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ABSTRACT

The merger of a binary system composed of a black hole (BH) and a neutron star (NS) may leave behind a torus
of hot, dense matter orbiting around the BH. While numerical-relativity simulations are necessary to simulate
this process accurately, they are also computationally expensive and unable at present to cover the large space of
possible parameters, which include the relative mass ratio, the stellar compactness, and the BH spin. To mitigate
this and provide a first reasonable coverage of the space of parameters, we have developed a method for estimating
the mass of the remnant torus from BH–NS mergers. The toy model makes use of an improved relativistic affine
model to describe the tidal deformations of an extended tri-axial ellipsoid orbiting around a Kerr BH and measures
the mass of the remnant torus by considering which of the fluid particles composing the star are on bound orbits at
the time of the tidal disruption. We tune the toy model by using the results of fully general-relativistic simulations
obtaining relative precisions of a few percent and use it to investigate the space of parameters extensively. In this
way, we find that the torus mass is largest for systems with highly spinning BHs, small stellar compactnesses, and
large mass ratios. As an example, tori as massive as Mb,tor � 1.33 M� can be produced for a very extended star
with compactness C � 0.1 inspiralling around a BH with dimensionless spin parameter a = 0.85 and mass ratio
q � 0.3. However, for a more astrophysically reasonable mass ratio q � 0.14 and a canonical value of the stellar
compactness C � 0.145, the toy model sets a considerably smaller upper limit of Mb,tor � 0.34 M�.
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1. INTRODUCTION

The most widely accepted scenario to explain the phe-
nomenology associated with short-hard gamma-ray bursts
(SGRBs) involves the merger of either black hole (BH)–neutron
star (NS) systems or of binary NS systems (Nakar 2007). In ei-
ther case, the remnant consists of a BH with negligible baryon
contamination along its polar symmetry axis and of a hot, mas-
sive accretion torus surrounding it, which releases energy as
it accretes onto the BH, typically in the form of a relativistic
jet. With these fundamental ingredients of the standard SGRB
model, an intense neutrino flux is emitted as the torus accretes
onto the BH, triggering a high-entropy gas outflow off the sur-
face of the accretion torus, i.e., “neutrino wind.” At the same
time, energy deposition by νν̄ annihilation in the baryon-free
funnel around the BH rotation axis powers relativistically ex-
panding e± jets, which can give rise to the observed GRB emis-
sion. Other burst mechanisms have, of course, been proposed;
since these principally involve magnetically launched jets and
since we do not address magnetic fields in this paper, we have
briefly summarized only the burst mechanism powered by neu-
trino annihilation; the interested reader may refer to Lee &
Ramirez-Ruiz (2007) for a thorough review.

The simulation of these events “ab initio” requires an
adequate description of general relativity, relativistic (mag-
neto)hydrodynamics, and a proper microphysical equation of
state (EOS). Typically, the only way to model these systems ac-
curately is to resort to numerical-relativity simulations, solving
consistently both the Einstein equations and those of relativistic
hydrodynamics or magnetohydrodynamics. These simulations
have made considerable progress in the last few years (see,

for instance, Oechslin & Janka 2007; Anderson et al. 2008a;
Anderson et al. 2008b; Baiotti et al. 2008; Yamamoto et al.
2008; Liu et al. 2008; Giacomazzo et al. 2009; Rezzolla et al.
2010; Bauswein et al. 2010 for recent studies of NS–NS bi-
naries or Kluzniak & Lee 1999; Rosswog 2005; Löffler et al.
2006; Etienne et al. 2008; Shibata & Taniguchi 2008; Duez et al.
2010; Etienne et al. 2009; Duez et al. 2008; Shibata et al. 2009;
Chawla et al. 2010 for corresponding work on BH–NS binaries).
Despite the fact that this type of simulations is now possible,
they remain nevertheless both challenging and computationally
intensive. Numerical simulations of NS–NS mergers have now
reached a rather high level of accuracy (see Baiotti et al. 2009
and the discussion in the appendix of Rezzolla et al. 2010), and
different codes have been shown to yield results that agree to
10% (at worse) when using the same initial data (Baiotti et al.
2010). However, the situation is much more uncertain in the case
of BH–NS binaries, for which no direct comparison among dif-
ferent codes has been made yet and the results of the simulations
from different codes are sometimes not in agreement. As an ex-
ample, the merger of the same binary with mass ratio 1/3 yields
a torus with a baryonic mass which is ∼4% of the NS in Etienne
et al. (2009) and � 0.001% in Shibata et al. (2009). As a result,
no reliable knowledge is available at the moment on how the
mass of the torus depends on the most important parameters of
the system: the mass ratio, the stellar compactness, and the BH
spin.

These problems, along with the need of a better understanding
of the tidal-disruption process, have pushed the parallel develop-
ment of pseudo-Newtonian BH–NS calculations—e.g., Ruffert
& Janka (2010) use the Paczyński–Wiita phenomenological po-
tential to mimic the innermost stable circular orbit (ISCO) of the
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BH in a Newtonian setting—and of semi-analytical approaches
to the problem. Regarding the latter, Shibata (1996), for in-
stance, described the necessary conditions for the production
of an accretion torus of appreciable size by requiring that the
NS disruption occurs at a tidal radius rtide that is larger than
the ISCO of the BH rISCO. Unfortunately, Shibata (1996) did
not predict the mass of the resulting accretion torus except to
assume that it vanishes when the radius of tidal disruption is
less than that of the ISCO. A parallel systematic study has been
pursued recently to exploit the relativistic “affine-model” and
to describe the properties of the tidally deformed NS (Ferrari
et al. 2009, 2010). Also in this case, however, the study did not
make any prediction on the final outcome of the merger since it
concentrated on the evolution of stationary configurations.

In this paper, we attempt to bridge the gap between intensive
numerical simulations and semi-analytical studies by establish-
ing a way to estimate the mass of the resulting torus. We do
this by taking the concept of the tidal disruption to its logi-
cal extreme. In other words, we model the NS in the binary
as a relativistic tri-axial ellipsoid which is tidally distorted as
it orbits in the tidal field of a rotating BH. When the tidal-
disruption radius is reached, however, we assume the star to be
composed of a system of non-interacting “fluid particles” which
move on the corresponding geodesics. We therefore compute the
mass of the torus as the integral of the masses of the particles
which do not fall into the BH. This clearly represents only a
“toy model” for the complex dynamics of the merger process,
but we show that, with a suitable tuning, it allows us to re-
produce with good precision the large majority of the results
obtained so far from more accurate but also considerably more
expensive numerical-relativity calculations. Most importantly,
however, it provides a simple tool to better understand the com-
plex dynamics of the tidal disruption and to cover at once the
full space of parameters.

The structure of the paper is as follows. In Section 2, we
describe the particular tidal model we use and then how we
estimate the mass of the accretion torus. In Section 3, we show
that by tuning the free parameter in our model we can reproduce
results obtained within fully general-relativistic simulations,
thus proving that the tool we build is solid. In Section 4,
we present the results of our estimates, leaving an intuitive
interpretation of the results and the conclusive overview to
Sections 5 and 6, respectively.

2. METHOD

To model the behavior of the NS during the final stages of
the inspiral of the mixed binary and before it merges with the
BH, we use the improved version of the affine model presented
in detail in Ferrari et al. (2009). An important difference with
respect to that work is that we do not consider the prescriptions
of the quasi-equilibrium approximation and, rather, follow the
dynamics of the NS until it is disrupted by the BH tidal field.
Furthermore, as mentioned in the introduction, in addition to
treating the NS as a tri-axial ellipsoid, we also decompose it into
a large number of representative “fluid particles,” the kinematic
properties of which will be used to study the motion of the
NS matter after the tidal disruption. Our toy model is therefore
composed of three logical parts: (1) the evolution of the NS
deformation as it inspirals toward the BH, (2) the modeling of
the tidal disruption, and (3) the calculation of the mass building-
up the torus. Each of these parts will be discussed separately in
the remainder of this section.

