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Abstract. We take the first steps toward identifying the hydrodynamics of
group field theories (GFTs) and relating this hydrodynamic regime to the
classical geometrodynamics of continuum space. We apply to GFT mean field
theory techniques borrowed from the theory of Bose condensates, alongside
standard GFT and spin foam techniques. The mean field configuration we study
is, in turn, obtained from loop quantum gravity coherent states. We work in the
context of two-dimensional (2D) and 3D GFT models, in Euclidean signature,
both ordinary and colored, as examples of a procedure that has a more general
validity. We also extract the effective dynamics of the system around the mean
field configurations, and discuss the role of GFT symmetries in going from
microscopic to effective dynamics. In the process, we obtain additional insights
into the GFT formalism itself.
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1. Introduction

Many approaches to quantum gravity have been developed and have flourished in recent
years [1]. Some of them build directly on traditional quantization strategies (Dirac canonical
program, covariant perturbative quantization, sum-over histories or path integral quantization)
applied to the gravitational field; examples of this are canonical loop quantum gravity (LQG)
and spin foam models in the continuum formulation [2, 3] or the asymptotic safety program.
Others rest on traditional quantization methods, usually path integrals, but introduce new
ingredients or starting assumptions, for example, discrete space (time) structures interpreted
either as mere regularization tools or as somehow ‘physical’; examples are simplicial
approaches, such as the quantum Regge calculus [4] and (causal) dynamical triangulations [5]
or spin foam models based on simplicial lattices [6, 7]. String theory [8] is another example,
as it starts with a conventional covariant perturbative quantization strategy as applied to strings,
and thus to their graviton excitations, but introduces a plethora of additional structures along the
way, including extra dimensions, supersymmetry and, of course, the abandonment of the point-
like and thus strictly local nature of physical systems and their interactions. Other approaches
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still take their very start from some new radical hypothesis about the microscopic structure of
quantum space and its constituents, variously inspired or motivated from general relativity and
geometrodynamics [9] or from more philosophical or mathematical considerations [10, 11].

This paper deals with the approach to quantum gravity usually called group field
theory (GFT) [12]–[15]. It is best understood as a generalization of matrix models for two-
dimensional (2D) quantum gravity [16]. Matrix models, defined in terms of pre-geometric,
‘space-free’ constituents (matrices) with dynamics dictated by purely combinatorial and discrete
(pre-)geometric considerations, generate a sum over 2D simplicial complexes in their
perturbative Feynman expansion, later to become a sum over smooth random surfaces in an
appropriate continuum limit (understood in terms of a phase transition of the pre-geometric
system), defining a path integral for 2D quantum gravity. In a similar way, GFT models are
defined in terms of ‘pre-geometric’, ‘space-free’ fundamental entities, fields over several copies
of group manifolds or their Lie algebras, with dynamics again dictated by purely combinatorial,
discrete (pre-)geometric inputs, and generate D-dimensonal simplicial complexes in their
Feynman expansion. Their historic origin from work in simplicial quantum gravity, state sum
models and, more recently, in LQG and spin foam models is manifest in the very mathematical
structures they are based on. More precisely, while the combinatorics of field arguments in
the GFT action are dictated, as in matrix models, by the requirement that the corresponding
Feynman diagrams have the combinatorial structure of simplicial complexes of the appropriate
dimension, the arguments of the field themselves and the specific form of the GFT action are
motivated by results in LQG and discrete gravity (and non-commutative geometry). As a result,
the GFT Feynman amplitudes generically take the form of simplicial gravity path integrals [17]
or, equivalently, spin foam models [18], i.e. sum-over-histories of spin networks. The GFT field
itself can be interpreted as a second-quantized simplex or spin network vertex wave function.
We refer you to the reviews [12]–[15] for more details.

Most of the above approaches, including some of those starting as straightforward
quantizations of continuum general relativity, end up identifying purely algebraic and discrete
structures as fundamental building blocks (states) of quantum space, each characterized by a
finite number of quantum degrees of freedom. However convincing the proposed microscopic
dynamics for such fundamental building blocks is, the main task that all such approaches have
to fulfill becomes that of showing how the algebraic, discrete quantum degrees of freedom give
rise to a continuum geometric description of spacetime with its dynamics governed by general
relativity, in some approximation.

Various solutions to this problem have been proposed. These range from coherent states in
canonical loop gravity [19] to statistical field theory methods in simplicial quantum gravity [4, 5]
and in other discrete pre-geometric models of space [20], to ideas coming from quantum
information theory [21]. Unless a suitable interpretation in terms of continuum geometries is
found for both the discrete quantum structures and their microscopic dynamics as such (for
attempts in this direction see [22]–[24]), a continuum space is likely to be understood as built
out of a very large number of microscopic quantum building blocks, and the continuum limit
of the microscopic dynamics arises in a thermodynamic limit and is thus possibly subject to
critical phenomena. This is the idea at the root of simplicial gravity approaches, and hence
the use of statistical field theory methods, but also the origin of the very difficulties involved
in tackling the problem of the continuum, since one necessarily has to deal with very large
numbers of quantum degrees of freedom and their collective behavior. The same difficulty is
encountered in the context of LQG coherent states and spin foam models, even more so if
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dynamical spatial graphs or spacetime lattices are involved (as the graph-changing nature of the
Hamiltonian constraint operator in LQG would seem to require).

At this point, GFTs enter the stage as the framework in which, on the one hand, the
very same fundamental structures identified by other approaches as building blocks of space
(simplices or spin networks) can be treated in a unified way, with all of the techniques already
developed in those approaches. On the other hand, new techniques become available, thanks to
the GFT embedding. In particular, GFT becomes the natural formalism for studying the physics
of a large number of the same quanta of space identified in other approaches, because it is a
second-quantized formalism of the same, well adopted to the study of many-particle systems.
Let us clarify this point further, as it is central to the work presented in this paper.

Once understood that the same building blocks of space used in other approaches arise as
quanta of the GFT field, and that the GFT action defines a microscopic dynamics for them, then
the study of their effective dynamics (classical or quantum) in a thermodynamic limit becomes
a problem in statistical GFT. Quantum space is then interpreted, at least at the level of analogy,
as a sort of exotic condensed matter system, a condensate/fluid made out of large numbers of
GFT quanta, to be studied with tools and ideas from condensed matter theory. The continuum
and semi-classical approximation that leads from microscopic quantum structures to smooth
continuum space(time) can then be seen as analogous to the hydrodynamic approximation that
leads from the microscopic quantum description of a few atoms system to the hydrodynamic
description of a classical fluid made out of large numbers of the same atoms. The GFT itself
then becomes the quantum gravity analogue of the microscopic quantum field theory of non-
relativistic atoms that underlies any condensed matter system and any (quantum or classical)
fluid. Classical geometrodynamics (including general relativity) should then arise, in a way
to be understood, from GFT hydrodynamics, in some appropriate phase of the theory, also to
be identified. It is unlikely, in fact, that the infinite number of GFT degrees of freedom that are
necessary to obtain a smooth spacetime and its relativistic dynamics will organize themselves in
a single macroscopic phase, and thus no understanding of GFT phase transitions will be needed
to understand the emergence of continuum classical spacetime from GFT. This perspective has
been argued for in [25].

The idea of spacetime as a fluid/condensate has, of course, been put forward
repeatedly [26], and is somehow the conceptual underpinning of condensed matter analogue
gravity models [27, 28], together with the idea of general relativity as the emergent
hydrodynamics or thermodynamics of microscopic pre-geometric building blocks [29]–[34].
The body of this work (in particular the one on quantum fluids1), we believe, represents an
important guide for the extraction of geometrodynamics from GFT. Conversely, we also believe
that GFTs can represent a candidate for the microscopic description of the ‘atoms of quantum
space’ that all of this work somehow hints at.

Once the above perspective is accepted, at least provisionally, the task is to identify
the best strategy and mathematical tools to tackle the problem of the continuum in a GFT
context. Being a problem in statistical GFT, obviously the renormalization group is a key asset.
Indeed, a program of GFT renormalization has recently started [37], which has extracting the
continuum limit of GFT as its main physical goal, beyond the many mathematical insights it
is providing [47]. Another key method for extracting information about the phase structure of

1 For concrete implementations of these ideas within idealized Bose–Einstein condensates (BECs) models, and
extended discussions, see [35, 36].
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a condensed matter system, and for the extraction of the corresponding effective dynamics, is
mean field theory. In particular, mean field theory is the most direct route from the microscopic
atomic dynamics to the effective hydrodynamics in the case of quantum fluids and Bose
condensates, which are the systems we tentatively use as paradigms of what the emergence
of spacetime from quantum gravity may entail.

The application of mean field theory first of all requires the identification of a candidate
macroscopic configuration of the system (and associated collective variables), whose dynamics
encodes the collective dynamics of the many particles constituting it. Also, the fluctuations
around such a new vacuum become the relevant (once more, collective) degrees of freedom
at the macroscopic level, with an associated dynamics in general very different from the
microscopic one governing the underlying atoms. All of this works under the assumption that
this new vacuum will be very different from the microscopic quantum vacuum of the system
(the Fock vacuum) and that the physics that one is looking for at the macroscopic level is
best understood close to the assumed macroscopic configuration, rather than the microscopic
Fock vacuum. This a particularly reasonable assumption in the GFT context, where the vacuum
around which the usual perturbative expansion takes place is interpreted physically as a
‘no space’ state [12]–[15], in which no space structure exists at all, neither topological nor
geometrical. The same reasoning suggests that the usual spin foam models or the equivalent
simplicial path integrals are not the most convenient definitions of the dynamics of the degrees of
freedom that correspond to a smooth spacetime and its geometry, because they arise as Feynman
amplitudes of GFT models around the no-space vacuum [25]. It suggests looking instead for an
effective dynamics of perturbations around a different vacuum. The identification of the relevant
macroscopic vacuum and of the corresponding dynamics is, however, a highly non-trivial task,
in condensed matter and, even more, in our quantum gravity context. The best one can do,
usually, is to proceed by educated guesses, and then test the resulting hydrodynamic theory
against observation. In quantum gravity, we cannot (yet) make use of experimental inputs, but
we can still proceed using intuition and the large number of theoretical ideas accumulated so
far, and study the formal aspects of the effective theory obtained as a result of our hypothesis.

This is what we do in this, largely exploratory, paper. We move on to the first steps toward
establishing a hydrodynamic limit of GFTs and in relating this hydrodynamic regime to the
classical geometrodynamics of continuum space. First of all, this requires the identification of
a candidate (non-perturbative) macroscopic vacuum. Here, we start from the results obtained
in the context of semiclassical LQG, in particular on LQG coherent states. We identify, from
a simple analysis of LQG coherent states, a candidate coherent state wave function associated
with vertices of spin networks. This coherent state wave function will depend on parameters
that can be interpreted in geometric terms, following again the LQG results, and that play
the role of order parameters in the GFT context. We identify this candidate vacuum state
in section 4, together with its geometric interpretation. Then, we re-interpret the same wave
function as a classical GFT field, and use it as candidate mean field configuration for the
GFT dynamics. We do so in sections 5 and 6, considering in detail the simpler cases of GFT
models for quantum BF theory in 2D and for 3D quantum gravity, in Euclidean signature,
and for both ordinary and colored GFTs. We extract the mean field theory equations for the
order parameters, as resulting from the GFT dynamics. These hydrodynamic equations have a
geometrodynamic interpretation, which we elucidate to some extent. We are not able, at this
stage, to give a complete and transparent geometric rewriting of these equations, nor to obtain
a precise mapping of these equations with those of general relativity. This is perhaps the main
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limitation of our results. Still, we believe we open up a new and interesting direction for further
investigation. Having obtained the mean field or hydrodynamic equations for the (geometric)
order parameters characterizing this GFT vacuum, we move on to extract the effective dynamics
for perturbations around it, in section 7. The main purpose, here, is first of all to illustrate
the general procedure and its main features; secondly, it is meant to show how, concretely,
the effective dynamics could, on the one hand, differ from the microscopic one and, on the
other hand, depend on it, in the spin foam formulation. A more detailed analysis than the
one we perform, once more, is certainly needed, but most importantly, what is required is a
careful study of the physical interpretation of the perturbation field itself, and of the degrees
of freedom that it carries. At the present stage, it is unclear as to whether these should be
interpreted as matter fields2 living on the geometric background defined by the mean GFT
field, or if they have a geometric interpretation as well, so that, for example, the full geometric
character of the effective GFT hydrodynamics is to be looked for in the coupled equations
for order parameters and quasi-particle fluctuations around the mean field. We leave this issue
for future work. Lastly, in section 8, we discuss the issue of GFT symmetries, in particular
diffeomorphisms, from the point of view of the application of mean field theory methods.
A summary of our results, and some outlook, are provided in the last section.

To clarify the path we follow and the conceptual framework for the results we present from
section 4 onward, it will be useful to briefly review how the mean field theory method is applied
in a very well understood physical system, namely BEC, to extract the effective hydrodynamics
of the condensate. We do so in section 3, where we also point out the main differences (as well
as the similarities) between our approach in the GFT context and the case of Bose condensates,
together with its limitations.

2. Mean field theory and effective hydrodynamics in Bose condensates: analogies and
differences with the group field theory (GFT) case

The paradigm we will follow is mean field theory applied to the study of BECs. For an extensive
discussion of the subject, we refer to [41]. Here, we recall only the main features relevant to our
purposes.

