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ABSTRACT

We compare the dynamics of maximal three-dimensional gauged supergravity
in appropriate truncations with the equations of motion that follow from a
one-dimensional F19/K (F1o) coset model at the first few levels. The constant
embedding tensor, which describes gauge deformations and also constitutes an
M-theoretic degree of freedom beyond eleven-dimensional supergravity, arises
naturally as an integration constant of the geodesic model. In a detailed
analysis, we find complete agreement at the lowest levels. At higher levels
there appear mismatches, as in previous studies. We discuss the origin of
these mismatches.
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1 Introduction

It is well-known that the highest space-time dimension that allows a supergravity theory
is eleven [1]. Upon a torus reduction to lower dimensions, eleven-dimensional supergravity
2] leads, in each space-time dimension 3 < D < 10, to a maximal supergravity theory
in which the scalars parametrize a coset manifold G/ K (G), where K(G) is the maximal
compact subgroup of G [3]. For maximal supergravity in D = 3 dimensions, the rigid
symmetry group is the non-compact split real form of the largest exceptional Lie group
Ey; all physical bosonic degrees of freedom reside in the coset space, with no propagating
gravitational degrees of freedom left. This theory was already constructed long ago [4,5];
however, its gauged versions, whose relation with the infinite-dimensional Eyz/K(E)
coset model will be the focus of the present paper, were obtained only much more recently
6,7].



The different duality groups G characterizing the coset manifolds are described by
Dynkin diagrams that are related to each other by deleting nodes (going up in dimension)
or adding nodes (going down in dimension). The three-dimensional case corresponds to
the group G = Eg which has a Dynkin diagram with 8 nodes. It has been suggested
that by reducing to even lower dimensions, 0 < D < 2, larger symmetry algebras may
emerge that correspond to Dynkin diagrams which are obtained by adding nodes to the
Ey diagram [8]. Such diagrams do not correspond to a finite number of symmetries, as
in the case of ordinary Lie groups, but instead lead to an infinite number of symmetries
corresponding to the infinite-dimensional groups Ey (D = 2), Eyg (D = 1) and Ep;
(D = 0), respectively.

It has been conjectured that maximal supergravity in any dimension D < 11, in-
dependent of any torus reduction, can be described in terms of Fj; [9-11]. While this
conjecture works well (at low levels) as far as the kinematics is concerned, yielding the
correct bosonic multiplets of various maximal supergravities upon decomposition of Fy;
under its finite-dimensional subalgebras, the underlying dynamics is much less under-
stood. In this paper, we will therefore follow a different route, based on a conjecture
proposed and elaborated in [12,13], according to which the dynamics of any maximal su-
pergravity theory (or some M-theoretic extension thereof) is described by the equations
of motion of a one-dimensional sigma model over the coset space Eyg/K(E1g). If these
equations are supplemented by coset constraints [14], one can establish a correspondence
between truncated versions of the coset equations on the one hand, and of the supergrav-
ity equations on the other. This correspondence can also be extended to the fermionic
sector such that the fermionic field equations can be reformulated to be covariant under
the coset model ‘R symmetry’ K(FE) [15717]

For carrying out the comparison one has to formulate both sides of the correspondence
appropriately. On the one hand one has to truncate the supergravity fields and break
space-time covariance by choosing an ADM gauge, in order to be amenable to a one-
dimensional language. On the FEyy side, on the other hand, one has to perform a so-
called level decomposition with respect to the subgroup GL(D — 1) x Gp, where Gp
denotes the duality group in D dimensions. At low levels, the equations of motion of
the F4jy model precisely match the equations of motion of (pure) supergravity truncated
to only a time-dependent, that is, one-dimensional system. This matching is in accord
with the (duality) symmetries expected to appear in lower dimensions. However, the
main challenge is to go beyond these low levels and to find an interpretation for the
infinite tower of representations appearing in the level decomposition of Ejg and Ey; (see
e.g. [20,11]) also on the supergravity side.

As one attractive scenario it has been suggested [12,20, 13| that the higher levels
encode the spatial gradients of the supergravity fields, and so by including all of these
states one should finally recover the full unrestricted supergravity in D dimensions or
an M-theoretic extension thereof.d While some intriguing confirmation has been found,
certain mismatches remain, such that a conclusive picture of how to identify the spatial
dependence within F;y and how to understand the emergence of a space-time field theory
from the one-dimensional sigma model is still lacking.

1 An approach combining ideas of the E1g and Ej; approaches has been explored in [18,19)].
2In the F1; approach some of the higher level states can be interpreted as dual representations of
lower level states [21].



Another interpretation for part of the higher levels concerns certain mass deformations
of pure maximal supergravity. In [22] it has been shown that the massive Romans
supergravity in ten dimensions [23|, which deforms type IIA supergravity by a mass
parameter m, is contained in the E7jy model, upon taking a certain 9-form representation
into account (see also [24]). For the realization of massive type ITA supergravity within
the Ey; approach see [25].

Apart from switching on spatial gradients and/or mass parameters, another direc-
tion will be explored in this paper, namely that of turning on gauge couplings. This
possibility relies on the recent realization that E;; and E;y contain information about
gauged supergravity via D- and (D — 1)-form representations [26&9}@ We will focus
on gauged supergravity in three dimensions, but our conclusions are expected to be of
general validity. The advantage of this case is that FEjg is the largest finite-dimensional
duality group. As a consequence, the Ejy equations of motion truncated to level ¢ = 0
already match ungauged supergravity reduced to a one-dimensional system. Thus, this
model allows a clear distinction between the ‘manifest’ aspects of the F1g conjecture at
level £ = 0 and the more speculative features related to higher levels, as spatial gradients
or gauge couplings. We will find surprising correpondences between both sides, but also
mismatches, which remain to be investigated further.

Let us emphasize the main features of our results, also reflecting the differences with
the Eyy approach [9,26,29]. These are:

e There is no need to deform the Eyg Lie algebra or the Fjy Cartan form (e.g. by
modifying the derivative) in order to obtain agreement (as far as it goes) between
the equations of gauged D = 3 supergravity and the Fiq/K(FEo) coset model.
Rather, the gauging appears exclusively as a consequence of ‘switching on’ certain
higher level degrees of freedom in the level expansion of the Cartan form and
the coset equations of motion. The relevant components of the embedding tensor
are in part beyond level ¢ = 3 in the SL(10) decomposition, hence cannot be
understood via Kaluza-Klein-type compactification from D = 11 supergravity (as
also emphasized in [26]).

e The absence of any deformation in the original coset model, in turn, is a direct con-
sequence of the fact that the correspondence works only if we adopt the temporal
gauge for all gauge fields, and in particular for the Chern-Simons gauge potential
A, M (generalizing the pseudo-Gaussian gauge, i.e. vanishing shift, for the gravita-
tional degrees of freedom).

e We are here working in a Hamiltonian framework. This means that in addition to
the coset equations of motion (which are related to the evolution equations involving
time derivatives on the supergravity side) we need to impose certain canonical
constraints on the coset dynamics (corresponding to constraints on the initial data
on the supergravity side). The structure of these constraints was studied in [14],
and we here likewise find that the constraints can be written in a Sugawara-like
form in terms of the coset variables. One can also show that under (part of) Ej
the constraints transform into one another, such that duality relates for instance
the diffeomorphism constraint and the quadratic constraint of gauged supergravity.

3The D-form representations only occur in the Ej; approach.
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This feature is somewhat reminiscent of the L(A;) representation found in [29], but
the precise relation (if any) is not clear (e.g. in [14] the constraints were found not
to transform as a highest or lowest weight representation of the whole Ejg).

The paper is organized as follows. In section 2 we first summarize the Eyq/K(FE1)
coset model. In particular, we derive the equations of motion at the lowest levels. In
section 3 we consider maximal gauged supergravity in three dimensions and its torus
reduction to one (time) dimension. Next, in section 4 we discuss the supergravity/Eg
correspondence: its matches and mismatches. Finally, in section 5 we give our outlook
on the status of the Eyy conjecture. We include two appendices summarizing some basic
properties of Eg and the details about the level decomposition of Ejg.

2 The Fyy/K(FEy) coset model

In this section we introduce the Eyq/K(E1g) coset model. In order to make contact with
three-dimensional gauged supergravity it proves convenient to write the generators of Fj
in a SL(2,R) x Eg) covariant form. We then analyze the one-dimensional coset model
in this language and derive the associated geodesic equations.