2.1. Neutron Star Deformation—The Affine Model

The idea of modeling stars as ellipsoids has a long history
and a thorough analysis of incompressible ellipsoidal figures
of equilibrium was performed by Chandrasekhar (1969). When
modeling the NS deformation, we are addressing what is known
as the compressible Roche–Riemann problem, in which one
studies the behavior of a compressible ellipsoid with uniform
vorticity parallel to its rotation axis, orbiting a point mass or a
rigid sphere. More specifically, we will be using an improved
version of the affine model, developed in the 1980s by Carter,
Luminet, and Marck to describe the encounters between a BH
and a Newtonian star (Carter & Luminet 1982, 1983, 1985;
Luminet & Marck 1985; Luminet & Carter 1986) and then
applied to BH–NS binaries at the very end of the 1990s (Wiggins
& Lai 2000). More recently, in fact, the Newtonian treatment of
the star was upgraded to achieve a better description of the NS in
mixed compact binaries (Ferrari et al. 2009, 2010). The essential
features and assumptions of the improved affine approach used
herein may be summarized as follows:

1. the equilibrium structure of the NS is determined by the
Tolman–Oppenheimer–Volkoff (TOV) equations, while its
dynamical behavior is governed by Newtonian hydrody-
namics improved by the use of an effective relativistic scalar
potential (Rampp & Janka 2002);

2. the NS center of mass moves in the tidal field of a
Kerr BH along a simple inspiralling equatorial orbit (cf.
Equation (21)) and each point of the orbit is associated
with a BH timelike circular geodesic;

3. throughout the inspiral, the NS remains a Riemann S-type
ellipsoid, i.e., its spin and vorticity are always parallel and
their ratio is constant (see Chandrasekhar 1969); and

4. tidal effects on the orbital motion and the perturbation
induced by the star on the BH are neglected.

For completeness, we next review the mathematical formu-
lation of the affine model used herein by writing the equations
governing the NS deformations in the principal frame, i.e., the
frame associated with the principal axes of the stellar ellipsoid.
In this frame, the fluid variables of the affine model are five: the
three principal axes of the stellar ellipsoid a1, a2, and a3, the
angular frequency of the internal fluid motion Λ, and the star
spin measured in the parallel-transported frame associated with
the center of mass of the star Ω (Marck 1983). The axis a3 is
perpendicular to the orbital plane, while a1 and a2 are perpendic-
ular to one another and to a3. In the Newtonian limit (MBH � r ,
where MBH is the BH mass and r is the Boyer–Lindquist radial
coordinate), a1 and a2 belong to the orbital plane (see Figure 1).
The dynamics of four of the five fluid variables is then governed
by the following set of equations:

ä1 = a1(Λ2 + Ω2) − 2a2ΛΩ +
1

2
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J̇s = M̂
R2

NS

c12
(
a2

2 − a2
1

)
, (4)

where the dots denote derivatives with respect to the proper time
at the stellar center τ , the cij denote the components of the BH
tidal tensor in the principal frame, RNS is the NS radius, and the
index symbols Ãi are defined as3

Ãi ≡
∫ ∞

0

dσ(
a2

i + σ
)√(

a2
1 + σ

)(
a2

2 + σ
)(

a2
3 + σ

) . (5)

The effective relativistic self-gravity potential for the isolated
NS in spherical equilibrium equilibrium V̂ and the scalar
quadrupole moment for the isolated NS in spherical equilibrium
M̂ are given by4

V̂ ≡ −4π

∫ RNS

0

[ε̂(r̂) + p̂(r̂)][mTOV(r̂) + 4πr̂3p̂(r̂)]

ρ̂(r̂)r̂[r̂ − 2mTOV(r̂)]
r̂3ρ̂dr̂,

(6)

M̂ ≡ 4π

3

∫ RNS

0
r̂4ρ̂dr̂ (7)

where ε̂, p̂, and ρ̂ are, respectively, the energy density, pressure
and rest-mass density distributions at spherical equilibrium and
dmTOV/dr = 4πr2ε(r). The pressure integral Π is calculated
as

Π ≡
∫

p(ρ)d3x = 4π
a1a2a3

R3
NS

∫ RNS

0
p

(
ρ̂

a1a2a3

)
r̂2dr̂,

(8)

while

Js ≡ M̂
R2

NS

[(a2
1 + a2

2)Ω − 2a1a2Λ] (9)

is the spin angular momentum of the star. The fifth fluid variable
may be expressed in terms of

C ≡ M̂
R2

NS

[(
a2

1 + a2
2

)
Λ − 2a1a2Ω

]
, (10)

which is proportional to the circulation in the locally nonrotating
inertial frame. We note that because we work in the absence of
viscosity, the circulation of the fluid is conserved, i.e., Ċ = 0.
For simplicity, but also because this is the assumption made
by all numerical-relativity simulations to date, we set C = 0
initially (the NS fluid is thus irrotational) so that Equation (10)
reduces to

Λ = 2a1a2Ω
a2

1 + a2
2

. (11)

The components of the tidal tensor for a Kerr spacetime,
expressed in the NS principal frame, are

3 The Ãi are related to the dimensionless index coefficients defined in
Chandrasekhar (1969) by the simple dimensional rescaling Ai = R3

NSÃi . In
essence, they express the derivative of the self-gravity of the deformed star
with respect to its ith axis.
4 Hats (ˆ) denote quantities calculated for an isolated nonrotating NS at
equilibrium.

Figure 1. Schematic representation of the toy model. Indicated are the tidal
radius rtide, the ISCO rISCO, two of the principal axes a1, a2, the principal frame,
and the parallel-transported frame. Note that for simplicity we set φ = Ψ.

(A color version of this figure is available in the online journal.)
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[
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]
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−3

2
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]
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c33 = MBH

r3

(
1 + 3

K

r2

)
, (15)

where the angle φ (which is related to Ω by φ̇ ≡ Ω) is the
angle that brings the parallel-transported frame into the principal
frame by a rotation around the a3 axis (Marck 1983). Similarly,
Ψ is an angle that governs the rotation of the parallel-transported
tetrad frame in order to preserve the parallel transport of its
basis vectors. Stated differently, the difference between Ψ and
φ represents the lag angle between the principal frame and the
parallel transported one, i.e., φlag ≡ Ψ − φ, and thus measures
how much the star is “lagging behind” in its orbit around the
BH. If φlag = 0, and thus Ψ = φ, then the largest semi-major
axis of the star is always pointing toward the BH. A schematic
diagram of the BH–NS binary and of the relevant quantities
discussed so far is shown in Figure 1.

The constant K appearing in the tidal-tensor components
(12)–(15) is a combination of the energy E and the z-orbital
angular momentum per unit mass of the star Lz

K ≡ (ãE − Lz)
2, (16)

where ã ≡ J/M is the spin of the BH and, for circular geodesics,

E ≡ r2 − 2rMBH + ã
√

rMBH

r
√

r2 − 3rMBH + 2ã
√

rMBH

, (17)

Lz ≡
√

rMBH(r2 − 2ã
√

rMBH + ã2)

r
√

r2 − 3rMBH + 2ã
√

rMBH

. (18)
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Note that because the tidal-tensor components c11 and c22 have
different signs, the forces acting on the corresponding semi-
major axes a1 and a2 also have opposite signs and thus lead to
a stretching of a1 and to a compression of a2.