We will focus on the particular case of Bose–Einstein condensation in dilute gases. For
these systems, the most convenient treatment is provided by the second-quantized formalism,
based on quantum field operators,

9̂(x)=

∑
i

âi ui(x), (1)

where i is an index labeling an orthonormal basis of (single particle) wave functions ui , with∫
V

ui(x)u
∗

j(x) d3x = δi j , (2)

and âi are (bosonic) annihilation operators, obeying

[âi , â j ] = 0; [âi , â†
j ] = δi j . (3)

2 Recent work in the GFT context [38, 39] has applied a similar strategy to the one we follow in this paper, and can
also be understood from a condensed matter analogy [40]. The purpose of such work was, in fact, the extraction of
effective (non-commutative) matter field theories as perturbations around exact solutions of the GFT equations of
motion. No effective dynamics for the background GFT configurations chosen was investigated.
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These operators are associated with the creation/annihilation of fundamental particles (atoms)
of the system. The typical Hamiltonian describing the dynamics of a dilute gas of bosons (in the
local approximation) has the form

Ĥ =

∫
9̂†(x)

(
−

h̄2
∇

2

2m
−µ+ V (x)+

κ

2
9̂†(x)9̂(x)

)
9̂(x) d3x, (4)

where m is the mass of the bosons, V (x) is an external potential used to confine the system
in a given region of space (V), κ is a (positive) constant encoding the strength of two-particle
interactions and µ is a chemical potential, playing the role of a Lagrange multiplier used to fix
the total number of particles. The above Hamiltonian corresponds to the case of a single atomic
species, but the formalism can be immediately extended (2BEC, spinor BEC, etc).

The main problem is then the correct identification of the ground state. If the system were
non-interacting, the ground state, below the critical temperature, would be the state in which
all bosons occupy the same single-particle ground (lowest-energy) state (Bose condensate).
The case of interacting particles is much more involved. However, one can make a guess at
the macroscopic properties of the system by assuming that, below a certain temperature (to be
computed), the condensation does take place even in the interacting case and even for repulsive
atomic interactions (positive κ). The simplest way to implement this idea is to assume that the
(interacting) ground state (G.S.) is a state in the Fock space, |G.S.〉, such that the operator 9̂(x)
acts on it as multiplication by a function,

9̂(x)|G.S.〉 ≈ ψ(x)|G.S.〉. (5)

Clearly, this kind of state is crucially different from the Fock vacuum (F.V.) |F.V .〉, for which
9̂(x)|F.V .〉 = 0.

A simple example of state possessing this property is a (second quantized) coherent state.
Consider the state,

|zi〉 = e−|z|2/2 exp(zi â
†
i )|F.V .〉. (6)

It is immediate to see that this state is an eigenstate of the field operator 9̂(x),

9̂(x)|zi〉 = zui(x)|zi〉 = 9̂(x)|G.S.〉. (7)

The content of the state is characterized by the expectation value of the number operator of each
mode,

n j(i)= 〈zi |â
†
j â j |zi〉 = δi j |zi |

2. (8)

Therefore, as a working hypothesis, one assumes that the ground state of the many-body system
is a coherent state, with a macroscopic occupation number of a suitably chosen single-particle
state, |G.S.〉 = |zi〉. Concretely, this means that one is working in a regime in which the field
operator 9̂(x) can be effectively separated as

9̂(x)≈ ψ(x)I+ χ̂(x), (9)

where ψ(x), often called the condensate wave function, encodes the information about the
ground state, while χ̂ encodes the effect of deviations from the mean field ψ . This splitting
must then be introduced into the equations of motion for the field operator 9̂. In turn, this
equation of motion will become an equation for the classical field ψ , including the effects
of perturbations χ̂ . The logic is clear: the mean field ψ must be determined self-consistently
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from the mean field equations. At the lowest order, neglecting the fluctuations χ̂ , this equation
assumes the form

ih̄
∂

∂t
ψ = −

h̄2
∇

2

2m
ψ −µψ + V (x)ψ + κ|ψ |

2ψ, (10)

known as the Gross–Pitaevski hydrodynamic equation. Its solution provides the description
of the macroscopic properties of the condensate described by the wave function ψ . It can be
rewritten in terms of two real-fluid equations (Euler and continuity) for a perfect fluid of density
ρ and velocity Ev such that

ψ =
√
ρe−iθ , Ev ∝ ∇θ. (11)

It is in this sense that the mean field approximation (MFA) immediately gives the hydrodynamic
description of the system.

It is important to keep in mind that this method must be self-consistent: we have started
assuming that the ground state is a condensed state, in which many particles condense in the
same single-particle state. However, it is only after we have found the solution of the GP
equation, with the appropriate boundary conditions, and we have established that this solution
corresponds to a configuration in which a large fraction of the N bosons originally present in
the system is occupying the condensed state,3 that we can say that our system condenses. Also,
even if the method proves to be consistent, this mean field treatment is just an approximation that
takes into account only the field configuration on which the coherent state is peaked. The spread
of the coherent state itself is neglected (this corresponds to neglecting terms containing, e.g.
〈χ̂2

〉). In general, more refined tools are needed [42]. Nonetheless, the rough description in terms
of the condensate wave function allows us to understand a number of interesting features of the
physics of the system. From a perspective á la Landau, the condensate wave function is an order
parameter describing the phase transition. It plays two roles. First of all, it contains the basic
information about the hydrodynamical properties of the condensed fraction (density, velocity
profile etc). Secondly, it determines the symmetries and the general properties of the effective
dynamics of perturbations around the condensed state itself. In fact, if we consider the dynamics
of phonons, the elementary excitations above the condensate, their various properties (internal
symmetries, dispersion relations and spacetime symmetries, etc) are essentially controlled by
the wave function ψ .

It is useful to make a comparison with the GFT case. In the BEC phenomenon, the ground
state being selected has the peculiarity of peaking the second-quantized field operator on a given
classical field configuration. From the point of view of the particle content, it is a superposition
of many particle states with different occupation numbers. Finally, the mean field represents the
order parameter that describes the condensation, and encodes the macroscopic hydrodynamic
variables that effectively describe the semiclassical state.

In the case of GFTs, the second-quantization formalism, with a definition of a Fock space
and a corresponding many-particle interpretation, is still not understood. Therefore, a proper
GFT analogue of the BEC mechanism is not available either. Consequently, in what follows, we
will be still working in a first-quantized scenario, corresponding to the kinematical Hilbert space
of LQG, whose states appear as boundary data in GFT transition amplitudes, and therefore the
analogy with the BEC case must be made with care. The candidate ground state will be obtained
from LQG coherent states, and correspond to wave functions for spin network vertices (the GFT

3 Explicitly, we must check that
∫

d3x |ψ(x)|2 ≈ N .
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quanta, i.e. their candidate ‘atoms of quantum space’) characterized by (peaked on) SL(2,C)
group elements, defining points in the classical phase space appropriate for the gauge theories
considered. The situation is similar to a BEC MFA in which one assumes that the configuration
u0(x) is a wave function peaked on a certain point of phase space for a single particle. This
is clearly a much stronger semi-classicality condition than only requiring the quantum field
operator acquires a non-zero vacuum expectation value, as in the true BEC case.

Still, within the limits of our analysis, the two MFAs in BEC and GFT (as performed
in this paper) share the same philosophy. The group elements where the peaks are situated
play the role of order parameters, as the condensate wave function does. Also, they will be
dynamically determined by equations that will be derived from the GFT equations of motion in
the same way in which the Gross–Pitaevski equation is derived from the nonlinear Schrödinger
equation for second-quantized field operator. As has been discussed in detail in the literature,
the SL(2,C) group elements determine the mean value of certain geometric quantum operators,
and correspond to classical geometric fields, while the GFT dynamics are expected to encode
the full quantum dynamics of the microscopic degrees of freedom of quantum space and the
equations that we derive for them represent a form of geometrodynamics, here derived from the
microscopic dynamics of quantum space as encoded in a GFT, in a mean field (hydrodynamic)
approximation.

3. From loop quantum gravity (LQG) coherent states to an ansatz for a GFT background
configuration

We now briefly introduce kinematical LQG coherent states, and then show how to extract from
them a candidate background configuration to be used in the MFA of GFT models. More
precisely, we show how LQG coherent states can be obtained by convolution of vertex wave
functions, also characterized, as the LQG coherent states, by SL(2,C) group elements, and
ready to be used as mean GFT fields, as we do in the following.

3.1. Coherent states on SU (2) and vertex wave functions

(Complexifier) coherent states were introduced within LQG in order to investigate the
semiclassical limit of the theory. They are wave functions associated with graphs, which have
the properties to be peaked around certain values of the classical phase space of the theory,
parameterized by holonomies (group elements of SU(2)) and fluxes (elements of the Lie algebra
su(2)). The expectation values of (polynomial functions of) these operators coincide with the
classical values at the corresponding phase-space point. Also, they minimize uncertainties for a
specific set of kinematical observables and within a given class of quantum states. Given these
nice kinematical properties, a key question becomes then to what extent this class of states
satisfies the quantum dynamics of the theory, and whether the same dynamics preserve their
semi-classical properties. While we will not address this question within the LQG canonical
framework, we will in fact study the issue of whether the associated vertex wave functions, our
candidate GFT mean field, solves the GFT equations of motions.

For a complete discussion of their properties and their relevance for the semiclassical
approximation within LQG, we refer to [19]. Here we summarize only their definition. Let γ be
a graph, and let Eg denote a set of group elements (SU(2)) associated with its links (one per link);
these group elements should be considered as parameters defining the state. The coherent states
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a

b

hab

gab

Figure 1. Entire oriented link from a to b, with associated group variable hab and
peak group element gab of the heat kernel.

a

b

hab

gabha

ga

hb

gb

P

Figure 2. Splitting the link a to b. The group elements ha, hb, ga and gb refer to
the semi-link from the vertices a, b to P , with the appropriate orientation.

on γ , in the connection representation, are functions from SU(2)E(γ ) to the complex numbers,
given by

9[γ, Eg; t]( Eh) :=
∫
(dg̃)|V (γ )|ψ[γ, Eg; t]({g̃(e(1))he g̃−1(e(0))}), (12)

where Eh denotes the set of the group variables (one per link), the integrations over the group
associated with the vertices V (γ ) of the graph γ enforce gauge invariance (the Gauss constraint)
and where the gauge-variant wave function,

ψ[γ, Eg; t]( Eh)=

∏
e∈E(γ )

ρt(heg−1
e ) (13)

is a product of heat kernels (ρt ) on the group manifold SU(2) [43] with spread (diffusion time) t .
Each heat kernel is a function of the group element h peaked on the element g with spread t .

The same states can be rewritten in terms of functions associated with vertices, as we now
show. For each link (ab), as in figure 1, introduce the intermediate point P and double the
associated group elements (see figure 2) as

hab = h−1
b ha; gab = g−1

b ga, (14)

thus artificially doubling the number of group elements associated with the same link (this is
not a physical doubling of variables, since the two group elements only enter the expression as
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the products hab and gab). We then use the convolution property,

ρ2t(g)=

∫
dh ρt1(gh−1)ρt2(h); t1 + t2 = 2t. (15)

For simplicity (but without loss of generality4), we will consider t1 = t2 = t .
Neglecting for the moment the group–averaging procedure enforcing gauge invariance at

each vertex, we obtain

?= ρ2t(habg−1
ab )= ρ2t(h

−1
b hag−1

a gb)= ρ2t(hag−1
a gbh−1

b ), (16)

where we have used the property ρt(hg)= ρt(gh). Then, we can split the single link by using
the convolution property of the heat kernel,

?=

∫
dqab ρt(hag−1

a q−1
ab )ρt(qabgbh−1

b )=

∫
dqab ρt(hag−1

a q−1
ab )ρt(hbg−1

b q−1
ab ), (17)

where we have used the property ρt(g−1)= ρt(g). Note the identical functional dependence
on the various group elements in each of the two functions associated with each (oriented)
semi-link.

With an obvious change in notation (ab → e, a → e(0) and b → e(1)), the complete
function associated with the graph reads

ψ[γ, Eg; 2t]( Eh)=

∫
(dq)|E(γ )|

∏
e∈E(γ )

ρt(he(0)g
−1
e(0)q

−1
e )ρt(he(1)g

−1
e(1)q

−1
e ). (18)

This expression can be reorganized as

ψ[γ, Eg; 2t]( Eh)=

∫
(dq)|E(γ )|

∏
v∈V (γ )

8v(hv,1g−1
v,1q−1

ev,1
; hv,2g−1

v,2q−1
ev,2

; . . .; hv,mv
g−1
v,mv

q−1
ev,mv

), (19)

where hv,i is the i th element associated with the i th link ending in the vertex v, mv is the valence
of the vertex v and

8v(g1; . . .; gmv
)=

mv∏
i=1

ρt(gi). (20)

This vertex function is a function going from Gmv → R, and thus can be interpreted as a GFT
field. Correspondingly, the whole wave function can be rewritten in terms of a suitable operator
defined in a group field theory5. Also, the gauge invariance property fits into the same scheme.