By es and ejg we always mean the split real forms (also denoted eg(s) and 210(10)) of
the corresponding complex Lie algebras. The Lie groups obtained by exponentiation of
the algebra elements are denoted Eg and E;q. Sometimes the notation eg™* and Egt*
is used, indicating that ejo is the ‘over-extension’ of eg — the Dynkin diagram of ey is
obtained by adding two extra nodes to that of eg, as can be seen from Figure [l

2.1 Generalities about Ej,

We first briefly summarize some basic facts about FEjg. Its Lie algebra is characterized
by the Dynkin diagram given in Figure [II

Figure 1: The Dynkin diagram of F1qg = Eg™"

More precisely, the Lie algebra e1g of F1q is defined in terms of a 10 x 10 Cartan matrix

A;; (i, 7 =1, ..., 10), which can be read off from the Dynkin diagram as
2 ifi=j,
Aj; = ¢ —1 if there is a line between nodes i and 7, (2.1)

0 otherwise.

The Lie algebra is then generated by multiple commutators of the ten basic triples of
generators {h;,e;, f;}. The h; are elements of the abelian Cartan subalgebra. The e;



and f; are the positive and negative step operators. Their commutation relations (the
Chevalley relations) read

hisej] = Aijej » [hi, fi] = = Ay fi 5 les fi] = dighi (2.2)
(no summation). The multiple commutators are constrained by the Serre relations

(adei)l_Aijej =0, (adfi)l_Aijfj =0. (2.3)

Each Kac-Moody algebra admits an invariant Cartan-Killing form, which in the basis
introduced above reads

{elfs) = 0, (hilhy) = Ay (2.4)

We note that the Cartan matrix A;;, and thereby the Cartan-Killing form on the Cartan
subalgebra, is of Lorentzian signature. This will later be used to define a null-geodesic
motion on the coset space Eyo/K(Eyp). We also need the Chevalley involution w in
order to define the maximal compact subgroup K(Ej,) and its Lie algebra £(ejo). The
Chevalley involution is defined by

wie)=—fi, w(fi)=—-e, wlh)=—h. (2.5)

One then defines the (generalized) transpose of an ey element z as 7 = —w(z). The
maximal compact subalgebra £(e;o) is defined as the subalgebra of ejy that is pointwise
fixed by the Chevalley involution. Thus it consists of all elements x — 7. Similarly, we
define the coset ej9 © E(e1o) to be the subspace consisting of all elements z + z7. With
respect to the Cartan-Killing form, the maximal compact subalgebra £(e;o) is negative-
definite, the coset e19 © €(e1p) is almost positive-definite (there is one negative eigenvalue
of the Cartan-Killing metric in the Cartan subalgebra), and these two subspaces of ejg
are orthogonal complements to each other.

2.2 Decomposition under SL(2, R) x Eg

Any Kac-Moody algebra can be written as a direct sum of subspaces g, for all integers ¢
such that

[0k, 8] C ke (2.6)

For k = 0, this gives a level decomposition of the adjoint representation of e;y under a
subalgebra gg, where we call ¢ the level of the elements in g,, and of the corresponding
go representation.

In order to make contact with three-dimensional supergravity we perform a level
decomposition of Ejy with respect to the subgroup of spatial diffeomorphisms and the
duality group:

Fip D SL(Q,R) X Fg . (27)

This corresponds to deleting the black node numbered 2 in the Dynkin diagram in figure[2l
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Figure 2: Level decomposition of Fqg = Eg™. The grey nodes denote the duality group
Eg, the black node is the deleted one and the white node denotes the SL(2,R) spacetime
subgroup.

Thus we consider the case where go = gl(2, R) @ ¢g, where the enhancement from
s[(2, R) to gl(2, R) is due to the Cartan generator associated with the deleted node 2.
The representations occurring in this level decomposition can be calculated using the
computer program SimpLie [30]. Up to level £ < 3 we find the s[(2, R)@eg representations
in Table [Il, where we indicated the corresponding generators with their symmetries. We
denote by a, b = 1, 2 the fundamental indices of GL(2, R) and by A, B =1, 2...,248
the adjoint indices of Eg. The fields associated to the ¢ = 0 generators are the spatial
zweibein and the coset scalars. The ¢ = 1 fields can be interpreted as gauge vectors.
The interpretation of the ¢ = 2 fields will be discussed in section 4.3 (concerning the
embedding tensor components 6 and é), where also some speculations will be made on
trombone gaugings. At the negative levels we have the conjugate representations, i.e.,
the transposed generators of those at the positive levels.

‘ Level ¢ ‘ SL(2, R) x Eg representation ‘ Generator ‘ Interpretation ‘
0 (143,1) K%, spatial zweibein
(1,248) tA scalars
1 (2,248) E 4 gauge vectors
2 (1,1) E 0
(1,3875) Eas = Eup) Ormn
(3,248) E® = E@) , | trombone gauging?

Table 1: SL(2, R) x Eg representations within Ejy up to level 2.

Later we will split the Eg indices as
A — [IJ], A, (2.8)

where I, J =1,2,...,16 and A =1, 2, ..., 128 are vector and spinor indices, respec-
tively, of the maximal compact subalgebra €(es) = s0(16). This is in accordance with the
following decomposition of the adjoint es representation under the s0(16) subalgebra

248 — 120 + 128 (2.9)

As indicated in Table [I the generator E 45 is symmetric in the two adjoint Eg in-
dices. However, it also has to satisfy further conditions in order to belong to the 3875
representation; in particular it must be traceless. The necessary and sufficient condition
for this can be expressed as

Pus’P Eep = Eus, (2.10)



where the explicit form of the projector P45°P has been determined in [31] and reads
Pus" = L6(u%05)"7 — &nasn® — L 24  fes™. (2.11)

Here f and n denote the Ejg structure constants and the components of the Killing form,
respectively. These are given explicitly in appendix [Al

At level ¢ = 0 we find a singlet plus the adjoint of s[(2, R) @ eg. The first part,
(1 3,1), can be seen as the adjoint of gl(2, R). The ¢ = 0 subalgebra reads

(t4, 5] = fAB.1°, [K%, K] = 0K — 04K¢. (2.12)

The Lie brackets that do not mix between positive and negative levels are entirely
fixed by representation theory and the graded structure (2.6]). The commutators involv-
ing the ¢ = 0 generators just give the transformation character of the |¢| = 1,2 generators
under gl(2, R)@eg. Since the generators at the negative levels transform in the conjugate
representations compared to the positive levels, they have their s[(2, R) indices down-
stairs instead. However, the position of the Eg indices is arbitrary in the definition of
the generators, since they can be raised and lowered by means of the eg Killing form 7,
which we describe in ([A.2)). We here define the generators on the negative levels by the
following action of the Chevalley involution:

w(E"y) = —F,A (2.13)
at level £ = —1 and
w(Ep) = —F4B, w(E) = —F, W(E® ) = —F3* (2.14)
at level £ = —2. We recall that the transpose then is defined as 27 = —w(x).

The commutators involving level zero are now given by

[tA, EaB] — fABCEaC> [tA, FaB] — fABCFaCa
(K%, ECA] = 0%E° 4, (K%, FA] = =6,
[tA, EBC] — QfABDECD> [tA, FBC] _ QfABDFCD,
[tA, Ech] — fABDECdD) [tA, chB] _ fAB’DchD,
(K%, E] = 0"%E, (K%, F|] = —0"%F,
(K%, Eag] = 0" E 4z, (K%, FAP) = —0% F15,
(K%, Ey] = 20%E% 4, (K%, F.qt] = —26% Fy™. (2.15)

Here and troughout this paper, we use the convention of implicit (anti-)symmetrization
in indices. This means that the right hand side of any equation is always assumed to be
(anti-)symmetrized according to the left hand side. In (215 this convention concerns
the generators E 453 and E% 4 at level £ = 2 (and their transposes at level £ = —2), which
are symmetric in the Fg and SL(2, R) indices, respectively (cf. table [[). For example,
the last equation in (2I5]) should be read as

[K%, F.qt] = —0% Fyg — 6% gl (2.16)



Later, when we split the Fg indices as in (2.8)), this convention will also concern antisym-
metric pairs [I.J] of SO(16) vector indices.

We define the generators at level |¢| = 2 by the commutation relations
[E®A, E’5] = e nasE + €™ E a5 — fas°E®c,
[F A, BP) = —LteqnPF — ey P — fA8.F,° (2.17)

We will see below that this normalization is a convenient choice. Note that both equations
have a minus sign on the last term, but otherwise opposite signs on the right hand side.
This is necessary if we want F48 to be the transpose of E 4z, that is, if we want to
obtain (2.I4) from (2I3) using the homomorphism property of w. The reason is that
fABe = —fas® for the eg structure constants (see appendix [A]), whereas 4% = 745 and
54008 p = 6.,4°057.
As we show in appendix [B] the Chevalley-Serre relations (2.2) and (2.3]) lead to
[E® 4, FyP] = 6% f4Pct + 04° K% — 64564 K, (2.18)
where we have set

K=K%=K'"Y + K2, (2.19)

The remaining non-zero commutation relations up to level |¢| = 2 can be derived from
those above by the Jacobi identity. For completeness they are also given in appendix [Bl

We must define the Cartan-Killing form for the generators at level |[¢| < 2 in a way
such that (2.4]) is satisfied after identifying the generators in the Chevalley basis (see
appendix [B]). This is achieved by the following normalization at level zero:

(K| K€q) = 0“40% — 60, (tHt%) = n®, (K%[t") =0, (2.20)
which gives back the Cartan-Killing form for eg. For the levels |[¢| = 1, 2 we now get
(B 4| FyF) = 6%6.4°, (Eap|FP) = 14 P 45°P,
(E|F) =1, (E® | Fed®) = 6%8"a0.4", (2.21)

and zero elsewhere, using the invariance of the bilinear form.