For simplicity, and to obtain a better agreement with the
results of numerical-relativity simulations, we will set hereafter
φlag = 0 and thus φ = Ψ. Furthermore, since we will
consider a sequence of circular equatorial geodesics, the radii
of which reduce due to the emission of gravitational radiation,
the evolution of the angle Ψ is given by (Marck 1983)

Ψ̇ =
√

MBH

r3
, (19)

and thus also

φ̇ = Ω =
√

MBH

r3
. (20)

In order to evolve the equations of the affine model (1)–(3)
we must select an EOS for the NS matter and specify the initial
conditions and the evolution of the orbit. As far as the first is
concerned, the model is sufficiently general that any EOS could
be used and indeed several different ones were used in Ferrari
et al. (2010). However, because here we want to compare with
the results of numerical-relativity simulations and these have
been performed mostly with a Γ law EOS p = (Γ −1)ρε which
for the adiabatic process considered in this paper is equivalent to
a polytropic EOS p = KρΓ with Γ = 2 or 2.75, we will consider
here just polytropes with these polytropic exponents and present
the result of more realistic EOSs in a subsequent work. As
for the initial conditions, we consider an initial separation for
the binary, r0 ≡ r(t = 0), and set φ0 ≡ φ(t = 0) = 0,
while Ω and Λ are automatically given by Equations (20) and
(11), respectively. For the NS axes, instead, we set the time
derivatives on the left-hand sides of Equations (1)–(3) to zero
and solve the system for a1, a2, a3 with a Newton–Raphson
scheme. Of course, it is necessary to ensure that r0 is large
enough, i.e., that initially a1 � a2 � a3 � RNS and Js � 0
(as well as C = 0), and that the final results are unchanged
if one chooses a larger r0. In other words, at t = 0 the NS
must almost be at spherical equilibrium and the calculations
must therefore be independent of the specific choice made
for r0.

For the time evolution of the orbital separation r, we consider
a very simple circular equatorial adiabatic inspiral (Misner et al.
1973), which accounts therefore for the radiative losses of two
point masses at a 2.5 post-Newtonian (PN) approximation

r(t) = r0

(
1 − t

tc

)1/4

, (21)

where

tc =
(

5

256

)
r4

0

MNSMBH(MNS + MBH)
(22)

is the inspiral time and MNS is the gravitational mass of the NS.
When generating the orbit, we evolve the orbit angle θ according
to the Kerr spacetime equation

dθ

dt
= 1

ã +
√

r3/MBH

(23)

and we make the following approximation, setting

dτ

dt
= 1. (24)

It is important to remark that our goal is that of computing the
mass of the torus produced by the tidal disruption and not that
of providing an accurate description of the binary inspiral. In
this sense, using a lower-order PN description of the orbit is
very reasonable as the dynamics we are most interested in take
place when the presently available PN models are no longer
accurate.

Once the orbit is determined, we may integrate the affine-
model equations, terminating the evolution when the ratio of the
semi-major axes a2 and a1 reaches a critical value (a2/a1)crit.
This quantity cannot be determined a priori and is effectively
a free parameter in our toy model. However, it may be tuned
by comparing the results of the toy model with those of the
numerical simulations and the way we do this will be discussed
in the next section. We thus define the tidal-disruption radius
rtide as the orbital separation at which (a2/a1) = (a2/a1)crit.

A final quantity which is relevant to introduce and that may
be useful to interpret the results of the toy model is the ISCO,
which, for a generic Kerr BH is given by (Bardeen et al.
1972)

rISCO = MBH{3 + Z2 ∓ [(3 − Z1)(3 + Z1 + 2Z2)]1/2},

Z1 = 1 + (1 − ã2/M2
BH)1/3[(1 + ã/MBH)1/3 + (1 − ã/MBH)1/3],

Z2 = (3ã2/M2
BH + Z2

1)1/2 (25)

where the upper/lower sign holds for co-rotating/counter-
rotating orbits. In general, the ISCO is inside the tidal radius,
i.e., rISCO < rtide, but there are situations in which the opposite
is true and this is the case, for instance, when considering bi-
nary systems with very small mass ratios or stars with very large
compactness. In these cases too, we follow the evolution of the
axis ratio and “disrupt” the NS inside the ISCO as soon as the
critical value is reached.

2.2. Neutron Star Disruption

As mentioned above, when the affine-model evolution of the
mixed binary leads to the tidal disruption of the NS, we fragment
the NS into fiducial fluid elements that would be representative
of the motion of the NS matter. The first step in our strategy
consists therefore in switching from the five fluid variables of
the affine-model formulation to a description of the (disrupted)
NS fluid as a set of test particles, each one of which possesses
a mass, a 4-position, and a 4-velocity. In practice, at disruption
we build a fine grid adapted to the ellipsoidal shape of the star
and divide the star into a collection of fluid elements. In the
principal frame, the center of each fluid element is identified by
a 3-vector �x and we calculate the mass of the corresponding fluid
cell by multiplying the mass density at its center by the volume
of the fluid element. Moreover, we may associate with the center
of mass of each cell a 3-velocity, which, in the principal-axes
frame, is given by (Chandrasekhar 1969)

�u = �us + �ue, (26)

where

�us ≡ a1

a2
Λx2�e1 − a2

a1
Λx1�e2 (27)
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is the spin velocity (i.e., the speed of the fluid due to its rotation),
and

�ue ≡ ȧ1

a1
x1�e1 +

ȧ2

a2
x2�e2 +

ȧ3

a3
x3�e3 (28)

is the ellipsoid expansion/contraction velocity, �ei being the unit
vectors along the ellipsoid principal axis ai. The coordinate xi
along the ith axis runs from −ai to ai. With a rotation of an angle
φ around a3, we switch from position 3-vectors in the principal
frame to position 3-vectors in the parallel-transported tetrad
associated with the NS center of mass, where the 3-velocity
�u becomes �u + �Ω × �x. In this parallel-transported tetrad, the
time component of the position vectors is simply x(0) = 0 and
we determine the time component of each 4-velocity vector by
exploiting the normalization condition u(α)u(α) = −1. Finally,
we express all the 4-position and the 4-velocity vectors in
Boyer–Lindquist coordinates by applying the transformation
laws derived in Marck (1983) and summarized in the Appendix.

The procedure described above provides a complete descrip-
tion, in Boyer–Lindquist coordinates, of the kinematic prop-
erties of fluid parcels as point particles freely falling in a Kerr
spacetime; this is what is needed to then estimate the torus mass.

2.3. Torus Mass Estimation

When looking carefully, in numerical-relativity simulations,
at the dynamics of the NS after it is disrupted, it is quite striking
to note how much the different parts of the star seem to behave
like independent freely falling particles: the gravity of the BH
alone does seem to represent the dominant force at this stage of
the evolution. In view of this observation, when the NS is tidally
disrupted and split into fiducial fluid elements of which we know
the mass, the 4-position, and the 4-velocity, we assume that the
pressure gradients across neighboring elements and the self-
gravity of the system play little role, and hence that the fluid
elements behave as independent collisionless fluid particles.
As such, after the disruption the NS is approximated as an
ensemble of about 3.1×104 fluid particles which have a complex
distribution of energy and angular momenta, but are in free-fall
toward the BH.

