets of B should be trivial

[Bm,Cn] = [Bm, (Rn)
a

b] = [Bm, (Ln)
α
β ] = 0. (4.9)

Finally, because we have u = 2C D−1, we may identify Dn = 2iCn−1 and obtain for
the brackets of supercharges

{(Qm)
α

b, (Sn)
c
δ} = δc

b(Lm+n)
α
δ + δαδ (Rm+n)

c
b + δc

bδ
α
δ (Cm+n),

{(Qm)
α

b, (Qn)
γ

d} = 2αβεαγ εbdCm+n−1,

{(Sm)
a
β, (Sn)

c
δ} = −2α−1βεacεβδCm+n−1. (4.10)

The brackets of su(2) × su(2) are undeformed and given in (3.2) (supplemented with
additive levels of the loop algebra). It is not difficult to confirm that these brackets obey
the Jacobi identity for arbitrary α, β and therefore they define a family of Lie algebras.
In fact, the algebra can be embedded into the regular u(2|2) loop algebra as we shall see
below in Sect. 5.1.

The action of B on the fundamental representation for β = 1 should be equal to
T C−1 which yields

B|φa〉 = − 1

4C
|φa〉, B|ψα〉 = +

1

4C
|ψα〉. (4.11)

4.4. Classical r-matrix and cobrackets. We can now write down a classical r-matrix for
our Lie algebra by substituting B for T C−1 in (4.6),

r12 = T12 − B ⊗ C − C ⊗ B

iu1 − iu2
− B ⊗ C

iu2
+

C ⊗ B

iu1
. (4.12)

This expression assumes evaluation representations, but we can reexpress it in full
generality using loop algebra generators

r = rpsu(2|2) −
∞∑

m=−1

B−1−m ⊗ Cm −
∞∑

m=+1

C−1−m ⊗ Bm (4.13)

with the classical r-matrix rpsu(2|2) for psu(2|2),

rpsu(2|2) = +
∞∑

m=0

(R−1−m)
c

d ⊗ (Rm)
d

c −
∞∑

m=0

(L−1−m)
γ
δ ⊗ (Lm)

δ
γ

+
∞∑

m=0

(Q−1−m)
γ

d ⊗ (Sm)
d
γ −

∞∑

m=0

(S−1−m)
c
δ ⊗ (Qm)

δ
c. (4.14)

7 In fact one may keep the parameter β arbitrary if one inserts it into the relations (3.6) as well. Essentially
β corresponds to a rescaling of g.

8 Note that we also have u(2|2) symmetry in the alternative limit discussed in Sect. 6, where we provide
further details.



552 N. Beisert, F. Spill

This expression is almost the standard form for u(2|2)[iu, (iu)−1], but note that the
lower bound on the sum for the B-C terms is shifted by ±1 due to the extra terms
in (4.12). To motivate the extra term C−1 ∧ B0 recall that the coproduct (3.4) is not
the ordinary Yangian coproduct but contains an additional braiding factor. For undefor-
med u(2|2)[iu, (iu)−1] this braided coproduct can easily be obtained from the standard
coproduct via a Reshetikhin twist transformation [48]

�(J) = F�0(J)F−1, R = P(F)R0F−1, (4.15)

with F = exp(−g−1C−1 ⊗ B0). The requirements for the transformation in [48] are
satisfied because the coproducts of the Cartan elements C−1 and B0 are both trivial. The
twist F = 1 ⊗ 1 + g−1 f + O(g−2) will contribute to the classical r-matrix by the term
− f +P( f ). Indeed, C−1 ∧B0 = − f +P( f ) is the classical contribution from the twist.

It is also straightforward to include the AFS phase (3.29) by adding to (4.13),

r0 = −C−1 ∧ C0. (4.16)

Note that curiously one can combine the extra term discussed above with the phase into
C−1 ∧ (B0 − C0). This shift clearly has no impact on any of the relevant properties of
classical r-matrices because the Cn are central elements of the algebra. In fact, one can
incorporate arbitrary phase because terms of the sort Cm ∧ Cn do not modify any of
the relevant properties of classical r-matrices.9 With these terms one can represent an
arbitrary antisymmetric function of the two variables u1 and u2 by

r0 =
∞∑

m,n=−∞
cm,nCm ∧ Cn (4.17)

with antisymmetric coefficients cm,n . Note that these contributions can also be viewed
as a Reshetikhin twist similarly to the above discussion.