Taking = to be a basis element of e in the expressions z — 27 and = + 27, we obtain
bases of €(e19) and the coset e19 © €(e19), respectively. On the eg subalgebra the Chevalley
involution acts as w(t?) = —t4 = —nast®. The transpose is then given by

(ta)" =t (2.22)
On the s[(2, R) subalgebra, the transpose is just the ordinary transpose,
(K% = K°,. (2.23)
Thus at level zero we define

Jrg =ty —t = —2t!7, J? =K% — K, (2.24)



as basis elements of £(ejp) = s0(16) and ¢(sl(2, R)) = s0(2), respectively, which are the
level zero subalgebras of €(e1o). Likewise, we define

Sy =t +t4 =24 S = K% + K*, (2.25)

as basis elements of the coset ejp © €(e19) at level zero. Note that there is no J4 or
S17; the indices on Jr; and Sa should not be considered as split Eg indices, but as pure
SO(16) indices. This means that we raise the vector indices I, J,... with the invariant
SO(16) metric 677/, so that J;; = J*/. On the other hand, t;; = —t!7 since we consider
t!7 as an eg element. (For the spinor indices A, B, ..., upstairs and downstairs does not
matter.)

Leaving level zero, the basis elements of €(e19) and the coset will mix between positive
and negative levels so the graded structure (2.6]) will not be preserved,

Sy = By + F,A, S=FE+F,

Sy = E% 4+ Fu* Sas = Eas + F45.

T =E"y— FA, J=FE—F,

T u=E 4 — F Sap = Eap — F5. (2.26)

Computing the Cartan-Killing norm for these basis elements,

(Sa|Sp) = 4045, (J15|Tkr) = —861kdsr,
(S™|Se) — 4(5eegh — gobged). (T Ty = 5ot
(S8 4|S"8) = —(T“4lT"5) = 26°°5 4, (S8|Sep) = —(TuslTep) = 28Pas7,
(8 al8g) = —(T™ 4l T8) = 20°°6"6 4", (8I8) = ={JT) =2, (2.27)

we see that the subspace £(eqo) is negative-definite and that e19 ©¥€(e1) is positive-definite
away from level zero. Although some of the equations above are written in FEyg indices,
for convenience, the position of the indices shows that they are in fact not Eg covariant.
The Ej indices must be split into SO(16) indices in order to give covariant equations.

2.3 The non-linear sigma model

Following [12,13] we now introduce a one-dimensional non-linear sigma-model based on
the coset Fyg/K(E1). The fields are represented by an Ejq valued group element V(t),
depending on a parameter t. This group element is subject to global Ey transformations
from the left and to the local subgroup K(F1y) from the right:

YV — gVh(t), g€ FEy, ht)eK(Ey). (2.28)

Consequently, the E)q invariant Maurer-Cartan forms are given by V719,V. These can
be decomposed into compact and non-compact parts,

V9V = P(t)+Q(t), Peenotlen), Q€ t(en). (2.29)
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While P and Q are Ejo invariant, they transform under an infinitesimal local transfor-
mation ) = Vh, where h € £(eyg), as

6Q = dh+[Q,h], P = [P,h], (2.30)

i.e. @ is a (composite) gauge connection, while P transforms covariantly. The invariant
action is then given by

5 = [ @@ POP), (2.31)

where ( | ) denotes the Cartan-Killing form on e;g. Here, n(t) is the lapse function
establishing invariance under the one-dimensional diffeomorphisms

den = E0m+ (Oé)n 0P = EOP+ (0P . (2.32)
The equations of motion obtained from (2.31]) are
ndy(n *P(t)) +[Q(t),P(t)] = 0, (2.33)
and the Hamiltonian constraint
(P(H)|P(t)) = 0, (2.34)

which imply together that the motion follows a null geodesic.

So far our discussion was rather general. We are now going to evaluate (2.31]) for the
case we are interested in, namely maximal supergravity in D = 3. For this we use the
level decomposition of e;9 with respect to sl(2, R) @ eg that we described in the preceding
section.

The local K(Eg) invariance allows us to choose a suitable gauge for the Ejg-valued
group element V. In the Borel gauge, we can write V' as a product

V=V =e¥(ehe), (2.35)

where V), and V), are group elements corresponding to £ > 0 and ¢ = 0, respectively. Thus
we can expand the corresponding algebra elements in the basis of ey as

X = A,ME™ v+ B E™ p + BE + BMNE v+, (2.36)
h=hK%, H=mHat". (2.37)
Here and in the following, m,n,...=1,2and M, N ... =1, 2, ..., 248 denote curved

GL(2) and Eg indices, respectively. This means that they are ‘world’ indices indicating
rigid transformations from the left, while A and a are flat indices.

In (235)), the ordering of the exponentials is fixed by the requirement that the fields
A™M, ete. transform under the SL(2, R) according to their world indices m, n. In fact,

under (2.28)) we have

Vo — gVoh(t) , Vi — gVug b (2.38)
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Therefore, parameterizing g = exp(R,,"K™,) and using gA™g~* = A"R,™, one finds
A, = R,"A, , etc., (2.39)

as required (where we have omitted the Eg indices). In the Borel gauge, P and Q have
the same components in the bases of £(e19) and the coset, except at level zero,

P = PASy + LPuS™ + PAS 4+ PS4 + PS + PAPS 45,
Q=1Q" T+ 3QuI® + PAT A+ P T4+ PT + PP T 5. (2.40)
We write V) as a product of two ‘vielbeine’” exp h and exp ‘H, which are group elements
of gl(2, R) and eg, respectively. We denote the components of these group elements by
em® and EM 4. Occasionally, we will denote the components of the inverses by e,™ and

EA0. (The position of flat and curved indices thus keeps this notation unambiguous.)
Now we can write the components of P and Q, defined by (2.40), at level zero as

Pab:
Qab:

and we obtain the level zero part of the Lagrangian,

%(eamﬁtemb + e Oen”), PA = %(5‘1&5)’4,
%(eamﬁtemb — e Oen”), QY = %(5‘1@5)”, (2.41)
Lo=n""P*P*+ In " (PyPu — PuaPu). (2.42)

As we will see below, this precisely coincides with the truncation of ungauged supergravity
to a one-dimensional time-like system.

We now turn to the computation of the full Maurer-Cartan form, including also the
¢ > 0 part. We then have

V‘latV - Vo_latV() + Vo_l(Vz_lang)V(]. (243)

The first term is the ¢ = 0 contribution which we used above. To evaluate the second

term we make use of the Baker-Campbell-Hausdorff formulas
e Ade? = dA+ L[dA, A] + L[[dA A A + -+,
' ' (2.44)
e_ABeA = B+ [B7A] + %[[BvA]vA] T

and find
Vo'Vt = ea™EAMDIALME 4 + e, e EA M Dy By B
+(det e) " (DyBE + 144 E8\ D, BV EAB).  (2.45)

a

The determinant of the vielbein e,,% appears since the level two fields B and BMV
transform with a nonzero weight under gl(2, R)H In (2:45) we have introduced the

4More explicitly, the expansion gives
Vo (DiBE)YVy = DB (E —h%[K’, E] + 1h%h (K, [K, E]] + ...)

= DBE(1-h% +3(h")*+...) = (dete) ' D;BE.
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‘covariant derivatives’
DtAmM = atA4771'A/t>
DthnP = athnP + %fMNPA(mMatAn)Nv
DB = 0,B — ié‘“bnMNAmMatAnN,
D,BMN = 9,BMN — 1emmProMN A, P9,A,C. (2.46)

Note that the e algebra leads to non-trivial Chern-Simons like terms inside the covariant
derivatives. For instance, acting with the group element

g =exp(An™E" jy + A"V E 4 -++) (2.47)

on the coset representative (230) yields the following global symmetry transformation
on the fields

WAM = AM, BN = MMV Lo P A 0P MY (2.48)

which leaves (2.48]) invariant.

