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Dynamics of test bodies with spin in de Sitter spacetime
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We study the motion of spinning test bodies in the de Sitter spacetime of constant positive
curvature. With the help of the 10 Killing vectors, we derive the 4-momentum and the tensor of spin
explicitly in terms of the spacetime coordinates. However, in order to find the actual trajectories,
one needs to impose the so-called supplementary condition. We discuss the dynamics of spinning
test bodies for the cases of the Frenkel and Tulczyjew conditions.
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I. INTRODUCTION

The study of motion of test bodies in General Relativ-
ity (GR) theory has a long history, see for example the
account in [1]. Among other approaches, the multipole
approximation method represents a powerful technique
with the help of which one can derive a self-consistent
set of equations of motion for a body characterized by
the moments of arbitrary order. In the zeroth – or pole
– order one recovers the geodesic equation in the context
of multipolar methods. At the next – first or pole-dipole
– order, the test body is described by the 4-momentum
and the tensor of spin, and the dynamics is governed by
the Mathisson-Papapetrou equations, the relevant dis-
cussion can be found in [2–20]. Even in the absence of
spin the integration of the equations of motion is a diffi-
cult problem for nontrivial spacetimes. The spinless test
body moves along a timelike geodesic on the curved man-
ifold. When the spin is non-zero, the motion becomes
nontrivial even in the flat spacetime [21, 22]. Moreover,
in curved spacetime the motion is no longer geodesic due
to the Lorentz-like force that acts on the test body. The
Mathisson-Papapetrou force depends on the spacetime
curvature and this considerably complicates the problem
of finding the trajectories, [23–28].
Here we investigate the dynamics of test bodies with

spin in de Sitter spacetime. The latter is the maximally
symmetric 4-dimensional space which means that there
exist 10 (= 4×(4+1)/2) Killing vector fields that describe
the symmetries of this manifold. The flat Minkowski
spacetime also has 10 Killing vectors, and in this respect
the geometrical properties of the de Sitter spacetime are
close to those of the Minkowski space. At the same time,
the de Sitter manifold has a nontrivial curvature.
We should clearly stress at this point, that this work

is not concerned with the actual derivation of the equa-
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tions of motion in the context of different multipolar ap-
proximation schemes. We will not discuss the conceptual
questions which eventually lead to the imposition of dif-
ferent supplementary conditions, nor do we discuss dif-
ferent “flavors” of multipolar schemes – in particular not
the subtleties regarding the definition of the moments
within these schemes. Here we are only concerned with
the solution of the pole-dipole equations motions in a spe-
cific background spacetime for two frequently used sup-
plementary conditions [5, 6, 21]. As our analysis will
show, different choices of the supplementary condition
lead to quite different dynamics. In other words, the se-
lection of such a condition – which in the context of the
multipolar schemes under consideration has the status
of additional assumption on the level of the equations of
motion – should be performed with utmost care.

We should also stress that our analysis is valid for both
interpretations of the Mathisson-Papapetrou equations
which can be found in the literature, i.e. it applies to
point particles [29–32] as well as to extended test bod-
ies. Recall that – on the level of the equations motion
– the descriptions of both types of objects formally co-
incide. One should keep in mind though, that there are
preferences regarding the supplementary condition [33–
35], depending on the system which is supposed to be
described by the equations of motion.

The structure of the paper is as follows. In section II
we present a short overview of the equations of motion
for spinning test bodies. We pay particular attention to
the conserved quantities in these equations. In section
III we collect some facts about the Killing vectors of de
Sitter spacetime. These results are then used for the
integration of the equations of motion in de Sitter space-
time in section IV. This is followed by a discussion of
how momentum and spin can be expressed with the help
of the integrals motion in section V. Finally, we draw
our conclusion in VI and present a brief outlook on open
problems. A summary of our conventions and a directory
of symbols can be found in appendix A.
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II. EQUATIONS OF MOTION

A test body with spin is described by the following
variables. Its trajectory is given by 4 spacetime coordi-
nates xα(s) as functions of the affine parameter s (proper
time). Furthermore, the body is characterized by the first
two moments (pole and dipole) coming from its energy-
momentum contents: the 4-momentum pα and the spin
Sαβ = −Sβα. One can interpret these as the two “grav-
itational charges” carried by the body since they couple
to the gravitational field in the same way as the electric
charge couples to the electromagnetic field.
The pole-dipole equations of motion (usually known as

the Mathisson-Papapetrou equations) read

ṗα = − 1

2
Sµνuβ Rµνβ

α, (2.1)

Ṡαβ = 2p[α uβ]. (2.2)