We can now determine the cobrackets from the r-matrix via the standard relation
(2.14); the results are summarised in Table 2. These expressions agree exactly with the
expected cobrackets for centrally extended psu(2|2) in (3.23) when we set the deforma-
tion parameter β = 1. We also see that cobracket δ(B1) = Qα

b ∧ Sb
α , which is not

part of centrally extended su(2|2), is consistent with the coproduct of the combination
2iT D−1 in the Hopf algebra.

Finally, we should prove the CYBE [[r, r ]] = 0. A convenient method is to split
up the computation into three parts. In the first part we shall set β = 0 and also adjust
all lower bounds of the sums in (4.13) to m = 0. Then we have the standard rational
r-matrix for the algebra u(2|2)[iu, (iu)−1] which is known to satisfy the CYBE.

Secondly, we have omitted the term C−1 ∧ B0 by adjusting the summation bounds.
As discussed above, this term originates from a Reshetikhin twist and thus preserves the
CYBE when β = 0. More explicitly, we add a term of the sort

r ′ = r + J ∧ J′. (4.18)

This changes the commutators in the CYBE to

[[r ′, r ′]] = [[r, r ]] + J ∧∧ [J′, r ] − J′ ∧∧ [J, r ] + J ∧ J′ ∧ [J, J′], (4.19)

9 In a lift to the quantum theory, however, the Hopf coproduct of central charges is not necessarily trivial
and therefore the set of possible twists will be reduced by demanding quasi-triangularity.
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Table 2. Cobrackets of the Lie bialgebra generators

δ(Cn) = 0

δ(Bn) = +
n−1∑

k=0

(Qk )
α

b ∧ (Sn−1−k )
b
α

+
n−1∑

k=1

α−1βεbdεαγ (Qk−1)
α

b ∧ (Qn−1−k )
γ

d

−
n−1∑

k=1

αβεβδεac(Sk−1)
a
β ∧ (Sn−1−k )

c
δ

δ(Rn)
a

b = +
n−1∑

k=0

(Rk )
a

c ∧ (Rn−1−k )
c

b

−
n−1∑

k=0

[
(Sk )

a
γ ∧ (Qn−1−k )

γ
b − 1

2 δ
a
b (Sk )

d
γ ∧ (Qn−1−k )

γ
d

]

δ(Ln)
α
β = −

n−1∑

k=0

(Lk )
α
γ ∧ (Ln−1−k )

γ
β

+
n−1∑

k=0

[
(Qk )

α
c ∧ (Sn−1−k )

c
β − 1

2 δ
α
β (Qk )

δ
c ∧ (Sn−1−k )

c
δ

]

δ(Qn)
α

b = −
n−1∑

k=0

(Lk )
α
γ ∧ (Qn−1−k )

γ
b −

n−1∑

k=0

(Rk )
c

b ∧ (Qn−1−k )
α

c

−
n∑

k=0

Ck−1 ∧ (Qn−k )
α

b +
n−1∑

k=0

2αβεαγ εbdCk−1 ∧ (Sn−1−k )
d
γ

δ(Sn)
a
β = +

n−1∑

k=0

(Rk )
a

c ∧ (Sn−1−k )
c
β +

n−1∑

k=0

(Lk )
γ
β ∧ (Sn−1−k )

a
γ

+
n∑

k=0

Ck−1 ∧ (Sn−k )
a
β +

n−1∑

k=0

2α−1βεacεβδCk−1 ∧ (Qn−1−k )
δ

c

where we define the double-wedge as

JA ∧∧ (JB ⊗ JC ) := JA ⊗ JB ⊗ JC − JB ⊗ JA ⊗ JC + JB ⊗ JC ⊗ JA. (4.20)

For J = C−1 and J′ = B0 all the additional terms vanish because C−1 and B0 are both
Cartan elements and thus obey [B0, r ] = [C−1, r ] = [C−1,B0] = 0.

It remains to confirm the CYBE for all contributions proportional to the deformation β.
These originate from the brackets [B,Q], [B,S], as well as {Q,Q} and {S,S}. It is
relatively easy to confirm that these terms cancel. Here the modification of the summation
bounds in (4.13) is crucial; without it some terms would remain. 10

10 This is in agreement with the fact that C−1 ∧ B0 does not correspond to a Reshetikhin twist of the
deformed algebra because [B0, r ] = δ(B0) �= 0 and thus [[r ′, r ′]] �= 0 according to (4.19).