Imposing gauge invariance, we obtain

9 t [γ, Eg; 2t]( Eh)=

∫
(dg̃)|V (γ )|(dq)|E(γ )|

∏
v∈V (γ )

8v({hv,i g̃
−1
v g−1

v,i q−1
ev,i

}), (21)

implying, in turn,

9 t [γ, Eg; 2t]( Eh)=

∫
(dq)|E(γ )|

∏
v∈V (γ )

φv({g
−1
v,i q−1

ev,i
hv,i}), (22)

4 Furthermore, the parameter t should be determined by the quantum dynamics (e.g. the Hamiltonian constraint),
and a natural assumption is that the dynamics will select a value of t , which will not depend on the portion of the
particular graph we are considering, at least in the case in which we will not deal with too inhomogeneous states.
5 Also, the case in which the valence of the graph is not fixed could be accommodated within the GFT formalism,
by using several fields.
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where we have defined

φv({hi})=

∫
dg̃v8(g̃vhi). (23)

This analysis shows that the group-averaged coherent states associated with a graph might be
written in terms of a group field theory, with a suitable number of fields according to the valence
properties of the graph itself. Therefore, we will use these particular field configurations within
GFT as a form of test configurations. However, before doing this, we need to go one more step
further in the definition of the semi-classical LQG states.

In considering the coherent states for quantum gravity, in fact, one has to analytically
continue the ga elements from SU(2) to SL(2,C) in order to peak the states on configuration
with given parallel transports and given triads per link. This analytic continuation exists and is
unique [19, 44].

In the case of complexified heat kernels (see the appendix), the heat kernel itself is
peaked around a SL(2,C) group variable. From here on, group elements denoted with a capital
letter will correspond to SL(2,C) elements. The correct analytic continuation of the element
associated with the link gives Gab = G−1

b Ga. In fact, using the isomorphism between SL(2,C)
and T ∗SU(2), the cotangent bundle of SU(2), this SL(2,C) element is identified with a point in
the phase space of LQG (or SU(2) BF theory) at that spacetime point, or, in the discrete setting,
associated with any given element of the discrete spacetime lattice. In particular, consider again
the single link, hab ∈ SU(2), while gab is replaced by Gab ∈ SL(2,C).

In order to discuss the implications of the decomposition, we need to introduce
some notation. We recall the polar decomposition of the SL(2,C) matrices (making the
correspondence with T ∗SU(2) explicit),

Gab = gab exp(Eab), Ga = ga exp(Ea), Gb = gb exp(Eb), (24)

where gX are SU(2) elements, while EX = E i
Xσi are su(2) matrices, with σi denoting the Pauli

matrices.
In the language of LQG, these SL(2,C) elements have a direct geometrical interpretation

in terms of expectation values of holonomies and fluxes. More precisely, the SU(2) part will
correspond to the expectation value of the holonomy on the link, while the E i will be interpreted
as the corresponding classical value for the triad/flux operator associated with an elementary
surface dual to the link and intersecting it at a single point.

Using the above polar decomposition, we have

gab exp(Eab)= exp(−Eb)g
−1
b ga exp(Ea)= g−1

b ga exp(−Ẽb) exp(Ea), (25)

where we have defined

Ẽb = (g−1
b ga)

−1 Eb(g
−1
b ga). (26)

Let us discuss briefly the geometrical interpretation of the above group elements, considering
two oriented semi-links coming out of two vertices being glued to form an entire link.

If we follow the geometrical interpretation according to which the Lie algebra elements Ea

and Eb are (smeared) triads as seen from the vertices a and b, respectively, it is clear that they
must be compared after appropriate transport on the midpoint at which the gluing takes place.
Therefore, define (see figure 3)

Ec = ga Eag−1
a , Ed = gb Ebg−1

b . (27)
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In the absence of gauge invariance, we should expect that, in order to have a sensible geometrical
interpretation, these two triads must coincide modulo a sign (due to opposite orientations of the
surfaces of integration),

Ec = −Ed . (28)

Taking the exponential of this equation, we obtain

ga exp(Ea)g
−1
a = gb exp(−Eb)g

−1
b , (29)

which leads to

Gag−1
a = gbG−1

b . (30)

This last equation can be seen as a ‘geometricity constraint’ on the data assigned to the vertices:
if these constraints are satisfied, the links obtained by gluing the corresponding legs will be
characterized by a very simple geometrical content, easily visualized in terms of gluing of cells
(simplices, hypercubes or other kind of basic ‘chunks of spacetime’) along common boundaries.
This implies that

Ea = −g−1
a gb Ebg−1

b ga = −Ẽb, (31)

when

gab exp(Eab)= g−1
b ga exp(2Ea), (32)

where the rhs is already a polar decomposition of the SL(2,C) element. Therefore, the link,
after gluing, is peaked on the parallel transport obtained by correctly composing the elementary
parallel transports, while the triads will be uniquely determined by the triad as seen from one
vertex, as we would expect6.

6 It is interesting to note that, before imposing gauge invariance, we could be tempted to use these geometricity
constraints to put more conditions on the data being assigned to the vertex functions. In particular, defining

Q X = G X g−1
X , (33)

the geometricity constraints become

Qa = Q−1
b (34)

whenever we want to glue vertex a with vertex b through a particular leg. If we want to keep the geometric
interpretation independently from the particular gluing pattern, i.e. if we want to keep the possibility of gluing
every leg with any other leg, we obtain a rather strong constraint. It is enough to consider these constraints in
cycles,

Qa = Q−1
b

Q−1
b = Qc

Qc = Q−1
a

⇒ Qa = Q−1
a , (35)

which in turn implies

Qa = ±I⇔ Ea = 0, (36)

with the parallel transport left free. These constraints, then, would suggest that the only way in which the gluings
are consistent with a naive geometrical intuition independently of the gluing patter is that all of the triads are
vanishing. In fact, this is not the only possibility. One obvious way out is to include a constraint on the pattern used
for the gluings, in order to avoid the ciclicity that we have exploited to derive our conclusion.
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a

b

Ga = ga exp(Ea)

Gb = gb exp(Eb)

Ea

Eb

Ec

Ed
P

Figure 3. Gluing vertices.

Let us summarize briefly where we stand so far. The semiclassical canonical wave
functions associated with a given graph have been written in terms of products of functions
associated with the vertices. In turn, these vertex functions will have a dependence on certain
group variables associated with the vertex itself and to each leg attached to it. The combinatorics
are such that, when assembled, the total wave function depends only on certain combinations of
these variables, matching the original dependence on group variables.

We have also seen that the possibilities for the peaks of the vertex functions are not always
compatible with geometrical requirements. Rather, we have to impose some constraints, which
will select, among all of the possible assignments of SL(2,C) elements, the ones compatible
with a consistent gluing of elementary geometric cells along common boundaries.

Additionally, note that whatever the Lie algebra elements are, even if the vertex wave
functions are peaked on SU(2) elements, which are different from the identity, but they are
the same link per link, the wave function in terms of the graph is peaked on the flat connection.
Similarly, after complexification and considering heat kernels peaked on SL(2,C) elements,
whenever they are equal, the wave function associated with the link is peaked on the identity of
SL(2,C) itself, i.e. not only on the flat connection but also on zero triads.

3.2. Candidate GFT mean field configuration

Having decomposed the coherent wave function associated with a generic graph in terms of
vertex wave functions, we can now re-interpret this special vertex wave function as a classical
GFT field, and use it in that context.

We will consider a compact Lie group G, and the group field theory defined from

φ : Gm
→ C (37)

and a classical action S[φ] or equivalently classical field equations,

φ({hi}
m
i=1)+

∑
w

λw
δOw[φ]

δφ({hi}
m
i=1)

= 0, (38)

where w is a label that identifies the various terms Ow in the action. We limit our analysis to the
case in which G = SU(2), for simplicity. We focus on the particular field configuration,

ξ Eg({h}; t)= c(λ)
∫

dh
m∏

i=1

ρt(hi g
−1
i h), (39)

where gi are group elements (in SU(2) or in SL(2,C)) on which the heat kernels would be
peaked if the integration over the group variable associated with the vertex would be absent;
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with such gauge invariance restriction being imposed, the function will be peaked instead
on gauge invariant equivalence classes of the m group elements associated with the m links
of the vertex. We ask the following questions: Is ξ a classical solution for some GFT? Is it
an approximate solution for one of the cases we are interested in? What consequences, i.e.
what restrictions on the parameters characterizing ξ , follow from demanding that it is in fact
an approximate solution? In the corresponding regime of parameters, what are the effective
dynamics for perturbations around such a mean field configuration? In the rest of the paper, we
try to address these questions.

To be more specific, we will consider several possibilities for the mean field ξ , in
dependence of the possible choices that we have in realizing the GFT theory in terms of field
content (with colors or not) and gluings (specific gluing patterns or not). These choices are
summarized as follows:

1. Single-field GFT:

(a) all the links are peaked on the same SL(2,C) element;
(b) each link peaks on a generic SL(2,C) element.

2. Colored GFT:

(a) for each color, all of the links are peaked on the same SL(2,C) element;
(b) for each color, each link peaks on a generic SL(2,C) element.

While the situation in case (1a) leads necessarily to graph wave functions that are peaked on
the identity in SL(2,C) for each complete link (i.e. after gluing), the others do not. According
to the choice of group elements (which will ultimately be decided by the dynamics) and of the
gluings (kinematical requirements on the particular GFT action), the outcome might be a graph
wave function that peaks, on each link, on non-trivial SL(2,C) elements.

Our (longer-term) goal in fact is a bit more ambitious than this. We want to establish a
pattern (closely related to the self-consistent mean field method that we have discussed in the
previous sections) that applies to the problem of finding the physical content of certain group
field theories, in a suitable macroscopic (hydrodynamic) approximation, and to relate it to the
possible dynamics of effective geometries. We will try to understand the form of the dynamical
equations determining the mean field values (i.e. the peaks of the wave functions) once we make
the educated ansatz that we should look for solutions in the form of heat kernel coherent states.
As in the case of many-body systems, the equations of motion for the full field will provide an
effective equation for the mean values/peaks. These peaks will play the role of order parameters:
not only will they determine the properties of the geometry on which the state is peaked, but
they will also determine the shape and the symmetries of the theory obtained by expanding the
GFT around the heat kernels obtained in this way.

4. Two-dimensional (2D) case

We start from a simple case, a GFT generating 2D simplicial complexes in its perturbative
expansion, and corresponding to a quantization of topological BF theory with SU(2) as gauge
group. Despite its simplicity, it will represent our case study, on which we will try to model
higher-dimensional cases.
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Before attacking the GFT as such, it is worth recalling some basic facts of the classical
theory behind it (see [45] for more details) that could be useful to give meaning to the later
manipulations and results. The general form of the BF action is

S =

∫
M

Tr(B ∧ F(ω)), (40)

where M represents the spacetime D-manifold, B is a (D − 2)-form valued in the su(2) Lie
algebra, ω is a 1-form connection, also valued in the Lie algebra of the gauge group, and F(ω)
is the corresponding 2-form curvature; the trace is taken in the fundamental representation
of the algebra. The (spatial components of the) B field and the (spatial components of the)
connection ω are canonically conjugate variables. At the discrete level, with the connection
1-form replaced by group elements representing its holonomies, and B field replaced by Lie
algebra elements, one finds that the classical phase space variables on each discrete element of
the lattice is given by the cotangent bundle of SU(2), expressed in terms of the same variables.
The classical equations of motion are

dω(B)= 0, F(ω)= 0, (41)

enforcing the compatibility between connection ω and B field, and the flatness of the
connection. It is then clear that the classical theory is trivial, as it contains only flat
configurations. At the quantum level, the B field acts as a Lagrange multiplier, enforcing the
same flatness condition, and the theory (for closed manifolds) amounts to an evaluation of the
volume of the moduli space of flat connection, on the given topologyM.

The GFT framework (for the class of models we are going to consider) encodes the
same quantum dynamics by assigning amplitudes to any Feynman diagram dual to a given
D-dimensional simplicial complex corresponding to the discrete path integral for the discrete
version of the above action [17]; on top of this, it embeds these dynamics in a wider framework,
which includes degrees of freedom coming from topology change (and singular complexes). No
direct relation between the GFT equations of motion and the classical (continuum) BF equations
of motion has been spelled out yet, though.

4.1. Single-field GFT

To begin with, let us consider what happens in the simplest case of a single field (non-colored
GFT).

The basic field is a function of a pair of group variables, φ(g1, g2), with g ∈ SU(2). The
action we take is the one generating triangulated surfaces in the Feynman expansion for the
partition function,

S =
1

2

∫
dga dgb φabφba +

λ

3

∫
dga dgb dgc φabφcaφbc, (42)

where we use the notation φab = φ(ga, gb) in order to avoid clutter. Note that we do not assume
that φab = φba The equation of motion obtained upon variation of this action is

φ(h2, h1)+ λ
∫

dh3 φ(h2, h3)φ(h3, h1)= 0. (43)

Note also that if we had considered the interaction term containing, for example, the pairings
φabφacφbc, we would have obtained a different equation of motion. For a more detailed
discussion of this point, see appendix B. For the present discussion, we have chosen a pairing
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that ensures orientability of the simplicial complexes obtained in the GFT Feynman expansion.
We consider now the heat kernel (coherent) states, in the 2D case, corresponding in the GFT
context to bivalent vertices. Let us consider, as a trial configuration,

ξGa,Gb(g1, g2; t)= µ

∫
dhρt(g1hGa)ρt(g2hGb), (44)

which is obtained by the convolution of two heat kernels (with the same spread) peaked on
different elements of the (complexified) Lie group, G−1

a and G−1
b (thus, in our case SL(2,C)

elements). Here, µ is a normalization parameter to be fixed by the equations of motion. Using
the properties of the heat kernel,

ξ(g1, g2; t)= µρ2t(g1g−1
2 G−1

b Ga). (45)

This latter is in fact a heat kernel on the coset SU(2)× SU(2)/D2 ∼ SU(2), where D2 =

{(h, h)|h ∈ SU(2)} ⊂ SU(2)× SU(2) (for a complete discussion of heat kernels on coset spaces,
see [43]).