Here uα = dxα/ds is the 4-velocity of the body, and the
dot denotes the covariant derivative with respect to the
proper time, “ ˙ ” = D/ds = uα∇α. The force term
on the right-hand side of (2.1) depends explicitly on the
spacetime curvature.
The set of the Mathisson-Papapetrou equations is in-

sufficient to determine the dynamics of the system. In-
deed, we have 14 unknown variables (xα, pα, Sµν) and
only 10 equations (2.1)-(2.2). One additional algebraic
equation comes in the form of the normalization condi-
tion uαuα = 1. Thus one needs 3 more equations to
make the model predictable. Such additional equations
are usually algebraic and they are commonly known as
the supplementary conditions. Although this name is
rather misleading, we will keep the tradition. The two
most widely used are the Frenkel condition [21] (some-
times also called Pirani condition [5])

Sαβuβ = 0, (∗) (2.3)

and the Tulczyjew condition [6]

Sαβpβ = 0. (∗∗) (2.4)

Both algebraic equations have 3 independent components
and thus the total number of the equations becomes equal
to the number of the unknowns.
In this paper we will analyze the dynamics of spinning

test bodies for both supplementary conditions.
By contracting (2.2) with uβ, we find

pα = muα + Ṡαβuβ. (2.5)

The m := uαpα we will call the rest mass of the body,
defined as usual as the projection of the 4-momentum on
the rest frame of moving body. Besides that, we can de-
fine another mass parameter by M2 := pαpα. In general,
these two masses are different. We will compare them be-
low. Depending on the supplementary condition chosen,
the mass parameters may be constant or not.

A. Conserved quantity

Let ξ be a Killing vector. This is a solution of the
equation ∇αξβ +∇βξα = 0. Applying ∇γ , we derive

∇γ∇αξβ+∇γ∇βξα = ∇γ∇αξβ+∇β∇γξα−Rγβα
λξλ = 0.

(2.6)
Now, add and subtract ∇α∇βξγ and use the identity
∇γ∇αξβ +∇β∇γξα +∇α∇βξγ ≡ 0. As a result, we ob-
tain the second covariant derivative of any Killing vector
in terms of the curvature:

∇α∇βξγ = Rβγα
λξλ. (2.7)

Then we straightforwardly find

D

ds
(2ξαp

α) = 2ξ̇αp
α + 2ξαṗ

α, (2.8)

D

ds

(

Sαβ∇αξβ
)

= − 2ξ̇αp
α + SαβuγRαβγ

λξλ. (2.9)

In the last equation we used (2.2) and (2.7). Taking the
sum of (2.8) and (2.9), and using the equation of motion
(2.1), we derive

D

ds

(

2ξαp
α + Sαβ∇αξβ

)

= 0. (2.10)

Thus, we have demonstrated that the scalar

2ξαp
α + Sαβ∇αξβ = const (2.11)

is conserved. Quite remarkably, no supplementary condi-
tion is needed. For other non-linear conserved quantities
at the pole-dipole order see [36, 37].

B. Mass parameters M and m

Here we study whether the mass parameters are con-
stant or may change along body’s trajectory. Recall the
definitions m = pαu

α and M2 = pαp
α.

Eq. (2.1) yields uαṗ
α = 0. Consequently,

ṁ = pαu̇α = u̇α
D

ds
(Sαβuβ). (2.12)

In the last equality we used (2.5). As we see, m is con-
stant when the Frenkel condition (2.3) is assumed.
If we contract (2.2) with pαṗβ , we find

ṗβ
D

ds

(

pαS
αβ
)

+mMṀ = 0. (2.13)

Accordingly, M is constant for the Tulczyjew condition
(2.4).

C. Velocity and momentum

The relation between the velocity of the body and its
momentum provides a very useful information for the
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integration of the equations of motion. Here we derive
this relation explicitly without using the supplementary
conditions.
Contracting (2.2) with pβ and making use of (2.1), we

find

uα =
m

M2
pα − 1

M2

D

ds

(

Sαβpβ
)

− 1

2M2
SαγSµνRµνβγ u

β.

(2.14)
Now let us derive a useful identity. For an arbi-

trary skew-symmetric tensor ϕαβ we define the dual
ϕ∗αβ := 1

2η
αβµνϕµν . Any two such tensors together with

their duals satisfy the identity (a somewhat lengthy but
straightforward proof is based on the properties of the
Kronecker and Levi-Civita objects, see [38] chapter 7,
e.g.)

