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Abstract: We propose the operatorial Baxter’s TQ-relations in a general form of the
operatorial Bäcklund flow describing the nesting process for the inhomogeneous rational
gl(K |M) quantum (super)spin chains with twisted periodic boundary conditions. The
full set of Q-operators and T-operators on all levels of nesting is explicitly defined. The
results are based on a generalization of the identities among the group characters and
their group co-derivatives with respect to the twist matrix, found by one of the authors
Kazakov and Vieira (JHEP 0810:050, 2008). Our formalism, based on this new “mas-
ter” identity, allows a systematic and rather straightforward derivation of the whole set
of nested Bethe ansatz equations for the spectrum of quantum integrable spin chains,
starting from the R-matrix.

1. Introduction

It has been noticed long ago that the mathematical structures behind the quantum integra-
ble spin chains have many similarities with the theory of classical integrable systems,
such as KP or KdV hierarchies. It goes of course not only about the obvious corre-
spondence between the quantum integrable systems and their classical limits when, for
example, the quantum transfer matrix of a quantum 1+1-dimensional system becomes
the classical monodromy matrix of the corresponding classical Lax connection. There
is a more striking “classical” feature of the quantum integrability: The quantum transfer
matrix represents a natural (spectral parameter dependent) generalization of the Schur
character of a classical algebra [2] given by the so called Bazhanov-Reshetikhin (BR)
determinant formula and, as such, it satisfies a certain Hirota bilinear finite difference
equation, which appears in the quantum context as a certain fusion relation among
the composite quantum states appearing in quantum spin chains as certain bound states
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(“strings”) of Bethe roots [3–7]. Similar, though a more complicated realization of Hirota
discrete “classical” integrable dynamics has been observed in the context of the quantum
(1+1)-dimensional QFT’s, or sigma-models [6,8,9], an observation which appeared to
be at the heart of an important advance in the study of the spectrum of the AdS5/CFT4
correspondence [10–13].

Hirota equation immediately brings us to the idea that quantum integrability, at least
for certain quantities, such as transfer-matrix eigenvalues, can be viewed as a specific
case of classical integrability and of the theory of classical tau-functions. Indeed, the
character of a classical group, say gl(K ), is nothing but a tau-function of the KdV hier-
archy. It was proposed in [1] to view the quantum transfer matrix of a rational quantum
Heisenberg-type gl(K |M) (super)-spin chain with twisted boundary conditions as a
quantum, operatorial generalization of the character and to construct the transfer matrix
(T-operator) by acting on the character in a given irrep, as a function of the group
element (twist), by special group derivatives, called the co-derivatives. The formalism
of co-derivatives has led to a direct proof of the BR formula [1] (see also [14–17]), and
the basic underlying identity for the characters found in [1] seems to be just a new form
of the KdV Hirota identity (the fact yet to be understood).

In the present paper, we want to move even further in this classical interpreta-
tion of the quantum integrability and to generalize the basic identity of [1] to include
Baxter’s TQ-relations into our formalism. This implies a natural definition of all Baxter’s
Q-operators, rather different from the one known in the literature [6,18–36], and more
generally, of the T-operators on all levels of the nesting procedure. This nesting takes the
form of a Bäcklund flow, directly for the T- and Q-operators. Due to the fact that all of
them belong to a commuting family of operators, all these relations can be immediately
transformed into the well known functional form, for their eigenvalues [37–40].

Our main identity given in the next section offers an interesting alternative and a
concise approach to the quantum integrability uncovering the whole structure of the
nested Bethe ansatz, from the R-matrix and the Yang-Baxter relations all the way to the
nested Bethe ansatz equations, in the general operatorial form for all the intermediate
quantities.

2. Transfer-Matrix, Co-derivative and TQ-Relations

We recall that the main object of our study is the transfer matrix of an inhomogeneous
quantum spin chain1

T{λ}(u) = trλ
(

R{λ}
N (u − θN ) ⊗ · · · ⊗ R{λ}

1 (u − θ1) πλ(g)
)

, (1)

where πλ(g) is a matrix element of a twist matrix g ∈ GL(K ) in an irrep λ and

R{λ}
i (u) = u I + 2

∑
αβ

e(i)
βα ⊗ πλ(eαβ) ≡ u + 2 Pi,λ (2)

is the R-matrix in irrep λ in auxiliary space (and in fundamental irrep in the quantum
space). The identity operator I is implicit in the r.h.s., it will often be omitted for brevity.

1 Throughout this paper, all operators will act on the same Hilbert “quantum” space H = (CK )⊗N (resp
(CK |M )⊗N for supersymmetric spin chains). We use the Young diagram λ to label the irreducible tensor
representation. The fundamental representation corresponds to the Young diagram with one box.
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The gl(K ) generator e(i)
αβ corresponds to the i th quantum space2 (which is in the funda-

mental representation) and πλ(eαβ) - to the auxiliary space. When λ is also fundamental

then Pi,λ becomes a usual permutation operator e(i)
βα = I

⊗(i−1) ⊗ eβα ⊗ I
⊗(N−i) so that

Pi = ∑
αβ e(i)

βα ⊗ eαβ . Pi permutes the indices of the auxiliary space and the quantum

subspace. This T{λ}(u) is a spectral parameter u ∈ C dependent operator on the quantum
space H. It is polynomial in u and in the inhomogeneities θi ∈ C.

The main goal is to find all the eigenvalues of this transfer matrix for the gl(K )

quantum spins. For that we work out an operatorial Bäcklund transformation, which can
be also called the nesting procedure, whose main goal is to derive, in a deductive way,
without any assumptions, the nested system of Bethe ansatz equations defining these
eigenvalues. On the way, we will encounter a collection of the intermediate T-operators,
and Baxter’s Q-operators as their particular case, at each level of nesting. The operato-
rial TQ-relations, representing the Bäcklund transformation reducing the problem for a
gl(k) subalgebra to a similar problem for the gl(k − 1) subalgebra, in the nesting pro-
cedure corresponding to the chain of embeddings gl(K ) ⊃ gl(K − 1) ⊃ · · · ⊃ gl(1)

were given in their functional form in [38] (for the super-spin chains in [37]). All the
T- and Q- operators in this nesting procedure are labelled by the subsets I of the full set
I = {1, 2, . . . , K } as T{λ}

I (u) and QI (u). The original transfer matrix (2) corresponds

to the T-operator for the full set T{λ}(u) = T{λ}
I (u). There are 2K subsets of the full

set I and they can be described in terms of the Hasse diagram based on the inclusion
relations. A chain of subsets of the full set I = IK ⊃ IK−1 ⊃ · · · ⊃ I0 = ∅, where
|Ik | ≡ Card(Ik) = k, forms a path on the Hasse diagram. We will call this the nesting
path, and (K − k) - the level of nesting. There are K ! different nesting paths for gl(K )

(see Fig. 1b). This description of all the 2K Q-operators based on the Hasse diagram
was proposed in [40], and will be used throughout this paper.

The general TQ-relations, derived in Sect. 4 in the operatorial form, are given by

Ts
I (u)QI, j (u) = Ts

I, j (u)QI (u) − x j T
s−1
I, j (u + 2)QI (u − 2), (3)

where g = diag(x1, x2, . . . , xK ) is the twist matrix in the diagonal basis, the super-
script s in the T-operator denotes the symmetric λ = (s) irrep in the auxiliary space,
by I ⊂ I = {1, 2, . . . , K } we denote a subset of the full set of indices (labeling the
eigenvalues) and by I, j ≡ I ∪ { j} ⊂ I we denote a subset with one more index j /∈ I .
This TQ-relation relates the T-operator Ts

I and the T-operator Ts
I, j of the previous level

of nesting (which has one more index). A chain of these relations allows to relate the
original transfer matrix Ts

I(u) on the level zero of nesting to the u-independent operator
Ts

∅(u) given by (41). We will also show that the Q-operators are equal to the T-operators
taken at an empty Young diagram:

QI (u) = T0
I (u). (4)

In the papers [37,38], all the T- and Q-operators at intermediate steps were assumed,
by self-consistency and without a proof, to be polynomials in u. This analyticity assump-
tion immediately leads to the nested Bethe ansatz equations defined by the nesting path.

2 Here {ei j }K
i, j=1 satisfy the commutation relations [ei j , ekl ] = δ jk eil − δli ek j . The i th quantum space is

the i th factor in H = (CK ) ⊗ (CK ) ⊗ · · · ⊗ (CK )︸ ︷︷ ︸
N times

. In this way, e.g. e(i)
βα = I

⊗(i−1) ⊗ eβα ⊗ I
⊗(N−i). The

generalization of our construction to the case of gl(K |M) super-spins will be given in Sect. 5.
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(a)

(b)

Fig. 1. Hasse diagram for the Q-operators in the gl(3) and gl(4) case. In (b), the red thick lines denote one
of the 4! = 24 nesting paths characterized by a chain of the index sets I = I4 ⊃ I3 ⊃ I2 ⊃ I1 ⊃ I0, where
I4 = {1, 2, 3, 4}, I3 = {1, 2, 3}, I2 = {2, 3}, I1 = {2}, I0 = ∅. Note that (b) contains the diagram (a) for
gl(3) as a subdiagram

In this paper, we complete the missing link of the chain and find the explicit operatorial
form of the Bäcklund flow (3).