554 N. Beisert, F. Spill

4.5. The deformed loop algebra as a classical double. In this section we want to show
that the deformed loop algebra including the r-matrix (4.5) can be obtained via a classical
double construction. If a bialgebra can be written as a double it is automatically quasi-
triangular. In general, the classical double D(g) of a Lie bialgebra g is the vector space

D(g) = g ⊕ g∗. (4.21)

The Lie brackets of D(g) read

[JA, JB] = F AB
C JC , [JA, JB] = F̃C

ABJC , [JA, JB] = F̃ A
BCJC − F AC

B JC ,

(4.22)

with JA forming a basis of g and JA being the corresponding dual basis of g∗. The
coalgebra structure of D(g) is simply given by the canonical r-matrix

r = JA ⊗ JA. (4.23)

One can convince oneself that the induced cobracket reads

δ(JA) = F̃ A
BCJB ⊗ JC , δ(JA) = −F BC

A JB ⊗ JC . (4.24)

and that the bialgebra D(g) is quasi-triangular.
In the standard loop algebra g[u, u−1] of a Lie algebra g with non-degenerate invariant

bilinear form CAB we may take the decomposition into the subalgebra g+ = g[u] consi-
sting of generators with non-negative powers in u and the subalgebra g− = u−1g[u−1]
consisting of generators of negative powers in u. Then we indeed have 11 (g+)∗ = g−
and D(g+) = g+ ⊕g− = g[u, u−1]. A dual pairing between the two subalgebras is given
by

(JA
n , J

B
m) = −δn,−m−1C AB (4.25)

with C AB the Cartan–Killing matrix of g. It defines a consistent cobracket on g+ from
the bracket of g−. The induced classical r-matrix in (4.23) then reads

r = −
∞∑

n=0

CABJA
n ⊗ JB−n−1, (4.26)

which is precisely one of the asymmetric r-matrices of (2.20). The other one is obtained
by exchanging g+ and g−, i.e. considering the double of g−.

The case of our deformed u(2|2) works almost in the same way as for generic loop
algebras. Due to the deformed commutation relations of the automorphisms Bn and the
identification of the loop variable with the central charges we should actually set

g+ = 〈Rn,Ln,Qn,Sn,Cn−1,Bn+1〉n≥0,

g− = 〈R−1−n,L−1−n,Q−1−n,S−1−n,C−2−n,B−n〉n≥0. (4.27)

With this assignment g+ and g− are indeed sub-bialgebras of g, i.e. the brackets (4.8),
(4.10) and the cobrackets (Table 2) close on g+ and g−, respectively; the level shift for Bn
and Cn is crucial for this property. Furthermore, the r-matrix (4.13),(4.14) corresponds
to a dual pairing between g+ and g−. These properties suffice to show that the deformed
u(2|2)[u, u−1] loop algebra is the double D(g−).

11 Strictly speaking, we should pair polynomials g[u] with formal power series u−1g[[u−1]], resulting in the
double g((u−1)) being the field of fractions of u−1g[[u−1]]. We will ignore these mathematical subtleties and
always allow for infinite power series, implicitly assuming that we are working in some suitable topological
completions of the considered algebras. For a more mathematical treatment we refer the reader to e.g. [30].
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5. Relations to Standard Algebras

In this section we relate the Lie bialgebra found in the previous section to standard
Lie (bi)algebras. In particular we show that the Lie algebra is locally (in the space of
spectral parameters) isomorphic to the loop algebra of u(2|2), but the coalgebra takes a
non-standard form. Furthermore we show how the complete bialgebra can be obtained
from a reduction of the loop algebra based on the maximal extension h+ of psu(2|2).

5.1. Embedding into the twisted u(2|2) loop algebra. In the following we shall try to
express the algebra discussed in Sect. 4.3 through elements of the loop algebra of
u(2|2)[iu, (iu)−1] which we shall expand as Laurent polynomials

J̄A
n := (iu)n J̄A. (5.1)

Standard loop algebra. First of all, it is reasonable to expect that the su(2) × su(2)
generators are not deformed:

Ra
b = R̄a

b, Lαβ = L̄αβ. (5.2)

For the u(1) × u(1) generators B,C acting as [B̄, J̄A] = [A]JA and [J̄A, C̄] = 0 we
allow for a rescaling

C = eC̄, B = f B̄. (5.3)

Finally we make the ansatz that the fermionic generators can be mixed by a general 2×2
matrix

Qα
b = aQ̄α

b + bεαγ εbdS̄d
γ ,

Sa
β = dS̄a

β + cεacεβδQ̄
δ

c. (5.4)

Note that the coefficients a, . . . , f are assumed to be functions of iu. A generator J̄
multiplied by a function of iu is understood as a generator of the loop algebra according to
the identification (5.1). Thus the new generators will generically be linear combinations
of generators at different levels of the loop algebra. The latter two redefinitions are
obviously consistent with the undeformed su(2)× su(2) transformation rules.