ϕαγσβγ − σ∗αγϕ∗
βγ ≡ 1

2
δαβ ϕµνσµν . (2.15)

Taking σ = ϕ∗ and noticing that ϕ∗∗ = −ϕ, we obtain
from (2.15) a new identity

ϕαγϕ∗
βγ ≡ 1

4
δαβ ϕµνϕ∗

µν . (2.16)

These identities underlie the following important alge-
braic result. Let us consider the second rank tensor

Kα
β := δαβ + ϕαγσβγ . (2.17)

Here ϕαγ and σβγ are the two arbitrary skew-symmetric
tensors. Then the inverse of (2.17) reads

(

K−1
)α

β =

[

1 + 1
2 (ϕσ)

]

δαβ − ϕαγσβγ

1 + 1
2 (ϕσ) − 1

16 (ϕϕ
∗) (σσ∗)

. (2.18)

Here (ϕσ) = ϕµνσµν and (ϕϕ∗) = ϕµνϕ∗
µν . The proof is

straightforward: one should multiply (K−1)αγK
γ
β and

make use of both identities (2.15) and (2.16).
We can write (2.14) as the algebraic system

Kα
βu

β =
m

M2
pα − 1

M2

D

ds
(Sαβpβ), (2.19)

where ϕαβ = Sαβ and σαβ = 1
2M2S

µνRµναβ . Accord-

ingly, we find (ϕσ) = 1
2M2S

µνSαβRµναβ , for example.
Then we find that the velocity of a test body can be

expressed in terms of its momentum and spin:

uα =
(

K−1
)α

β p̂
β , p̂α =

m

M2
pα − 1

M2

D

ds
(Sαβpβ).

(2.20)
This result is valid for any supplementary condition. For
the case of the Tulczyjew condition this relation was
originally derived in [39–41]. When spin satisfies (any
of) the supplementary conditions (2.3) or (2.4), we have
(ϕϕ∗) = SαβS∗

αβ = 0, and hence

uα = p̂α +
2SαβSµνRµνβγ p̂

γ

4M2 + SαβSµνRµναβ
. (2.21)

III. DE SITTER SPACE: KILLING VECTORS

Let ϑα be a coframe 1-form. The curvature of the de
Sitter spacetime reads

Rα
β =

1

ℓ2
ϑα ∧ ϑβ. (3.1)

Here ℓ is a real constant. The anti-de Sitter space arises
with the help of the formal replacement ℓ2 → −ℓ2. In
components, Rα

β = 1
2Rµνα

βϑµ ∧ ϑν , we have Rµνα
β =

1
ℓ2

(

gαµδ
β
ν − gανδ

β
µ

)

.
The de Sitter spacetime has many faces. Depending on

the choice of the local coordinates, the metric can have
static form, either isotropic or Schwarzschild-like, or it
can be written in the cosmological form of an expanding
world.
In static isotropic coordinates, the line-element of the

de Sitter spacetime reads

ds2 = V 2dt2 −W 2(dx2 + dy2 + dz2). (3.2)

The functions depend only on r2 = x2 + y2 + z2:

V =
1− r2/ℓ2

1 + r2/ℓ2
, W =

2

1 + r2/ℓ2
. (3.3)

The coordinate transformation Xa = Wxa, a = 1, 2, 3,
(x1 = x, x2 = y, x3 = z) hence

ρ = W r =
2r

1 + r2/ℓ2
, (3.4)

brings the line element to the standard spherically sym-
metric form

ds2 =

(

1− ρ2

ℓ2

)

dt2 − dρ2

1− ρ2

ℓ2

− ρ2 dθ2 − ρ2 sin2 θ dφ2.

(3.5)
Here ρ2 = X2 + Y 2 + Z2 and spherical coordinates
are introduced in the usual way by Xa = {X =
ρ sin θ cosφ, Y = ρ cos θ cosφ, Z = ρ cos θ}. The met-
ric (3.5) arises from the Kottler (Schwarzschild-de Sit-
ter) [42, 43] metric when the mass of the central source
is zero.
Another change of coordinates from the static to the

cosmological frame

t̃ = t+
ℓ

2
log
(

1− ρ2/ℓ2
)

, (3.6)

X̃a =
e−t/ℓXa

√

1− ρ2/ℓ2
, a = 1, 2, 3, (3.7)

brings the de Sitter metric into the form of an exponen-
tially expanding world

ds2 = dt̃2 − e2t̃/ℓ δabdX̃
adX̃b. (3.8)