In what follows, we will extensively use the definitions and the identities of [1]. In
particular, the co-derivative D̂ defined there and used through the whole current paper
is a very simple object defined by its action on any function of g as follows:
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D̂ ⊗ f (g) = ∂

∂φ
⊗ f (eφ·eg)

∣∣∣∣
φ=0

, (5)

where φ is a matrix in the fundamental representation: φ · e ≡ ∑
αβ eαβφα

β and ∂
∂φ

=∑
αβ eαβ

∂

∂φ
β
α

. Its main property, which also could serve as its definition, manifests in its

action on the group element in the fundamental irrep:

D̂ ⊗ g = P (1 ⊗ g),

where P is the operator of permutation between the 1st and the 2nd spaces.3

Many other useful properties of this co-derivative, mostly following from the appli-
cation of the standard Leibniz rule can be found in [1] and some of them are summarized
in Appendix A.1.

Using the co-derivative we can for example rewrite the T-operator (1) in the following
way:

T{λ}(u) = (u1 + 2D̂) ⊗ (u2 + 2D̂) ⊗ · · · ⊗ (uN + 2D̂) χ{λ}(g), (6)

where ui = u − θi and χ{λ}(g) = tr πλ(g) is the character of the twist g in the irrep λ.
The action of each of N brackets adds a new spin to the system, with its fundamental
quantum space.

3. The Master Identity

In this section we will formulate the main identity of this paper, called here the mas-
ter identity (8) - the basis of our approach to the quantum integrability. It is proven in
Appendix E.

This identity involves the generating function of characters in symmetric (λ = (s))
or antisymmetric (λ = (1a)) tensor irreps,

w(z)=det
1

1−z g
= 1∏K

j=1(1 − z x j )
=

∞∑
s=0

zs χs(g)= 1∑∞
a=0(−1)aza χ(a)(g)

, (7)

where x j are the eigenvalues4 of the twist matrix g, and z ∈ C. This master identity
will relate operators of the form ⊗i (ui + 2D̂)

∏
k w(tk) (for an arbitrary set of complex

numbers {tk}), which is a generalization5 of the T-operator (6). To avoid the bulky nota-
tions in this definition, we assume all the terms like ui and 2 + ui to be multiplied by the
identity operator I, and the tensor product ⊗i is taken as6 −→⊗ N

i=1 unless it is explicitly
stated otherwise. Due to the commutation relation (71) following from the Yang-Baxter

3 Explicitly in indices, the last relation looks like D̂
i1
j1

g
i2
j2

= δ
i2
j1

g
i1
j2

. It is a usual matrix derivative obeying
the Leibniz rules. Throughout this paper, we define the tensor (or matrix) indices of any operator A with respect

to a basis {vk1 ⊗vk2 ⊗· · ·⊗vkN } as Avl1 ⊗vl2 ⊗· · ·⊗vlN = ∑
k1,k2,...,kN

A
k1,k2,...,kN
l1,l2,...,lN

vk1 ⊗vk2 ⊗· · ·⊗vkN .

In particular, a usual notation of a matrix element Ak,l is written as Ak
l .

4 Throughout this paper, we shall assume that ∀i �= j , xi �= x j .
5 The T-operator in symmetric irrep can be indeed obtained as Ts (u) = 1

s!
(

∂
∂z

)s [
⊗i (ui + 2D̂) w(z)

]
z→0

.

6 −→⊗ N
i=1 Ai = A1 ⊗ A2 ⊗ · · · ⊗ AN for any indexed operators {Ai }N

i=1.
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relation, the operators ⊗i (ui + 2D̂)
∏

k w(tk) are conserved charges, in the sense that
they belong to the same family of commuting operators as the T-operators.

The master identity reads as follows (t, z ∈ C):

(t − z)
[
⊗i (2 + ui + 2D̂) w(z)w(t)Π

]
·
[
⊗i (ui + 2D̂) Π

]

= t
[
⊗i (ui + 2D̂) w(z)Π

]
·
[
⊗i (2 + ui + 2D̂) w(t)Π

]

−z
[
⊗i (2 + ui + 2D̂) w(z)Π

]
·
[
⊗i (ui + 2D̂) w(t)Π

]
, (8)

and it holds for any function Π(g) of the form Π(g) = ∏
k w(tk), or equivalently,

Π(g) = det( f (g)) = ∏K
j=1 f (x j ), where f (z) is an arbitrary fixed function analytic

in the vicinity of z = 0. In (8), the dots between consecutive brackets stand for multi-
plication of operators acting on the quantum space, and each co-derivative operator D̂
acts on what lies to its right inside the square brackets.

The proof of our main identity (8) is given in Appendix E, but it can be easily proved
directly, for a few small N ’s, on Mathematica. The identity represents a natural gener-
alization7 of Eq. (4.1) [Eq. (20) in the arXiv version] in [1].

To conclude this section, let us demonstrate the use of the master identity (8) by
deducing from it a particular case of the Hirota relations for the transfer matrices in
particular representations. For that purpose, let us focus on the case when Π = 1. Then,
by expending w’s in symmetric characters according to (7) and keeping the coefficient
of t s zs′

in each term of (8), we get the relation

[
⊗i (2 + ui + 2D̂) (χs−1χs′ − χsχs′−1)

]
·
[∏

i

(ui )

]

=
[
⊗i (ui + 2D̂) χs′

]
·
[
⊗i (2 + ui + 2D̂) χs−1

]

−
[
⊗i (2 + ui + 2D̂) χs′−1

]
·
[
⊗i (ui + 2D̂) χs

]
. (9)

Choosing s′ = s + 1, and rewriting (9) using8 (6), we get a relation in terms of the
T-operators of rectangular Young diagrams :

− T(2,s)(u + 2)T(0,s)(u)=T(1,s+1)(u)T(1,s−1)(u + 2)−T(1,s)(u + 2)T(1,s)(u), (10)

where (a, s) denotes the representation with an a × s rectangular Young diagram λ =
(sa), i.e. T(a,s)(u) = T{(sa)}(u).

Equation (10), is a particular case of general Hirota relations (35) for the fusion in
rational spin chains known a long time and proven in [1] at zero level of nesting (I = I).

4. Baxter Relations for T- and Q-Operators

In this section we will derive from our main identity the operatorial Bäcklund flow in
the form of the TQ-relations described above, and even more generally, of TT-relations

7 The identity (4.1) of [1] corresponds to a particular case when Π = 1 and ∀i, ui = 0.
8 We also use the fact that the characters for rectangular representations χ(a,s) ≡ χ {(sa )}, satisfy a simple

Hirota relation χ(a,s+1)χ(a,s−1) − χ(a,s)χ(a,s) = −χ(a−1,s)χ(a+1,s).
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at every step of the nesting procedure, as well as the QQ-relations [33–35,37,39,41–44]
(see also earlier papers [45–47], and a recent presentation in [40] used in this paper)
which give immediate access to the full set of nested Bethe ansatz equations (also writ-
ten in an operatorial form in quantum space in Subsect. 4.5). At the same time, it will
give a natural operatorial definition of these quantities on every step of the nesting, and
in particular of all the 2K Q-operators. Since all these T- and Q-operators belong to the
same family of mutually commuting operators, we can transform these relations, at any
stage of the nesting procedure, to the operatorial ones, for T- and Q-operators.

4.1. First level of nesting. Now we will obtain from the master identity (8) the operato-
rial Baxter’s TQ-relations. We will start from the first level of nesting. In what follows
we will frequently use the notation I = I\I for the complimentary set of I . In particular
for any element j ∈ I, we use a notation j = I \ { j}.

Definition of Q-operators. In accord with (4) and (6) (where T{λ}(u) denotes T{λ}
∅ (u)),

the Q-operator on the zero level of nesting is, by definition,

Q12...K (u) ≡ Q∅(u) =
(

N∏
i=1

ui

)
I
⊗N , (11)

which is a simple function of ui ’s, times the identity operator in the full quantum space.
In particular, the last factor in the l.h.s. of (8) becomes Q∅(u) when Π = 1.

We will see in what follows that the Q-operators of the first level of nesting Q j (u)

can be defined through the residues at the poles in the expression:

(1 − gt)
⊗

N ·
[⊗

i

(ui + 2D̂ + 2) w(t)

]
=

K∑
j=1

Q j (u)

1 − x j t
+ polynomial in t, (12)

where the normalization factor (1 − gt)
⊗

N is necessary in order to have only sim-
ple poles. Indeed, the co-derivative acting on w(t), having simple poles at each t =
x−1

j , j = 1, 2, . . . , K , produces the double poles in the same points, as it is clearly

seen from (64) in the diagonal basis. The factor (1 − gt)
⊗

N transforms them again into
simple poles, thus justifying the pole expansion in the r.h.s. of (12).

The equivalent definition of the Q-operators is

Qj (u) = lim
t→ 1

x j

(1 − x j t) (1 − gt)
⊗

N ·
[⊗

i

(2 + ui + 2D̂) w(t)

]
. (13)

This Q-operator acts on the same quantum space H = (CK )⊗N as the T-operator (6). It
is also important to notice that the Q-operator Qj (u) loses its dependence on some ui ’s
(see Appendix B). For instance, for one spin (N = 1), if we denote9 by |ek〉 a basis of
eigenstates of g, we get

Qj (u)|ek〉 =
{(

(u1 + 2)
(
1 − xk/x j

)
+ 2xk/x j

) ∏
l∈j

1
1−xl/x j

|ek〉 if k �= j

2
∏

l∈j
1

1−xl/x j
|ek〉 if k = j,

(14)

9 In this definition of the “diagonal basis”, |ek 〉 is such that g|ek 〉 = xk |ek 〉.
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where we see that on the state |e j 〉, Qj (u) is u-independent, while the action of other
states is less trivial.