Consider now the brackets of supercharges. For example the bracket
{
(Qn)

α
b, (Qm)

γ
d
} = 2αβεαγ εbdCm+n−1 (5.5)

after substitution and evaluation of u(2|2) brackets reads

2abεαγ εbd(iu)
m+nC̄ = 2αβεαγ εbd(iu)

m+n−1eC̄, (5.6)

or ab = αβe/ iu for short. The brackets of supercharges thus lead to the following four
constraints

ad − bc = 1, ad + bc = e, ab = αβe/ iu, cd = −α−1βe/ iu, (5.7)

which have two solutions for b, c, d, e in terms of α, β, iu. Furthermore we should
consider the brackets of B, for example

[B,Qα
b] = Qα

b − 2αβεαγ εbd(iu)
−1Sd

γ . (5.8)
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After substitution and evaluation this leads to the relation

f aQ̄α
b − f bεαγ εbdS̄d

γ = aQ̄α
b + bεαγ εbdS̄d

γ − 2αβεαγ εbdd(iu)−1S̄d
γ

−2αβc(iu)−1Q̄α
b. (5.9)

We can write this, together with the bracket [B,S] as

f a = a − 2αβc/ iu, − f b = b − 2αβd/ iu,
f c = −c − 2α−1βa/ iu, − f d = −d − 2α−1βb/ iu.

(5.10)

All these equations are equivalent to f e = 1 upon imposing (5.7).
Altogether we find the solution

f = 1/e =
√

1 − 4β2

u2 , ad = 1 + e

2
, b = αβe

iua
, c = −α

−1βe

iud
. (5.11)

The value of a (or d) is not fixed; a convenient choice is given by

a = ᾱ

√
1 + e

2
, d = ᾱ−1

√
1 + e

2
, (5.12)

in which case the 2 × 2 matrix defined by the four elements a, b, c, d becomes quasi-
orthogonal (and for α = ᾱ = 1 strictly orthogonal).

The solution shows that the algebra of Sect. 4.3 can be embedded into the algebra of
functions C/{0} → u(2|2) with Lie brackets canonically defined as for loop algebras.
Note however, that the functions a, . . . , f are not meromorphic on C̄ and not holomor-
phic on C/{0} as required for an embedding into the loop algebra u(2|2)[iu, (iu)−1].
Expanding the square roots at u = 0 or u = ∞ leads to Laurent series over the levels
(5.1). After the expansion the singularities of the square roots cannot be seen, and thus
the proposed change of basis works only locally in the complex spectral parameter plane.
As we shall see shortly, the global properties are changed.

Despite these problems, the above transformation can at least be understood as a way
to show that the algebra in Sect. 4.3 satisfies Jacobi identities because u(2|2) does. One
might work with the above u(2|2)-manifest basis, but in the bialgebra this would lead
to a rather complicated r-matrix. In the basis of Sect. 4.3 the r-matrix takes almost the
same form as for u(2|2)[iu, (iu)−1], but at the cost of slightly deformed Lie brackets.

Twisted loop algebra. In order to understand the global structure of the spectral para-
meter plane let us introduce a transformation that removes the square root singularities

z4 = u + 2β

u − 2β
, u = 2β

z4 + 1

z4 − 1
. (5.13)
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Using the spectral parameter z, the generators of the deformed loop algebra in Sect. 4.3
can be expressed through meromorphic functions C̄ → u(2|2) as follows:

Cn = (2iβ)n
(

z4 + 1

z4 − 1

)n
z4 + 1

2z2 C̄,

Bn = (2iβ)n
(

z4 + 1

z4 − 1

)n
2z2

z4 + 1
B̄,

(Qn)
α

b = (2iβ)n
(

z4 + 1

z4 − 1

)n

εbc

(
+ 1

2 z Q̄cα
+ + 1

2 z−1Q̄cα−
)
,

(Sn)
a
β = (2iβ)n

(
z4 + 1

z4 − 1

)n

iα−1εβγ

(
− 1

2 z Q̄
aγ
+ + 1

2 z−1Q̄
aγ
−

)
, (5.14)

as well as Rn = (iu)nR̄, Ln = (iu)nL̄, and where Q̄
aβ
± are the linear combinations