Using the 4-velocity of each particle, we compute the corre-
sponding conserved quantities by inverting the relations

dt

dτ
= −ã(ãe sin2 θ − �z) + (r2 + ã2)P/Δ

r2 + ã2 cos2 θ
, (29)

(
dr

dτ

)2

= P 2 − Δ[r2 + (�z − ãe)2 + Q]

(r2 + ã2 cos2 θ )2
, (30)

(
dθ

dτ

)2

= Q − cos2 θ [ã2(1 − e2) + �2
z/ sin2 θ ]

(r2 + ã2 cos2 θ )2
, (31)

dφ

dτ
= −(ãe − �z/ sin2 θ ) + ãP /Δ

r2 + ã2 cos2 θ
, (32)

where

P ≡ e(r2 + ã2) − �zã, (33)

Δ ≡ r2 − 2rMBH + ã2, (34)

and e, �z, and Q represent the energy, angular momentum, and
Carter’s constant of motion, respectively, all normalized to the
mass of the particle. Note that it is necessary to use these general
equations instead of Equations (17) and (18) as the majority of
the particles no longer follows circular equatorial geodesics.

As mentioned previously, we identify the mass of the remnant
torus with the sum of the masses of the bound particles and
we make use of Equation (30) to determine whether a given
particle is bound or not. Noting that a turning point occurs when
(dr/dτ )2 passes through zero and since the only influence of θ is
to decrease the overall magnitude of (dr/dτ )2 but not to change
its sign, we only consider, without loss of generality, the case
θ = π/2. We then use root-finding techniques for each particle
and consider bound those particles for which (dr/dτ )2 < 0 at
a radial position rTP outside the event horizon rEH, such that
rEH < rTP < rtide (note that (dr/dτ )2 is always greater than
0 at r = rtide) and simultaneously satisfy e < 1. This final
condition merely states that the gravitational binding energy
has compensated the kinetic energy such that the total energy of
the particle is less than the rest mass of the particle at infinity.

Once the NS is tidally disrupted, the calculation of the torus
mass, which is initially set to be Mb,tor = Mb,NS, is done as
follows.

1. For each fluid particle we verify whether it is bound or not.
In this latter case, we assume the particle will accrete onto
the BH.5

2. The composite mass of the accreted particles is added to
the mass of the BH and the mass of the torus is decreased
by the corresponding amount.

3. We reconsider the remaining particles and verify if they are
still bound or if they would now accrete onto the new and
more massive BH.

This procedure is repeated until there are no more particles that
would accrete onto the BH or, equivalently, until the relative
change in the mass of the torus is less than one part in one
million.

In addition to a change in the mass of the BH, we have also
experimented with changing the spin of the BH as a result of the
angular momentum accreted with the particles. However, the
results in this case are much less robust (the mass of the torus is
not a monotonic function of the parameters) and this is probably
due to the more complex dependence of the geodesic motion on
the spin of the BH, which conflicts with the approximations
made here. As a result, we keep the BH spin to be the same as
the initial one and it is reassuring that this does not spoil the
very good agreement with the numerical simulations.

3. TUNING AND VALIDATION OF THE MODEL

In the affine-model approach based on a quasi-equilibrium
approximation and discussed in Ferrari et al. (2009), the disrup-
tion radius is identified by the condition [∂(a2/a1)/∂r]−1 = 0,
i.e., as the radial separation at which the axis ratio a2/a1 di-
verges. Although this singular limit is clearly a shortcoming of
the assumption of quasi-equilibrium, it is not obvious how to
specify the tidal radius in a way which is not arbitrary to some
extent. To remove at least in part this degree of arbitrariness, we
have decided to tune the tidal radius by carefully analyzing the

5 We note that all numerical simulations suggest that the amount of matter
leaving the central gravitational potential, i.e., that are unbounded but do not
fall onto the BH, is extremely small and can thus be neglected here (see
Rezzolla et al. 2010).
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Table 1
Comparison Between the Remnant Torus Mass Predictions of Fully General-relativistic Simulations and of Our Model with the

Critical Value of a2/a1 Tuned to 0.44

Reference EOS C q a Mb,tor/Mb,NS Mb,tor/Mb,NS Error
(Γ) (Toy Model) (Simulations) (%)

Tonita et al. (2010) 2.00 0.100 1/5 0.00 0.17 0.17 0
Tonita et al. (2010) 2.00 0.125 1/5 0.00 0.06 0.06 0
Tonita et al. (2010) 2.00 0.145 1/5 0.00 < 0.01 < 0.01 0
Tonita et al. (2010) 2.00 0.150 1/5 0.00 < 0.01 < 0.01 0

Duez et al. (2010) 2.00 0.144 1/3 0.50 0.08 0.08 0
Duez et al. (2010) 2.75 0.146 1/3 0.50 0.11 0.13 18
Duez et al. (2010) 2.75 0.173 1/3 0.50 0.04 0.02 50

Etienne et al. (2009) 2.00 0.145 1/3 0.00 0.02 0.04 100
Etienne et al. (2009) 2.00 0.145 1/3 0.75 0.18 0.15 17
Etienne et al. (2009) 2.00 0.145 1/3 −0.50 < 0.01 < 0.01 0
Etienne et al. (2009) 2.00 0.145 1/5 0.00 < 0.01 < 0.01 0

Shibata et al. (2009) 2.00 0.145 1/3 0.00 0.02 < 0.01 100
Shibata et al. (2009) 2.00 0.160 1/3 0.00 < 0.01 < 0.01 0
Shibata et al. (2009) 2.00 0.178 1/3 0.00 < 0.01 < 0.01 0
Shibata et al. (2009) 2.00 0.145 1/4 0.00 0.01 < 0.01 100
Shibata et al. (2009) 2.00 0.145 1/5 0.00 < 0.01 < 0.01 0

Notes. In the four sections of the table, we examine the results recently provided in (from top to bottom) Tonita
et al. (2010), Duez et al. (2010), Etienne et al. (2009), and Shibata et al. (2009). The first four columns of the
table following the bibliographic references are the parameters of each BH–NS binary, i.e., the adiabatic index Γ
of the NS EOS, the NS compactness C, the mass ratio q, and the dimensionless BH spin a. The following three
columns provide the remnant torus masses Mtor obtained with our model (labeled “Toy Model”), those obtained
with fully general-relativistic calculations (labeled “Simulations”), both given in units of the NS baryonic mass
Mb,NS, and the relative error.

results of recent numerical-relativity simulations and in partic-
ular those carried out at the AEI (Tonita et al. 2010), for which
we have more direct control over the errors. When doing so, we
realized that the critical value of the axis ratio (a2/a1)crit is a
robust measure across our simulations, but also when compar-
ing with the simulations published in the literature. Hence, we
have decided to consider the critical axis ratio (a2/a1)crit as a
free parameter and to identify its value as the one which allows
us to best reproduce the numerical data available.

More specifically, for those initial data for which numerical
simulations have been performed, we tuned the free parameter
(a2/a1)crit, within the toy model, so as to minimize the dif-
ference between the toy model torus mass predictions and the
corresponding numerical-relativity ones. As a result of this pro-
cedure we obtain (a2/a1)crit = 0.44 which is robust across all
of the simulations and thus define the tidal radius as the orbital
separation at which (a2/a1) attains such a critical value. It is rea-
sonable to expect that (a2/a1)crit will depend on the BH spin and
on the mass ratio. Here, however, we assume that such depen-
dence is weak and thus set it to be constant. As we discuss below,
even with this crude approximation we can reproduce most of
the numerical results with an error which is below ∼15%. As
an additional note, we stress that although robust (i.e., a single
choice fits well all of the available data), the masses of the tori
are rather sensitive to the choice for the critical axis ratio. In
particular, for the same binary, a change of ∼2% in (a2/a1)crit
(i.e., a change in the last significant figure) may lead to a change
in the last significant figure of the estimated torus mass, and thus
up to a ∼50% change for cases with a very small remnant mass.
This effect disappears if one tunes (a2/a1)crit with an extra sig-
nificant digit.