It is clear that, if the two group elements Ga,Gb are the same, the field will be given by
the heat kernel peaked around the identity in SL(2,C). Furthermore, it is obvious from this
preliminary discussion that we will not be able to fix both Ga and Gb: gauge invariance is
telling us that one of them is redundant, i.e. the state will depend only on the equivalence class
of elements under gauge transformations, labeled by GaG−1

b . However, we will be able to fix
the value of the product G−1

b Ga using the GFT equations of motion.
We now have to plug the trial solution (44) into the equation of motion (43). For simplicity

in the notation, we denote the product G−1
b Ga = G. We obtain

µ[ρ2t(g2g−1
1 G)+ λµρ4t(g2g−1

1 G2)] = 0. (46)

Clearly, µ= 0 is a solution to this equation. However, this particular solution represents the
‘trivial’ GFT vacuum associated with the absence of any geometry, and, actually, of any space
at all; it is the trivial ‘Fock’ GFT vacuum. We are interested, then, in the vanishing of the other
term in the equation of motion. To analyze its content, we define g = g1g−1

2 ,

ρ2t(gG)+ λµρ4t(gG2)= 0, ∀g ∈ SU(2). (47)

Being valid for any group element g, this equation corresponds actually to an infinite tower of
equations (one for each value of g) for the classical phase space variables G, with parameters
t , λ and µ. These equations are then our ‘geometrodynamics’ equations (in the simple BF
case), obtained here as equations for the order parameters characterizing the GFT (mean field)
background configuration in our (hydrodynamic) approximation, i.e. neglecting the contribution
coming from fluctuations around the mean field and coming directly from the full GFT
dynamics.

We are not able, at the present stage, to recast the above equations into a more geometrically
transparent form, or to make more direct contact with the classical BF theory equations.
However, we can try to solve them, and hope to make contact with the classical BF theory
at least at the level of the solutions we find.

We realize immediately that an exact solution to this equation is t = 0, µ= −1/λ,
G = I, i.e.

ξI,I(g1, g2; 0)= −
1

λ
δ(g1g−1

2 ). (48)
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Despite its obvious relevance, this solution is not really admissible because it corresponds to
an infinite total action (and thus lies outside the space of fields for which the GFT model is
defined). Therefore, we keep t 6= 0 and find some optimal value for the other free parameters of
the heat kernel such that it is a reasonable approximation for a solution. In order to do so, we
expand the above equation in representations, using the Peter–Weyl decomposition of the heat
kernel,

ρt(g)=

∑
j

d j e
−tC jχ j(g), χ j(g)= t j

mn(g)δmn, C j = j ( j + 1). (49)

Using this decomposition in the equation of motion, we obtain a tower of equations (labeled
by j) for t and G,

t j
nm(G)+ λµe−2tC j t j

nm(G
2)= 0, (50)

or, equivalently,

δnm + λµe−2tC j t j
nm(G)= 0. (51)

We realize immediately that the only SL(2,C) elements whose representation matrices are
proportional to the identity for all representations j are those belonging to its center, namely
I and −I. Indeed, their representation matrices are

t j
nm(±I)= (±1)2 jδnm. (52)

The equation for j = 0 provides the condition µ= −1/λ, when

1 − e−2tC j (±1)2 j
= 0, j > 0. (53)

Obviously, the exponential is always positive and smaller than one (since tC j > 0). Clearly, if
G = −I, when specializing to the case of half integer j , the lhs of this equation would always
be of order one, therefore failing to approach zero for any representation. Therefore, we have to
keep G = I as the only plausible option.

However, unless t = 0, the GFT equations cannot be satisfied. In particular, for fixed t , for
representations, j is such that tλ j > 1 we will have that the lhs of the equations are of order
one. Therefore, our heat kernel with finite spread will represent an approximate solution to the
equations of motion, as long as the spread is kept very small (mimicking, then, the exact solution
given by the Dirac delta). The fact that this function is not a solution will be evident when
examining representations of sufficiently high spin, the threshold being given by the condition
2tλ j ≈ 1. One also has to keep in mind that a spread of order t in the g (connection) variables
implies a spread of order 1/t in the conjugate B variables.

With these considerations in mind, we can reach some partial conclusions. The trial field
profiles (44), with t ≈ 0 and G = I, can be seen as approximate solutions to the GFT field
equation. Recall that G = I means Ga = Gb in terms of the original GFT variables, which
still implies that any wave function associated with a generic graph will have G = I as the
phase–space point associated with any graph link. They represent physical configurations of
the (discrete) BF fields, which are sharply peaked around the trivial connection (everywhere
on the graph), and peaked with large fluctuations a degenerate classical configuration of the B
field, B = 0 everywhere. Once more, we cannot yet make explicit contact between our effective
‘geometrodynamics’ and classical BF theory, but one should note that this selected configuration
is one of the classical solutions of BF theory: a trivial connection, up to gauge transformations,
and any B field satisfying B i(x)Bi(x)= const (the remaining components in the Lie algebra
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are pure gauge). So, the candidate GFT configuration corresponding to LQG coherent states
is a solution of the classical GFT dynamics if it corresponds to coherent states peaked on a
degenerate (in the B), flat (with respect to the connection ω) configuration7. Note also, once
more, that, despite corresponding to a somewhat degenerate classical configuration, it does
correspond to a highly non-trivial quantum state, receiving contributions from arbitrary spin
or group excitations, and in principle defined for arbitrarily complicated graphs, thus very far
from the GFT-free (Fock) vacuum. Still, the result could be interpreted as suggesting that the
full classical dynamics should be looked for in the dynamics of GFT perturbations around this
degenerate mean field configuration, rather than in the mean field equations themselves.

4.2. Colored GFT

The next case, in order of complexity, is represented by the colored version of the same model8,
in which we have three fields, labeled R,G, B, such that the action reads as

S =
1

2

∫
dga dgb

(
φR

abφ
R
ba +φG

abφ
G
ba +φB

abφ
B
ba

)
+ λ

∫
(dg)3 φR

abφ
G
bcφ

B
ca. (54)

The equations of motion are

φR
ba + λ

∫
φG

bcφ
B
ca dgc = 0; φG

ba + λ
∫
φB

bcφ
R
ca dgc = 0; φB

ba + λ
∫
φR

bcφ
G
ca dgc = 0. (55)

As in the previous case, we check immediately that

φR
ab =

σR

λ
δ(gag−1

b G R); φG
ab =

σG

λ
δ(gag−1

b GG); φB
ab =

σB

λ
δ(gag−1

b G B) (56)

is an exact solution, provided that σRσGσB = −1 and three conditions for the parameters,
namely G R = GGG B = I, and cyclic permutations. Using these conditions, it is easy to obtain

G R = ζRI, GG = ζGI, G B = ζBI, (57)

where ζR, ζG and ζB are signs satisfying the condition ζRζGζB = 1. However, the configurations
cannot be considered once move as acceptable as such, because they lead to a divergent GFT
action.

As in the case of a non-colored model, we can then consider the regularized case of heat
kernels with a finite spread,

φR
ab = ξ R

ab = µRρt(gag−1
b G R), (58)

and similar expressions for the other colors. One obtains

µRρt(gbg−1
a G R)+ λµGµB

∫
ρt(gbg−1

c GG)ρt(gcg−1
a G B)dgc = 0. (59)

After straightforward manipulations, this equation becomes

µRρt(gG R)+ λµGµBρ2t(gG BGG)= 0, (60)

7 Recall that the B field plays the role of a Lagrange multiplier in both continuum and discrete formulations, so
that large fluctuations around its classical value do not imply dynamical instabilities.
8 The addition of colors implies several constraints on the combinatorics of the resulting Feynman diagrams
[46, 47], and is important from the point of view of GFT symmetries [48], but it corresponds to the same Feynman
amplitudes and is thus expected to correspond to the same classical BF theory.
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while the other equations can be obtained by even permutations of R,G and B labels. In terms
of representations, we obtain the following three towers of equations,

µRδmn + λµGµBe−tλ j t j
mn(G BGGG−1

R )= 0, (61)

µGδmn + λµBµRe−tλ j t j
mn(G RG BG−1

G )= 0, (62)

µBδmn + λµRµGe−tλ j t j
mn(GGG RG−1

B )= 0. (63)

Once more, these are our effective ‘geometrodynamics’ equations for the order parameters
G X labeling classical phase-space points (of the BF theory), obtained from the MFA of the
fundamental GFT dynamics.

Again, taking first j = 0, one obtains

µR =
σR

λ
; µG =

σG

λ
; µB =

σB

λ
; σRσGσB = −1. (64)

Following the same reasoning of the scalar case, we obtain

G BGGG−1
R = I, G RG BG−1

G = I, GGG RG−1
B = I, (65)

which are the same as those we have obtained in the case of the Dirac delta. Therefore, the
structure of the solutions to the equations is the same, as far as the group elements associated
with the peaks are concerned.

The same comments on the trial configuration made in the case of the single-field model
apply to this more complicated case. These heat kernels are not exact solutions, even though
they can approach with arbitrary accuracy (t → 0) an (unphysical) exact solution (but keep in
mind the spread 1/t in the conjugate B variable). The geometrical interpretation of the (unique)
solution found is similar, and so we do not repeat it, with the only exception that we now
might find that some of the parallel transports are peaked on the SL(2,C) matrix −I, which
represents a full rotation of 2π : in the case of half-integer representations, it leads to an overall
multiplication by −1.

5. Three-dimensional (3D) GFT

We can extend the previous analysis to any higher-dimensional case. In particular, here we focus
on the 3D case, namely, for the non-colored case, the Boulatov GFT model for 3D BF (first-order
gravity), in the Euclidean signature [49]. The Feynman amplitudes of this model are simplicial
path integrals for the discrete 3D version of the action (40), or equivalently correspond to the
Ponzano–Regge spin foam model [6, 7, 12, 17], in terms of a discrete triad and a discrete gravity
connection. At the canonical level, the phase space is parameterized by such a discrete triad, an
su(2) element, and the holonomy of the connection, an SU(2) element, for each edge of the
graph by means of which any spin network state is defined (see [2, 3] as well as [50]).

5.1. Single-field case

To begin with, we consider the simple (non-colored) model with a single field. The field will
depend on three group elements, projected using the diagonal action of the group,

φ(g1, g2, g3)=

∫
SU(2)

dh8(g1h, g2h, g3h), (66)
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in order to impose gauge invariance (closure of the triangle edge vectors in the metric
representation).

The action is such that, in a perturbative expansion of a path integral, the Feynman diagrams
are (dual to) oriented simplicial decompositions of 3D manifolds of arbitrary topology, and are
given by

S =
1

2

∫
(dg)3 φ123φ321 +

λ

4

∫
(dg)6 φ123φ156φ453φ426, (67)

where the obvious notation has been employed. The reader is referred to appendix B for
a careful discussion of the possible alternative definitions of the model, for what concerns
the combinatorics of field arguments. Our particular choice (67), among those ensuring
orientability, leads to the simplest equations of motion, reducing the number of terms to be
manipulated.

As in the 2D case, we will try to find (possibly, approximate) solutions in the form of the
selected trial functions, dependent on a certain number of geometric parameters. The (highly
non-local) field equation for the GFT will then be turned into equations for the geometric
parameters, thus providing a sort of geometrodynamics.

In our case, the trial function is the convolution of heat kernels,

ξabc = µ

∫
dhρt (gahGa)ρt(gbhGb)ρt(gchGc), (68)

where Ga,Gb,Gc are SL(2,C) elements encoding the geometrical properties of the mean
configuration on which the state ξ is peaked. In particular, in this 3D case, the relation between
these group elements and the classical phase space of 3D geometry is transparent. In a polar
decomposition of the SL(2,C) matrices, the SU(2) part will be associated with the mean value
of the parallel transport around which the state fluctuates, while the positive Hermitian part will
be associated with the average triads/fluxes.