Q̄
aβ
± = −ᾱεacQ̄β

c ∓ iαᾱ−1 εβγ S̄a
γ . (5.15)

Curiously, the embedding is into the Z4-invariant part of the Z4-automorphism of
C̄ → u(2|2) defined by the gradings

[R̄] = [L̄] ≡ 0, [Q̄±] ≡ ±1, [B̄] = [C̄] ≡ 2, [z] = −1. (5.16)

Furthermore the singularities of (5.14) in the z-plane are very restrictive: There are poles
of arbitrary degree at eighth roots of unity. In addition, the generators Q̄± admit single
poles at z = ∞, 0, respectively, and C̄ admits double poles at z = ∞ and z = 0. In other
words, the deformed algebra in Sect. 4.3 can be embedded into the Z4-twisted algebra
u(2|2)[z, z−1, (z − eπ iZ/4)−1]/Z4. If one furthermore allows at most double poles at
z = 0,∞ the algebras become isomorphic.

5.2. Maximally extended algebra h+. We now show that the complete Lie bialgebra can
be obtained as a reduction of the standard loop algebra of the maximal extension h+ of
psu(2|2).

Loop Bialgebra. The maximal central extension h of psu(2|2) can be adjoined by its
external sl(2) automorphism [49,11]

h+ = sl(2)� psu(2|2)� R
3. (5.17)

The automorphisms Ba
b obey the brackets

[Ba
b,B

c
d] = δcbB

a
d − δadBc

b,

[Ba
b,Q

cδe] = δebQ
cδa − 1

2δ
a
bQcδe,

[Ba
b,C

c
d] = δcbC

a
d − δadCc

b, (5.18)

where we combined the supercharges Qα
b,S

a
β into one doublet of generators Qaβc,

Qaβ1 = εacQβ
c, Qaβ2 = εβγSa

γ , (5.19)
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and the charges C,P,K into one triplet Ca
b with

C1
1 = −C2

2 = C, C1
2 = P, C2

1 = −K. (5.20)

Consequently the bracket of combined supercharges reads

{Qaβc,Qdεf} = −εβεεcfεakRd
k + εadεcfεβκLεκ + εadεβεεckCf

k. (5.21)

For h+ there is a non-degenerate invariant supersymmetric bilinear form, so we can
write down the quadratic Casimir invariant

Th+ = 1
2Rc

dRd
c − 1

2Lγ δL
δ
γ − 1

2Bc
dC

d
c − 1

2Cd
cB

c
d − 1

2εadεβεεcfQ
aβcQdεf

= Tpsu(2|2) − 1
2Bc

dC
d
c − 1

2Cc
dB

d
c, (5.22)

where Tpsu(2|2) is the psu(2|2) Casimir defined in (4.3). One might also add a term
proportional to C2 = 1

2Cc
dC

d
c which is obviously central. The loop algebra of h+

therefore has the following standard classical r-matrix:

rh+ = rpsu(2|2) −
∞∑

m=0

(B−1−m)
c
d ⊗ (Cm)

d
c −

∞∑

m=0

(C−1−m)
c
d ⊗ (Bm)

d
c, (5.23)

following the construction outlined in Sect. 2. Henceforth, the r-matrix satisfies the
CYBE and the corresponding Lie bialgebra is quasi-triangular.

Reduction of the algebra. To make contact to physics we want to work on the fundamen-
tal representation of h. It is easily seen that the automorphisms cannot be realised on the
fundamental representation, hence rh+ cannot produce the desired fundamental r-matrix.
Nevertheless there is a reduction of the algebra which leads to the desired r-matrix. Ma-
thematically, the reduction consists in two steps: First we restrict the automorphisms to
a particular subalgebra. The corresponding subalgebra of h+ has an ideal consisting of
linear combinations of the charges which we then project out. The resulting algebra is
the one introduced in Sect. 4.3.