T-operators and TQ-relations. Now we will transform the master identity (8) into a
set of TQ-relations (3) on the first level of nesting.10 For that we simply put Π = 1.
Multiplying (8) by the matrix (1 − gt)

⊗
N which commutes with all the factors of both

the L.H.S. and the R.H.S.11, and picking the poles at t = 1/x j we come to the equation

lim
t→ 1

x j

(1 − x j t)(1 − z/t) (1 − gt)
⊗

N ·
[
⊗i (2 + ui + 2D̂) w(z)w(t)

]
· Q∅(u)

=
[
⊗i (ui + 2D̂) w(z)

]
· Q j (u) − x j

[
⊗i (2+ui + 2D̂) z w(z)

]
· Q j (u−2). (15)

It is useful to note that the factor (1 − z/t) ∼ (1 − zx j ) in the L.H.S. can be carried over
to the right of the co-derivatives D̂ allowing to use the relation

(1 − z x j )w(z) = (1 − z x j ) det
1

1 − z g
= det

1

1 − z g
j

,

where gj = diag(x1, x2, . . . , x j−1, x j+1, . . . , xK ) in the diagonal basis. The possibility

to move this factor across the derivatives comes from the factor (1 − gt)
⊗

N , introduced
to avoid poles of higher orders in (12). Indeed, for example in the simplest, one spin case
N = 1, we can easily check that (x j I−g)· D̂ x j = (x j I−g)Pj ·x j = x2

j Pj −g Pj x j = 0,

where Pj is the projector on the j th eigenspace of g. The generalization to any N is
rather trivial and is discussed in Appendix F.

Now we introduce the characters of the first level of nesting χs(g j
) = χ{λ=(s)}(g j

)

corresponding to the symmetric tensor representations of the sub-algebra gl(K − 1) ⊂
gl(K ), defined by the generating function

w j (z) ≡ det
1

1 − z g
j

= 1∏
k∈ j (1 − z xk)

=
∞∑

s=0

zs χs(g j
) (16)

and define the T-operators of the first level of nesting labeled by a Young diagram
λ = (s):

Ts
j
(u) = lim

t→ 1
x j

(
1 − x j t

)
(1 − g t)

⊗
N ·

[⊗
i

(ui + 2 + 2D̂) χs(g j
)w(t)

]
. (17)

The last formula also allows for an alternative to definition (12) of the Q-operators
as of the T-operators for the singlet irrep in the auxiliary space corresponding to an
empty Young diagram s = 0: Q j (u) ≡ Ts=0

j
(u) confirming the (more general) relation

announced in (4).

10 The “first level of nesting” means that we will relate the original T- and Q-operators labeled by the full
set ∅ = I with some T and Q-operators labeled by j , which has one index less.

11 Which is clear in the diagonal basis since (1 − gt)
⊗

N obviously commutes with permutations, and with
tensorial product of diagonal matrices, and hence with any operator of the form ⊗i (ai + D̂) w(b), due to its
diagrammatic expansion given in Appendix A.1.
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In the definition (17), we take a residue of a given pole and at the same time use
a character χs(g j

) where one eigenvalue is “removed”. This “removal” will be at the

heart of our nesting procedure, and its repetition defines a certain Bäcklund flow (nesting
path).

Let us take the coefficient of zs (s ∈ Z≥0) in (15), analogously to what was done in
(9), and rewrite12 it, using (17), as follows:

Ts
j
(u)Q∅(u) = Ts

∅(u)Q j (u) − x j T
s−1
∅ (u + 2)Q j (u − 2), (18)

which is the simplest Baxter’s TQ-relation in the operatorial form, the first of the chain
of Bäcklund transformations among the commuting T- and Q-operators of the zeroth and
first level of nesting known for a long time [38] on the level of their eigenvalues. Here
Ts

∅(u) ≡ T{(s)}(u) is the T-operator of the zeroth level of nesting, the original transfer
matrix (1), or (6), in the symmetric tensor irrep λ = (s). The T- and Q-operators labeled
by j = I \ { j} have K − 1 indices, and are considered in the first level of nesting.13

Let us also note that the T-operators can be also defined as the residues at the poles:

K∑
j=1

t Ts
j (u)

1 − x j t
= (1 − gt)

⊗
N ·

[⊗
i

(ui + 2 + 2D̂)
(
t χ{s}(g) − χ{s−1}(g)

)
w(t)

]

+ polynomial in t. (19)

It is clear from these definitions and from (71) that all these T- (and hence the
Q-)operators, belong to the same family of commuting operators [Ts

j (u), Ts′
j ′(u′)] =

[Ts
j (u), Ts′

∅ (u′)] = 0. It will be also shown for all T- and Q-operators, on all levels of
nesting.

4.2. Next levels of nesting. Now we will generalize this procedure, and the correspond-
ing TQ-relations, to all nesting levels. Suppose we want to consecutively “remove”
the eigenvalues x j1 , x j2 , . . . , x jk from the characters in the definition of T-operators,
where I = { j1, j2, . . . , jk} is a subset of the full set of indices: I ⊂ I (their order is
not important but they are all different). At such arbitrary level of nesting, we define a
normalization operator

BI =
∏

j∈I

(1 − x j t j ) · (1 − g t j )
⊗N (20)

and the following product of generating functions of characters:

ΠI =
∏

j∈I

w(t j ). (21)

The definition of the Q-operator labeled by a subset14 I = I\ I of the full set I becomes

QI (u)= lim
t j → 1

x j

j∈I

BI ·
[⊗

i

(2|I |+ui +2D̂) ΠI

]
where |I| = Card(I)= K −|I|, (22)

12 As explained above, we also use the fact that w(z)(1 − x j z) = w j (z).
13 In the same spirit, the kth level of nesting will involve the quantities with K − k indices.
14 The subset I defines the node on the Hasse diagram where the nesting process has arrived.
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and once again, it is an operator on the quantum space (CK )⊗N , which is polynomial
(of degree N if I �= ∅) in the spectral parameter u. Its eigenvalues have degree ≤ N ,
and it can be shown (see Appendix B) that QI (u)|ek1,k2,···kN 〉 is independent of all un

such that kn ∈ I .
We will show how to write a T Q relation between the T- and Q-operators labeled by

I and the operators of the previous level of nesting, labeled by I ∪ jk .
Let us first generalize (16) to define the characters of gI = diag

(
(x j ) j∈I

)
:

wI (z) ≡ det
1

1 − z gI
≡

∏
j∈I

1

1 − z x j
≡

∞∑
s=0

zs χs(gI ) = w(z)

wI (z)
. (23)

If we choose in the master identity (8), Π = ΠI∪ jk
≡ ΠI\ jk

, t = t jk , and u →
u + 2|I ∪ jk | = u + 2|I | − 2, then after multiplying15 it by 1

wI\ jk
(z)BI · BI∪ jk

and taking

the limit t j → 1
x j

, we get

lim
t j → 1

x j

j∈I∪ jk

(
(1−z/t jk )

BI

wI∪ jk
(z)

·
[
⊗i (2|I | + ui + 2D̂) w(z)w(t jk )ΠI∪ jk

])
· QI∪ jk (u)

= lim
t j → 1

x j

j∈I

(
BI∪ jk

wI∪ jk
(z)

·
[
⊗i (2|I | − 2 + ui + 2D̂) w(z)ΠI∪ jk

]
· QI (u)

−x jk

BI∪ jk

wI∪ jk
(z)

·
[
⊗i (2|I | + ui + 2D̂) zw(z)ΠI∪ jk

]
· QI (u − 2)

)
, (24)

where I ∪ jk = { j1, j2, . . . , jk−1}. These expressions are obtained by rewriting the
z-independent factors using formula (22). For instance, the last factor of the last term
obtained from (8) is

BI ·
[
⊗i (2|I |−2 + ui + 2D̂) w(t jk )ΠI\ jk

]
=BI ·

[
⊗i (2|I |−2 + ui + 2D̂) ΠI

]
, (25)

which becomes QI (u − 2) when the limit t j → 1
x j

is taken.
We define the T-operators for symmetric tensor representations as follows:

Ts
I (u) = lim

t j → 1
x j

j∈I

BI ·
[

N⊗
i=1

(ui + 2D̂ + 2|I |) χs(gI )ΠI

]
, (26)

where χs(gI ) is defined by (23). Then the action of co-derivatives on χs(gI ) is a priori
rather nontrivial. The recipe to avoid this complication and compute T-operators is given
in Appendix F. In terms of the generating function of Ts

I (u) we have

15 Once again, the normalization factors BI and BI∪ jk
commute with all the other factors, because they

commute with all permutations, and with all operators gi1 ⊗ gi2 ⊗ · · · giN , which are the building blocks of
all other factors. On the other hand, we will see a posteriori in Appendix F that the factor wI (z) can be freely

moved across the D̂’s.
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WI (u, z) ≡
∞∑

s=0

zsTs
I (u) = lim

t j → 1
x j

j∈I

BI ·
[

N⊗
i=1

(ui + 2D̂ + 2|I |) w(z)

wI (z)
ΠI

]
(27)