In order to project onto the non-compact part P(t), we have to replace x by %(x+xT).
Then using (2.21]) and inserting into (2.31]) yields the sigma model Lagrangian

L= £0 + én_l(gmngMNDtAmMDtAnN + gmpgnngNDthnMDthqN)
+ in7Y(det )" (D:BD,B + 14GmpGro D, BMN D, BT9), (2.49)
where £y now can be written as
Ly = ﬁn_l&gMN&ggPQQMPQNQ + I—%n_latgmn&ggpq(gmpg”q — g™ gP?) (2.50)

and we introduced the (inverse) ‘metrics’

mn

g™ =ea"es", Gun = EME N . (2.51)

We stress that for the ‘Eg metric’, the contraction is not performed by means of the Fg
invariant Cartan-Killing form, but instead with the ordinary delta symbol. Specifically,
in the SO(16) decomposition, this ‘metric’ (Z.51]) and its inverse read

Gunv = SEMEY N+ E MEM N,
GMN = L1eMEN - EMAEN 4| (2.52)

whereas the contraction with the (indefinite) Cartan-Killing metric (A.2) would give rise
to a relative minus sign between the two terms on the r.h.s., and simply reproduce the
Cartan-Killing metric: EMAEN g8 = p™V. The equation ([253) is consistent with the
local SO(16) symmetry, in accordance with the contraction over flat indices. Likewise,
the first equation in (2.51]) is consistent with the local SO(2) symmetry.

We compare ([2Z.49) with the expression for the Lagrangian that we get directly from

(2.31) and (2.40),
L=1n"UPIP) = Lo+ in " (PAPA + Py Py + PP+ 14PA8PA%) (2.53)
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Here the contraction of Eg indices is again made with the delta symbol, as in (2.52).
Comparing the expressions (2.53)) and (2.49), we see that the components of P are the
‘covariant derivatives’ in (2.460]) converted to flat indices,

6am€AMDtAmM> PabA = %6am€bn€AMDthnMa
P = 1(dete)™' DB, P8 = L(dete) €A\ EB DBV, (2.54)

2.4 Equations of motion

We now work out the equations of motion that follow from the Lagrangian (2.33]). In the
truncation to |¢| < 2, they read

n&t (n_lpab) 2Pachc IJP 7 2PaAPbA - 2PacIJPbcIJ — 4PacAPbcA

46 [ PP 4 opAPA L op M p 1 4 AP AP 4+ 2PP

+7(PIJKLPIJKL_|_4PAIJPAIJ_|_4PABPAB)]’ (2.55&)
nat(n—lpA) — %FIJAB(PBQIJ + PaBPaIJ + PabBPabIJ
+28PBCpIIC 4 14 pBKLpIIKLY (2.55b)
nd(n"'P,") = (Pyy — Qu) B + 3T 45(Q" P,” + P,' PP)
— A0 45(Pu" B + Py BP)
— e(28PAB B 1+ 14PAY BT 4 PR, (2.55¢)
ndy(n"'P) = (P — Qu) B — 4Q" P + T 4 P,APP
— 4Py BT — T ap Py PP

— e(28PTAPA 4 14PTKLP KL _ ppTTy, (2.55d)

noy(n~ 1PabA) = 2(Poc — Que) P + 3Q" T 4 Py” + 1P, T 45 PP, (2.55¢)

n0,(n Pp'’) = 2(Pac — Que) Pa™ — 4Q" Py’ + T 45 Py PP, (2.55f)

( IPAB) — PAB + QIJFIJACPBC + PBIJFIJACPC, (2.55g>
nat( —1PAIJ) PaaPAIJ %QKLFKLABPBIJ_4QKIPAKJ

+ LptIKLPRL  p PB4 T 5o POPAB, (2.55h)

na( —1PIJKL) P PIJKL QMKPMLIJ_4QMIPMJKL
+FIJABPAKLPB+FKLABPAIJPB, (2.55i)
nd,(n~'P) = P, P. (2.55))
PAB ig

In the above equations the irreducibility constraint (2.10) on the level two field
not spelled out explicitly, but see ([B.9) and (B.I0) below.
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The equations of motion can of course also be computed directly from the Lagrangian
(2:49)), without using the commutation relations. By varying the level two fields, we get

0= 0,(n""g"™ g™ Grun DiByi),
0= 0y(n"(detg)'D,B),
0= 0,(n"*(det 9) ' GmpGroD:BT9), (2.56)
and for the first level,
0= 40" (99" "Gpo fan” DiAN DBy
— 1 (det g) " D, AN Dy B
— 14e™(det g) ' GrmpGro D AN Dy BT9)

— 300 20" Guan DA = g9 1Gpo fain” A 1By,

+ 3™ e (det g) P AN DB

+ 14e™ (det ¢) " GupGno A, DtBPQ)] . (2.57)

We use the equations (2.56) to rewrite the second half of ([2.57),

n9, (0" g™ Gaw DiAN) = 4" g™ Gpo faun” DAY Dy B, °
— %em"nMN(det g)_lDtAnNDtB
— 14e™(det g) "' GpGro D AN D, BT (2.58)

It is then straightforward to show that we get the same equations as above. The equations
(Z56) can also be used to rewrite the first half of (2.57), as we will see in section E3]

3 Gauged supergravity in three dimensions

In this section we review gauged three-dimensional supergravity in a formulation suitable
for comparison with the Fjq analysis of the preceding section. The comparison will be
carried out in the next section.

The bosonic sector of ungauged maximal supergravity in three dimensions contains
128 propagating scalars transforming in the coset Es/(Spin(16)/Z;) and a vielbein e,*
that carries no dynamical degrees of freedom [4,5]. The scalars can also be described by
an (internal) vielbein which we denote by EM 4 (which was denoted VM 4 in [7])EI The
inverses will be written as e * and E4 . The curved indices are written as Greek indices
W, V... = (t,m) and the flat indices are «, 3,... = 0, 1, 2. The FEjg indices follow the
same conventions as before. We ignore fermions throughout the paper.

SGenerally, we will use the ‘typewriter’ font for supergravity variables in order to distinguish them
from the corresponding F4y quantities.
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3.1 The Lagrangian

The construction of gauged three-dimensional supergravity where a subgroup Gq of the
global symmetry group Eg has been gauged proceeds via the introduction of gauge fields
A, M in the adjoint of eg such that one has the modified Maurer-Cartan forms [6, 7]

- 1J 71] | pAQA
E'D,E =Q,+P,=3Q,/7" +P,5", (3.1)
where the gauge-covariant derivative is given by
E'D,E = EOE+ gA,MOMn(ETHVE). (3.2)

The quantity © v is the constant embedding tensor describing the generators of the
Lie algebra gy C eg in terms of eg generators: X = O t". There are only dim(go)
many non-vanishing X, but it is convenient to maintain an Eg covariant notation. In
such a notation, the embedding tensor is symmetric in its indices and transforms in the
3875 @ 1 representation of Eg. We will sometimes split it into its irreducible parts as

Orn = Onn + 0 (3.3)
where © transform in the 3875, and 0 is the singlet part.

Under infinitesimal local G transformations with parameter A X y( one has
saM = DAM = 9AM + gf N O ASAS (3.4)
SE = gAMX\E, (3.5)
and the Maurer-Cartan form is invariant.

The bosonic Lagrangian of three-dimensional maximal gauged supergravity is [6,7]
L=e(iR-P, P~ V) + Les, (3.6)
with e = det(e,*) and the Chern-Simons term
'CC'S = —ig»s””p@MNAuM&,Aﬁ/ — %g2€uup@MN@prMPRAMNAVQAPR . (37)

Since there is no kinetic term for them, the gauge fields A, do not contain propagating
degrees of freedom. The gauging also introduces an indefinite scalar potential. In order
to write it out, one introduces the so-called T-tensor that transforms in the 3875 of FEj,
and is defined by

Tas = EMAEN 50 00 - (3-8)

The field dependent T-tensor is thus the Fg rotated version of the (constant) embedding
tensor O rn. Note that here we have defined the T-tensor only with respect to 3875, in
contrast to [7]. The fact that 7" transforms in the 3875 implies that it has the components

7 17

Ay = 0150 + =Tk gk,
IA inJ

Ayt = =2 4 i1 a,

AP = 2640 + ADUKL Ty e, (3.9)

6We reiterate that we have changed the normalization of the generators of the coset generators
SA =2v4, g1 = —2X1J compared to the generators used in [6,7]. Also the space-time signature here
is (— + +), opposite to that used there. The convention for the Levi-Civita symbol is €12 = +1.
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corresponding to the decomposition
3875 — 135 ® 1820 & 1920 (3.10)

of this Eg representation under SO(16) [7]. Here A1 is symmetric, A177 = A1) and
Ayt traceless, that is T, ; A5’ = 0. The potential then is the sum of two parts [7], one
negative-definite and the other positive-definite,

V = ég2(—A1[JA11J + %AQIAAQIA). (311)

Note that there is no contribution involving A?B. Alternatively, the potential can be
written in the form

V = Lg?GMVIEO Ok (3.12)
where [32]
GMNKE 1 GMRGNE | MK NE 3 MINE A MAT L (3.13)

with the metric GMVN defined in (Z52), but here with respect to the supergravity Fg
vielbein EM 4. Inserting (3.9) into (B.I1), and using the relations (A7) (which follow
from the fact that 7" transform in the 3875 representation) we get yet another expression
for the potential,

V = 159°3TasTap + TarsTars — TroxiTrixs) — 29°60°. (3.14)
Both (312) and (3.I4) will be used for the comparison with the Ey sigma model. Note,
however, that in this form the decomposition (3.10) is only implicit.