The de Sitter spacetime can be viewed as a hyper-
boloid embedded into the flat 5-dimensional spacetime.
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Let XA, A = 0, 1, 2, 3, 4, be the coordinates and the line
element ds2 = ηABdXAdXB of such a spacetime with
ηAB = diag(1,−1,−1,−1,−1). The de Sitter manifold
can then be embedded in it as the hyperboloid

(

X 0
)2 −

(

X 1
)2 −

(

X 2
)2 −

(

X 3
)2 −

(

X 4
)2

= −ℓ2, (3.9)

where the embedding coordinates can be chosen for ex-
ample as

X 0 = ℓ

√

1− ρ2

ℓ2
sinh(t/ℓ), (3.10)

X 4 = ℓ

√

1− ρ2

ℓ2
cosh(t/ℓ), (3.11)

X a = Xa, a = 1, 2, 3. (3.12)

A. Killing vectors

The de Sitter manifold is a maximally symmetric
space, and there are 10 Killing vector fields on it. In
the isotropic coordinates (t, xa), the Killing vectors read
explicitly:

ξ(0) = ∂t, (3.13)

ξ(a) = ǫabcxb
∂

∂xc
, (3.14)

η
(a)
± = e±t/ℓ

[

W

V

xa

ℓ

∂

∂t
±
(

V

W
δab +

xaxb

ℓ2

)

∂

∂xb

]

.(3.15)

In the static coordinates (t,Xa), they look very similar
[44]

ξ(0) = ∂t, (3.16)

ξ(a) = ǫabcXb
∂

∂Xc
, (3.17)

η
(a)
± =

e±t/ℓ

√

1− ρ2/ℓ2

[

Xa

ℓ

∂

∂t
±
(

1− ρ2

ℓ2

)

∂

∂Xa

]

.(3.18)

In the cosmological setting, the Killing vectors read

ξ(0) =
∂

∂t̃
− X̃a

ℓ

∂

∂X̃a
, (3.19)

ξ(a) = ǫabcX̃b
∂

∂X̃c
, (3.20)

η
(a)
+ =

∂

∂X̃a
, (3.21)

η
(a)
− =

2X̃a

ℓ

(

∂

∂t̃
− X̃b

ℓ

∂

∂X̃b

)

+

(

ρ̃2

ℓ2
− e−2t̃/ℓ

)

∂

∂X̃a
. (3.22)

Here ρ̃2 =
(

X̃a
)2

. The expression for η
(a)
− is rather non-

trivial.

B. Conformally flat representation

Since the Weyl tensor for the de Sitter space is trivial,
the metric can be recast into a form that is conformally
flat. Explicitly,

ds2 = ϕ2ηijdx
idxj , ηij = diag(+1,−1,−1,−1).

(3.23)
The conformal factor depends only on the 4-dimensional
“radius” σ = ηijx

ixj , namely,

ϕ =
1

1− σ
4ℓ2

=
1

1− ηijxixj

4ℓ2

. (3.24)

In this representation, the Killing vectors are as follows:

ξ
(α)

=
(

1 +
σ

4ℓ2

)

∂α − xαx
β

2ℓ2
∂β , (3.25)

ξ
[αβ]

= xα∂β − xβ∂α. (3.26)

IV. INTEGRATING THE EQUATIONS OF

MOTION IN DE SITTER SPACETIME

In de Sitter spacetime with the curvature (3.1), the
equation of motion (2.1) reduces to

ṗα =
1

ℓ2
Sαβuβ. (4.1)

The complete integration of the dynamical equations de-
pends crucially on the supplementary condition. The two
most important cases are analyzed separately below.

A. Tulczyjew condition

Assuming (2.4), we introduce the 4-vector of spin via
Šα := ηαβµνpβSµν . The inverse formula yields the spin

tensor in terms of the spin vector: Sαβ = 1
2M2 η

αβµνpµŠν .
By construction, we have the orthogonality properties

pαŠ
α = 0, SαβŠ

α = 0. (4.2)

With the help of (4.1) and (2.14) we derive further or-
thogonality properties

ṗαŠ
α = 0, uαŠα = 0. (4.3)

An immediate consequence is the (covariant) constancy
of the spin vector. Indeed, we find

˙̌Sα =
1

2M2
ηαβµν ṗβηµνρσp

ρŠσ

=
1

M2

(

pβ ṗβŠ
α − pαṗβŠ

β
)

= 0. (4.4)

Using the orthogonality properties, we find in the de Sit-
ter space

SαγSµνRµνβγ

=
1

2M4ℓ2
(

pαpβŠ
2 − δαβ M2Š2 +M2ŠαŠβ

)