After simple manipulations, the equation of motion can be put into the form9

µ

[∫
dhρt (g3hGa)ρt(g2hGb)ρt(g1hGc)+ λµ2

∫
(dh3)ρt(g1h1Ga)ρt(g2h2Gb)

× ρt(g3h3Gc)ρ2t(h
−1
1 h2)ρ2t(h

−1
2 h3)ρ2t(h

−1
3 h1)

]
= 0. (69)

Coming back to our concrete problem, as in the 2D case, the choice µ= 0 gives an exact
solution, associated with the ‘trivial’ GFT vacuum. In order to find other solutions, we
decompose the equation into a tower of equations by expanding it into representations. The
result is(

j1 j2 j3

n1 n2 n3

)(
j1 j2 j3

r1 r2 r3

)
t j1
r1m1

(Gc)t
j2

r2m2
(Gb)t

j3
r3m3

(Ga)

+λµ2�n1n2n3r1r2r3t
j1

r1m1
(Ga)t

j2
r2m2

(Gb)t
j3

r3m3
(Gc)= 0, (70)

9 It is worth mentioning that the expression in the interaction term would change dramatically if we were to change
the interaction term in the original action, for instance, by replacing φ123 by φ231 (an even permutation of the group
variables, preserving the orientation properties). First of all, the equation of motion changes involving more terms
that have different combinatorial structures. Secondly, as a consequence of this first point, the various convolutions
of heat kernels will be such that some (possibly all) of the heat kernels of the form ρ2t (h

−1
i h j ) will be replaced by

ρ2t (h
−1
i h j Gα), where Gα = G−1

i ′ G j ′ .
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where the Wigner’s 3 j symbols have been introduced10. To simplify the form of the equation,
we have defined the tensor

�n1n2n3r1r2r3 =

∫
(dh3) t j1

n1r1
(h1)t

j2
n2r2
(h2)t

j3
n3r3
(h3)ρ2t(h

−1
1 h2)ρ2t(h

−1
2 h3)ρ2t(h

−1
3 h1). (71)

This tensor can be rewritten as

�n1n2n3r1r2r3 =

∑
456

d j4d j5d j6e
−2t (λ4+λ5+λ6)

{
j1 j2 j3

j4 j5 j6

}2
( j1 j2 j3

n1 n2 n3

)(
j1 j2 j3

r1 r2 r3

)
, (72)

where the 6 j symbols have been introduced.
One of the 3 j symbols factorize away, leaving us with(

j1 j2 j3

r1 r2 r3

)
+ λµ2 f ( j1, j2, j3; t)t j1

s1r1
(GaG−1

c )δs2r2t
j3

s3r3
(GcG−1

a )

(
j1 j2 j3

s1 s2 s3

)
= 0

∀ j1, j2, j3. (73)

Here, for convenience, we have defined

f ( j1, j2, j3; t)=

∑
456

d j4d j5d j6e
−2t (λ4+λ5+λ6)

{
j1 j2 j3

j4 j5 j6

}2

. (74)

These are the geometrodynamics equations for the order parameters derived from the GFT
dynamics. Once more, we are not able yet to relate these equations directly to the classical
BF equations, nor to give them a more geometrically explicit form. We then turn to the problem
of identifying some solutions, which could instead be given a geometric interpretation.

In order for the equation of motion to be satisfied, we need

t j
mn(GaG−1

c )= c j
m(GaG−1

c )δmn ∀ j, (75)

i.e. that the matrices are diagonal for any j . The properties of the representations we are playing
with (see appendix C) then lead to the conclusion

GaG−1
c =

(
α 0
0 1/α

)
, α ∈ C \ 0. (76)

Using this in the equation of motion, we can get rid of the second 3 j symbol to obtain

1 + λµ2 f ( j1, j2, j3; t)c j1
m1
(GaG−1

c )c
j3
m3
(GaG−1

c )= 0 ∀ j1, j2, j3,m1,m3. (77)

Therefore, we can argue that c j1
m1
(GaG−1

c )= c j1

m′

1
(GaG−1

c ), i.e. that the matrices are not only
diagonal but proportional to the identity matrix, in any representation. As we have already
stated, the only SL(2,C) elements whose representation matrices are proportional to the identity
in every representations are ±I.
10 It is worth noting the crucial way in which the particular choices for the various terms in the action affect the
way in which Ga,Gb and Gc enter this equation. If we had chosen a kinetic term with the pairing φ123φ123, we
would make this equation totally insensitive to the SL(2,C) elements. In the case we are considering, the equation
is insensitive to Gb only. We do not have a clear understanding of this feature of the GFT dynamics.
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Consider j1, j2, j3 = 0. Then one obtains

µ2
= −

1

λ
, (78)

which fixes the normalization of the field profile.
From its expression, it is manifest that, if t ∈ R, f > 0. Therefore, we obtain

1 − f ( j1, j2, j3; t)(±1)2 j1(±1)2 j3 = 0, (79)

which can be approximately satisfied if the second term on the lhs is always negative, for all
of the representations. We then find that GaG−1

c = I, thus fixing the geometric part that can be
controlled by the equation of motion.

Therefore, we find that the coherent state GFT configuration is a solution of the GFT
dynamics for Ga = Gc and for arbitrary Gb, or equivalently, taking into account the gauge
invariance properties of the field, we can conclude that the solutions are parameterized by a
single SL(2,C) element G = GbG−1

a . The dynamics are therefore clearly much richer than in
the 2D case already examined, as one would expect. The case G = I would correspond once
more to a degenerate 3D geometry, but we now see that other solutions are allowed. One should
now attempt to prove that the only freedom is in the phase-space variables corresponding to the
discrete triad, while the above configurations all correspond to flat connections, as one would
expect from classical BF theory. We leave this for further investigation. Finally, conditions on t
must be obtained by the analysis of the closeness of f to 1, similar to what we have done in the
case of 2D models. This requires careful examination of the properties of the function f , which
we also leave for future work.

5.2. Colored model

The investigations into the symmetries of GFTs [48] have shown that, in order to implement
within a GFT model a symmetry that corresponds to 3D simplicial diffeomorphisms, the colored
generalization of the GFT model [46] is necessary, in which one has a multiplet of dynamical
fields, each labeled by a color index. The quantum dynamics still generate random orientable
3D complexes of arbitrary topology, and it has been shown that the coloring also leads to the
absence of many singular configurations with respect to the usual models [46, 47, 51]; these
combinatorial properties of the resulting Feynman diagrams were in fact the original motivation
for introducing coloring into the GFT framework.

We consider the simplest incarnation of the theory, defined by the following action:

S =
1

2

∫
(dg)3

[
φR

123φ
R
321 +φG

123φ
G
321 +φB

123φ
B
321 +φV

123φ
V
321

]
+ λ

∫
(dg)6φR

123φ
G
156φ

B
426φ

V
543. (80)

The analysis of the equations of motion goes exactly as in the case of the single-field model.
However, there are some crucial differences that make this model much more complicated, and
the extraction of geometrical information significantly more involved.

Concerning the trial functions, as in the 2D case, the SL(2,C) peaks are different color by
color, at least in principle,

ξ X
abc = µX

∫
dhρt(gahG X

a )ρt(gbhG X
b )ρt(gchG X

c ), (81)

where X = R,G, B and V . This implies that the structure of the tensor � that we introduced
in the previous section gets completely modified. Besides possessing an obvious color index,
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it depends in a non-trivial way on various products of SL(2,C) elements. For instance, the
equation for the color R reads

µR

∫
dhρt(g3hG R

a )ρt(g2hG R
b )ρt(gahG R

c )+ λµGµBµV

∫
(dh)3

[
ρt(g1h1GG

a )ρt(g2h2G B
b )

×ρt(g3h3GV
c )ρ2t(h

−1
2 h3GV

a (G
B
a )

−1)ρ2t(h
−1
3 h1GG

b (G
V
b )

−1)ρ2t(h
−1
1 h2G B

c (G
G
c )

−1)
]
= 0. (82)

In a decomposition in representations analogous to the one used to treat the scalar case, there are
two obvious differences. First of all, the multiplication of the equations by the representation
matrices of the elements (G R

i )
−1 does not eliminate any of the matrices contracted with the

analogous of the tensor �. Furthermore, the latter has a dependence on the SL(2,C) elements
such that it cannot be easily rewritten in terms of 3 j and 6 j symbols. These complications
prevent us, at the moment, from identifying the solutions of the equations. We can only stress
the fact that the classical dynamics for the order parameters we have obtained seems richer than
in the single-field case.

However, it is easy to see that if we impose the constraint G X
i = G X ′

i , then the analysis of
the solutions goes exactly in the same way of the single-field case, producing exactly the same
results.

The only difference involves the different normalizations. It is immediately obvious
that µX = σXµ, with σX some signs, and µ= |λ|−1/2. The signs are constrained to satisfy
σRσGσBσV = −sign(λ).

6. Effective dynamics around the heat kernel configuration

In the previous sections, we have considered some aspects of the MFA applied to GFTs,
at leading order, i.e. ignoring fluctuations around the mean field configurations. In order to
understand its limits, and to start characterizing the full dynamics of the system around these
non-perturbative vacua, it is important to elucidate the features of the effective theory for the
small deviations away from the mean field. This is also needed to understand the stability of
the configurations, and hence their viability as (non-perturbative) ‘ground states’ for the GFT.
Furthermore, in light of the possibility of expressing any GFT quantum dynamics in spin foam
representation (which amounts to the perturbative expansion of the same in Feynman amplitudes
written as functions of group representations), this analysis should clarify some of the features
of the spin foam models that one would obtain around the new vacua and the differences with the
‘fundamental’ ones. In the following, we will consider such effective dynamics in the same cases
in which we have performed the analysis of the equations of motion and obtained conditions for
the heat kernel GFT configurations. However, it should be clear, by now, that the analysis can
be generalized to higher-dimensional cases without any conceptual difficulty.

6.1. 2D—single-field model

The easiest case is the 2D simple GFT (without colors). We will use the splitting of the field
into a mean field part (the heat kernel satisfying the mean field conditions µ= −1/λ,G = I)
and a fluctuation ϕ (satisfying the same diagonal gauge invariance as the original field),

φab = ξ(ga, gb)+ϕ(ga, gb), ξ(ga, gb)= −
1

λ
ρ2t(gag−1

b ). (83)
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The action for the field generates an effective action for ϕab, which has the simple form

Seff[ϕ] := S[ξ +ϕ] − S[ξ ] =
1

2

∫
dgadgb(ϕab)

2 +
∫

dgadgbξabϕab

+λ
∫

dgadgbdgc

{
ϕabξbcξca +ϕabϕbcξca +

1

3
ϕabϕbcϕca

}
. (84)

In this effective action, we have a term, linear in ϕab, which would vanish if ξab were a solution.
However, as we have seen, ξab is not exactly a solution and hence it will give a (possibly small)
effective contribution to the equations of motion. By taking care of the factors of λ, it is easy
to see that these terms are of order 1/λ: in this sense, they are non-perturbative. The value of t
must be tuned in such a way that this term becomes negligible. We will consider this as done.

The kinetic term is completed by a quadratic term in ϕab, which is obtained by convolution
of the interaction term of the original theory with a single copy of the background solution ξab.
This means, and this is a first crucial and generic feature of the effective theories we obtain,
that this term brings the full microscopic dynamics of the underlying GFT model (as well as the
properties of the particular background solution considered) into the effective dynamics of the
perturbations, already at the level of the effective kinetic term,

1

2

∫
ϕabϕcdKabcd(dg)4. (85)

The latter has the explicit form

Kabcd
= δ(gag−1

c )δ(gbg−1
d )− 2δ(gbg−1

c )ρ2t(g
−1
a gd)

= δ(gag−1
c )δ(gbg−1

d )− 2
∫

dgedg f V(ga, gb, gc, gd, ge, g f ) ρ2t(g
−1
e g f ).

(86)

Here, the disappearance of λ is somehow fictitious. In fact, the conditions imposed on the
parameters of the heat kernels (our effective ‘geometrodynamics’ equations) are tying together
G, t and λ. Let us finally note that, in the case of 2D theories, the effective interaction term is
just the same as the one present for the full theory, and hence its simplicial interpretation, even if
not obviously useful or appropriate (given that now we may have already generated an effective
spacetime by means of the choice of non-perturbative vacuum) is unchanged.

It is useful to rewrite the action in terms of group representations, using the properties of
the representation functions of SU(2) (see appendix C or, for a more complete treatment, [52])
and the consequent expression

ϕab =

∑
j

Y j
mnt j

mn(gag−1
b ). (87)

The effective action reads

S =
1

2

∑
j

[
1

d j
Y j

mnY j
nm −

2

d j
e−2tC j Y j

mnY j
nm +

λ

3d j
Y j

mnY j
nr Y j

rm

]
, C j = j ( j + 1). (88)

We have an effective dynamics with a new, non-trivial propagator. In this simple case, this is the
only formal modification with respect to the fundamental (microscopic) GFT action. Obviously,
this will result in modified spin foam amplitudes. The nature of the microscopic GFT model as
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a tower of infinite unitary matrix models with dimension N = 2 j + 1 is retained in the effective
dynamics.

The diagonal nature of the kinetic term allows us to rewrite the same action in terms of a
trivial one, by performing the rescaling,

Y j
mn → Z j

mn = (1 − 2e−2tC j )1/2Y j
mn. (89)

The resulting action can be considered as coinciding with the microscopic one, but in terms of
a new, renormalized (or better, momentum dependent) coupling constant,

λ→ λeff( j)= (1 − 2e−2tC j )−3/2λ. (90)

The rescaled matrices can be seen as the components in representation space of a ‘quasiparticle’
field,

ω(g)=

∑
j

Z j
mnt j

nm(g), (91)

related to the original fluctuation field by a non-local transformation,

ω(g)=

∫
T (g, h)ϕ(h)dh, T (g, h)=

∑
j

d j(1 − 2e−2tC j )1/2χ j(gh−1). (92)

The amplitudes of the effective theory can be immediately derived by making use of the
Feynman rules for the corresponding matrix model (see [16]). In particular, the amplitude
associated with a 2D simplicial complex 0, dual to a fat graph obtained from the spin j matrix
model, will be

A(0, j)=
1

S
λF

effd
χ(0)

j =
1

S
λF(1 − 2e−2tC j )−3F/2dχ(0)j , (93)

where F is the number of faces (triangles) of the complex, χ(0) is its Euler characteristic and
S is a symmetry factor.

6.1.1. Stability. The analysis of the scalar case, with its extreme simplicity, allows us to
partially address the issue of the stability of the heat kernel solutions. In particular, it appears
that there is an instability for low spins, given that

1 − 2e−2tC j 6 0, (94)

showing that the coefficients in front of the kinetic term for such low spins is negative. Note that
this is even more the case, the more one approaches the regime t ≈ 0, which is the one in which
ξ is indeed a solution of the GFT equations. This shows that the heat kernel GFT configurations
can be used as good approximations of exact solutions, but they are probably perturbatively
unstable: the stability matrix has negative eigenvalues. If this is the case, it would be interesting
to study in more detail the physics behind this instability, as it may signal the breakdown of the
GFT hydrodynamic approximation, and indirectly give insights into the physical meaning of the
same.
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6.2. 2D—colored model

In the case of the colored model, the presence of several fields complicates the situation slightly.
Indeed, the microscopic GFT interaction term induces a quadratic term characterized by a
mixing between colors.