3.1.1 Equations of motion

Varying (B.6]) with respect to the gauge field one obtains the following non-abelian duality
relation

e et N F,, N = —40 WEV P (3.15)
in terms of the non-abelian field strength
FMVM = 8MAVM - 8VAMM + g@PQfMPRAuQAVR . (316)

We stress that the summation in (3.15]) is only over the coset indices A and not over the
whole Eg. The Einstein equation can be written as

R,, =4pP, P, +4g,V, (3.17)

where, again, the summation only is over the SO(16) spinor indices.

For the scalars, we first consider only the positive term in (B.I1]), and its variation
along the coset,

§(A A A1) = LT 4 p(2TucTrs o + Ta i Try ) (E716E)P. (3.18)
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Since we also have
5(p, Py =p,A0"(ET'OE)" + 3Q," /T 4P P (ET1OE), (3.19)

it follows that the scalar equation of motion, without the contribution from the negative
term in the potential, becomes

e 0, (eP!) = 1T 5(Q, PP — L P TpcTrre — 250°TpwrTrowr) +... (3.20)
For the negative-definite part in (3.11]) we have

S(A A = LT 4y (—=3TucTry o+ 2Ta s Try k) (E7OE)P. (3.21)
Thus the full equation of motion for the scalars reads

e_lau(eP“A) = %FIJAB(Q“IJP“B + ig2TBcff1JC — %ngBKLT[JKL). (322)

This rewritten form of the equations of motion of [6,7] is convenient for the comparison
with the Ejy sigma model.

3.1.2 Constraints

From the form of the Maurer-Cartan form (B3.I) one deduces the following integrability
relations

9 MOV EN 4t = 20,P,; + 20,Q,) + [Q, + P, Q + P, (3.23)

Using the duality relation (B.I5) this can be rewritten as a relation expressed solely in
terms of P, Q and the embedding tensor as

Qa[ﬂpl’} + Qa[HQV] = [QM + PN> QV + PV]
+ egaprA [JPpAtIJ + 2eg5”u,,TABPpAtB + 2eg6pw,9PpAtA . (3.24)

The equation (3:24)) is the deformation of the usual integrability constraint of non-linear
sigma models in the presence of gauging. In addition there are three-dimensional Bianchi
constraints, viz.

OrnvDF N =0 (3.25)
for the gauge field and for the gravity sector
R[uup]o’ =0. (326)

Finally, the embedding tensor is subject to linear and quadratic constraints [6, 7].
The linear constraint arises from supersymmetry and implies that it transforms in the
1 & 3875 part of the symmetric tensor product of two 248 representations, so that the
27000 is absent. This constraint leads to the relations (A7) that we already used in
(B14) and (3:22)) to simplify expressions involving the 7" tensor. The quadratic constraint
reads

OQmnp = OxpOrmf“a = 0. (3.27)

As we will see in section 3.2, further constraints on the fields arise when some of the
gauge freedom has been fixed.
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3.1.3 Reformulation with deformation and top-form potentials

Here we briefly introduce a reformulation of gauged supergravity with so-called deforma-
tion and top-form potentials [33, 28], which will be useful for the interpretation of the
E4o equations below. These potentials are part of a tensor hierarchy introduced in [34]
and can be viewed as Lagrange multipliers enforcing the constancy of the embedding ten-
sor and the quadratic constraint. Denoting the deformation two-form by BH,,MN and the
top-form by C,,,,\"7, which respectively transform in the 1® 3875 and 3875 @® 147250
representations of Eg [33,28], one has

Liw = Ly+ 19e""D,0pnBu,"™ = La?0icpO i f e Cou™ VT, (3.28)

where the embedding tensor now satisfies only the linear constraint. Here we have written
a covariant derivative on Oy,

D,Omn = 0,0mn + 298, OxpOrmfu) - (3.29)

The second term vanishes identically upon use of the quadratic constraint, whence the
equations of motion imply that © is constant (and not just covariantly constant). Since
the space-time dependent embedding tensor is now a dynamical field, it possesses its
own equations of motions, which can be viewed as duality relations between the 2-form
potential and the embedding tensor [33,32]. Below we will see that an analogous relation
follows naturally from the sigma model equations of motion, with the Eyy field BMV
interpreted as (the Hodge dual of) the spatial part of the deformation potential. By
contrast, in the Fj; approach of [29] both BWMN and C’WMN P appear in the decom-
position of Ej;, whereas the embedding tensor must be introduced as an ‘extraneous’
object to parametrize the deformation of the derivative in the Cartan form.

3.2 Dimensional reduction to D =1

We now effectively reduce the three-dimensional gauged supergravity theory to a one-
dimensional time-like system. For this we perform the ADM-like split of the vielbein

. N 0
e, = ( 0 em“> , (3.30)

in which everything depends only on one coordinate 2° = t and we have split curved
indices as p = (t,m) and flat ones as @ = (0,a) (with signature (— + +)). Here we
have chosen a gauge with vanishing shift N, which turns out to be necessary in order
to match the Fyy coset. As stressed before, gauge fixing is crucial for comparing the Ey
sigma model to supergravity. The field e,,* denotes the internal ‘spatial’ vielbein, i.e. an
element of GL(2, R)/SO(2). The three-dimensional Einstein-Hilbert Lagrangian in (3.0])
can be rewritten up to a total derivative as

leR = —1e0%7Q,5, + 20705, o + 10,5707, (3.31)
where 0,3, are the coefficients of anholonomy:
Qopy = eal'es” (Opery — Oveyy) - (3.32)
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The only non-vanishing components in the strict reduction to D =1 are
QaOb = _QOQb = _N_leamatemb = _N_lhab ) (333)

where we have introduced the gl(2, R)—valued current h,, converted into flat indices.
The current has both a symmetric and an antisymmetric part, hy, = Py, + Qup. Inserting
into the Einstein-Hilbert action, one finds that the antisymmetric part cancels and the
resulting expression is

e_lﬁEH = iN_z (Pabpab - Paanb> . (334)

On the other hand, the Eg valued fields are all scalars and trivially reduce according
to E(z) — E(t). Using e = det(e,*) = N det(e,,”), one finds in total for the case of
ungauged supergravity

L3 = 0P AP + In7t (PyyPay — PuoPi) (3.35)
where we have defined the quantity
n = N(det(e,,*)) " . (3.36)

Evidently, (3.35) has exactly the same form as the level zero Lagrangian (2.42).

We turn now to gauged supergravity. For the reduction of the tensor fields we choose
a temporal gauge

AM=0, Bp,"N=0, CpnVT=0. (3.37)
Reducing the action (3.28) of gauged supergravity to D = 1, we then find

L7 = L5 -0 N[BT D, EETDEN — 0T NPV (3.38)

+%gam"AmM OrnOia,N + igam"DtGMNanMN )

Here, D,,E denotes the spatial part of the gauge-covariant derivative, which in the case
of pure time dependence reads

E'D,E = gA,MOMWE HVE. (3.39)

The appearance of the gauge vector here is the only remnant of the gauging in the
scalar kinetic terms. In fact, the gauge choices (337 have the advantage that the time
component of the gauge covariant derivatives in D = 1 collapses, e.g.

E-'D,E = EOE. (3.40)

Similarly, the cubic term in the reduction of the Chern-Simons term disappears as well as
the top-form potential term enforcing the quadratic constraint. That the Maurer-Cartan
forms are unchanged is essential for the comparison with the Ejy model in its original
form.
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When fixing gauges one should not forget the equations of motion (constraints) result-
ing from varying with respect to the temporal components of the gauge fields in (3.37]).

They read from (B.15) and (B.28)

CM = Il_lEmn@M/\/anN + 4@M/\/ENAPtA =0 s (341)
Cinv = n'gg™D,Opy = 0, (3.42)
Conve = §OkpOromf a = 0. (3.43)

As constructed, the constraints for By, and Cjp, V" correspond to the (spatial)

constancy of the embedding tensor and the quadratic constraint. Below we will interpret
the temporal constancy of Oy as an equation of motion rather than as a constraint.