.(4.5)
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Consequently,

SαγSµνRµνβγu
β =

Š2

2M2ℓ2

( m

M2
pα − uα

)

. (4.6)

Substituting this into (2.14), we have

(

1− Š2

4M4ℓ2

)

( m

M2
pα − uα

)

= 0. (4.7)

Thus, since the spin vector is spacelike, we can never have
Š2 = 4M4ℓ2, and hence we obtain

pα = muα, m = M. (4.8)

As a result, the equations of motion of a spinning test
body in the de Sitter spacetime under the Tulczyjew con-
dition reduce to

ṗα
(∗∗)
= 0, ˙̌Sα (∗∗)

= 0, pα
(∗∗)
= muα, (4.9)

or, equivalently

u̇a (∗∗)
= 0, ηabcdubṠcd

(∗∗)
= 0. (4.10)

The first equation actually means that the trajectories
of the spinning bodies are the geodesics in the de Sitter
space. The second equation describes the precession of
the spin vector, or tensor, of a body during its motion
along a geodesic curve.

B. Frenkel-Pirani condition

Let us now analyze the Frenkel case (2.3). Although
the dynamic equations for this supplementary condition
have a certain similarity to the above case, there are im-
portant differences. In particular, from (4.1) it immedi-
ately follows that, like in the previous case, the momen-
tum is covariantly constant, ṗα = 0.
Following the same line of reasoning, we define the 4-

vector of spin by Sα := ηαβµνuβSµν . The inverse for-
mula yields the spin tensor in terms of the spin vector:
Sαβ = 1

2η
αβµνuµSν (we use the normalization u2 = 1).

By construction, we thus have the orthogonality proper-
ties

uαS
α = 0, SαβS

α = 0. (4.11)

Now in complete analogy with (4.4), directly from the
definition of the spin vector, we derive that the spin vec-
tor is Fermi-Walker transported:

Ṡα =
1

2
ηαβµν u̇βηµνρσu

ρSσ = −uαu̇βS
β . (4.12)

We thus have the system1

ṗα = 0, ραβ Ṡ
β = 0. (4.13)

1 Here ραβ := δαβ − uαuβ .

Although this looks formally similar to (4.9), the actual
dynamics is very different. In particular, the trajectories
are no longer geodesics because the momentum does not
coincide with the velocity. Instead,

pα = muα − Sαβ u̇β, (4.14)

and this relation must accompany the integration of the
system (4.13). The above system can be simplified even
further. If we differentiate eq. (4.14) and contract it with
Sα, we obtain – with the help of (4.11): ṗαSα = mu̇αSα−
Ṡαβu̇βSα. The last term vanishes when we use (2.2),
and the left-hand side vanishes because of the covariant
constancy of the momentum, cf. (4.13). Thus, we obtain
u̇αSα = 0, in other words – taking into account (4.12) –
the spin is also parallely transported in the Frenkel-Pirani
case. We thus end up with the final system:

ṗα
(∗)
= 0, Ṡα (∗)

= 0, pα
(∗)
= muα − Sαβ u̇β. (4.15)

Equivalently, one may look for solutions of the system

Sabüb −mu̇a (∗)
= 0, (4.16)

Ṡab + 2u[aSb]cu̇c
(∗)
= 0. (4.17)

The geodetic motion plus the parallel transport of the
spin

u̇α = 0, Ṡα = 0, (4.18)

is a solution of (4.15), as one can immediately check.
However, in general a spinning body does not move along
a geodesic.
The force that pushes the body away from a geodesic

is produced by its own spin, and the resulting motion
is a classical analog of the Zitterbewegung. The key to
the description of this motion is a new vector variable
that can be introduced along the lines of the flat space
discussion [45], i.e.

Qα :=
1

M2
Sαβpβ. (4.19)

In view of the covariant constancy of the momentum,
both invariants M2 = pαp

α and

1

2
SαβS

αβ = − SαS
α

4
(4.20)

are conserved along body’s trajectory. As a result, the
length of the new vector field is also constant

QαQ
α =

SαS
α

4M2

(

m2

M2
− 1

)

. (4.21)

Being orthogonal to the velocity, Qα is spacelike, and
thus it is rotating thereby generating the helical motion
of the body. This can be further clarified as follows.
Contracting (2.2) with pβ , we find

uα + Q̇α − mpα

M2
= 0. (4.22)
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By differentiating we thus prove that the acceleration is
produced by the “Q-force”

u̇α = − Q̈α. (4.23)