Before going to the details of the comparison with the
numerical simulations it is worth making two remarks. The first

one is that after having identified in the axis ratio a consistent
parameter which we constrain to the second significant figure,
we also expect that it will be further refined as new and more
accurate results from numerical simulations become available.
The second one has already been made in the introduction and
stresses the fact that the numerical data itself do not show a
great degree of consistency. While there are two cases which
have been considered by more than one group, most of the data
available refer to configurations which are slightly different and
hence difficult to compare. Even the actual procedure followed
to measure the mass of the tori differs from group to group;
while most decide to measure the mass at a given time after
the formation of the apparent horizon, not all groups use the
same time. It would certainly be more reasonable if the measure
were performed only when the mass accretion rate has reached
a very small and constant value, as was done in Rezzolla
et al. (2010), rather than setting a time which may vary from
simulation to simulation. Notwithstanding these difficulties, it
is remarkable that even for the same configurations (cf. the
eighth and the twelfth rows in Table 1), or for some which are
not very different (cf. the fifth and ninth rows in Table 1), the
numerical results yield tori whose masses differ considerably.
Interestingly, the predictions of the toy model are equally distant
from the numerical results reported in the eighth and the twelfth
rows, thus suggesting that both simulations may be equally
imprecise.

Being a toy model, its validity is constrained to within specific
ranges of the space of parameters, which we discuss below
and which allow us nevertheless to cover essentially all of the
complete space of parameters. The first constraint on the range
of validity comes from the mass ratio, which cannot be too large
since the affine model assumes that the NS inspirals as a test
fluid and is therefore increasingly more accurate as the mass
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ratio decreases. As a result, we will consider only binaries with
mass ratios

0.10 � q � 0.33.

While this condition removes several of the values reported
in Shibata et al. (2009), it is not at all unrealistic. We recall,
in fact, that the most recent estimates for the mass accreted
onto the primary compact object during the common-envelope
phase are rather low and thus the BH masses in close BH–NS
binaries are likely to fall primarily in values near MBH � 10 M�
(Belczynski et al. 2007). Considering a canonical 1.4 M� NS,
BH–NS systems are therefore most likely to come in a mass
ratio that is q � 0.14.

The second constraint comes from the stellar compactness,
which cannot be too small for a relativistic compact star, nor
too large given the test-fluid hypothesis of the affine model. As
a result, we will consider only binaries where the NS has

0.1 � C � 0.16.

This range covers well the one considered so far in numerical
simulations (cf. Table 1), but it is worth remarking that the recent
arguments made in Özel et al. (2010) suggest a rather high and
generic compactness, C ∼ 0.16, which is at the edge of the range
considered here, and that a standard cold EOS, such as the APR
(Akmal et al. 1998) EOS, leads on average to compactnesses
C ∼ 0.18, thus outside of the range considered here. Future
simulations in which this EOS is employed will help extend the
range of validity in compactness of the toy model.

The third constraint comes from the BH spin, which we cannot
take as too large given that we treat the motion of the disrupted
NS with geodesics and these would lead to incorrect results if
the dimensionless spin parameter a ≡ J/M2

BH is too high (e.g.,
the ratio Mb,tor/Mb,NS → 1 for a → 1). As a result, we will
consider only binaries where the BH has

0.0 � a � 0.85.

The fourth and final constraint comes from the mass of the torus,
for which we need a lower limit. This is even true for numerical
simulations, whose precision is not infinite. As a result, we
consider the tori to have zero baryonic mass if

Mb,tor � 0.01 Mb,NS � 0.014 M�.

The results of the comparison are summarized in Table 1,
where, in addition to our numerical simulations (Tonita et al.
2010), we have considered also the data reported in Duez
et al. (2010), Etienne et al. (2009), and Shibata et al. (2009).
The parameters of each BH–NS binary are reported in the
first four columns of the table following the bibliographic
references: these are the adiabatic index Γ of the NS EOS,
the NS compactness C, the binary mass ratio q, and the initial
BH spin a, which does not change from its initial value in our
toy model. The last three columns provide, instead, the torus
baryonic masses Mb,tor obtained with the toy model or with
fully general-relativistic calculations (both in units of the NS
baryonic mass Mb,NS), and the relative percentage error.

A rapid inspection of the table, and in particular of its last
column, clearly shows that in four cases out of sixteen there
are rather large errors, i.e., between 50% and 100%. Not having
a clear measure of the error associated with the simulations,
it is hard to judge whether this is a limit of the toy model or
whether this is a limit of the numerical simulations. It should be
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Figure 2. Gravitational-wave frequency at tidal disruption shown as a function
of the (inverse of the) mass ratio q (here RΓ is the polytropic length scale
K1/(2Γ−2)). Data plotted with diamonds are produced with our toy model, while
data plotted with triangles are taken from Taniguchi et al. (2008). All neutron
stars have Γ = 2, while their baryonic mass is indicated by the color code in
the legend. This figure should be compared with the corresponding Figure 1 in
Ferrari et al. (2009).

(A color version of this figure is available in the online journal.)

remarked, however, that these simulations are those which report
tori masses that are close to the limit we consider reasonable
(i.e., Mb,tor/Mb,NS � 0.01) and clearly new simulations of those
binaries are necessary to settle these differences. However, with
the exception of those cases, the table also reveals that the toy
model can reproduce the remaining cases (which represent three
quarters of the data available) with an error which is at most
18% and is virtually 0 for most of the cases. Considering that
the numerical-relativity simulations in Table 1 were performed
with different codes and with different initial separations and
amounts of eccentricity,6 we believe that the tuning made for
the toy model is both reasonably robust and accurate.

To further validate the model, we use it to determine the
frequency of the gravitational radiation emitted at the onset of
the tidal disruption. Results for these frequencies were provided,
for example, by Shibata & Taniguchi (2008) and Taniguchi et al.
(2008), and we compare to the former in Table 2 and to the latter
in Figure 2. The frequencies given in Taniguchi et al. (2008) are
found by using quasi-equilibrium sequences of mixed binaries
in circular orbits, obtained by solving the Einstein constraint
equations in the conformal thin-sandwich decomposition and
the relativistic equations of hydrostationary equilibrium; a fitting
formula for the frequency is also provided and this is used, in
turn, in Shibata & Taniguchi (2008). All cases considered by
these authors refer to nonspinning BHs and irrotational NSs,
so that, for our model, the gravitational-wave frequency at tidal
disruption is given by (cf. Equation (23))

f GW
tide = 1

π

√
MBH

r3
tide

, (35)

i.e., by twice the Schwarzschild orbital frequency at the tidal-
disruption radius. We note that Figure 2 reports the (inverse of

6 Although not often discussed, the presence of eccentricity in the initial data
can lead to significant changes in the mass of the torus in BH–NS mergers
(Tonita et al. 2010).
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Table 2
Gravitational-wave Frequency at the Onset of Tidal Disruption f GW

tide as
Computed with Our Model (Labeled “Toy Model”) or as Quoted in Shibata &

Taniguchi (2008) (Labeled “Simulations”)

q Mb,NS RNS MNS f GW
tide (kHz) f GW

tide (kHz)
(Toy Model) (Simulations)

0.327 0.15 13.2 1.302 0.856 0.855
0.327 0.16 12.0 1.294 0.997 0.993
0.328 0.14 14.7 1.310 0.736 0.738
0.392 0.15 13.2 1.302 0.877 0.867
0.392 0.16 12.0 1.294 1.021 1.010
0.281 0.15 13.2 1.302 0.840 0.843

Notes. Values in the last columns were calculated in Shibata & Taniguchi
(2008) by means of a fitting formula determined in Taniguchi et al. (2008) by
using quasi-equilibrium sequences of mixed binaries in circular orbits, obtained
by solving the Einstein constraint equations in the conformal thin-sandwich
decomposition and the relativistic equations of hydrostationary equilibrium.

the) mass ratio q as a function of πRΓf GW
tide , where RΓ is the

polytropic length scale K1/(2Γ−2). Data plotted with diamonds
are produced with our toy model, while data plotted with
triangles are taken from Taniguchi et al. (2008). All NSs have
Γ = 2, while their baryonic mass is indicated by the color code
in the legend. An inspection of Table 2 and Figure 2 shows that a
very good agreement is obtained not only for the torus mass, but
also for the gravitational-wave frequency. Stated differently, the
assumptions that go into our toy model allow us to accurately
capture both the orbital evolution soon before the NS disruption
takes places and the dynamics of the matter after the NS has
been disrupted. Moreover, a comparison between our Figure 2
and Figure 1 in Ferrari et al. (2009) shows that the present
implementation of the affine model is significantly improved
with respect to its quasi-equilibrium formulation.