3.3 Beyond dimensional reduction

The E19 model also takes into account terms that are beyond dimensional reduction to
D =1 [12,13]. Therefore we also need to keep track of terms that arise from spatial gra-
dients and contribute to the equations of motion. Instead of writing out all the resulting
equations we illustrate the procedure in the example of equation (B8.24]). Considering the
equation in flat spatial indices and split into s0(16) and coset components we find for the
(a, ) = (0, a) component

000" — 0aQo"” = —4Qo"1* QK —T77 4 5P, Py "
— N7 (Qup + Pap) Q" — egeas TPy, (3.44)
APt — 0,Pp" = %QOI‘]FUABPaB — %QaIJFIJABPOB
— N~HQup + Pap )Py + egear(TAE + 6480)P, 2 . (3.45)

In analogy with these equations spatial dependence can be retained systematically in all
equations.

4 The supergravity/F, correspondence

In this section we compare (a certain truncation) of supergravity to the Ejq coset model.
First, as a consistency check, we compare the dynamics of ungauged supergravity with
only time dependence to the ¢ = 0 truncation of the Fiy equations of motion. Then,
in section 4.2, we discuss ungauged supergravity with the inclusion of certain spatial
gradients, that should be related to the ¢/ = 1 truncation of the Fq theory. An alternative
interpretation of the ¢ = 1 state is as a gauge vector and so we discuss a possible relation
between gauged supergravity and FEjy in section 4.3. Finally, we analyze the possible
FEo interpretation of the gauge constraints and quadratic constraints on the supergravity
side in section 4.4.
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4.1 Ungauged supergravity in D =1

The equations of motion of ungauged supergravity reduced to only time dependence
follow from the Lagrangian displayed in (3.3%). As this Lagrangian is identical to the
¢ = 0 part of the Lagrangian of the Ejy sigma model derived in (2.42)) and depends on
the same fields, the associated dynamics agrees trivially. The ‘dictionary’ which achieves
this correspondence at level ¢ = 0 reads

n(t) =n(t), Pu(t) =Pus(t), Qu(t)=Quw(t),
PAt)Y=PA®t), QY1) =o' (), (4.1)

where n(t) is defined in (8.36). Here, we have displayed the coset quantities on the left
hand side and the supergravity variables on the right hand side — one can also write the
correspondence in terms of the coset elements as

em®(t) = en(t), EMA(t) = EM4(1). (4.2)
The only equation besides the equations of motion here is the Hamiltonian constraint
and it is mapped to the null condition of the geodesic.

When relaxing the strict dimensional reduction we will retain this dictionary except
that we will interpret the supergravity variables to be the values at a fixed spatial point
Xo, so that the dictionary modifies to

n(t) =n(t, xo),  Pu(t)
PA(t)

Pur(t, X0), Qab(t) = Qus(t, xo),
PA x0),  QY(1) =0 (¢, xo), (4.3)

or, in terms of the coset variables,

em®(t) = en(t, xo), EMA(t) = EM4(t, x0). (4.4)

4.2 Level / =1 as spatial gradient

Let us now turn on the fields at level £ = 1 of the coset model. One possible interpretation
here is that this corresponds to a spatial gradient — in contrast to the interpretation as
a gauge vector, which we will discuss in the next section. For the investigation of spatial
gradients it turns out to be useful to compare both sides of the correspondence not at
the level of the elementary fields but instead at the level of the derived object P that
carries flat indices. By studying the Einstein equation (Z55al) and the equations of level

¢ =1, [255d) and (2.55d), one finds after comparison with (3.17), (3.44) and (3.45) that

the dictionary on this level is

P,A(t) = Newy Py (t, %), P (t) = —New Q' (t,%0) . (4.5)

This choice together with (4.1]) makes the sigma model equations match largely with
the supergravity equations in the absence of gauging, where now the equations of mo-
tion at £ = 1 correspond to the integrability constraints (3.44) and (B.45]) of the three-
dimensional theory. There are, however, terms that do not quite match. First of all, the
equation of motion (2.55al) gets translated into

Rab =2 PaAPbA + QaIJQbIJ (46)

22



if spatial gradients of the spin connection are truncated as usual in such correspon-
dences [13]. This is not the correct Einstein equation, see (3.17), in that the coefficient
of P,4P,4 is 2 rather than 4 and that there is an extra term proportional to Q?. The first
problem is immediately related to a similar discrepancy in the D = 11 interpretation of
the Eyjp model [13] where one contribution to the only spatial derivatives in the curvature
term in D = 11 was missingﬁ After reduction to D = 3 this problem gets shifted into
the scalar sector which explains why the scalar energy-momentum tensor does not have
the right coefficient. The Q* term arises in a similar way in the sigma model and has no
counterpart in supergravity (where it would violate the invariance under local SO(16)).
The same term was already noticed in [35].

It is noteworthy that there are no difficulties with the spatial curvature in D = 3
since the problematic term vanishes completely due to our gauge choice. Indeed, one has
that the full spatial anholonomy is given by

Qabc - _Eabgchdee . (48)

Since we always choose the trace 24.. to vanish, the full spatial anholonomy vanishes
in D = 3 and gives no contribution to the Q2 terms in R,. In other words, in this
gauge choice there is no dual graviton in agreement with its absence in the table of
representations of g under SL(2, R) x Eg (table III)E

The final equation of motion to be compared is the equation of motion for the scalars,
(2.55D)) on the Fyg side and (3:22)) on the supergravity side. Here, we find agreement in
the absence of gauging.

We would like to comment on the interpretation of the dictionary (£.5). One can
introduce dual vector fields to the Eg coset scalars also in the absence of gauging, similar
to the duality relation (B.I5). These vector fields are the ones that appear in coset
element (2.30)) at level ¢ = 1.

4.3 Level / =2 and gauged supergravity

In this section we turn to gauged supergravity. First, we employ the interpretation that
the level ¢ =1 field is not related to (spatial derivatives of) scalars prior to any gauging,
but instead the genuine gauge field to be introduced on top of the scalars. According to
this picture we will compare to a purely time-like truncation. As the level ¢ = 2 fields
naturally encode the gauging, they will be used at the same time. In a second step we
consider the inclusion of spatial gradients in the presence of gauging. For this we will
discuss the extension of the dictionary (43)) and (ZL.H) to level ¢ = 2.

We start from the gauged supergravity action (3.38]), reduced to one dimension. Since
on the Ejq side there is no analogue of the zero-component of the gauge field A, we use

"More precisely, the spatial Ricci tensor Ry, in D = 11 has contributions (eq. (4.81) in [13]) of the
form

1 1 1

_chandb - _Qachbcd - _Qachbdc (47)
4 2 2

and it is the last term which is not reproduced by the sigma model. But it contributes to the scalar
energy-momentum tensor in lower dimensions.

8Since gravity in D = 3 is not propagating one would not have expected a dual graviton.
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the gauge-fixing condition A, = 0. Moreover, it turns out to be convenient to rewrite
the action entirely in terms of the Fy ‘metric’ GMV. For this we use the identity

EMAEMA = 1 (MY 4 MV | (4.9)

which follows from the fact that the Cartan-Killing metric ™ differs from ¢V by a
relative sign in the non-compact part. The Lagrangian (3.38) reads

LY== L)5 — 39%eg™ (MY + M) OacOncAn A" — eV (4.10)

+190pne™ a MO
For convenience we have here used the conventional formulation without deformation

potential, as the field equations merely relate this potential to the embedding tensor. In
contrast, the analogous equations on the Fj side introduce the embedding tensor.

The ‘Einstein’ equations obtained by varying with respect to the spatial g™" read
oL
0g (4.11)
+ 1—16929(GMN +MV)O ucOne (gmng™ A A —24,,0,7) = 0,

while for the scalar equations we find

0L
SGMN o

1.2 _ _mn Ky L
39 g @M/C@NEAm A,
s (4.12)

1

— 1-eg’ O NONL — g™ FOMON = 0,

using the explicit form of the scalar potential in (8.13]). Here we do not write out the
variation of Ly, since we verified already that this Lagrangian coincides on both sides of
the correspondence. Finally, varying with respect to the non-propagating vector fields
A, yields the one-dimensional form of the duality relation,

GO pne™ 0N + %g2e(G’C£ + nKﬁ)gmn@M]C@NﬁAnN =0. (4.13)
At first sight these equations are rather different from the sigma model equations,
which are given by

0Lg
5gmn

+ %n_lgMNatAmMatAnN

+ in7(det )" gun (DiBD,B + 14GupGrno D BN D,BTC) = 0, (4.14)
5 Lo
0G MmN

for the ¢ = 0 fields, and by (2.50) and (Z58) for the higher-level fields. Consistent with
the field equations, we set in the following D,B,,,™ = 0, since their meaning will be
discussed below.