In particular, we restrict the automorphisms (Bn)
a
b to a subalgebra spanned by the

linear combinations

Bn = (Bn)
1

1 − (Bn)
2

2 + 2α−1β(Bn−1)
1

2 + 2αβ(Bn−1)
2

1. (5.24)

The brackets of these automorphisms with the supercharges agree with those derived in
(4.8). Furthermore, the brackets with the charges (Cn)

a
b read

[Bm, (Cn)
1

1 − (Cn)
2

2] = −4α−1β(Cm+n−1)
1

2 + 4αβ(Cm+n−1)
2

1,

[Bm, (Cn)
1

2] = +2(Cm+n)
1

2 − 2αβ(Cm+n−1)
1

1 + 2αβ(Cm+n−1)
2

2, (5.25)

[Bm, (Cn)
2

1] = −2(Cn+m)
2

1 + 2α−1β(Cm+n−1)
1

1 − 2α−1β(Cm+n−1)
2

2.

It can be seen that the following linear combinations of the charges span an ideal of
the subalgebra:

β(Cn)
1

1 − β(Cn)
2

2 − α−1(Cn+1)
1

2, β(Cn)
1

1 − β(Cn)
2

2 − α(Cn+1)
2

1. (5.26)
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We project out this ideal analogously to the projection which turns u(n|n) into pu(n|n)
or su(n|n) into psu(n|n). The remaining charges will be denoted by Cn defined through

(Cn)
1

1 = −(Cn)
2

2 = Cn, (Cn)
1

2 =2αβCn−1, (Cn)
2

1 =2α−1βCn−1. (5.27)

This step makes the brackets of supercharges coincide with (4.10) and furthermore the
charges Cn become central

[Bn,Cm] = 0. (5.28)

In conclusion, the reduction of the algebra leads to the algebra discussed in Sect. 4.3.

Reduction of the coalgebra. One can convince oneself that the standard r-matrix rh+
for h+ contains terms which are not part of the reduced algebra. We solve this problem
by modifying the r-matrix slightly before performing the reduction of the algebra. The
modified r-matrix will not be meaningful in the original algebra, but it will complete the
reduced algebra to a quasi-triangular bialgebra.

Before we perform the reduction of the algebra we twist the r-matrix according to
(4.18) with J := (C−1)

1
1 and J′ := (B0)

1
1 − (B0)

2
2,

r := rh+ + J ∧ J′ = rh+ + (C−1)
1

1 ∧ (
(B0)

1
1 − (B0)

2
2
)
. (5.29)

It is clear that [J, J′] = 0, and because J′ is a Cartan element we also have [J′, rh+ ] = 0.
However it turns out that

[J, rh+ ] = (C−1)
1

2 ∧ (C−1)
2

1, (5.30)

and therefore the twisted r-matrix r does not satisfy the CYBE according to (4.19),

[[r, r ]]=−J′ ∧∧ [J, rh+ ]=−(
(B0)

1
1 − (B0)

2
2
) ∧ (C−1)

1
2 ∧ (C−1)

2
1 �= 0. (5.31)

Now let us consider the reduced algebra. The projection of the central charges (5.27)
has two interesting consequences: Firstly, it makes the combination in (5.30) vanish,
[J, rh+ ] = 0 and thus it reinstates the CYBE [[r, r ]] = 0. Secondly, the twisted r-matrix
can be written as

r = rpsu(2|2) −
∞∑

m=−1

B−1−m ⊗ Cm −
∞∑

m=+1

C−1−m ⊗ Bm, (5.32)

i.e. all the undesired combinations of (Bn)
a
b which are not part of the reduced algebra

have dropped out. This classical r-matrix fully agrees with our proposal (4.13) inclu-
ding the shifted bounds of the sums. Thus the reduced bialgebra is identical to the one
considered in Sect. 4.3.

A similar construction may be possible for the exceptional loop algebra of d(2, 1; ε)
in the limit ε → 0. It is worth pursuing this question further.
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6. Different Classical Limits

In this section we investigate the behaviour of the R-matrix in different limits. Recall that
for ordinary Yangians the R-matrix depends only on one variable, the difference of the
spectral parameters. Requiring that R → 1 ⊗ 1 basically defines this limit uniquely: the
difference of spectral parameters must approach infinity. To investigate the classical limit
one introduces an unphysical scaling parameter � such that the spectral parameters scale
like u ∼ �

−1. In contradistinction, our R-matrix does not only depend on the spectral
parameters, but also on the physical coupling constant g. In the previous sections we used
� = g−1 as a natural scale, and let the spectral parameter scale like u ∼ �

−1. However,
there are other consistent ways of rescaling u and g by functions of �, which makes it
possible to have several well-defined classical limits. This is reminiscent of the AdS/CFT
correspondence, which has a classical limit at strong and at weak coupling. It is even
possible to define different classical limits within the strong or weak coupling regime,
respectively. Our algebraic framework might make it possible to find other interesting
classical limits or even to classify them.