The effective action written in group representations reads

Seff =

∑
j

1

2d j

[
R j

mn R j
nm + G j

mnG j
nm + B j

mn B j
nm + 2e−2tλ j (σBG j

mn R j
nr t j

rm(G B)+ σR B j
mnG j

nr t j
rm(G R)

+σG R j
mn B j

nr t j
rm(GG))+

2λ

d j
G j

mn R j
nr B j

rm

]
. (95)

It is a tower (labeled by the irreducible representations of SU(2)) of three-matrix models with
a standard interaction term, accompanied by a number of terms (in which the background field
ξ enters explicitly) generating oscillations between the colors. These terms introduce a form of
non-trivial dynamics even if we truncate the effective action to the lowest order in λ. It is worth
stressing that these effects are directly induced by the GFT interaction term due to the presence
of a non-trivial background. In the simplicial, discrete spacetime interpretation of the resulting
perturbative Feynman amplitudes of (once more, not necessarily appropriate in this context)
these terms is that they generate oscillations of 1D simplicial spaces (or bivalent spin networks)
in coloring, while keeping the topology fixed.

The diagonalization of this oscillating kinetic term can, however, be performed, at least
in the case G R = G B = GG = I (which is the case in which the heat kernel GFT configuration
is a solution of the mean field dynamics), once it is recognized that the quadratic term can be
rewritten as

(R j ,G j , B j)

 1 σBβ j σGβ j

σBβ j 1 σRβ j

σGβ j σRβ j 1


R j

G j

B j

 , (96)

where β j = e−2tC j .
The possibility, if not needed, for such diagonalization in field space is the only new feature

of the colored model with respect to the single-field GFT.
One has to introduce new matrices, which are linear combinations of the representation

matrices R j ,G j , B j (the mapping being an orthogonal transformation, since the matrix in the
kinetic term (96) is real and symmetric). In terms of these new matrices, the effective action
will have a trivial kinetic term, at the price of complicating the cubic interaction term. The
transformation needed to put the kinetic term in canonical form depends on the representations,
through the coefficient β j . Note that for j → ∞, the transformation reduces to the identity.
This is due to the fact that for large j , the off-diagonal terms are exponentially suppressed.
Therefore, the largest effect is on small representations, the crossover scale J being determined
by the condition 2tC J ≈ 1.

The fact that the transformation of the matrices are j dependent has important implications
for determining the propagating modes of the effective model. Let us be schematic. We started
from some fields,

ϕ I
ab =

∑
j

X I, j
mn t j

nm(gag−1
b ), X I, j

mn = d j

∫
ϕ I

abt j
mn(gag−1

b ), (97)
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and we have discovered that the normal (truly propagating) modes are not given in terms of X I

but of

Y α, j
mn = Mα I

j X I, j
mn , (98)

where Mα I are the matrices diagonalizing the kinetic term (96). The matrices Y s can then be
associated with fields

ωα(g)=

∑
j,n,m

Y α, j
mn t j

nm(g),=
∫

dh ϕ I (h)K α I (h, g), (99)

a non-local linear relation between the two kinds of fields, controlled by the kernel,

K α I (h, g)=

∑
j,n,m

d j Mα,I
j t j

mn(h)t j
nm(g). (100)

This is very similar to the relation between quasiparticles and atoms in the case of condensed
matter systems. The effective quanta associated with the oscillations around the given
(geometrical) GFT background are clearly collective modes of the fundamental GFT quanta.

6.3. 3D model(s)

The discussion of the effective action for the 3D case goes along the same lines as the 2D case.
The effective action is given by

Seff[ϕ] ≡ S[ξ +ϕ] − S[ξ ] =

〈
δS

δφabc

∣∣∣
φ=ξ
ϕabc

〉
+

1

2

〈
δ2S

δφabcδφde f

∣∣∣
φ=ξ
ϕabcϕde f

〉
+

1

3!

〈
δ3S

δφabcδφde f δφghi

∣∣∣
φ=ξ
ϕabcϕde f ϕghi

〉
+
λ

4

〈
ϕabcϕae f ϕdb f ϕdec

〉
, (101)

where we are using a notation in which 〈· · ·〉 denotes the integration with respect to the relevant
group variables.

We have already mentioned the term linear in ϕ, which is not exactly zero unless ξ is a
solution of the equation of motion. However, by tuning t , we may control the effect of this term
and make it negligible. Therefore, the first non-trivial term in our expansion comes from the
second variation in the interaction term evaluated on ξ .

In the end, the effective action of the model (neglecting the linear term) reads

Seff =
1

2

∫
ϕ123ϕ321 +

λ

2

∫ (
ϕabcϕae f ξdb f ξdec +ϕabcϕdb f ξae f ξdec +ϕabcϕdecξae f ξdb f

)
(102)

+λ
∫
(dg)6ϕ123ϕ156ϕ426ξ453 +

λ

4

∫
(dg)6ϕ123ϕ156ϕ426ϕ453. (103)

The main points to be noted are the following, all concerning the new non-trivial kinetic term:

1. Due to the expansion of the theory around a non-trivial background configuration, the
fundamental GFT interaction term percolates down to the quadratic and the cubic part of
the effective action; also, each insertion of background field leads to a multiplication by
|λ|−1/2, which means that the quadratic term is of order λ0.
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2. The three new terms contributing to the kinetic term, in addition to the trivial one, are
not equivalent: they correspond to three distinct combinatorial structures. Moreover, they
correspond to oscillations in representation labels along the lines of propagation.

However, in contrast to the simpler 2D case, it is not yet clear as to whether it is possible
to envisage a transformation that would put the kinetic term in a canonical diagonal form. The
nature of the oscillations, as the Feynman amplitudes resulting from the effective action, can be
studied in representation space. One has to use the conditions on ξ ,

λ < 0; ξabc =
1

|λ|1/2

∫
dhρt(gahGa)ρt(gbhGb)ρt(gchGa), (104)

with Ga,Gb arbitrary elements of SL(2,C) and the expansion

ϕ123 =

∑
{ j}

X j1 j2 j3
n1n2n3

(
j1 j2 j3

r1 r2 r3

)
t j1
r1n1
(g1)t

j2
r2n2
(g2)t

j3
r3n3
(g3). (105)

Once more, the detailed analysis would not add much to the present discussion.
We therefore restrict our attention only to the mixing terms in the quadratic part. Let us

consider just one of them,

λ

∫
ϕabcϕae f ξdb f ξdec(dg)6 = λ

∫
ϕabcϕae f ξdb f ξdec(dg)6 = (−1) (106)

×

∫
dga

∑
X j1 j2 j3

n1n2n3

(
j1 j2 j3

r1 r2 r3

)
X j4 j5 j6

n4n5n6

(
j4 j5 j6

r4 r5 r6

)
t j1
r1n1
(ga)t

j4
r4n4(ga)W

j2 j3 j5 j6
r2r3r5r6,n2n3n5n6

, (107)

where we have introduced

W j2 j3 j5 j6
r2r3r5r6,n2n3n5n6

=

∫
(dg)5(dh)2[t j2

r2n2
(gb)t

j3
r3n3
(gc)t

j5
r5n5(ge)t

j6
r6n6(g f )ρt(gdh1Ga)ρt

×(geh1Gb)ρt(gch1Gc)ρt(gdh2Ga)ρt(gbh2Gb)ρt(g f h2Gc)] (108)

to (slightly) simplify the notation. We might want to use Ga = Gc, and gauge invariance to fix
Gb = I. Orthonormality of the representations is expressed as∫

dgat j1
r1n1
(ga)t

j4
r4n4(ga)=

1

d j1

δ j1 j4δr1r4δn1n4 . (109)

In turn, this implies that we can reduce the expression to∑
X j1 j2 j3

n1n2n3

(
j1 j2 j3

r1 r2 r3

)
X j1 j5 j6

n1n5n6

(
j1 j5 j6

r1 r5 r6

)
W j1; j2 j3 j5 j6

r2r3r5r6,n2n3n5n6
, (110)

or ∑
X j1 j2 j3

n1n2n3
X j1 j5 j6

n1n5n6 W j2 j3 j5 j6
n2n3n5n6

, (111)

where

W j1; j2 j3 j5 j6
1;n2n3n5n6

=

∑
r1

(
j1 j2 j3

r1 r2 r3

)(
j1 j5 j6

r1 r5 r6

)
W j2 j3 j5 j6

r2r3r5r6,n2n3n5n6
. (112)
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Figure 4. Basic propagator and vertex.

The structure for the other terms in the quadratic part of the effective action is the same, with
differences only in the orderings/combinatorial structure. We could summarize the structure that
we obtain into the expression

1

2
X j1 j2 j3

n1n2n3
X j4 j5 j6

n4n5n6K j1 j2 j3 j4 j5 j6
n1n2n3n4n5n6

, (113)

where

K j1 j2 j3 j4 j5 j6
n1n2n3n4n5n6

=
0 K j1 j2 j3 j4 j5 j6

n1n2n3n4n5n6
− 2(δ j1 j4δn1n4 W j1; j2 j3 j5 j6

1;n2n3n5n6
+ δ j2 j5δn2n5 W j2; j1 j3 j4 j6

2;n1n3n4n6
+ δ j3 j6δn3n6 W j3; j1 j2 j4 j5

3;n1n2n4n5
)

(114)

and where
0K j1 j2 j3 j4 j5 j6

n1n2n3n4n5n6
= δ j1 j6δn1n6δ

j2 j5δn2n5δ
j3 j4δn3n4 (115)

is just the original kinetic term.
The entire dependence on the structure of the interaction term and on the background

solutions, i.e. t and the various group elements of SL(2,C), is encoded in the tensors W1,W2

and W3. While the explicit structure of the quadratic term is not helping much, still the processes
it encodes are rather clear. Indeed, we could write down the Feynman diagrams of the emergent
theory at once, starting from the structure of the Feynman diagrams of the fundamental theory,
constructed out of the basic propagator and vertex in figure 4.

Apart from the symmetry factors, the various induced diagrams can be obtained very
easily by heat kernels insertions on the external legs, in all possible ways. Therefore, the three
oscillatory contributions to the kinetic term will correspond to the diagrams in figure 5.

Nonetheless, let us stress once more that these peculiar contributions to the kinetic term are
encoding a non-trivial dynamics, not associated with any change in the structure of the graph
depicting the combinatorial structure of the pairings of field arguments but only affecting its
associated representation labels.

This very same analysis applies to the case of colored 3D GFTs. Without going into the
explicit calculations (very similar to the scalar case), we can immediately say that one additional
feature will have to be added. The percolation of the original interaction term (combining
triangles with different colors into a tetrahedron) onto the effective kinetic term will result not
only in effective dynamics that at the lowest order (free theory) will change the representations
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Figure 5. The three contributions to the kinetic term: the gray rectangles
correspond to insertions of heat kernels. It is understood that a sum is performed
over the lines that are beginning and ending at one heat kernel insertion.

labeling the lines of propagation, but also in oscillations in the colorings, in a way similar to the
case of 2D colored models. The quadratic part of the effective action reads

1

2

∫
(dg)3

[
ϕR

abcϕ
R
cba +ϕG

abcϕ
G
cba +ϕB

abcϕ
B
cba +ϕV

abcϕ
V
cba

]
+ λ

∫
(dg)3

[
ϕR

abcϕ
G
aef ξ

B
dbf ξ

V
dec

+ϕR
abcξ

G
aef ϕ

B
dbf ξ

V
dec +ϕR

abcξ
G
aef ξ

B
dbf ϕ

V
dec + ξ R

abcϕ
G
aef ϕ

B
dbf ξ

V
dec

+ξ R
abcϕ

G
aef ξ

B
dbf ϕ

V
dec + ξ R

abcξ
G
aef ϕ

B
dbf ϕ

V
dec

]
, (116)

where the ξ X are determined as in the previous section. The percolation of the interaction term of
the fundamental theory into the effective quadratic term, and hence in the effective propagator,
is even more evident.

7. Fundamental versus effective symmetries

In any field theory, the choice of the vacuum is crucial for the understanding of the symmetries of
the effective theory describing the dynamics of the excitations around that vacuum. Vice versa,
the behavior under symmetry transformation gives important information about the physical
nature of the chosen vacuum itself. In particular, the ground state defines an order parameter (or
a set of order parameters) determining the symmetry group of the truncated theory. Nonetheless,
it is important to remember that the effective theory for fluctuations around the new ground state
remains invariant under the original symmetry group: the difference is in the representation of
the symmetry group, which becomes nonlinear.

Let us clarify this point. Consider a field theory (e.g. a GFT) for some fields collectively
denoted by 8 (internal/tensor/spinor indices are omitted). Assume that the theory is invariant
under the action of a symmetry transformation,

8→8′
= U8, S[U8] = S[8]. (117)

The Fock vacuum 8= 0 is obviously invariant under the action of U .
Imagine that the new (non-perturbative) ground state is now not invariant under the action

of the symmetry, but, for example, only transforms covariantly,

U80 6=80. (118)
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When we consider the effective action that we obtain expanding around 80,

8=80 +φ, (119)

we find that, under the action of the symmetry group,

8′
= U8⇒ φ′

=8′
−80 = Uφ + (U − I)80. (120)

Note that here we have written exact expressions. We have never referred to the fact that φ is
small, in any sense, or that U is an infinitesimal transformation. Then, the effective action for φ
is not invariant under φ → Uφ, but rather it is invariant under the transformation

φ → Uφ + (U − I)80. (121)

This must be expected whenever an order parameter transforming under some representation of
the symmetry group of the theory is introduced.