= 1

wI (z)
lim

t j → 1
x j

j∈I

BI ·
[

N⊗
i=1

(ui +2D̂+2|I |)w(z)ΠI

]
. (28)

Finally, we can notice that the L.H.S. of (24) contains
(1−zx jk )

wI∪ jk
(z) = 1

wI (z)
. Then,

expanding (24) with respect to z and taking the coefficients of zs , we obtain using the
definition (28) the following operatorial TQ-relation

Ts
I (u)QI∪ jk (u) = Ts

I∪ jk (u)QI (u) − x jk Ts−1
I∪ jk

(u + 2)QI (u − 2). (29)

It generalizes the similar, obvious relation among the characters of symmetric tensor
irreps:

χs(gI ) = χs(gI, j ) − x jχs−1(gI, j ), (30)

where j ∈ I and s ∈ Z≥1.
Notice that again the Q-operator on any level of nesting is equal to the T-operator,

with the same index set I, for an empty Young diagram λ = ∅ (which corresponds to
s = 0 case):

QI (u) = T{∅}
I (u). (31)

4.3. Generalization to any representations. There is a natural way to generalize the
T-operators to any irreps λ in the auxiliary space:

T{λ}
I (u) = lim

t j → 1
x j

j∈I

BI ·
[

N⊗
i=1

(ui + 2D̂ + 2|I |) χλ(gI )ΠI

]
, (32)

where the gl(K − |I |) characters of the irreps λ are given through the characters of the
symmetric tensor representations χs(gI ) by the Jacobi-Trudi determinant formula

χ{λ}(gI ) = det
1≤i, j≤a

χ
λ j +i− j (gI ) , (33)

where a is the number of rows in the Young diagram λ. It is noteworthy that, due to the
definition (32), T{λ}

I = 0 if λ has more than |I | rows, because χ{λ}(gI ) = 0.
The Bazhanov-Reshetikhin (BR) formula proven in [1] at the zeroth level of nesting

is also true for the T-operators on every level of nesting, and it reads

T{(λ1,λ2,...,λa)}
I (u) = 1∏a−1

k=1 QI (u−2k)
det1≤i, j≤a

(
T

λ j +i− j
I (u + 2 − 2i)

)
. (34)
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In the particular case of the rectangular Young diagrams λ = (sa) this means that the
T-operators satisfy the immediate equivalent of the BR formula - the Hirota equation,16

which is the same on any level of nesting, namely

T(a,s)
I (u + 1)T(a,s)

I (u − 1) = T(a+1,s)
I (u + 1)T(a−1,s)

I (u − 1)

+T(a,s+1)
I (u − 1)T(a,s−1)

I (u + 1). (35)

It can be proven that it is a consequence of the equation (86)17 of Appendix E. It is also
well known that the TQ-relation (29) implies the generating series expression (75) of
T-operators for symmetric representations in terms of Q-operators, detailed in Appen-
dix C (see for instance [38] at the level of eigenvalues). Then the Bazhanov-Reshetikhin
determinant formula (or, equivalently, the Hirota equation) allows to write arbitrary
T{λ}

I (u) operators in terms of Q-operators and to check the following bilinear relations
on the nested T-operators [38] (see [39] for the case with non-zero twist g):

T(a+1,s)
I, j (u)T(a,s)

I (u) − T(a,s)
I, j (u)T(a+1,s)

I (u)

= x j T
(a+1,s−1)
I, j (u + 2)T(a,s+1)

I (u − 2), (37)

T(a,s+1)
I, j (u)T(a,s)

I (u) − T(a,s)
I, j (u)T(a,s+1)

I (u)

= x j T
(a+1,s)
I, j (u + 2)T(a−1,s+1)

I (u − 2). (38)

The TQ-relation (29) is a particular case of Eq. (37) when a = 0, and the two equations
(37, 38) coincide with the definition of Bäcklund flow given in [39] up to the permuta-
tions on the index set I , so that the definitions (31, 32) for nested T- and Q-operators
explicitly give a solution of the linear system (37, 38).

4.4. QQ-relations. In the previous subsections, the TQ-relations were proven from the
formula (8). This formula contains the explicit factors w(z) and w(t), and one of them
was incorporated into Π (by defining ΠI∪ jk

= w(t)ΠI ) and was associated to the nest-
ing level. The other factor (w(z) = ∑

zsχs) was decomposed into the characters of
s-symmetric representations.

But it is also possible to generate other identities from (8), for instance by incorpo-
rating both w(t) and w(z) into ΠI , which gives rise to different nesting paths. Then,
a careful rewriting18 of (8) immediately gives the following well known QQ-relations
between Q-operators:

16 Hirota relation can also be written in terms of the T-operators defined as Ta,s (u) = T(a,s)(u + a − s).
In terms of these T-operators, (35) takes the usual form Ta,s (u + 1)Ta,s (u − 1) = Ta+1,s (u)Ta−1,s (u) +
Ta,s+1(u)Ta,s−1(u), more frequent in the literature.

17 To prove the BR at arbitrary levels of nesting, one actually needs to rewrite (86) in the following slightly
more general form, which is also equivalent to (8):

WI,J (u) =
det

(
zn−k

j WI, j (u − 2k + 2)
)

j∈J
1≤k≤|J |

det
(

zn−k
j

)
j∈J

1≤k≤|J |
∏|J |−1

k=1 WI (u − 2k)
, (36)

which becomes the nested Bazhanov-Reshetikhin formula after the limit zi → 1/xi is taken for i ∈ I .
18 In (8), let us put t = t j , z = ti , Π = ΠI∪{i, j}, where I ⊂ Iand i, j ∈ I (i �= j). Then note the following

relations: w(z)w(t)Π = Π Ī , w(z)Π = ΠI∪{ j}, w(t)Π = ΠI∪{i}.
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(
xi −x j

)
QI (u − 2)QI,i, j (u)= xi QI, j (u−2)QI,i (u) − x j QI, j (u)QI,i (u − 2), (39)

where i, j ∈ I and i �= j . These are relations among Q-operators in 4-cycles made of
{QI , QI,i , QI, j , QI,i, j } in the Hasse diagram (cf. Fig. 1).

We can immediately solve these QQ-relations, which are actually a particular case
of the Plücker identities for all the Q-operators to get the following determinant repre-
sentations.19

QI,J (u) =
det

(
x |J |−1−k

j QI, j (u − 2k)
)

j∈J
0≤k≤|J |−1(∏|J |−1

k=1 QI (u − 2k)
)

det
(

x |J |−1−k
j

)
j∈J

0≤k≤|J |−1

. (40)

In particular, choosing I = ∅ gives the expression of any Q-operator in terms of K + 1
Q-operators, namely, the K single indexed Qi (u) operators describing the last level of
nesting, and the u-independent operator Q∅(u). More explicitly Q∅(u) can be defined
by its action on the diagonal basis of the quantum space by

Q∅(u)|e〉 ≡ Ts=0
∅ (u)|e〉 = 2N

K∏
k=1

nk !
K∏

j=1,
( j �=k)

(
1 − x j

xk

)n j −1

|e〉, (41)

where |e〉 = |ei1,i2,...,iN 〉 ≡ |ei1〉 ⊗ |ei2〉 ⊗ · · · ⊗ |eiN−1〉 ⊗ |eiN 〉 and nk is the number of
j such that i j = k.

4.5. Operatorial Bethe equations. In this subsection we derive the set of nested Bethe
ansatz equations.

From the QQ-relations (39) one immediately sees that since QI, j (u) should be, by
its definition, a polynomial of u, then (for i, j ∈ I and i �= j)

QI,i (u) | (xi − x j )QI (u − 2)QI,i, j (u) + x j QI, j (u)QI,i (u − 2), (42)

QI,i (u) | (xi − x j )QI (u)QI,i, j (u + 2) − xi QI, j (u)QI,i (u + 2), (43)

where P|P ′ denotes the fact that the polynomial P ′ contains the polynomial P as a
factor. By adding xi QI,i (u + 2) times the first line to x j QI,i (u − 2) times the second
line, one gets

QI,i (u) | xi QI (u−2)QI,i, j (u)QI,i (u + 2) + x j QI (u)QI,i, j (u + 2)QI,i (u−2). (44)

This is written for the Q-operators, but when acting on particular eigenstates, the opera-
torial Bethe equations (44) become the usual polynomial Bethe equations (46) [48–51]
(cf. Eq. (68) of [39]) on the Bethe roots {u(I )

k } along a chosen nesting path. Indeed, now
we know, by construction, that the Q-operators are polynomials20 of u and therefore for
each eigenstate their eigenvalues are also polynomials of a degree K I ≤ N in u:

19 The factor det
(

x |J |−1−k
j

)
j∈J

0≤k≤|J |−1
= ∏

i< j;i, j∈J (xi − x j ) in the denominator corresponds to the

denominator formula of the character of gl(|J |).
20 This fact was missing in the analytic Bethe ansatz construction of [39] and appeared there only as a

hypothetic ansatz for the solution of the Hirota equation by the Bäcklund procedure.
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QI (u) = cI

K I∏
k=1

(u − u(I )
k ), (45)

so that, substituting u = u(I,i)
k into an eigenvalue of (44), we obtain the usual nested

Bethe ansatz equations:

− 1= xi

x j

QI (u
(I,i)
k −2)QI,i (u

(I,i)
k + 2)QI,i, j (u

(I,i)
k )

QI (u
(I,i)
k )QI,i (u

(I,i)
k −2)QI,i, j (u

(I,i)
k + 2)

for k ∈{1, 2, . . . , K I,i }. (46)

The Q-operators are formal polynomials QI (u) = ∑N
k=1 uk c(I )

k whose coefficients

{c(I )
k } are also operators in the quantum space. On particular quantum states - the eigen-

vectors of the spin chain Hamiltonian, a part of them becomes zero, which explains the
fact that the power of Q-functions - the eigenvalues of the Q-operators - can diminish
on each step of the Bäcklund procedure.