+ in7 g A MO AN + T (det g) T G D, BMY D BNE = 0

We will see that the equations on both sides are more closely related, if one uses
the observation that in D = 1 second-order equations can be integrated to first-order
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equations. For instance, the equation (2.56)) gives rise to integration constants which can
be identified with the components of the embedding tensor,

n~!(detg)'D,B = c190 ,

(4.15)
n_l(detg)_lgMpgNQDtBPQ = 0299/\/{/\/7

where ¢; and ¢y are two arbitrary constants. This allows to almost recover the duality
relation (£I3) from the Ejo equations of motion (Z58). First, (Z.58) may be rewritten
as

Oy <n_1gm"gMN0tAnN + %clgemnnMNQAnN + 1402g5m"(:)MNAnN> = 0. (4.16)
Therefore, it can be integrated to the first-order equation
n "GO AN = ge™O M AN +EM (4.17)

Here we have chosen the free constants to be ¢; = 2 and ¢o = 1/14 in order to conve-
niently combine the irreducible parts of the embedding tensor into © . according to [7].
Moreover, =™ 4 denotes an integration constant. This integration constant cannot be set
to zero without breaking the symmetries. The situation is analogous to the integration
leading to the embedding tensor O\ in (AI5), which generically breaks the global Eg
symmetry once O\ is constant. Correspondingly, the Eig shift symmetry leaves this
first-order equation only invariant if the integration constant also transforms as a shift,

5AEmM = —g€mn@MNAnN, (418)

which is consistent with the time-independence of =. Thus, fixing it to any specific value
(as zero) breaks the symmetry, and in this sense supergravity may at best be viewed as
a broken phase of Fjy. After setting = = 0 and contracting with © ry, ([AI7) implies

GOMne™ 0 AN + GPeNGE g™ O Mk On e AN = 0, (4.19)

which coincides with the duality relation (£I3)) from supergravity up to the replacement
gM/\/’ N l(g/v(/\/ + nM/\/)
5 .

Finally, insertion of (£15]) and (£I9) into the equations of motion (LI4) for g, and
GMN as obtained from Ejg yields

0L
5gmn

+ 19°eGMV O i One (Grng™ A A — ALK AL

+ %g2egmn <%gMKgN£éMNé]C£ + 92> - 0 y (420)

0Lg
SGMN

Here, we have used (3.36) and (43)). By comparing (4.20) with (£I1) and (4I12)) we
observe that the equations are structure-wise the same, but differ in the details. For one
thing, on the Ej, side we generically have just GMV instead of %(QMN + MV, Apart
from that, the indefinite contributions to the supergravity potential are not reproduced,
but only the leading term quadratic in GMV.

— 19%eg™ Ok ONL AR AL — 297G O One = 0.
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Let us now inspect the simultaneous inclusion of gauge couplings and spatial gradients.
As before this requires an analysis at the level of P that carries flat indices. Specifically,
we can supplement the dictionary (4.3) and (4.3]) with

PAB(1) = %NQTAB(t,XO), P(t) = Ngb(t,xo) (4.21)

on level ¢ = 2. This dictionary is derived from the integrability conditions (3.44)—(3.45)
such that they match exactly the common terms in the equations (2.55d)—(2.55d) for Eig
(the terms involving Q7 do not match just as in the Einstein equation (&.6))). Moreover,
we have ‘covariantized’ the dictionary since it only fixes PAZ and P41/, but not P/ KL,
However, using the dictionary (£2I]) in the Einstein equation one finds that the scalar
potential is not reproduced correctly. The terms coming from the positive definite (A%4)2
contribution in (3.I1]), however, appear precisely in the Ej Einstein equation. If we only
consider the terms in the scalar equation of motion arising from the positive definite part,
then the dictionary (including also P!7KL) gives the correct relative coefficients, but the
overall coefficient is wrong. This can be seen by comparing (8:20) and ([2.55D). For the
full potential we find disagreement since the potential is not positive-definite, unlike the
Cartan-Killing form used on the E1q side, and one can see that there is no choice for the
dictionary such that all equations match. In addition, it is not the case that Ej, predicts
a different potential. Rather, the scalar dependence in the E;y equations is such that it
cannot be integrated to a corresponding single scalar potential in a D = 3 field theory. To
summarize, while there is no precise agreement between the corresponding equations, the
FE1g model predicts and provides an embedding tensor in the correct Eg representation,
which in the present truncation is forced to be constant by the geodesic equations. It is
noteworthy that the F;y model naturally contains both the constant embedding tensor
and the scalar field dependent T-tensor via dressing with the level zero vielbein.

Finally, we comment on the meaning of the field B,,,™, which we truncated so far.
One possible interpretation might be as a spatial gradient. Another attractive scenario
is that it is related to a novel type of gauging, the so-called trombone gauging, which
has recently appeared in the literature [36]. This gauging gives rise to embedding tensor
components ©,,, and it has been noted that they are in one-to-one correspondence
with certain mixed Young tableaux representations within Ej; and Ejg [36]. Applied to
D = 3 these degenerate to the symmetric B,,,” and so one might hope to interpret
this as a trombone gauging. However, given the ambiguity of the possible interpretations
encountered so far, we postpone a detailed analysis of this proposal to future work.

4.4 Quadratic and gauge constraints

We now turn to a discussion of the constraint equations that supplement the dynamical
equations discussed so far. From the Ejy point of view these have to be considered
as additional constraints on the geodesic. In [14] it has been shown that the constraint
equations in maximal eleven-dimensional supergravity can be consistently imposed on the
geodesic and are weakly conserved as the system evolves. Furthermore, the constraints
there followed an intriguing pattern, displaying a certain grading property reminiscent of
a Sugawara-type construction in terms of bilinear products of conserved currents. Here,
we will encounter a similar phenomenon which extends up to the quadratic constraint,
probing generators of Ejy beyond the analysis carried out in [14].
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Besides the Hamiltonian constraint, the constraint equations which have to be studied
in the present context are

(7) the diffeomorphism constraint (the (0a) component of the Einstein equation (3.17)),

)

(i1) the Gauss constraint ([B.41]) or (3.24)),
)
)

(7ii) the spatial constancy of O ([:42) and

(1v) the quadratic constraint (3.43]) of standard gauging and possibly trombone gauging.

The first one arises from gauge fixing the shift vector N* = 0, whereas the other three
are all consequences of adopting the temporal gauges ([B.37) for the tensors of gauged
supergravity. There are no additional Bianchi type constraints as there were for D = 11
supergravity in [14] since these vanish identically in D = 3. For example, the equation
D[anc]M = 0 is fulfilled trivially since there are no three distinct spatial indices a, b, c.

Analyzing the four constraint equations with the use of the dictionaries derived in
(A1), (43) and (4.15), and using the duality relation (3.15), one finds that they have the
schematic form

¢, = RAPA,
¢A = pABPB 4 fAe®PBRC
¢ A8 — (A, pBCpD.
QABC _  pCDpe(Af B) (4.22)

in flat indices (where the SO(16) spinor indices A and B should not be confused with
the adjoint Fg indices A and B). The important feature of these equations is the tensor
structure and the fact that the levels of the P components occurring on the right hand side
always add up to the same number in each constraint. In this way one can assign to the
four equations the ‘levels’ £ = 1, 2, 3, 4, respectively, since in the first one the combinations
are POPW up to P@ P in the last equation. Furthermore, they transform (after
conversion to curved indices) in the GL(2, R) x Es representations indicated. As in
[14] we can thus bring the above constraints into a Sugawara-like form by switching to
curved indices m,n,... and M, N, ..., and by replacing the P’s by the corresponding
components of the conserved Ejy Noether current.

In [14] it was also noted that the representation content of the graded constraints
is very similar to that of a specific highest weight representation of FEjy, sometimes
called L(Ay) as it is the highest weight module with highest weight corresponding to
the fundamental weight of node 1 of the Ejy Dynkin diagram in figure I We give the
decomposition of this representation with respect to SL(2, R) x Es at low levels in table 2.
From this table we see that there is again agreement between the representations of the
constraints at low levels and the tensors contained in the L(A;) representation. At higher
levels there appear extra representations, some of which can probably be interpreted
as recurrences (higher order gradients) of the constraints encountered before but this
explanation seems incomplete and therefore we have partly left the interpretation open.