In our GFT case, the heat kernels are parameterized by the group elements around which
they are peaked. In turn, they determine, by the mechanism we have just outlined, the shape of
the symmetries of the effective theory around the chosen vacuum.

Let us discuss further this important point, in the case of 3D colored GFT, where the
implementation of (simplicial) diffeo-morphism symmetry has recently been unraveled [48].
It has been shown that the GFT action is left invariant by global (from the QFT point of view)
transformations (forming a quantum group) of the GFT field, which correspond (at the level of
the Feynman amplitudes), given by simplicial gravity path integrals, to 3D simplicial diffeo-
morphisms [53]: in terms of simplicial complexes appearing in the perturbative expansion, they
correspond to independent translations of the vertices [48]. Their geometric meaning is manifest
in the non-commutative metric representation of GFTs [17].

These transformations, in the group representation, take the form

φ(g1, g2, g3)→ exp[Tr(ε12g1g−1
2 ] exp[Tr(ε23g2g−1

3 )] exp[Tr(ε31g3g−1
1 )]φ(g1, g2, g3), (122)

where εi j are su(2) Lie algebra elements, and the trace is taken in the fundamental representation
(the phases are given by the non-commutative plane waves of [54], coming in turn from the
quantum group Fourier transform [55, 56], used in [17] to obtain the non-commutative metric
representation of GFTs), and where we neglected the color labels, which, although crucial for
the definition and understanding of the symmetry, are not relevant for our present exposition.

As we have mentioned, the presence of a non-trivial vacuum would change the action
of these transformations. In particular, we could consider the action onto the heat kernel
configurations we have studied in this paper.

Before studying the coherent GFT configuration, let us study the simpler case,

ψ(g1, g2g3)=

∫
dhδ(g1hGa)δ(g2hGb)δ(g3hGc). (123)

The transformed field reads

ψ ′

123 = exp(iTr[ε12G−1
a Gb]) exp(iTr[ε23G−1

b Gc]) exp(iTr[ε31G−1
c Ga])ψ123, (124)

which is equal to ψ123 if and only if

Ga = Gb = Gc. (125)

Therefore, the field configuration obtained by means of a convolution of Dirac deltas, in the
general case, transforms covariantly: it gets multiplied by a phase. However, the phase turns out
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to be just the identity if all of the the elementary distributions used to construct the field are
peaked at the same group elements.

This is an instance of a more general fact. The group elements entering the field
configuration (around which we expand the theory) as parameters also influence the properties
under symmetry transformations, allowing, for instance, for different phases. We can have three
different phases:

I. Ga = Gb = Gc, and the field configuration is invariant under the full group of
transformations (122). This represent a diffeo-invariant solution.

II. Two of the group elements are equal, e.g. Ga = Gb. Therefore, the symmetry group is
broken down to a smaller subgroup (generated by the only ε12). We can interpret this case
as a configuration possessing an isometry.

III. Ga 6= Gb 6= Gc, which corresponds to the completely anisotropic configuration and to a
purely covariant field configuration.

The above discussion, even if it refers to a field configuration that is unphysical, clarifies
the logic that has to be followed in determining the symmetry properties of any particular
GFT configuration one is interested in. In the case of heat kernels (which, we recall, become
delta functions in the t = 0 limit), it is immediately obvious that, under such GFT diffeo-
transformations,

1. The heat kernel (coherent state) configuration is not left invariant, and transforms in the
general way (122) in which any GFT field transforms.

2. As a consequence, it is not transformed into another heat kernel peaked around the diffeo-
transformed group element. This can be seen, for example, by taking the spread t to zero,
and checking that the function obtained in this way is a Dirac delta.

Thus, on the one hand, as we expect from their interpretation as (second quantized) wave
functions approximating a general continuum metric, the GFT coherent state configurations
do not possess any special isometry, in the general case, and transform covariantly under GFT
diffeos; the only case in which an invariance under diffeos is obtained corresponds to their t = 0
limit, and to the special case Ga = Gb = Gc, which, as we had seen, can be interpreted as a
solution of the classical GFT dynamics (somehow expected to encode also the projection onto
diffeo-invariant states, from the canonical point of view) corresponding, however, to degenerate
geometries. On the other hand, the transformed configuration does not peak either on diffeo-
transformed canonical phase–space points, and so it somehow does not seem to reproduce
faithfully the action of diffeo-morphisms one would expect from the LQG (canonical quantum
gravity point of view). For instance, this is at odds with the transformation properties of the
canonical LQG ‘condensate’ representation studied in [57, 58].

Another interesting field configuration, similar to the ones above, that is worth discussing
briefly is the exact solution of the GFT dynamics in 3D given by the field

ψ(g1, g2, g3)=

∫
dhδ(g1 h) f (g2 h) δ(g3 h) = f (g2g−1

1 )δ(g3g−1
1 ),

∫
| f |

2
= 1 (126)

identified first in [38]. It is easy to verify (see also [58]) that this field configuration is
invariant under a subset of GFT diffeos (122) (generated by ε31), which, together with the
additional rotation invariance that can also be identified at the GFT level [48, 59], form a
deformed Poincaré invariance corresponding to the Drinfeld double quantum group DSU(2).
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This confirms the interpretation of the same GFT configuration as a quantum flat space used
in [38] for the interpretation of the effective field theory for (reduced) GFT perturbations as a
matter field theory on a non-commutative flat space (see also the analogue construction in the
4D Lorentzian case in [39]), but confirms also the general scheme for classifying GFT phases
in terms of their symmetry properties, which we outlined above.

The sketchy analysis that we have reported here shows concretely how

• the non-perturbative vacuum one could choose (on physical or mathematical grounds) as
the mean field configuration relevant for the hydrodynamic/continuum approximation of
the GFT dynamics (and as the tentative description of the ‘quantum space condensate’)
will, in general, not be invariant under diffeomorphisms;

• in the resulting effective theory, the action of diffeo-morphisms is not the linear one but
rather is of the nonlinear type we described;

• the effective theories can be classified in phases, by means of the residual symmetry, if any,
of the configuration around which we expand the theory.

These facts should then be taken into account when trying to derive effective dynamics of
geometry from the fundamental GFT dynamics, if we expect the effective theory to be given by
(some modified form of) Einstein’s General Relatvity, which is characterized by its symmetry
under diffeo-morphisms.

On top of this, we have to add another feature that we have uncovered in the discussion
of the effective theories for GFT perturbations. The symmetry that we are considering here is
expressed in terms of the field ϕ, which is not diagonalizing the kinetic term of the effective
field theory. The true effective symmetry should instead be identified from a combination of
the effective symmetry group for the field ϕ and of the Bogoliubov-like transformation that
diagonalizes the kinetic term (needed to get the true propagating modes), defining the physical
field ψ .

8. Summary, discussion and outlook

In this paper, we have made a first tentative step toward the extraction of effective classical
geometrodynamics from group field theory hydrodynamics, using the mean field theory
techniques as applied to quantum GFT.

This meant first of all identifying a candidate macroscopic GFT configuration with
characteristic order parameters endowed with a geometric interpretation. This was chosen
as the vertex building block of LQG semi-classical coherent states associated with arbitrary
graphs [19]. The coherent states constructed out of this, and associated with graphs with
N-vertices, are then interpreted, in the analogy with condensates, as N-particle states.

We have then used this candidate GFT configuration as the mean field around which
to expand in a hydrodynamic approximation of the microscopic GFT model, and obtained
the relevant consistency hydrodynamic equations (the GFT analogue of the Gross–Pitaevski
equations adapted to this reference field). These, in turn, become equations for the geometric
order parameters (identifying points on the classical phase space of gravity/BF theory) and other
constants entering the definition of the background GFT field. Although their relation with the
classical spacetime theory behind the GFT models considered (2D and 3D BF theory) is not yet
entirely clear, these equations can be interpreted as a form of classical geometrodynamics, here
obtained directly from the GFT dynamics.

New Journal of Physics 13 (2011) 025006 (http://www.njp.org/)

http://www.njp.org/


35

The special nature of heat kernel coherent states is crucial. Therefore, the problem arising
at this point would be to find a dynamical mechanism that selects these states among all the
possible ones. This task requires considerations that are beyond the limited scope of this paper,
involving the detailed examination of the full path integral (and a better understanding of GFT
perturbative renormalization [37]).

The only solutions to these equations that we have been able to identify seem to correspond
to degenerate geometries/B variables and flat connections, with quantum uncertainty on the
latter being very small and on the former being correspondingly very large. As we pointed out in
the text, this result is compatible with the classical dynamics of BF theory. However, three points
have to be made in this respect: (i) the complexity of the equations, and of the corresponding
solutions (thus the classical geometries selected), seem to grow considerably with the dimension
of the spacetime they refer to, as we would expect; (ii) the addition of ‘coloring’ seems to allow
for further geometric content, that is, however, not easy to elucidate; and (iii) the full geometric
content of a many-particle quantum state constructed out of our reference wave function,
contrary to the case of ordinary condensates, also involves a gluing operation, depending on the
graph one wants to reconstruct, on our reference wave functions associated with spin network
vertices; this plays an important role in the computation of geometric operators, but it plays no
role in our construction, thus making the geometric interpretation of the identified configurations
trickier.

It must also be stressed that even a background configuration peaked on degenerate
geometries as the one we identified is a highly non-trivial state from the point of view of
the fundamental theory. It corresponds to a possibly continuum space in which geometry is
everywhere defined, even if degenerate, made out of a possibly infinite number of microscopic
GFT quanta (spin network vertices), whose fundamental degrees of freedom are all excited (e.g.
the states are obtained by a sum over arbitrary group representations). By way of contrast, the
microscopic GFT vacuum is a no-space state composed of no GFT quanta at all, where all
geometric operators are identically vanishing.

Despite their approximate nature, these solutions still allow us to gain some better
understanding of the theory. Indeed, the classical action itself (and hence the equations derived
from it) can be seen as a saddle point/stationary phase approximation to the full path integral that
defines the quantum gravity model. In the language of quantum effective actions, the classical
action is only the lowest-order contribution to the formal semiclassical expansion; and therefore
even exact solutions to the classical equation of motion will have the role of approximate
solutions for the full theory. Consequently, it is more significant to find general conditions
according to which the desired function approximates reasonably well a solution, rather than
an exact solution itself.

This is true even in the case of BEC. The MFA gives a good qualitative description
of the phenomena associated with Bose–Einstein condensation, but in certain conditions it
simply fails, due to instabilities appearing in systems with large inhomogeneities or large time
derivatives [42]. In other words, only for some kind of situations and some kind of observables
is an MFA adequate in giving the correct semi-quantitative results.

In the case of GFT, we expect that, in the full quantum/statistical problem, the classical
action will receive important corrections and hence that even exact solutions to the classical
equation of motion will be able to capture only a portion of the physical features, and possibly
only under certain conditions. In the next section, we will see explicit signals of the approximate
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nature of the theory in the appearance of some instabilities, when looking at the linearized
dynamics around these semiclassical configurations.

Another point to note is the following. It is not obvious, at this stage, that the entire classical
geometrodynamics have to be looked for in the mean field equations for the background GFT
field selected. It is very possible that some (if not all) continuum geometric degrees of freedom
are encoded in the GFT fluctuations around a given background field, e.g. one corresponding to a
continuum but degenerate geometry, and that the latter has to be carefully chosen (or constrained
by the GFT dynamics) so as to admit a geometric rewriting and understanding of the former.

Finally, we note that our mean field equations also gave constraints on the relative
value of the semi-classical parameter t , entering the definition of the coherent states chosen
as mean field and the GFT coupling constant λ. This coupling constant, although correctly
not well understood, has been linked from various points of view to the cosmological
constant [12]–[14], [60], and can in general be guessed to be related to the coupling constants
of the emerging geometrical theory (be it general relativity of some modification of it). For
example, in the case of 3D GFT, if this is something resembling 3D gravity, the obvious
candidate would be the dimensionless quantity G N3. While this is obviously only a speculation
at present, we should also note that the same type of relation has been obtained in analogue
gravity models based on Bose condensates, where the semi-classicality (small depletion factor)
was related to small values of G N3 emerging in the Newtonian limit [35].

Beyond the hydrodynamic (mean field) equations for the geometric order parameters, we
have also extracted the effective dynamics for GFT perturbations around the chosen background,
and pointed out some of their general properties, in particular the way they encode the
microscopic dynamics and the differences between its spin foam expression and the original
spin foam model. Finally, we have discussed at some length the role of symmetries, in particular
the recently identified GFT diffeo-morphism symmetry, in the emergent effective dynamics, as
compared to that in the fundamental GFT model.

Much more work remains to be done, both to develop and improve the results we have
obtained, and to test whether the path we are suggesting toward the solution of the problem of
the continuum in quantum gravity is the correct one. We mention here a few lines of further
research.