Given all solutions of the Bethe equations (46) it is possible, in principle, to find all
eigenvalues of the QI j operators and then to reconstruct all T-operators using TQ-rela-
tions (see (75)) together with the Hirota relation.

5. Generalization to the Supersymmetric Case

In the case of the gl(K |M) super-spin chain, T- and Q-operators are labelled by the
2K +M subsets I of the full set I = {1, 2, . . . , K + M}. For any element of I, we define
the grading parameter:

pb = 0 for 1 ≤ b ≤ K , and p f = 1 for K + 1 ≤ f ≤ K + M. (47)

Now the Q-operators are described by the colored Hasse diagram (see Fig. 2).
In the case of the gl(K |M) super-spin chain, the co-derivative can be defined by

D̂ ⊗ f (g) =
∑

i j

ei j
∂

∂φ
j

i

⊗ f
(

e
∑

kl φk
l ekl g

)
φ=0

,
∂

∂φ
j1

i1

φ
i2
j2

≡ δ
i2
j1
δ

i1
j2
(−1)p j1 ,

(48)

where {ei j } are generators of gl(K |M) in the fundamental representation and a matrix
φ is expressed as φ = ∑

φi
j ei j , and g is a matrix in the fundamental representation of

GL(K |M).
As explained in [1], the properties of co-derivatives are exactly the same as in the

bosonic case, including the expression of T-operators in terms of co-derivatives (at the
zeroth nesting level). The diagrammatics of the co-derivative is also the same as in
the bosonic case, except the signs to be introduced into every permutation operator, to
get P = ∑

αβ(−1)pα eβα ⊗eαβ . In particular, the formula (8) still holds in the super-case
but (7) has to be substituted by

w(z) = sdet
1

1 − z g
=

∏M
j=1(1 − z y j )∏K
j=1(1 − z x j )

=
∞∑

s=0

zs χs(g) = 1∑∞
a=0(−1)aza χ(a)(g)

,

(49)
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Fig. 2. Hasse diagram for the Q-operators: gl(2|2) case. There are 24 = 16 Q-operators in the same way as
gl(4) case (Fig. 1b). QI and QI\{k} are connected by a solid line if k ∈ {1, 2} (bosonic pk = 0), dashed line
if k ∈ {3, 4} (fermionic pk = 1)

where (x1, . . . , xK , y1, . . . , yM ) ≡ (ξ1, . . . , ξK +M ) are the eigenvalues of g ∈
GL(K |M) in the fundamental representation and sdet denotes the super-determinant.
With slight generalizations of the definitions w.r.t. the bosonic case, all the supersym-
metric TQ- and QQ-relations follow from (8) if we define T- and Q-operators in the
following way:

ΠI =
∏

j∈I

w(t j )
((−1)

p j ), BI =
∏

j∈I

(1 − ξ j t j )(1 − g t j )
⊗N , (50)

T{λ}
I (u) = lim

t j → 1
ξ j

j∈I

BI ·
[

N⊗
i=1

(ui + 2D̂ + 2nb̄ − 2n f̄ )χλ(gI )ΠI

]
, (51)

QI (u) = lim
t j → 1

ξ j

j∈I

BI ·
[

N⊗
i=1

(ui + 2D̂ + 2nb̄ − 2n f̄ )ΠI

]
, (52)

where nb̄ = | Ī ∩ {1, 2, . . . , K }|, and21 n f̄ = | Ī ∩ {K + 1, . . . , K + M}|. In particular,
the Q-operator for an empty set (41) now becomes

Q∅(u)|e〉 ≡ T{∅}
∅ (u)|e〉=2N

K +M∏
k=1

(−1)pk nk nk !
K +M∏
j=1,

( j �=k)

(
1− ξ j

ξk

)n j −(−1)
p j +pk

|e〉. (53)

21 As before, |I | denotes Card(I ).
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In what follows, the indices i, j ∈ {1, 2, . . . , K }∩ I and k̂, l̂ ∈ {K +1, K +2, . . . , K +
M}∩ Ī will correspond to the opposite gradings (we might call i and j “bosons” and k, l
“fermions”), and we will use the notation l̂ = l + K for l ∈ {1, 2, . . . , M}, so that ξl̂ = yl .
In (51), χλ(gI ) is defined through (33), where χs(gI ) is defined by the generating series

wI (z) ≡ sdet
1

1 − z gI
=

∏
l̂∈I
l̂>K

(1 − z yl)

∏
j∈I
j≤K

(1 − z x j )
=

∞∑
s=0

zs χs(gI ). (54)

That implies [7,52] that T{λ}
I = 0 if the Young diagram λ = (λ1, λ2, λ3 . . .) con-

tains the highest weight λK +1 > M (i.e. unless λ is inside the “fat hook region”
indicated in Fig. 10 in [1]), while for nested T-operators T{λ}

I , the same “fat-hook condi-
tion” holds, but the corner of the fat hook is displaced from (M, K ) to (n f , nb), where
nb = |I ∩ {1, 2, . . . , K }|, n f = |I ∩ {K + 1, . . . , K + M}|. This means that the “hook
region” decreases by one row or one column at each level of nesting.

Then the TQ relations (29)22 become

Ts
I (u)QI, j (u) = Ts

I, j (u)QI (u) − x j T
s−1
I, j (u + 2)QI (u − 2), (55)

Ts
I,l̂

(u)QI (u) = Ts
I (u)QI,l̂(u) − ylT

s−1
I (u + 2)QI,l̂(u − 2) (56)

for 1 ≤ j ≤ K and K + 1 ≤ l̂ ≤ K + M.

The QQ-relations23 also become grading-dependent:
(
xi −x j

)
QI (u−2)QI,i, j (u)= xi QI, j (u − 2)QI,i (u)−x j QI, j (u)QI,i (u−2), (57)

(xi −yl) QI,l̂(u−2)QI,i (u)= xi QI (u−2)QI,i,l̂(u)−ylQI (u)QI,i,l̂(u − 2), (58)

(yl −ym) QI,l̂,m̂(u−2)QI (u)= ylQI,l̂(u−2)QI,m̂(u)−ymQI,l̂(u)QI,m̂(u−2), (59)

for i, j ∈ {1, 2, . . . , K } ∩ Ī and l̂, m̂ ∈ {K + 1, K + 2, . . . , K + M} ∩ Ī .

These are relations among Q-operators in 4-cycles made of {QI , QI,i , QI, j , QI,i, j } in
the Hasse diagram Fig. 2. For example, in Fig. 2, Eq. (57) corresponds to 4-cycles made
of 4-solid lines, (58) corresponds to 4-cycles made of 2-solid lines and 2-dashed lines,
(59) corresponds to 4-cycles made of 4-dashed lines.

All these TQ- and QQ- relations are derived by choosing an appropriate Π in (8),
but, as explained in [53], they could have been obtained from the bosonic relations by
the so called “bosonization trick” : For instance, (58) can be rewritten as

(xi −yl) QJ (u − 2)QJ,i\l̂(u)= xi QJ\l̂(u − 2)QJ,i (u) − ylQJ\l̂(u)QJ (u−2), (60)

where J = I ∪{l̂}, which has exactly the same form as (57), up to the formal replacement
J → I , J \ l̂ → I, l. This is interpreted as the fact that adding a “boson” to the set
I (which indexes Q or T-operators) is equivalent to removing a “fermion”.24 This trick

22 Obtained from the master identity (8) by putting Π = ΠI∪{ j}, t = t j for (55); Π = Π Ī , t = t ĵ for (56).
23 Obtained from the master identity (8) by putting Π = ΠI∪{i, j}, t = t j , z = ti for (57); Π = ΠI∪{i}, t =

tl̂ , z = ti for (58); Π = ΠI , t = tm̂ , z = tl̂ for (59).
24 As explained in [39], the same linear system describes the addition of a column to the “fat hook” or the

removal of a line (see (41) and (42) in [39,37]). In our notation, the former case is the addition of a “fermion”
to the set I, while the latter is the removal of a “boson”.
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can be viewed as a mnemonic rule, and in this construction of the T- and Q-operators, it
comes25 from the power (−1)p j in the definition (50) of ΠI . This trick means that the
Hasse diagram for gl(K |M) can be “rotated” by putting QK +1,K +2,··· ,K +M on the top
row and Q1,2,··· ,K on the bottom row, so that the QQ-relations take the same form for
all the facets of the modified diagram.