Before concluding this section, it is important to note that the
choice of a critical value for the axis ratio (a2/a1)crit also allows
us to determine the ratio between the NS self-gravity and the
tidal forces. Using a well-known Newtonian argument, when
the binary is at the separation rtide, the ratio between the tidal
and the NS self-gravitational force for a fluid element on the
stellar surface when the binary is at the separation rtide is

MBH

MNS

(
a1

rtide

)3

= R, (36)

so that when R = 1 the tidal and gravitational forces are
equal. Using the affine model and considering the tidal radius
as the one at which a2/a1 = (a2/a1)crit = 0.44, we may compute
the values of the two forces at tidal disruption. Doing so for the
binaries considered in Table 1, we find that R � 0.59–0.70 for
the Γ = 2 cases and R � 0.46–0.47 for the Γ = 2.75 cases.
Our tuning thus reveals that the tidal disruption begins earlier
than one would naively think and when the tidal force is only
∼1/2–1/3 the self-gravitational one. The tidal force when the
binary is at the separation rtide may also be compared to the
self-gravitational force of the star at isolation, i.e., when it is a
sphere of radius RNS. This amounts to calculating the ratio R
when a1 → RNS, i.e.,

MBH

MNS

(
RNS

rtide

)3

= R′, (37)

and enables us to compare our results with those of Taniguchi
et al. (2008), where it was found that R′ � 0.07. More
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Figure 3. Torus baryonic mass in units of the stellar mass Mb,tor/Mb,NS shown
as a function of the compactness C and of the mass ratio q, for a BH with spin
parameter a = 0.4.

(A color version of this figure is available in the online journal.)

specifically, for the binaries considered in Table 1 we find
R′ � 0.08 − 0.11, which is in good agreement with the
aforementioned result. Stated differently, this reveals that the
tidal disruption begins when the tidal force is roughly only
∼1/10 of the NS self-gravity at infinite separation.

4. RESULTS

Having tuned and validated the model, we will next consider
its predictions for the baryonic mass of the torus as a function
of the mass ratio q, the stellar compactness C, and the BH
spin parameter a. Because this space of parameters is three
dimensional, it is more convenient to consider constant-spin
slices and hence we will first comment on a fiducial case of a
spinning BH with a = 0.4 and then discuss how these results
change across the possible values of the spin.

Most of our results are summarized in Figure 3, which shows
the baryonic mass of the torus in units of the stellar mass,
Mb,tor/Mb,NS, as a function of the stellar compactness C and
of the binary mass ratio q, with the data referring to a binary
in which the BH has a dimensionless spin parameter a = 0.4.
Quite clearly, the final mass in the torus varies considerably
across the possible space of parameters and is systematically
larger the smaller C is. This is rather obvious: the smaller the
compactness, the more “Newtonian” the star will be and thus
the smaller will the effective gravity at its surface be. In turn,
this means that, all else equal, it will be easier to disrupt it even
at large distances from the BH (i.e., rtide is comparatively large)
and hence to produce a more massive torus.

At the same time, Figure 3 shows that the mass in the torus
will be larger when the BH and the NS have comparable masses.
Also this result is quite obvious: the smaller the mass ratio, the
more unlikely it will be for the star to be tidally disrupted and
to be accreted “whole” by the BH. Putting things together, a
BH–NS system with a large binary mass ratio and a small NS
compactness maximizes the yields in terms of torus mass. For
the same reasons, binaries with small mass ratios and large
compactnesses will yield the smallest tori. To fix the ideas: for
a BH–NS system with a = 0.4, the toy model predicts that
Mb,tor/Mb,NS ∼ 0.5 when C = 0.10 and q = 0.33, while
essentially no tori are produced for q � 0.14 and C � 0.14 (cf.
third panel of Figure 4 where these data are also shown with
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contour plots). Overall, our toy model suggests that, at least
statistically, a BH with spin larger than � 0.4 is necessary to
produce any astrophysically relevant torus.

The generic predictions of the toy model for a = 0.4 remain
unchanged when considering also other BH spins, extending
smoothly from smaller to larger spins. This is summarized
in Figure 4, the different panels of which refer, from top to
bottom, to a = 0.0, 0.2, 0.4, 0.6, 0.8, 0.85, respectively. The
baryonic mass of the torus is still expressed in units of NS
mass and is reported as a function of the NS compactness and
of the binary mass ratio, but it is shown by means of contour
plots to better quantify the results. The numerical values of
some representative contour lines are shown and allow for a
direct measurement (the contours are equally spaced in a linear
scale), while the thick and black solid line shows the area
below which no torus is created (i.e., the “no-torus” area with
Mb,tor/Mb,NS < 0.01). Finally, shown with a horizontal dot-
dashed line is the most likely mass ratio for a canonical 1.4 M�
NS.

Moving from the top to the bottom of Figure 4 it is easy
to recognize that the maximum mass attained at the smallest
compactness increases significantly with the BH spin, ranging
from Mb,tor � 0.18 Mb,NS � 0.25 M� for a = 0.0, to
Mb,tor � 0.95 Mb,NS � 1.33 M� for a = 0.85. At the same
time, the “no-torus” area decreases and virtually disappears for
a � 0.6. Stated differently, for sufficiently large BH spins a
torus is always produced and with non-negligible mass. As an
example, taking as fiducial compactness the canonical value
of C � 0.145, the torus mass at the fiducial mass ratio
goes from Mb,tor � 0.06 Mb,NS � 0.08 M� for a = 0.4, to
Mb,tor � 0.24 Mb,NS � 0.34 M� for a = 0.85.

A complementary view, because it refers to a different slicing
of the space of parameters, is illustrated in Figure 5, which is the
same as in Figure 4, but it shows the baryonic mass as a function
of the BH spin and of the mass ratio for a fixed compactness
C = 0.145 (left panel), or as a function of the BH spin and of the
compactness for a fixed mass ratio q = 0.14 (right panel). Both
panels of the figure are rather self-explanatory and underline
what has already been discussed above: large tori masses are
possible for BHs which are spinning sufficiently rapidly or for
NSs which are not very compact (favoring a stiff EOS).

In summary, considering an astrophysically realistic mass ra-
tio q � 0.14 and a conservative value of the stellar compactness
C � 0.145 (we recall that even larger values were recently sug-
gested in Özel et al. 2010), the predictions of the toy model are
that the torus mass should be

Mb,tor � 0.24 Mb,NS � 0.34 M� (38)

for BH spins 0 � a � 0.85. Such masses are comparable but
also smaller than the ones predicted by the analysis of unequal-
mass NS–NS mergers carried out by Rezzolla et al. (2010).