For a different classical limit we define the natural scale by g = �
−κ with κ < 1,

and let the spectral parameters scale as usual, u ∼ �
−1, and also x ∼ �

−1. Similarly,
we could let x ∼ � which would lead to qualitatively the same results. Thus we are in
the weak coupling regime for κ < 0 and in the strong coupling regime for 0 < κ < 1;
nevertheless the limit will not make a distinction between positive and negative κ . We
introduce the rescaled spectral parameter

ũ = u�. (6.1)

We also choose as the phase factor the same as in (3.17), leading to a classical r-matrix
taking the same form as given at the top of Table 1, but with the coefficients taking the
values

1
2 A12 + 1

2 B12 = 1
2 D12 + 1

2 E12 = γ̃2

γ̃1
H12 = γ̃1

γ̃2
K12 = 1

i ũ1 − i ũ2
,

1
2 A12 − 1

2 B12 = 1
2 D12 − 1

2 E12 = − 1

4i ũ1
+

1

4i ũ2
,

C12 = F12 = 0,

G12 = −L12 = +
1

4i ũ1
+

1

4i ũ2
. (6.2)

If we use the phase factor (3.18) instead of (3.17) we have to add to r the diagonal terms
(1 ⊗ 1)r0 with

r0 � 1

4i ũ2
− 1

4i ũ1
. (6.3)

The above r-matrix can be written compactly as

r � P12

i ũ1 − i ũ2
+ C−1 ∧ B0, (6.4)

where P12 is the (graded) permutation. This action coincides with the action of the
same r-matrix (4.13) discussed in Sect. 4 if one sets the parameters for the fundamental
representation in (3.9) to

a = 1

d
= γ̃, b = c = 0. (6.5)
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This fundamental representation is obviously consistent with the undeformed loop
algebra u(2|2)[i ũ , (i ũ)−1] (i.e. the deformed algebra with β = 0). 12 Effectively this
means that we reproduce the standard fundamental r-matrix for u(2|2)[i ũ , (i ũ)−1] with
a Reshetikhin twist (4.18) which takes the form (6.4).

7. Lift to Hopf Algebra

Let us briefly discuss the lift of the Lie bialgebra to a Hopf algebra. We shall only consider
the fundamental evaluation representation, without proving that the relations we give
lead to a consistent Hopf algebra. In this case the generators act like JA

n � (iu)nJA
0 ,

with JA
0 in the fundamental representation of the Lie algebra. The action of most of

the generators is known from (3.8),(3.9). In order to determine the action of B and
its commutation relations, we have made an ansatz similar to (4.11) and (4.8) with
undetermined coefficients. It turns out that

B|φa〉 = − 1

4C
|φa〉, B|ψα〉 = +

1

4C
|ψα〉, (7.1)

is compatible with the commutators
[
Bm, (Qn)

α
b
] � (Qm+n)

α
b − αεαγ εbd(1 + U2)(Sm+n−1)

d
γ ,

[
Bm, (Sn)

a
β

] � −(Sm+n)
a
β − α−1εacεβδ(1 + U−2)(Qm+n−1)

δ
c. (7.2)

Furthermore we can write the two additional central charges P,K appearing in the
commutators of alike supercharges using the charge C at a lower level:

{
(Qm)

α
b, (Qn)

γ
d
} � αεαγ εbd(1 + U2)Cm+n−1,

{
(Sm)

a
β, (Sn)

c
δ

} � −α−1εacεβδ(1 + U−2)Cm+n−1. (7.3)

This would lead to the following relations between C−1 and U2:

C−1 � g
1 − U2

1 + U2 , U2 � g − C−1

g + C−1
. (7.4)

Note that the above relations hold only on the fundamental evaluation representation.
There may be further corrections which cannot be seen on this representation.

Next we would like to see if the generators Bn are symmetries of the R-matrix. Due
to the relation (2.6) for evaluation representations it suffices to consider B0 and B1. The
cobrackets in Table 2 of these generators read13

δ(B0) = −α−1εbdεαγ (Q−1)
α

b ∧ (Q−1)
γ

d + αεβδεac(S−1)
a
β ∧ (S−1)

c
δ,

δ(B1) = (Q0)
α

b ∧ (S0)
b
α. (7.5)

There is a natural lift of the cobracket for B1 to a coproduct. One merely has to add
the standard coproduct and introduce proper braiding factors for Q and S,

�(B1) = B1 ⊗ 1 + 1 ⊗ B1 + 1
2 g−1(Q0)

α
bU−1 ⊗ (S0)

b
α

+ 1
2 g−1(S0)

a
βU+1 ⊗ (Q0)

β
a . (7.6)

12 In other words, the β = 0 undeformed algebra is a contraction of the β = 1 deformed algebra, where
one scales the level-n generators Jn by εn and takes the ε → 0 limit.