On the other hand, every vector can be expanded with
respect to the natural orthogonal basis formed by the
quadruple (pα, Sα, Qα, Q̇α). This basis is not orthonor-
mal since the lengths of the legs are not equal ±1, but one
can straightforwardly verify that each vector is orthogo-
nal to the three others. In particular, we can expand the
acceleration with respect to this basis:

u̇α = α pα + β Sα + γ Qα + δ Q̇α. (4.24)

Contracting this with pα, Sα, Q̇α, we find α = β = δ = 0
since u̇αpα = u̇αSα = u̇αQ̇α = 0. The only nontrivial
coefficient is thus

γ =
u̇αQα

Q2
. (4.25)

However, contracting (4.14) with pα, we find u̇αQα = 1−
m2/M2, and then using (4.21), we have γ = − 4M2/S2.
Accordingly, (4.24) reduces to

u̇α = − 4M2

S2
Qα. (4.26)

Comparing (4.23) with (4.26), we derive the oscillator
equation

Q̈α + ω2 Qα = 0. (4.27)

The frequency is defined by

ω :=
2M√
−SαSα

=
M

√

1
2SαβSαβ

. (4.28)

Furthermore, substituting uα from (4.22) into the equa-
tions of motion and the Frenkel condition, we can recast
(2.2) and (2.3) into

µ̇αβ = 0, (4.29)

µαβQ̇β −mQα = 0. (4.30)

Here we introduced another interesting object

µαβ := Sαβ+pαQβ−pβQα = Sαβ− pαpγ
p2

Sγβ− pβpγ
p2

Sαγ ,

(4.31)
that is the projection of spin on the momentum. Using
it, the frequency (4.28) is recast into

ω =
m

√

1
2µαβµαβ

. (4.32)

Qualitatively, the dynamics of spinning bodies subject
to the Frenkel condition in the de Sitter spacetime is sim-
ilar to that in flat space [45]. Everything is determined
by the initial conditions. If initially (at the proper time
s = 0) spin is parallel to the momentum, i.e. Sαβpβ = 0
(hence Qα = 0), then this is true on the whole trajectory
that turns out to be geodesic. Otherwise, the trajectory
is a geodesic curve, perturbed by the oscillatory motion
of Qα with the frequency (4.28), (4.32).

V. USING THE INTEGRALS OF MOTION

As a matter of fact, the de Sitter spacetime has exactly
the same number of Killing vectors as the total number
of the “gravitational charges”, that is, 10. Then we can
try to find the momentum pµ and the spin Sµν without
solving differential equations by just making use of the
10 conservation laws.
This task is most straightforwardly treated in the con-

formally flat representation. By substituting (3.25) and
(3.26) into (2.11), we have the algebraic system

2 ξ
(α)

µp
µ + Sµν∇µ ξ

(α)
ν = 2Πα, (5.1)

2 ξ
[αβ]

µp
µ + Sµν∇µ ξ

[αβ]
ν = 2Σαβ . (5.2)

Here Πα and Σαβ = −Σβα are the 4 + 6 = 10 constants
of motion. We introduced the factors 2 for convenience.
It is worthwhile to notice that due to the skew symmetry
of spin, Sµν∇µξν = Sµν∂µξν .
For the translational (3.25) and rotational (3.26)

Killing vectors we find

ξ
(α)

ν = gνλ ξ
(α)

λ = ϕ2
[(

1 +
σ

4ℓ2

)

ηνα − xνxα

2ℓ2

]

,(5.3)

∂[µ ξ
(α)

ν] =
2ϕ4

ℓ2
x[µη̂ν]α, (5.4)

ξ
[αβ]

ν = gνλ ξ
[αβ]

λ = ϕ2 (xαηβν − xβηαν) , (5.5)

∂[µ ξ
[αβ]

ν] = 2ϕ4 η̂α[µη̂ν]β . (5.6)

Here we introduced

η̂µν :=
(

1− σ

4ℓ2

)

ηµν +
xµxν

2ℓ2
. (5.7)

In addition, we define a similar object

η̌µν :=
(

1 +
σ

4ℓ2

)

ηµν − xµxν

2ℓ2
. (5.8)

It is easy to check that up to a factor they are inverse to
each other,

η̂µλη̌λν =
(

1− σ

4ℓ2

)(

1 +
σ

4ℓ2

)

δµν . (5.9)

Other useful relations are as follows:

η̂µλη̂λν =
(

1− σ

4ℓ2

)2

δµν +
xµxν

ℓ2
, (5.10)

η̌µλη̌λν =
(

1 +
σ

4ℓ2

)2

δµν − xµxν

ℓ2
. (5.11)