In the same way as for the gl(K ) case, the TQ-relations (55, 56) can be written as
the generating series expansion (78) (see [39,37] at the level of eigenvalues). We can
also generalize the Wronskian expressions (40) for Q-operators to all the T-operators at
all levels of nesting. They do not differ in form from the relations found in [40].

The Bethe ansatz equations for gl(K |M) [48,49] are obtained in the same way as
for the gl(K ) case: there are two “bosonic” Bethe Ansatz equations (BAEs) and two
“fermionic” ones.26 The first “bosonic” BAE follows from (57) and is unchanged with
respect to Sect. 4.5: Eq. (44) on the level of the operator and Eq. (46) on the level of the
eigenvalue. The second bosonic BAE is obtained by isolating QI,l̂ in (59) which gives

QI,l̂(u) | ymQI,l̂,m̂(u−2)QI (u)QI,l̂(u + 2) + ylQI,l̂,m̂(u)QI (u+2)QI,l̂(u−2), (61)

which is, at the level of eigenvalues, Eq. (81), equivalent to Eq. (69) of [39] (up to the
permutation on the indices (the Weyl group symmetry)).

On the other hand, the “fermionic” BAEs can be immediately obtained from (58) in
the form

QI,i (u) | xi QI (u − 2)QI,i,l̂(u) − ylQI (u)QI,i,l̂(u − 2), (62)

QI,l̂(u) | xi QI (u)QI,i,l̂(u + 2) − ylQI (u + 2)QI,i,l̂(u). (63)

In terms of eigenvalues, the Bethe equation (62) (resp. (63)) is written as (82) (resp.
(83)) in Appendix D.

6. Conclusions

The co-derivative formalism and the master identity (8), together with the definitions
(22), (32) of nested T- and Q-operators proposed in this paper can serve as an alternative
approach to the quantum integrability, rather different from the popular algebraic Bethe
ansatz (see for example [54,55] and the references therein). It allows to complete the
whole procedure of diagonalization of transfer-matrix of the inhomogeneous twisted
gl(K |M) (super)spin chain, all the way from its construction from R-matrices obeying
the Yang-Baxter relations and till the nested system of Bethe ansatz equations, directly
in terms of the operators acting on the quantum space. The master identity (8) presented
at the beginning of the paper and generalizing a similar identity from [1] is the basis
of this approach, encoding all possible operatorial QQ- and Baxter’s TQ-relations at
every step of nesting, or of the operatorial Bäcklund flow, generalizing the operatorial
Bäcklund transformations of [37,38]. Remarkably, the master identity takes a bilinear
form with respect to the gl(K |M) characters, or their generating functions. Since the

25 In (50–52) we can see that adding a “boson” to the set I multiplies ΠI by w(t j ), while adding a “fermion”
divides it by w(t j ). As the “Master Identity” is only sensible to the addition/removal of w(t j ) factors, it is not
surprising that the QQ-relation obtained from “master identity” satisfies this “bosonization trick.”

26 We will call “bosonic” (resp “fermionic”) the Bethe Ansatz Equations having two free indices of the same
grading (resp. of opposite grading). For instance, in (61), the two free indices l̂ and m̂ have the same grading,
hence this Bethe equation is called “bosonic”.
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characters can be viewed as the tau-functions of the KdV hierarchy (which is of course a
reduction of the KP hierarchy) one can speculate that this identity is simply a particular
case of the general Hirota identity for the KP tau-functions, with τn = 1

n tr gn playing
the role of the KP “times”. It would be an interesting relation between the quantum and
classical integrability, showing that, paradoxically, the former is a particular case of the
latter.

It would be also interesting to generalize our approach to the case of non-compact
representations of gl(K |M) in the auxiliary space, following the observations made in
[53,56,57] for the characters and Q-operators for U (2, 2|4). This might teach us how to
deal with one of the most interesting integrable physical systems, N = 4 SYM theory
and its AdS dual - the Metsaev-Tseytlin sigma-model having the P SU (2, 2|4) global
symmetry. In general, the Y-systems for sigma-models and their Wronskian solutions
[8,9] might be also an interesting subject for their operatorial generalization in the quan-
tum (physical) space and might give us an interesting tool for the study of the spectrum
of excited states and shed some light on the formulas for the energy of an excited state
conjectured in the literature for relativistic sigma models [58,59,9] and for the AdS/CFT
[60]. It would be also interesting to generalize our master identity to other symmetries
of the spin chains, where the Bazhanov-Reshetikhin-type relations are also known, to
other than fundamental irreps in the quantum space, as well as to the trigonometric and
elliptic R-matrices.
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Note added. When finishing this paper we learned about the results of [36] which deal
with the same problem, the operatorial formulation of the Q-operators and of the TQ-
relations. The objects studied in that forthcoming paper are the same, but the formalism
is radically different from ours.

A. Diagrammatics of Co-Derivatives

A.1. Co-derivatives and characters. The action of the co-derivative on characters and
their generating function is explained in [1]. For instance, we can write

(64)

where (resp ) stands for gx
1−gx (resp 1

1−gx ), so that = gx
1−gx ⊗ gx

1−gx and =
P1,2(

1
1−gx ⊗ gx

1−gx ), where P1,2 denotes the usual permutation between the 1st and 2nd

quantum space.27 The general expression for D̂⊗N w(x) is given by the formula (4.11)

27 For the supergroups, P1,2 is replaced by the super permutation which differs from the usual permutation
only by certain signs (see [1]).
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of [1] (formula (30) in the arXiv version), and it represents the sum of diagrams cor-
responding to all possible permutations, with dashing all the lines going from lower to
upper nodes and directed to the right.

In terms of characters of the symmetric tensor irreps χs(g), the Eq. (64) reads D̂ ⊗
D̂ χt =

(
+

)
χt where (resp ) stands for ge−∂t

1−ge−∂t
(resp 1

1−ge−∂t
). If we identify

x = e−∂t there is no ambiguity between these two definitions of the diagrammatics.
This diagrammatics can also be extended for the inclusion of the parameters ui , i.e.

(65)

where stands for u1 or u2, according to its position (for instance, = u1I ⊗ gx
1−gx ,

and = gx
1−gx ⊗ Iu2).

A.2. Co-derivatives of products. In this paper, we often use the co-derivatives acting on
products, defining the quantities like D̂⊗N Π · w(x) for an arbitrary class function Π .
Then each co-derivative can act either on Π or on w(x), and at two spins, for instance,
the Leibniz rule gives

[
D̂ ⊗ D̂ Π w(x)

]
= D̂ ⊗

([
D̂ Π

]
w(x) + Π

[
D̂ w(x)

])
(66)

=
[

D̂ ⊗ D̂ Π
]
w(x) +

[
I ⊗ D̂ Π

]
·
[

D̂ ⊗ I w(x)
]

+
[

D̂ ⊗ I Π
]

·
[
I ⊗ D̂ w(x)

]
+ Π

[
D̂ ⊗ D̂ w(x)

]
(67)

(68)

(69)

The equality between (66) and (67) is just the Leibniz rule, while (68) defines
the graphical representation of each term of (67). Each black dot stands for a
co-derivative, acting on what lies on its right on the same horizontal line (horizon-
tal lines actually hide auxiliary spaces whose characters contribute to Π(g) [resp.
w(x)]). The vertical lines correspond to the quantum space on which the whole
operator acts, and the crossings without dots stand for I. When operators are mul-
tiplied in the quantum spaces, they are represented one above another. For instance

.
The last expression (69) gives a shorter representation of (67), where an implicit

multiplication is taken between the blocks . The generalization to an arbitrary
number of spins N is straightforward - one has N such blocks instead of two.



806 V. Kazakov, S. Leurent, Z. Tsuboi

One can also see that due to the relation D̂ det(g) = I det(g) and to the Leibniz rule,
we have very generally

[⊗
i

(u1 + 2D̂) Π det(g)a

]
= det(g)a

[⊗
i

(u1 + 2a + 2D̂)Π

]
.

A.3. Commutativity of all T- and Q-operators. Everywhere through this paper, the quan-

tities of interest are of the form28
[⊗N

i=1(ui + D̂) Π(g)
]
, where Π(g) is a class-invari-

ant function of g (a symmetric function of its eigenvalues).
In [1], the particular case when Π is the character of a representation {λ} was studied,

and in particular it was proven that the T-operators commute for different representations
{λ} and {μ}, yielding the relation�[

N⊗
i=1

(ui + D̂)χ{λ}(g)

]
,

[
N⊗

i=1

(ui + v + D̂)χ{μ}(g)

]�
= 0, (70)

where �A, B� ≡ A · B − B · A, and u j , v ∈ C.
Then, by writing an arbitrary class function as a linear combination of characters,

one gets �[
N⊗

i=1

(ui + D̂)Π

]
,

[
N⊗

i=1

(ui + v + D̂)Π ′
]�

= 0, (71)

which holds when Π,Π ′ are two arbitrary class functions of g.