We note that it is to be expected that the constraints only form a representation of
a Borel subgroup Ejf; C Ej rather than of the whole Fjq since explicit calculations of
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| Level £ | SL(2, R) x Ej representation | Interpretation

1 (2,1) Diffeomorphism constraint
2 (1,248) Gauss constraint
3 (2,1) Spatial constancy of 6
(2,3875) Spatial constancy of © v
(2,248) Spatial constancy of © (trombone)?
4 (1,147250) Quadratic constraint
(3,30380) Quadratic constraint of trombone?
(1,30380) ?
(3,3875) Quadratic constraint of trombone?
2 x (1,3875) Quadratic constraint
2 x (3,248) Quadratic constraint of trombone?
2 x (1,248) Recurrence of Gauss?
(3,1) Quadratic constraint of trombone?
(1,1) Recurrence of 67

Table 2: SL(2, R) x Eg decomposition of L(A;) highest weight representation of Fjg.

the transformation of the diffeomorphism constraint show that it is not annihilated by
elements of the conjugate subgroup Ej, [14]@]

5 Discussion and outlook

In this paper we explored the Ejq/supergravity correspondence for the case of gauged
supergravity. Apart from the inclusion of spatial gradients and/or mass parameters
discussed in the literature so far, this provides additional insights into the interpretation
of part of the higher-level representations within F;q. As has been found before, in
general dimensions D there are (D — 1)-forms whose representations coincide with those
of consistent gaugings in supergravity. Moreover, here we found that the quadratic
constraint of gauged supergravity belongs to the same highest weight representation of
Eig as the diffeomorphism constraint (but, we repeat, the constraints transform properly
only under the Borel part EYf of that representation). In contrast, in the £y, approach the
D-form Lagrangian multiplier for this constraint arises as one of the higher-level fields.
While at a purely kinematical level the Kac-Moody algebras Eyy and E7; therefore encode
gauged supergravity, the sigma model theory discussed in this paper allows, in addition,
to check the correspondence at the level of dynamics.

Most remarkably, we find that the equations of motion of gauged supergravity (here
for the example of three space-time dimensions) adapted to a one-dimensional language
can in part be matched to the Fy equations, even though the latter have a priori a rather
different form. For one thing, the absence of gauge-covariant derivatives on the Ej, side
agrees with the supergravity expressions, once the gauge-fixing condition A, = 0, which

9Here, the % superscripts on E1g should not be confused with further Kac-Moody extensions of Ejg
but refer to Borel subgroups generated by positive and negative level generators, respectively.
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is inevitable for the comparison, has been imposed. Moreover, in spite of the fact that
on the Fjj side all fields appear with a ‘kinetic’ term, the (truncated) duality relation
between vectors and scalars expected from supergravity naturally follows via integrating
the one-dimensional equations of motion. Finally, the embedding tensor automatically
appears as an integration constant in the right representation. In this sense, none of the
essential ingredients of gauged supergravity have to be introduced by hand, but rather
they naturally follow from the Ejy sigma model.

Irrespective of these promising observations, there remain mismatches at higher levels,
which prohibit a full agreement between supergravity and the Ejy model. One finds
systematically that while in supergravity the combination Gyn + nan appears, the
corresponding equations on the g side only contain Gn. Similarly, the scalar potential
is not fully reproduced by FEjo. This is due to the fact that in supergravity the scalar
potential is indefinite [33], while the corresponding 2-forms appearing in the Fjy coset
model necessarily enter with a positive-definite kinetic term. The latter is somewhat
reminiscent to a discrepancy encountered in higher dimensions, once spatial gradients
are introduced as the duals of higher-level fields.

In total we are led to conclude that further insights are required in order to understand
the precise relation between supergravity theories and the Ejy sigma model. It would be
interesting to see whether modifications and/or extensions of the Ejp model are possible
to compensate for the present mismatches. We note that mismatches already occur
before comparing to gauged supergravity and so an ultimate resolution of the present
discrepancies must await a better understanding of the basic picture.
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A Conventions for Ej

Our conventions for Fg are as in [7]. The Lie algebra eg is generated by t™, with

M,N,... =1,...,248 denoting the adjoint indices, and bracket [tM, V] = fMN X,
Specifically, eg can be defined according to its s0(16) decomposition,

[tIthKL] — 45JKtIL 7 (Al)
Here I,J,... = 1,...,16 are SO(16) vector indices, while A, B,... = 1,...,128 label

spinor indices. The adjoint indices split according to A = ([/J], A), where we employ
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the convention that summation over the antisymmetric [/.J] is accompanied by a factor
of 1. The spinor generators are defined by I'' | ,;I'/ .4 = 6’7645 + '/ 45. Like any other
Kac-Moody algebra, es admits an invariant Cartan-Killing form, which in the SO(16)
decomposition (A reads

nAB — (SAB ,r]IJKL — _251K5JL. (A2)
Accordingly, in the totally antisymmetric structure constants
FUUKLMN _ UKL g§IKg) oL

FIIAB g AB . T

(A.3)

we can freely raise and lower indices. We recall that we use the convention that the right
hand side is always to be antisymmetrized in the same way as the left hand side. The FEjg
structure constants and the Killing form are related by the identity f*%¢fasp = —60ncp,
which implies fA5¢ fapec = —14880. We also frequently use the relation

EUME = EM A (A.4)

for the adjoint matrix E € Eg, which can be easily checked by use of the Baker-Campbell-
Hausdorff formula (2.44)).

The tensor product of two adjoint representations decomposes as
248 x 248 =1 + 248 4 3875 4 27000 + 30380, (A.5)

and the corresponding projectors have the components [31]

(P )AB = ﬁm\sﬂw
(Paas).as”” = — g5/  anfe",
(Pasgrs) as’” = L0(u%05) " — mnasn® — 5 fEaC fe5™,
(P27000).458" = £6(4%05) " + 2onasn®® + L fE4C fes™,
(P30380) 458" = 614%05" + & fEanfs™. (A.6)

Elsewhere in the paper, we have dropped the subscript on Psgrs. Splitting the indices, we
get the following identities for a tensor 7% that transforms in the 3875 representation:

TALT _ 1F1K STBIE = 1 FIJKL STBKL
FITKL _ %51KTJM LM _ pIKJL
TAB _ %FIJKLABTIJ KL (A.7)
The two equations in the first line are equivalent. The last equation can be inverted to
[IIKL  TAB _ 39 UTKL] (A.8)
We also note that 77717 = 744 = (.
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B Level decomposition of Ej

To determine the Fjy commutation relation (2.I8]), we needed to identify the Cheval-
ley generators, which are the 30 elements h;, e;, f; (i = 1,2, ..., 10) that satisy the
Chevalley-Serre relations (2.2)) and (23]). We let any = € eg have the components 4 in
the t4 basis, x = z4t*. Then we get

e = K1y, o = (—fo) aE? 5%, e; = (e;) al™,

ho =K' — K%, hy = (—he)at* — K1, hi = (hy) at”,

f = K%, fo = (—ep) aFo™, fi = (fi)at?, (B.1)
for i = 3,4, ...,10. Here 6 (not to be confused with the singlet embedding tensor)

denotes the highest root of eg, with the corresponding step operators ey, fy and Cartan
element hg. We have

hg = 2hs + 3hy + 4hs + 5hg + 6hy + 4hg + 2hg + 3hqg (B.2)
and we get
Ky = —hy — hy, K% = —hg — hy — hy, K = —2hg — 2hy — hy. (B.3)

By inserting (B.I]) into (2.2) and using (2.15]), we see that the Chevalley relations [h;, ;] =
Ajje; and [h;, f;] = —A;;f; are indeed satisfied. For the remaining relations to hold,
les, f;] = d;5hi, we must have

(B4, FyP] = 6% f4PctC + 645K — 5450 K, (B.4)

where we have set K = K%, = K'; + K?,. The relations (2.17) and (ZI8) can then be
inverted to

E = Tiggab/r/AB[EaAa EbB]a

Eax = %&w[EaA, Ebg] — ﬁ»EabﬁABUCD[Eac, E’p),

E® 4 = & fA5[Es, E'], (B.5)
F = —se®nslFA, RE),
FAB = —3e®[F,A, BB+ gse®nPnen[F.C, B,
FabA — %fABC [FGB’ Fbc]7 (B6)
= =g [Pl B, FE] K% = g((B%, B = 09[E°, B (BT)

The remaining nonzero commutation relations follow from the Jacobi identity,

(B, F,"] = —3eanPE"s, [F, B®4) = 1enasFP,
[E 4, EP] = =6, f4PC Ebe, [Fu?, BB = =6 fpc S,
(B, F,°) = —14e,4P 5P Ebp, [F45) B = 14 PAB . P, (B.8)
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[Eas, FCP) = 2fC4e P £ {7 5gt? — 40.4° fPpet® — 14P 45 " K,

[Eab.Aa chB] = fABctc + 25AB(6achd - 6a05bdK)7 [Ev F] = —K. (B9>

Here we have used that £*“c,, = —0%, with our conventions. Using the invariance of the
Cartan-Killing form, we have

—H[E" 4, E°B)|[F.C, FJP]) = B1P,1) + 15P(3,248) + TP(1,3875)) a5, (B.10)

where P(1,1), P(3, 248) and P(q, 3875) are the projectors corresponding to the SL(2, R) x Eg
representations at level £ = 2 (cf. Table[). Explicitly,

P, 1)?caP ap = 0“:6° g P1°F 4z,
Ps, 248) “ca’" ap = 0%(c0"a)P2as" a5,
P, 3875 ca’" as = 6%10" 4 Pasrs" s, (B.11)

where the Fg projectors Py, Pags and Pagrs [31] were already given in ([ALG]).
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