The indices are everywhere raised and lowered with the
help of the flat Minkowski metric ηµν .
Substituting (5.3)-(5.6) into (5.1) and (5.2), we derive

ϕ2 η̌αµp
µ +

ϕ4

ℓ2
η̂ανxµS

µν = Πα, (5.12)

ϕ2 (xαηβµ − xβηαµ) p
µ + ϕ4 η̂αµη̂βν S

µν = Σαβ . (5.13)
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As a first step, contracting (5.12) with η̂αβ and using
(5.9) and (5.10), we find

ϕ2 pµ =
1

1−
(

σ
4ℓ2

)2

(

ϕ2

ℓ2
Sµνxν + η̂µν Πν

)

. (5.14)

As a result, we have

ϕ2 (xαηβµ − xβηαµ) p
µ =

1

1 + σ
4ℓ2

[

xαΠβ − xβΠα

+
ϕ3

ℓ2
(xαηβµ − xβηαµ) xνS

µν
]

. (5.15)

On the other hand,

ϕ2ηαµηβνS
µν − ϕ3

2ℓ2
(xαηβµ − xβηαµ)xνS

µν

= ϕ4 η̂αµη̂βν S
µν . (5.16)

With the help of (5.15) and (5.16), we recast (5.13) into

ϕ2

(

1 + σ
4ℓ2

)2 η̌αµη̌βν S
µν = Σαβ−

1

1 + σ
4ℓ2

(xαΠβ − xβΠα) .

(5.17)
Now contracting with η̂αρη̂βσ and making use of (5.9),
we find the spin tensor explicitly

Sµν = η̂µαη̂νβ Σαβ + η̂µαΠα xν − η̂ναΠα xµ. (5.18)

Notice that

η̂µαxα =
(

1 +
σ

4ℓ2

)

xµ, (5.19)

which we took into account when deriving (5.18). Using
this again, we find

Sµνxν =
1

ϕ

[(

1 +
σ

4ℓ2

)

ηµαΣαβx
β + (ηµνσ − xµxν)Πν

]

.

(5.20)
Substituting this into (5.14) we finally obtain the mo-
mentum

pµ =
1

ℓ2
ηµαΣαβx

β + η̌µν Πν . (5.21)

In summary, by using the 10 first integrals correspond-
ing to the Killing vectors of the de Sitter spacetime, we
are able to express the momentum and the spin as func-
tions of the constants of motion:

pµ =
1

ℓ2
ηµαΣαβx

β + η̌µν Πν , (5.22)

Sµν = η̂µαη̂νβ Σαβ + η̂µαΠα xν − η̂ναΠα xµ.(5.23)

Remarkably, the dependence on the spacetime coordi-
nates is merely polynomial. Notice that two different
etas appear in the final formulas: η̌µν enters (5.22) but
η̂µν enters (5.23).
This seems to be the best what one can do without im-

posing the supplementary condition on spin. The dynam-
ics of momentum and spin is completely known, given by

(5.22) and (5.23), however, the trajectory of the body is
still undefined. At first sight, one may think that it is
possible to substitute spin and momentum into (2.5) and
solve the resulting algebraic equation for the 4-velocity
uα. When this is done, one can find the trajectory from
the velocity vector field. But this plan does not work be-
cause one can verify by direct substitution of (5.22) and
(5.23) into (2.5) that the latter is an identity.
After imposing the supplementary condition, every-

thing reduces to a mere technical problem of integrat-
ing the first order system. For the Tulczyjew condition,
such a system is obtained by substituting (5.22) into the
left-hand side of (4.8) and recalling that uα = dxα/ds on
the right-hand side. Similarly, for the Frenkel condition
one needs to plug (5.22) into (4.22), with an intermediate
step of constructing Qα by contracting (5.22) with (5.23)
and substituting the result into (4.22). In both cases, for
the Frenkel and the Tulczyjew condition, the resulting
first order system involves only polynomial functions of
xα and can be straightforwardly integrated numerically.