B. Degree in u of the Polynomials TI (u)

We already claimed that the l.h.s. of (12) only has simple poles. Now that we have
described diagrammatic rules for the action of co-derivative on w(z) functions, we can
make this statement more explicit by writing the matrix coefficients of the Q-operator:

These matrix elements are given by a generalization of the formula (4.16) [(35) in
the arXiv version] of [1], which reads (see also (65))29

[⊗
i

(2 + ui + 2D̂) w(t)

]k1,k2,...,kN

l1, l2, ... ,lN

=
∑

σ∈SN

N∏
i=1

(
uiδi,σ (i) +

2(g t)θ(σ (i)−i−1)

1 − g t

)ki

lσ(i)

w(t), (72)

where the sum is taken over the permutation group SN of order N . At this point, we
can already notice that the only non-zero terms in the sum are the permutations such

28 Most often, the operators of interest were actually of the form
[⊗N

i=1(ui + 2 D̂) Π(g)
]
, which is equiv-

alent, after the rescaling ui → 2 ui and Π → Π/2N , to
[⊗N

i=1(ui + D̂) Π(g)
]
.

29 Here, the function θ(n) is equal to 1 [resp 0] if n ≥ 0 [resp. n ≤ −1].
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that ∀i, ki = lσ(i), since we are working in the diagonal basis. The same property holds
for T-operators, and it implies for instance that the number of spins pointing in each
direction |ek〉 is a conserved quantity.

After multiplication by (1 − gt)
⊗

N , the left-hand-side of (12) has only simple poles
from w(z)|z→1/xk

:
(

(1 − gt)
⊗

N ·
[⊗

i

(ui + 2D̂ + 2) w(t)

])k1,k2,···kN

l1, l2, ··· lN

=
∑

σ∈SN

N∏
i=1

δ
ki
lσ(i)

(
uiδi,σ (i) (1 − xki t) + 2(xki t)θ(σ (i)−i−1)

)
w(t). (73)

In the definition of Qj (u), we take the limit t → 1/x j , and we see that
Qj (u)|ek1,k2,...kN 〉 is independent of all un such that kn = j . As a consequence, the
degree in u of each eigenvalue of Qj (u) is equal to the number of spins pointing in the
directions |ek〉k �= j in the corresponding eigenstate.

Moreover, the generalization to an arbitrary T or Q-operator is very simple: T{λ}
I

(u)|el1,l2,...,lN 〉 is independent of ui for all i such that li ∈ I , and the degree in u of each

eigenvalue of T{λ}
I (u) is equal to the number of spins pointing in the directions |e j 〉 j∈I

in the corresponding eigenstate.

C. Generating Series of Symmetric T-Operators

The TQ-relation (29) can be re-written as an expression for the generating series30

WI (u, z) ≡ ∑∞
s=0 zsTs

I (u) of symmetric T-operators:[7,37–39]

QI, j (u)

QI (u)
WI (u, z) =

(
1 − x j

QI (u−2)
QI (u)

ze2∂u

)
WI, j (u, z), (74)

where we used a shift operator e2∂u f (u) = f (u + 2) for any function f (u). Let us
then fix a chain of subsets of the full set: I = IK ⊃ IK−1 ⊃ · · · ⊃ I0 = ∅, where
Ik = { j1, j2, . . . , jk}, Ik \ Ik−1 = { jk}, k = 1, 2, . . . , K . Then from (74), we immedi-
ately get that

WIk (u, z) = Ok · Ok−1 · · · O1 · Q∅(u),

where Ok =
(

1 − x jk
QIk−1(u − 2)

QIk−1(u)
ze2∂u

)−1 QIk (u)

QIk−1(u)

=
∞∑

n=0

(
x jk

QIk−1(u − 2)

QIk−1(u)
ze2∂u

)n QIk (u)

QIk−1(u)
, (75)

which expresses the T-operators for symmetric tensor representations in terms of the
Q-operators QIn . In particular, taking the coefficient of z in (75), one gets the usual
relation for the fundamental representation s = 1:

T1
IK

(u) = QIK (u)

K∑
m=1

x jm
QIm (u + 2)

QIm (u)

QIm−1(u − 2)

QIm−1(u)
. (76)

30 From χs (g∅) = δs,0, we can see that W∅(u, z) = Q∅(u), which we will use to get (75).



808 V. Kazakov, S. Leurent, Z. Tsuboi

Note that this T-operator (76) has the same form as the T-function in [50,51] obtained
by the nested Bethe ansatz, if the Q-operators are replaced by their eigenvalues (Q-func-
tions).

The same generating series can also be written in the gl(K |M) case for a fixed
chain of subsets of the full set: I = IK +M ⊃ IK +M−1 ⊃ · · · ⊃ I0 = ∅, where
Ik = { j1, j2, . . . , jk}, Ik\Ik−1 = { jk}, k = 1, 2, . . . , K + M : (74) still holds for j ≤ K ,
while for l̂ ≥ K + 1 (56) gives:

QI (u)

QI,l̂(u)
WI,l̂(u, z) =

(
1 − yl

QI,l̂ (u−2)

QI,l̂ (u)
ze2∂u

)
WI (u, z), (77)

so that (75) becomes for gl(K |M) :

WIk (u, z) = Ok · Ok−1 · · ·O1 · Q∅(u),

where Ok =
(

1 − x jk
QIk−1(u − 2)

QIk−1(u)
ze2∂u

)−1 QIk (u)

QIk−1(u)
if jk ≤ K ,

Ok = QIk (u)

QIk−1(u)

(
1 − yl

QIk (u − 2)

QIk (u)
ze2∂u

)
if jk = l̂ > K , (78)

which gives for instance the following generalization of (76) :

T1
IK +M

(u) = Q∅(u)

K +M∑
k=1

(−1)pik ξik

QIk−1(u − 2(−1)pik )QIk (u + 2(−1)pik )

QIk−1(u)QIk (u)
. (79)

Note that the eigenvalue of (79) coincides with a traditional form of the T-function
from the Bethe ansatz [61]. There are (K + M)! ways to choose the chain {Ik}K +M

k=0 , but
(79) does not depend on this choice. This is the (super) Weyl group symmetry of the
T-operators.

D. Bethe Equations at the Level of Eigenvalues

As explained in Sect. 4.5, the operator equation (44) can be written as a Bethe equation
(46) on the roots of the eigenvalues QI (u) of the polynomial operators QI (u) for any
eigenstate.

The same can be easily done in the supersymmetric case so that (44), (61), (62)
and (63) imply that for any eigenstate, the eigenvalues of the Q-operators satisfy the
conditions:31

− 1 = xi

x j

QI (u
(I,i)
k − 2)QI,i (u

(I,i)
k + 2)QI,i, j (u

(I,i)
k )

QI (u
(I,i)
k )QI,i (u

(I,i)
k − 2)QI,i, j (u

(I,i)
k + 2)

for 1 ≤ k ≤ K I,i , (80)

−1 = yl

ym

QI (u
(I,l̂)
k + 2)QI,l̂(u

(I,l̂)
k − 2)QI,l̂,m̂(u(I,l̂)

k )

QI (u
(I,l̂)
k )QI,l̂(u

(I,l̂)
k + 2)QI,l̂,m̂(u(I,l̂)

k − 2)

for 1 ≤ k ≤ K I,l̂ , (81)

1 = xi

yl

QI (u
(I,i)
k − 2)QI,i,l̂(u

(I,i)
k )

QI (u
(I,i)
k )QI,i,l̂(u

(I,i)
k − 2)

for 1 ≤ k ≤ K I,i , (82)

31 Like in Sect. 5, we use here the convention i, j ∈ {1, 2, . . . , K }, and denote by l̂ = l + K and m̂ = m + K
for l, k ∈ {1, 2, . . . , M} for some indices of fermionic grading.
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1 = yl

xi

QI (u
(I,l̂)
k + 2)QI,i,l̂(u

(I,l̂)
k )

QI (u
(I,l̂)
k )QI,i,l̂(u

(I,l̂)
k + 2)

for 1 ≤ k ≤ K I,l̂ , (83)

where (u(I )
1 , . . . , u(I )

K I
) are the roots of the polynomial QI (u).

These Eqs. (80-83) are equivalent to the traditional form of the Bethe equations
[48,49], respectively, [cf. Eqs. (68), (69), (71) and (70) in [39].]

E. Proof of the Master Identity (8)

In this appendix, we will give a proof of the master identity (8) based on the so-called
Bazhanov-Reshetikhin formula32.

Consider the main object of our Master identity the generating operator of the transfer
matrices

WI (u) =
⊗

i

(ui + 2D̂)
∏
k∈I

w(zk), (84)

where zk ∈ C and I is any subset of Z>0. We assume zi �= z j for any i, j ∈ Z>0 such
that i �= j . Then the master identity (8) can be rewritten in a form of a Plücker identity
(or Jacobi identity):

(zi −z j )WI,i, j (u + 2)WI (u)= zi WI, j (u)WI,i (u + 2)−z j WI, j (u + 2)WI,i (u), (85)

where i, j ∈ Z>0, i, j /∈ I , i �= j . It can be solved recursively in the same way as the
QQ-relations (40)) giving

WI (u) =
det

(
zn−k

j W j (u−2k+2)
)

1≤ j,k≤n

det
(

zn−k
j

)
1≤ j,k≤n

∏n−1
k=1 φ(u−2k)

. (86)

Here φ(u) ≡ W∅(u) = ∏N
j=1 u j = Q∅(u), and we consider (without losing generality)

the case I = {1, 2, . . . , n} for any finite n ∈ Z>0.
Hence, to prove the master identity (8) all we need is to prove this determinant for-

mula (86). Let us expand33 the left-hand side of (86) multiplied by a factor with respect
to {zk}:

WI (u) det
1≤ j,k≤n

(
zn−k

j

) n∏
j=1

z j−n
j = det

1≤ j,k≤n

(
z j−k

j

)
WI (u)

=
⊗

i

(ui + 2D̂)
∑
σ∈Sn

sgn(σ )

∞∑
m1=0

∞∑
m2=0

· · ·
∞∑

mn=0

n∏
k=1

χmk (g)zmk−σ(k)+k
k , (87)

where the sum34 is taken over the permutation group Sn on the set {1, 2, . . . , n} and
sgn(σ ) is a signature of the permutation σ . The coefficient of

∏n
k=1 zλk

k for any set of

32 We thank Anton Zabrodin who proposed to us the idea to use the Bazhanov-Reshetikhin formula for the
proof of our master identity.