5. AN INTUITIVE INTERPRETATION

In the previous section, we have shown that the complex
dynamics of the tidal disruption and subsequent accretion onto
the BH is well captured by the simple assumptions needed to
build our toy model. In what follows, we will show that an even
simpler framework can be built to explain at least qualitatively
the results of the toy model.

We have already noted that binaries with less compact NSs
produce bigger tori as these are more “Newtonian” and hence are
capable of sustaining smaller tidal forces before being disrupted.

Stated differently, less compact stars have larger tidal radii rtide.
In the usual arguments this quantity is generally compared to
the ISCO, and the standard line of argument says that a BH–NS
binary will produce a torus if rtide � rISCO. This reasoning,
however, is inadequate for systems which yield low mass tori.
An obvious failure of the argument is offered by an NS that is
disrupted by its BH companion exactly at rtide = rISCO. In this
case, half of the star would still be outside the ISCO and thus
potentially capable of producing a torus.

The necessary, but not sufficient, condition for a BH–NS
binary to yield a torus is thus better expressed as

rtide + a1(rtide) − rISCO

2RNS
� 1 +

rtide − rISCO

2RNS
> 0, (39)

where the second expression is obtained after recognizing that
at tidal disruption a1(rtide) � 2RNS. Expression (39) has three
important properties: it is dimensionless, it combines the three
fundamental length scales of our system, and it essentially
measures how many NS diameters fit between rtide + a1(rtide)
and rISCO (cf. Figure 1). In other words, Equation (39) quantifies
“how much useful space” there is for the NS to form a torus after
it is tidally disrupted.

At this point, it is natural to associate this quantity directly
with the mass of the torus expressed in units of the NS mass

Mb,tor

Mb,NS
∝

[
1 +

rtide − rISCO

2RNS

]
, (40)

where the exact proportionality will depend (albeit weakly) on
q and C. Not surprisingly, Equation (40) reproduces, at least
qualitatively, all of the phenomenology discussed before and
predicted by our toy model. As an example, for fixed BH mass
and spin, and hence fixed rISCO, the torus mass will increase for
less compact NSs since for these rtide will grow and more rapidly
than RNS. Similarly, given a BH, for a fixed NS compactness,
and hence for a fixed RNS, the torus mass will grow with the BH
spin as does the difference rtide − rISCO (rISCO decreases more
rapidly than rtide).

6. CONCLUDING REMARKS

The production of a massive torus orbiting stably around a
rotating BH is a necessary ingredient in all models that explain
SGRBs in terms of the coalescence of binary systems composed
of a BH and an NS or of two NSs. The accurate calculation
of this mass inevitably requires the use of numerical-relativity
simulations, which, however, are still very expensive and have
so far been applied only to a tiny patch of the possible space of
parameters. In the case of BH–NS binaries especially, the space
of parameters is particularly extended as it involves the mass
ratio of the binary q, the stellar compactness C, and the BH spin
a. As a result, we presently have only a very limited idea of what
are the likely torus masses that this process will yield and hence
have a rather limited ability to assess whether or not the merger
of a BH–NS system under astrophysically realistic conditions
will serve as a robust scenario for the powering of SGRBs.

To compensate for this lack of knowledge, we have developed
a toy model that allows for the computation of the mass
of the torus without having to perform a numerical-relativity
simulation. In essence, we model the NS in the binary as a
tri-axial ellipsoid which is tidally distorted as it orbits in the
tidal field of a rotating BH and as described by the relativistic
affine model. When the star is disrupted, we decompose it into
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Figure 4. Torus baryonic mass in units of the stellar mass Mb,tor/Mb,NS shown as a function of the compactness C and of the mass ratio q. From top to bottom, the
different panels refer to different values of the BH spin (a = 0.0, 0.2, 0.4, 0.6, 0.8, 0.85) and the numbers on the iso-mass contours are used to indicate the constant
spacing between two successive contours and the range they span. In each panel, no torus is created below the thick, black, solid line (i.e., this line marks the boundary
of the “no-torus” region with Mb,tor/Mb,NS < 0.01), while the horizontal dot-dashed line shows the most-likely binary mass ratio in the case of a canonical 1.4 M�
NS.

(A color version of this figure is available in the online journal.)

a system of non-interacting “fluid particles” which move along
geodesics. We therefore compute the mass of the torus as the

integral of the masses of the particles which do not fall into the
BH. The only free parameter in our model is the radius at which
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Figure 5. Same as in Figure 4 but considering different slices of the space of parameters. In particular, the torus baryonic mass in units of the stellar mass Mb,tor/Mb,NS
is shown as a function of the BH spin and the NS compactness for q = 0.14 (left panel) and as a function of the BH spin and binary mass ratio for C = 0.145
(right panel).

(A color version of this figure is available in the online journal.)

the tidal disruption takes place and which we tune in terms of the
ratio of the semi-major axes on the equatorial plane and with
the aid of numerical-relativity simulations. The tuning requires
care, but allows us to reproduce with precision the majority of
the available data, some of which shows inconsistencies of their
own.

As it is natural for a semi-analytic approach, the model has
a limited range of validity, which we have decided to set in
the following ranges for the mass ratio, compactness, and BH
spin: 0.10 � q � 0.33, 0.1 � C � 0.16, 0.0 � a � 0.85,
respectively. Overall, the toy model predicts that high BH spins,
small mass ratios, and small NS compactnesses all enhance
the mass of the remnant torus. As a result, tori with masses
as large as Mb,tor � 1.33 M� are predicted for q � 0.3
and for a very extended star, with compactness C � 0.1,
inspiralling around a BH with dimensionless spin a = 0.85.
However, when considering a more astrophysically reasonable
mass ratio q � 0.14 and a conservative but realistic value of the
compactness C � 0.145, the predictions of the toy model set a
considerably smaller upper limit of Mb,tor � 0.34 M�.

All of the phenomenology discussed above has a rather
intuitive interpretation and it is easy to show that the torus
mass is directly related to how much of the star falls between
the tidal radius augmented of the NS semi-major axis and the
ISCO. Hence, collecting the three fundamental length scales
appearing in the system, the simple expression Mb,tor/Mb,NS ∝
[1 + (rtide − rISCO)/2RNS] is able to capture qualitatively the
predictions that our toy model can make quantitatively.

Toy models are by construction approximate representations
of much more complex phenomena and their predictions are
therefore intrinsically accompanied by errors. Bearing this in
mind, the toy model presented here can be further improved
as new and more accurate numerical-relativity simulations are
performed and as their level of realism increases with the
inclusion of microphysical EOSs, magnetic fields, and radiative
transfer. This will represent the focus of our future work.
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APPENDIX

THE PARALLEL-PROPAGATED TETRAD

In this appendix, we gather together the equations derived by
Marck (1983) to define a tetrad which is parallel-transported as
it moves along a timelike geodesic of a Kerr BH spacetime in
Boyer–Lindquist coordinates

ds2 = −
(

1 − 2MBHr

Σ

)
dt2 − 4MBHr

Σ
ã sin2 θdtdφ

+
Σ
Δ

dr2 + Σdθ2 +
A
Σ

sin2 θdφ2, (A1)

where

Σ ≡ r2 + ã2 cos2 θ, (A2)

Δ ≡ r2 + ã2 − 2MBHr, (A3)

A ≡ (r2 + ã2) − Δã2 sin2 θ. (A4)

In our model, the test particle is identified with the center of
mass of an NS orbiting its rotating BH companion. Marck
expresses his results in the canonical symmetric orthonormal
tetrad introduced by Carter (1968)

ω(0) =
√

Δ
Σ

(dt − ã sin2 θdφ), (A5)

ω(1) =
√

Δ
Σ

dr, (A6)
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ω(2) =
√

Σdθ, (A7)