VI. DISCUSSION

We have studied the dynamics of spinning test bod-
ies in the de Sitter spacetime. Qualitatively, the re-
sults are similar to those obtained in flat spacetime. For
the Tulczyjew condition (2.4), the body moves along the
geodesic curve, whereas the spin vector is parallelly trans-
ported along the trajectory. In the Frenkel case (2.3), the
spin is still parallelly transported, but geodesic motion
is just one special solution of the equations of motion.
When the initial value of Qα = Sαβpβ/p

2 is nontrivial,
then the body is affected by the spin-dependent force, the
acceleration u̇α is nontrivial, and the trajectory oscillates
around a geodesic with the frequency (4.28), (4.32). The
curvature of the de Sitter space thus affects the dynamics
only indirectly through the structure of the correspond-
ing geodesics on this manifold. The introduction of the
variables µαβ and Qα can be qualitatively compared to
the definition of the mean spin and the mean position
operators in quantum mechanics [46–49].
In summary, different supplementary conditions do

lead to fundamental changes on the level of the equations
of motion. In particular we have explicitly shown for the
de Sitter spacetime, how the solutions for the worldline
change under the Tulczyjew (2.4) and the Frenkel (2.3)
condition. The search for further solutions of the mul-
tipolar equations of motions is an ongoing task, in par-
ticular one should aim for a solution of the equations in
more complicated spacetimes than the one covered in the
present work.
As mentioned in the introduction there also remain

conceptual questions to be answered in the context of
different multipolar approximation schemes. In particu-
lar the interpretation of the quantities and the structure
of the final set of equations of motion in such schemes
should be investigated. Without going into detail at this
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point – see the upcoming work [50] in this respect – we
have to stress that the system (2.1)–(2.2) can be obtained
in several different ways. While one can achieve formal
equivalence on the level of the equations of motion, in
particular up to the pole-dipole order, there are differ-
ences in the derivation as well as in the interpretation of
these equations.
Let us briefly mention two viewpoints here. Most in-

terestingly, the equations (2.1) and (2.2) have been in-
terpreted in a point-particle, as well as in an extended
body context. In the point-particle picture it is imme-
diately clear that the dynamics of the particles under
consideration is directly influenced by the choice of the
supplementary condition. The particle is thought to be
localized at the worldline, and the worldline represents an
immediate description of its motion through spacetime.
This should eventually lead to small, but physically de-
tectable changes in the motion of these particles. For
an indirect detection one may imagine a charged particle
moving in an electromagnetic field. The differences in its
motion due to the different supplementary conditions –
recall the oscillatory motion in case of the Frenkel con-
dition – should be detectable via radiation losses. For
an extended body the impact of different supplementary
conditions may be less straightforward to detect. The
supplementary condition can be interpreted as the choice
of a suitable representative worldline of the body under
consideration – in analogy to the dynamics of bodies in
Newtonian physics one may think of an extension of the
concept of the center-of-mass. While it is clear from our
analysis, that the shape of this worldline will change un-
der different supplementary conditions, the question re-
mains up to which level such a change impacts observable
quantities. Microscopic oscillations along the representa-
tive line probably do not play any role in the description
of the motion of, say, an extended star. Nevertheless one
has to check for each application, if the length scales of
the system under consideration justify to view the choice
of the supplementary condition as something which has
no direct physical impact.
Let us close by pointing out, that further work on the

foundations and the interpretation of multipolar schemes
is needed. This concerns both, i.e. the point-particle as
well as extended body, interpretations. In particular, one
should always keep in mind that the multipolar schemes,
which lead to equations of motion (2.1) and (2.2), are
approximation schemes which – by construction – only
capture certain features of the full theory.
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TABLE I: Dimensions of the quantities.

Dimension (SI) Symbol

Geometrical quantities

1 gαβ, ηαβ ,
√
−g, δαβ , ϑ

α, ξν
(α)

m xα, dxα, s, ξν
[αβ]

m−1 Γαβ
γ

m−2 Rαβγ
δ, Rαβ

Matter quantities

1 ua, p̂α

kgm/s m, M , pα, Πα

kgm2/s Sab, Sa, µab, Σαβ

kg2 m3/s2 Šα

kg/m2 s Tαβ

Auxiliary quantities

1 Kα
β , W , V , ϕ, η̂αβ , η̌αβ

m ℓ, ρ, Qα

m2 σ

m−1 ω

m−2 γ

Operators

1 ραβ , “∗”, ηαβγδ

m−1 ∂i, ∇i,
D
ds

=“˙”

Appendix A: Dimensions & Symbols

In order to fix our notation, we provide some tables
with definitions in this appendix. The dimensions of the
different quantities appearing throughout the work are
displayed in table I. Table II contains a list with the
most important symbols used throughout the text. Greek
indices denote 4-dimensional indices and run from α =
0, . . . , 3.
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[33] W. Beiglböck. The center-of-mass in Einstein’s theory of

gravitation. Commun. Math. Phys., 5:106, 1967.
[34] R. Schattner. The center of mass in general relativity.

Gen. Rel. Grav., 10:377, 1979.
[35] R. Schattner. The uniqueness of the center of mass in

general relativity. Gen. Rel. Grav., 10:395, 1979.
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