The first focus should be the identification of the relevant macroscopic ground state for
GFT hydrodynamics. Our choice is the most natural one from the point of view of LQG
and spin foam models, as it corresponds to the semi-classical states used in both contexts
for approximating macroscopic classical geometries from the pre-geometric data labeling
kinematical LQG and SF boundary states. However, already at this level other choices are
certainly possible, and the above states can be criticized on the grounds of being purely
kinematical and possibly unstable (and thus not truly semi-classical), when the dynamics are
taken into account. This seems to be confirmed by our analysis of their behavior under the
GFT dynamics. A different type of criticism comes from taking seriously the GFT framework
as a second quantization of LQG (and thus of spin foam models) and the condensed matter
analogy. If GFT are understood as a second-quantized framework for spin network states
or simplices [12]–[15], with LQG or simplicial wave functions in turn interpreted as many-
particle states, then the semi-classical LQG states whose building block we used as background
configuration for GFT dynamics in mean field expansion (and providing our geometric
order parameters) are, in a sense, ‘too semi-classical’. They correspond, in fact, to quantum
many-particle states such that each particle (spin network vertex or fundamental simplex) is
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individually semi-classical. Each vertex state is then given, as we have seen, by a product
of wave functions associated with its links, and each of them is a semi-classical state for the
corresponding quantum degrees of freedom. From the point of view of condensed matter, then,
this means choosing as macroscopic configuration a state in which all the fundamental atoms
are behaving semi-classically. In particular, this means that such states approximate very well
a certain type of (kinematical) classical observables, but not those observables (‘extensive’
ones) that depend additively on the number of links and vertices of the spin network graph.
Examples of such observables are most geometric observables like areas or volumes. It is very
possible, and even likely, that the origin of the correct classical dynamics of spacetime and the
very emergence of continuum spacetime structures in Quantum Gravity are due to quantum
properties of the underlying building blocks of quantum space, and thus captured by states for
such building blocks that are collectively semi-classical, but individually highly quantum. Once
more, an example of this type of behavior is that of quantum liquids and of Bose condensates
in particular. This example would suggest that the relevant vacuum state in the GFT context
should be a second-quantized coherent state, not a first-quantized one (corresponding to LQG
coherent states). This gives a further motivation for developing a second-quantized picture and
Fock structure for GFT states, which is the prerequisite for constructing such vacuum states.

A detailed analysis is needed for extracting the full geometric of the GFT-induced equations
for the order parameters (classical phase-space data) we have obtained, and of the effective
spin foam dynamics for GFT perturbations. As for the first, a first step would be to try to
separate the equations for the SL(2,C) group elements into equations for their su(2) and SU(2)
components, given that they have the classical interpretation of B field and connection for the
underlying BF theories. Assuming that our ansatz for the relevant vacuum state is the correct
one, the final goal would be to establish a complete dictionary the GFT dynamics in MFA, i.e.
the GFT hydrodynamics, and the emergent classical theory (including GR). We are quite far
from this goal yet, but an important asset is probably going to be the (non-commutative) metric
representation of GFT, introduced in [17], that brings the geometric content of GFT dynamics to
the forefront, both at the level of the action and of the Feynman amplitudes. In particular, for the
purpose of extracting the geometric content of the GFT mean field equations, it will be useful
to develop a (non-commutative) metric representation of the LQG coherent states and of our
chosen GFT vacuum. Work on this is in progress. Similarly, the elucidation of the geometric
content of the effective dynamics of GFT perturbations will benefit from such reformulation.
Prior to this, however, it is important to study in more depth the physical interpretation of
the perturbations themselves, to clarify whether they carry gravitational/geometric degrees of
freedom or whether they should rather be interpreted as emergent matter [38]–[40]. Clearly, their
interpretation strongly depends on the interpretation of the GFT vacuum chosen, which may
induce, as in analogue gravity condensed matter models [27, 28, 40], a background geometry to
which the perturbations couple.

Finally, it is clear that the analysis presented in this paper, and the above-mentioned further
steps, should be carried out in the physically relevant case of four spacetime dimension, and
thus for 4D gravity GFT models. This, on the one hand, requires a better understanding of
them than the one we have at present, and, on the other hand, it will contribute to much better
understanding and development.

In any case, we believe that the first steps we have taken in this work indicate a path, from
the microscopic picture of quantum space provided by group field theories (and other related
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approaches to quantum gravity) to the macroscopic description of the same consolidated in
general relativity, that is worth following further.
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Appendix A. SL(2,C) matrix algebra

For convenience, we recall some basic properties of the SL(2,C)matrices, and in particular the
polar decomposition. Consider M ∈ SL(2,C). There is a unique decomposition of it in terms of
a SU(2)matrix U and a positive Hermitian matrix with unit determinant P , M = U P . Consider
the matrix

Q = M† M. (A.1)

It is a Hermitian matrix, and hence it can be diagonalized via a unitary matrix W , such that

Q = W DW −1, (A.2)

with D a diagonal matrix. It is immediately obvious that this matrix is positive, i.e. that the
eigenvalues are (strictly) positive. This is due to the fact that the (diagonal) matrix elements of
Q can be related to norms of vectors once one recognizes that

〈x |Q|x〉 = 〈x |M† M |x〉 = || M |x〉 ||
2. (A.3)

Define the square root of D to be the positive diagonal matrix C such that C2
= D. With this

matrix, define the square root P of the matrix Q to be the Hermitian matrix

P = WCW −1. (A.4)

Given that M is non-singular, C must also be non-singular. Hence, it will admit an inverse, C−1.
Let us consider, then, the matrix

U = M P−1. (A.5)

Let us prove that it is unitary. Consider

UU †
= M(P−1)2 M†

= M(M† M)−1 M†
= I. (A.6)

This proves that u ∈ U (2). By keeping track of the signs of the determinants, one finds that
U ∈ SU(2).

Being a Hermitian matrix with unit determinant, belonging to SL(2,C), the matrix P
admits the following representation,

P = exp(eiσi), (A.7)

with σi the Pauli matrices11 and ei real numbers (Einstein convention is assumed).
These matrices have a nice transformation property. Consider

a = exp(eiσi), a′
= waw†, (A.8)

11 Note that these are Hermitian matrices. Anti-Hermitian matrices are sometimes used in the LQG literature.
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Figure B.1. Oriented tetrahedron, with labeling of the edges.

with w an SU(2) matrix. Then

a′
= w exp(eiσi)w

†
= exp(eiwσiw

†). (A.9)

However, since wσiw
† is a Hermitian, traceless matrix, it can be written as

wσiw
†
= R j

i (w)σ j , (A.10)

where Ri
j(w) are just the rotation coefficients in the Lie algebra. Hence

a′
= exp(e′iσi), e′i

= Ri
j(w)e

j . (A.11)

Appendix B. The action for 3D GFT

It is worth spending some time on a technical point that has been mentioned only briefly, i.e.
the construction of the interaction term needed for the construction of the GFT model for 3D
theories. We are going to discuss the issue step by step, in order to clarify some ambiguities that
arise from a detailed analysis of the theory.

The starting point is an oriented tetrahedron. The four faces are oriented in such a way
that their sides are ordered, respectively, 123, 156, 264 and 453 (see figure B.1). The desired
GFT must be adapted to this combinatorial structure: the field arguments must be ordered in the
appropriate way to respect the induced orientation on the sides of each face and the gluings of
the faces to form the tetrahedron itself.

In building the model, we need a field φ123, which is not invariant under generic
permutations of the arguments. Indeed, if this were the case, it would be impossible to encode
any sort of orientation of the faces, and the perturbative expansion would include a larger class of
simplicial complexes than the orientable ones. For the moment, we will assume no invariance at
all under any form of permutation of indices. We will comment later on the possibility of having
invariance under even permutations (i.e. those respecting the orientation).

The kinetic term, providing the gluing of the faces of adjacent tetrahedra, in the perturbative
expansion, must be such that triangles are glued, with normals pointing in opposite directions.
The natural candidate, then, is

φ123φ321, (B.1)

where the second field has arguments obtained via an odd permutation. Even here, we could
consider seemingly equivalent alternatives,

φ123φ321; φ123φ213; φ123φ132.
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It is worth mentioning what happens when varying the kinetic term, for each choice,

δ

δφabc

∫
(dg)3φ123φ321 = 2φcba, (B.2)

δ

δφabc

∫
(dg)3φ123φ213 = 2φbac, (B.3)

δ

δφabc

∫
(dg)3φ123φ132 = 2φacb. (B.4)

Therefore, the kinetic term alone will induce slightly different terms in the equation of motion
and hence a choice has to be made. We have chosen to use the paring φ123φ321.

The interaction term suffers from the same kind of ambiguities. Indeed, we can construct
several inequivalent interaction terms, corresponding, naively, to the same combinatorial
structure of the tetrahedron, but with rather different properties. The first vertex we consider
is ∫

φ123φ156φ426φ453(dg)6. (B.5)

It is the one that we have considered in the paper. However, it is easy to see that we can generate
a certain number of other operators by reshuffling the group elements in each field by means of
an even permutation,∫

φ123φπ1π5π6φπ ′

4π
′

2π
′

6
φπ ′′

4 π
′′

5 π
′′

3
(dg)6. (B.6)

To see that these vertices lead, in general, to different systems, we examine the first variation of
this term,

δ

δφabc

∫
φ123φπ1π5π6φπ ′

4π
′

2π
′

6
φπ ′′

4 π
′′

5 π
′′

3
(dg)6 (B.7)

=

∫
{δa

1δ
b
2δ

c
3φπ1π5π6φπ ′

4π
′

2π
′

6
φπ ′′

4 π
′′

5 π
′′

3
(B.8)

+δa
π1
δb
π5
δc
π6
φ123φπ ′

4π
′

2π
′

6
φπ ′′

4 π
′′

5 π
′′

3
(B.9)

+δa
π ′

4
δb
π ′

2
δc
π ′

6
φ123φπ1π5π6φπ ′′

4 π
′′

5 π
′′
c

(B.10)

+δa
π ′′

4
δb
π ′′

5
δc
π ′′

3
φ123φπ ′

4π
′

bπ
′

6
φπ1π5π6}. (B.11)

To uncover the structure of this term, we need to use the fact that the permutations form a group.
We will need to use the inverse permutations, to be denoted by the letters ω,ω′, ω′′,

ω(π(a))= a. (B.12)

Therefore,

• The first contribution can be easily derived. It reads

φπaπ5π6φπ ′

4π
′

bπ
′

6
φπ ′′

4 π
′′

5 π
′′
c
, (B.13)
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• δa
π1
δb
π5
δc
π6

implies

g1 = gω(a); g5 = gω(b); g6 = gω(c), (B.14)

so that the second contribution reads

φω(a)23φπ ′

4π
′

2π
′(ω(c))φπ ′′

4 π
′′(ω(b))π ′′

3
. (B.15)

Comparing these two terms, it is immediately obvious that they are distinct, in general: ga, gb

and gc can appear in different positions among the arguments of the three fields. To see this
explicitly, consider the case in which π ′, π ′′ are just the identity. We would get the two terms

φπaπ5π6φ4b6φ45c, φω(a)23φ42ω(c)φ4ω(b)3. (B.16)

For this to be the same term, we would need that also π is the identity. This is the case for the
term we have used to analyze the heat kernels within GFT.

This brief analysis shows how there is an ambiguity in the construction of the interaction
term. However, this ambiguity is not only formal but results in different equations of motion, i.e.
in different physical content of the theory. Of course, this will influence the partition function
obtained from different choices, and, most importantly, the correlation functions of the models,
given that they will obey different Schwinger–Dyson equations.

It is worth mentioning, however, that if we find a particular solution to the EOM with a
particular choice of orderings, and this solution is invariant under general permutation of the
group variables, then it will be a solution for the EOM obtained from any choice of orderings in
the construction of the kinetic term and the interaction term.

Appendix C. Useful facts about SU(2) representations

It is convenient here to reproduce some basic facts about representations of SU(2). For more
details, we will refer to [52]. The representation matrices that we need, t l

mn, are labeled by a
non-negative half integer l, and the convention on the matrix indices is that they run from −l to
+l. In terms of SL2c matrices, they have the following expressions,

t l
mn

(
α β

γ δ

)
= α−(m+n)β l+nγ l+m

N∑
j=M

C(l,m, n, j)

(
αδ

γβ

) j

, (C.1)

where the complex entries of the matrices are constrained to obey αδ−βγ = 1, from the
definition of SL2C , the coefficient appearing in the sum is defined to be

C(l,m, n, j)=

√
(l + m)!(l − m)!(l + n)!(l − n)!

j!( j − m − n)!(l + n − j)!(l + m − j)!
, (C.2)

and, finally, the sum is over the integers between

M = max(0,m + n), N = min(l + m, l + n). (C.3)

These matrices reduce to the matrix representations of all of the unitary, irreducible
representations of SU(2) when we restrict the group elements from belonging to this subgroup
of SL2C .
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The definition allows us to give a simple derivation of a result that is often needed in the
manipulations discussed in this paper. It is rather straightforward to derive the following results,

t l
mn

(
α −β

−γ δ

)
= (−1)l+m(−1)l+nt l

mn

(
α β

γ δ

)
, (C.4)

and

t l
mn

(
δ β

γ α

)
= t l

−n−m

(
α β

γ δ

)
. (C.5)

Combining these two results, we can prove that

t l
mn(g)= (−1)l+m(−1)l+nt l

−n−m(g
−1) (C.6)

for any element g ∈ SLC . This is the key result that we need to prove∫
SU(2)

dg t l
mn(g)t

l ′

m′n′(g)=

(
l

m m ′

)(
l

n n′

)
δll ′

dl
, (C.7)

where we have defined the following object,(
l

m m ′

)
= δm,−m′(−1)l+m′

. (C.8)
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