13 Note that
∑−1

k=1 fk = − f0.
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This coproduct was proposed very recently and independently in [50] where it was also
shown to be a symmetry of the fundamental S-matrix. Here, we confirm this result which
gives further confidence that our Lie bialgebra has a lift to a quasi-triangular double
Yangian with the known fundamental R-matrix. We furthermore expect that the four
new fermionic coproducts proposed in the conclusions of [50] are linear combinations
of the coproducts of our generators Q0,1 and S0,1. The reason for the discrepancy
lies in different assumed algebra relations, (7.2) in our case and those related to the
representation discussed in Sect. 4.1 for [50].

Finding a coproduct for B0 is however not as easy: According to (3.5) the grading of
the two terms in δ(B0) is ±2 whereas the grading of B0 should be zero. This mismatch
leads to inconsistencies in the braiding with U and to a failure of coassociativity in the
coproduct. It is currently not clear how to resolve this issue. To have a coproduct for all
Bn is nevertheless important for the lift of the classical r-matrix to a universal R-matrix.

8. Conclusions and Outlook

In this paper we have proposed a quasi-triangular Lie bialgebra whose underlying Lie
algebra is a deformation of the loop algebra of u(2|2). Its classical r-matrix on the fun-
damental evaluation representation coincides with the classical limit of the S-matrix of
[51] obtained in [26]. This bialgebra is almost the standard rational loop bialgebra based
on u(2|2), but there are two crucial differences: Firstly, the cobrackets include some
additional non-standard terms, even for some level-0 generators. Secondly, not all Lie
brackets have a uniform level: there is mixing between the levels. In comparison to the
Hopf algebra symmetries of the S-matrix [9,10,17] which use the three-dimensional
universal central extension of psu(2|2), here we have only one central extension C. The
three central elements of psu(2|2)� R

3 clearly have no dual partners (automorphisms)
which would be needed for the standard construction of the classical r-matrix. Conver-
sely, our central element C can be paired with the u(1) automorphism B of u(2|2) as
in the proposal of [29], and we can construct a classical r-matrix. The additional central
charges appear in our algebra as the central charge at a different loop level. Furthermore,
the u(1) automorphism does not act diagonally on the roots, and mixes the levels of the
loop algebra. Due to these features the Lie algebra does not coincide with the standard
u(2|2) loop algebra, but to some extent the two can be related, see Sect. 5.1. Apart from
that and unlike in [29], our bialgebra resembles the standard one for Yangian doubles.
Since [29] reproduces the correct classical r-matrix on the fundamental representation,
it would be interesting to find out if their proposal and ours are equivalent. For instance,
one might compare the two when acting on bound states [52–55,11]. Whether or not
they are equivalent, we believe that our approach is more suitable to find the quantisa-
tion of the bialgebra to a double Yangian Hopf algebra. The latter should be equipped
with a universal R-matrix, which should be almost of the standard form for DY(u(2|2)).
Again, the crucial difference will be the behaviour of the u(1) automorphism and the
level-mixing due to the identifications between the central charges, the braiding and the
loop variable. We have made first steps in this direction in the previous section, where we
have found a hidden symmetry of the fundamental R-matrix which was independently
discovered in the recent paper [50] (which appeared while we were preparing our manus-
cript). However there are some unresolved issues concerning the full quantum braiding
for the coproduct of one remaining generator. It would furthermore be interesting to see
if contact with quantum deformations and the exceptional Lie superalgebra d(2, 1;α)
[56–61], or, on a different account, with the loop algebras encountered in the context of
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a twistor formulation of N = 4 SYM [62,63], can be made. It would also be desirable to
understand the bialgebra structure for other kinematical regimes such as giant magnons
[64] and the near-flat limit [65,27,28] and how they are related to our near plane wave
setup. Concerning the algebraic determination of the dressing phase, we find no cons-
traint for the classical r-matrix. However, quasi-triangularity for the universal R-matrix
leads to stronger constraints and may allow a derivation from first principles.
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