33 Equation (87) is an operator analogue of a generating function of the T-functions for any Young diagrams
in Eq. (2.44) in [40].

34 The sum over {mk }k∈I can be taken over any integers since χm(g) = 0 if m < 0.
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integers {λk}k∈I in (87), due to the Jacobi-Trudi formula (33), is nothing but the transfer
matrix Tλ from (6),

⊗
i

(ui + 2D̂)
∑
σ∈Sn

sgn(σ )

n∏
k=1

χλk +σ(k)−k(g)

=
⊗

i

(ui + 2D̂) det
1≤ j,k≤n

(
χλ j +k− j (g)

)
. (88)

Now let us expand the right-hand side of (86) (times the same {zk}-dependent factor):

det
1≤ j,k≤n

(
zn−k

j W j (u − 2k + 2)
) n∏

j=1

z j−n
j

=
∑
σ∈Sn

sgn(σ )

∞∑
m1=0

∞∑
m2=0

· · ·
∞∑

mn=0

n∏
k=1

Tmk (u − 2σ(k) + 2)zmk−σ(k)+k
k . (89)

The coefficient of
∏n

k=1 zλk
k in (89) is

∑
σ∈Sn

sgn(σ )

n∏
k=1

Tλk +σ(k)−k(u − 2σ(k) + 2) = det
1≤ j,k≤n

(
Tλ j +k− j (u − 2k + 2)

)
. (90)

Therefore, the proof of (86) is reduced to the following identity:

⊗
i

(ui + 2D̂) det
1≤ j,k≤n

(
χλ j +k− j (g)

) = det1≤ j,k≤n
(
Tλ j +k− j (u − 2k + 2)

)
∏n−1

k=1 φ(u − 2k)
, (91)

where the l.h.s. is precisely the T-operator T{λ}(u). We recognize here the Bazhanov-
Reshetikhin formula proven in [1]. This proves the formulas (85)-(86), and hence the
master identity (8).35

F. Co-Derivative and “Removal” of Eigenvalues

The co-derivative of χs(gI ) a priori does not have such a simple expression (as (64) in
terms of diagrams) as the co-derivative of χs(g). We will see in this subsection how to
define the action of co-derivative on χs(gI ), and then we will see how to compute the
corresponding T-operators. In particular we will prove the relation (28).

Definition. The action of co-derivatives on wI (z) (introduced in (23)), can be defined
by means of Eq. (5), provided we specify what x j is at the point eφ·eg. The most natural
definition is based on the fact that x j is the j th eigenvalue of g, or in other words the j th

root of its characteristic polynomial. In this sense, x j is a function of the group element
g: x j = x j (g). In particular, x j (ΩgΩ−1) = x j (g) for any similarity transformation.

If g is a diagonal matrix, it is immediate to see that the contribution of the non-diag-
onal-elements of the matrix eφ·eg to the characteristic polynomial det

(
λI − eφ·eg

)
is at

35 Note that both sides of (91) are antisymmetric w.r.t. the set (λ1 − 1, λ2 − 2, . . . , λn − n). Hence, when
the determinant is non-zero, we can always relabel λk ’s in such a way that the highest weight components
satisfy the usual inequalities: λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0.
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least quadratic in φ. This means that at the point eφ·eg, x j is equal to
(
eφ·eg

) j
j to the first

order in φ. As a consequence, we get D̂i1
j1

x j = D̂i1
j1

g j
j = δ

i1
j δ

j
i2

x j , so that D̂x j = Pj x j ,

where the projector to the eigenspace for the j th eigenvalue x j is Pj = e j j in this case.
More generally, if g = Ω−1g̃Ω where g̃ is diagonal and � is an arbitrary similarity

transformation, then36 we obtain

D̂ x j = ∂

∂φ
x j

(
eφ·eΩ−1g̃Ω

)∣∣∣
φ=0

= ∂

∂φ

(
Ωeφ·eΩ−1g̃

) j

j

∣∣∣∣
φ=0

=
∑
i1, j1

ei1 j1Ω
j
j1
(Ω−1)

i1
j x j =

∑
i1, j1

ei1 j1(Ω
−1e j jΩ)

i1
j1

x j . (92)

This exactly means that for a non-diagonal matrix g, D̂ x j = Pj x j , where the pro-
jector to the eigenspace for x j has the form Pj = Ω−1e j jΩ .

Computation of T-operators. The claim which was already given in (28) is that the
computation of T-operators is done by commuting a factor 1

wI (z)
to the left of the co-

derivatives.
We will show that in the definition (27) (or equivalently (26)), the multiplication by

BI introduced in (20) allows to commute any function of x j (where j ∈ I ) across the
co-derivatives. As a consequence, the right-hand sides of (27) and (28) are equal, giving

∞∑
s=0

zsTs
I (u) =

⎛
⎝∏

j∈I

(1 − x j z)

⎞
⎠ lim

t j → 1
x j

j∈I

BI ·
[

N⊗
i=1

(ui + 2D̂ + 2|I |) w(z)ΠI

]
, (93)

where the r.h.s. can be easily computed by diagrammatic methods.
In the case of 1 spin, this is checked by computing37

lim
t→ 1

x j

(1 − gt)
�
(u + 2D̂), x j I

�
=

(
1− g

x j

)
·
(

2D̂x j

)
= 2

(
1− g

x j

)
x j Pj =0. (94)

We see that the key point in this commutation is the multiplication by limt→ 1
x j

(1 −
gt) = (1 − g/x j ), which cancels the terms in D̂ x j = x j Pj due to the property
(1 − g/x j ) Pj = 0.

At N = m + n spins (m ∈ Z≥0, n ∈ Z≥1), the analogous relation is

Cm,n = 0, where Cm,n ≡ (
1 − g/x j

)⊗(m+n)
Bm,n, (95)

Bm,n ≡
(

m⊗
i=1

(ui + 2D̂)

)
⊗

�
(um+1 + 2D̂), x j I

�
⊗

(
m+n⊗

i=m+2

(ui + 2D̂)

)
,

and it is proven by the recurrence over m. For m = 0, this follows from (94). Let’s show
how Cm+1,n cancels under the assumption that Cm,n = 0 for all g ∈ GL(K ) and any
u j ∈ C, j = 1, 2, . . . , m + n. Then for any u0 ∈ C, one can calculate:

36 In (92), we mainly use the relation (2.6) [Eq. (12) in the arXiv version] of [1].
37 Here, �A, B� denotes the commutator AB − B A.
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0 =
(
(1 − g/x j ) ⊗ I

⊗(m+n)
)

·
(
(u0 + 2D̂) ⊗ Cm,n

)

=C ′
m+1,n +2

(
(1−g/x j ) ⊗ I

⊗(m+n)
)

·
[

D̂ ⊗ (1−g/x j )
⊗(m+n)

]
· (I ⊗ Bm,n), (96)

where38

C ′
m+1,n ≡ (

1 − g/x j
)⊗(m+n+1)

B ′
m+1,n,

B ′
m+1,n ≡

(
m⊗

i=0

(ui + 2D̂)

)
⊗

�
(um+1 + 2D̂), x j I

�
⊗

(
m+n⊗

i=m+2

(ui + 2D̂)

)
,

(97)

and due to39 D̂⊗g/x j = P ·(1⊗g/x j )− Pj ⊗g/x j , the second term in (96) (multiplied
by 1/2) can be expanded to get

−1

2
C ′

m+1,n

=
(
(1 − g/x j ) ⊗ I

⊗(m+n)
)

·
(

m+n∑
k=1

P0k · I ⊗
(

m+n⊗
i=1

(1 − δk
i − g/x j )

))
· (I ⊗ Bm,n)

−
(
(1 − g/x j ) ⊗ I

⊗(m+n)
)

·
(

m+n∑
k=1

Pj ⊗
(

m+n⊗
i=1

(1 − δk
i − g/x j )

))
· (I ⊗ Bm,n) ,

and the first term becomes

−
∑

k

P0k ·
(
I
⊗k ⊗ (g/xk) ⊗ I

⊗(n+m−k)
)

·
(
I ⊗ (1 − g/xk)

⊗(m+n)
)

· (
I ⊗ Bm,n

)
,

which40 is zero because it contains Cm,n . The second term is also zero because it con-
tains (1 − g/x j )Pj . This completes the proof of the fact that C ′

m+1,n = 0, from which
Cm+1,n = 0 follows.

As a consequence, we can indeed commute the factors 1
wI (z)

to the left of all co-
derivatives in (27) and get the relation (28).
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