ω(3) = sin θ√
Σ

[ãdt − (r2 + ã2)dφ], (A8)

which has the convenience of casting the Kerr metric in the form

ds2 = η(μ)(ν)ω
(μ)ω(ν), (A9)

where η(μ)(ν) = diag(−1, 1, 1, 1) is the metric tensor of
Minkowksi spacetime. Before expressing the components of
the basis vectors of the tetrad found in Marck (1983), we define
the quantities α and β

α ≡
√

K − ã2 cos2 θ

r2 + K
, (A10)

β ≡
√

r2 + K

K − ã2 cos2 θ
, (A11)

where K is Carter’s constant, and the two vectors

ẽ
(0)

1 = α

√
Σ

KΔ
rṙ, (A12)

ẽ
(1)

1 = αr[E(r2 + ã2) − ãLz]√
KΣΔ

, (A13)

ẽ
(2)

1 = βã cos θ (ãE sin θ − Lz sin−1 θ )√
KΣ

, (A14)

ẽ
(3)

1 = β

√
Σ
K

ã cos θ θ̇ , (A15)

and

ẽ
(0)

2 = αr[E(r2 + ã2) − ãLz]√
ΣΔ

, (A16)

ẽ
(1)

2 = α

√
Σ
Δ

ṙ , (A17)

ẽ
(2)

2 = β
√

Σθ̇ , (A18)

ẽ
(3)

2 = β
ãE sin θ − Lz sin−1 θ√

Σ
, (A19)

where the dots indicate derivatives with respect to the proper
time τ , and where E and Lz are, respectively, the energy and the
angular momentum about the axis of symmetry of the BH per
unit mass of the star. We are now ready to express—in Carter’s
symmetric tetrad—the components of the vectors forming

an orthonormal tetrad parallel-transported along an arbitrary
timelike geodesic in a Kerr spacetime. These are

e
(0)

0 = E(r2 + ã2) − ãLz

Δ
√

Σ
, (A20)

e
(1)

0 =
√

Δ
Σ

ṙ , (A21)

e
(2)

0 =
√

Σθ̇ , (A22)

e
(3)

0 = ãE sin θ − Lz sin−1 θ√
Σ

, (A23)

e1 = cos Ψẽ1 − sin Ψẽ2, (A24)

e2 = sin Ψẽ1 + sin Ψẽ2, (A25)

and

e
(0)

3 =
√

Σ
KΔ

ã cos θ ṙ (A26)

e
(1)

3 = ã cos θ [E(r2 + ã2) − ãLz]√
KΣΔ

, (A27)

e
(2)

3 = − r(ãE sin θ − Lz sin−1 θ )√
KΣ

, (A28)

e
(3)

3 =
√

Σ
K

rθ̇. (A29)

The rotation by an angle Ψ in Equations (A24) and (A25)
ensures that e(1) and e(2) are indeed parallel-transported along
any Kerr timelike geodesic. Finally, the evolution of the angle
Ψ is governed by Equation (19) for circular equatorial orbits.
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Özel, F., Baym, G., & Guver, T. 2010, Phys. Rev. D, 82, 101301
Rampp, M., & Janka, H.-T. 2002, A&A, 396, 361
Rezzolla, L., Baiotti, L., Giacomazzo, B., Link, D., & Font, J.-A. 2010, Class.

Quantum Grav., 27, 114105
Rosswog, S. 2005, ApJ, 634, 1202
Ruffert, M., & Janka, H.-T. 2010, A&A, 514, A66
Shibata, M. 1996, Prog. Theor. Phys., 96, 917
Shibata, M., Kyutoku, K., Yamamoto, T., & Taniguchi, K. 2009, Phys. Rev. D,

79, 044030
Shibata, M., & Taniguchi, K. 2008, Phys. Rev. D, 77, 084015
Taniguchi, K., Baumgarte, T. W., Faber, J. A., & Shapiro, S. L.

2008, Phys. Rev. D, 77, 044003
Tonita, A., Rezzolla, L., & Giacomazzo, B. 2010, Phys. Rev. D, in press
Wiggins, P., & Lai, D. 2000, ApJ, 532, 530
Yamamoto, T., Shibata, M., & Taniguchi, K. 2008, Phys. Rev. D, 78, 064054

13

http://adsabs.harvard.edu/abs/1985MNRAS.212...23C
http://adsabs.harvard.edu/abs/1985MNRAS.212...23C
http://dx.doi.org/10.1103/PhysRevLett.105.111101
http://adsabs.harvard.edu/abs/2010PhRvL.105k1101C
http://adsabs.harvard.edu/abs/2010PhRvL.105k1101C
http://dx.doi.org/10.1088/0264-9381/27/11/114106
http://adsabs.harvard.edu/abs/2010CQGra..27k4106D
http://adsabs.harvard.edu/abs/2010CQGra..27k4106D
http://dx.doi.org/10.1103/PhysRevD.78.104015
http://adsabs.harvard.edu/abs/2008PhRvD..78j4015D
http://adsabs.harvard.edu/abs/2008PhRvD..78j4015D
http://dx.doi.org/10.1103/PhysRevD.77.084002
http://adsabs.harvard.edu/abs/2008PhRvD..77h4002E
http://adsabs.harvard.edu/abs/2008PhRvD..77h4002E
http://dx.doi.org/10.1103/PhysRevD.79.044024
http://dx.doi.org/10.1103/PhysRevD.79.044024
http://adsabs.harvard.edu/abs/2009PhRvD..79d4024E
http://adsabs.harvard.edu/abs/2009PhRvD..79d4024E
http://dx.doi.org/10.1088/0264-9381/26/12/125004
http://adsabs.harvard.edu/abs/2009CQGra..26l5004F
http://adsabs.harvard.edu/abs/2009CQGra..26l5004F
http://dx.doi.org/10.1103/PhysRevD.81.064026
http://adsabs.harvard.edu/abs/2010PhRvD..81f4026F
http://adsabs.harvard.edu/abs/2010PhRvD..81f4026F
http://dx.doi.org/10.1111/j.1745-3933.2009.00745.x
http://adsabs.harvard.edu/abs/2009MNRAS.399L.164G
http://adsabs.harvard.edu/abs/2009MNRAS.399L.164G
http://adsabs.harvard.edu/abs/1999ApL&C..38..205K
http://adsabs.harvard.edu/abs/1999ApL&C..38..205K
http://dx.doi.org/10.1088/1367-2630/9/1/017
http://adsabs.harvard.edu/abs/2007NJPh....9...17L
http://adsabs.harvard.edu/abs/2007NJPh....9...17L
http://dx.doi.org/10.1103/PhysRevD.78.024012
http://adsabs.harvard.edu/abs/2008PhRvD..78b4012L
http://adsabs.harvard.edu/abs/2008PhRvD..78b4012L
http://dx.doi.org/10.1103/PhysRevD.74.104018
http://adsabs.harvard.edu/abs/2006PhRvD..74j4018L
http://adsabs.harvard.edu/abs/2006PhRvD..74j4018L
http://dx.doi.org/10.1086/191113
http://adsabs.harvard.edu/abs/1986ApJS...61..219L
http://adsabs.harvard.edu/abs/1986ApJS...61..219L
http://adsabs.harvard.edu/abs/1985MNRAS.212...57L
http://adsabs.harvard.edu/abs/1985MNRAS.212...57L
http://dx.doi.org/10.1098/rspa.1983.0021
http://adsabs.harvard.edu/abs/1983RSPSA.385..431M
http://adsabs.harvard.edu/abs/1983RSPSA.385..431M
http://dx.doi.org/10.1016/j.physrep.2007.02.005
http://adsabs.harvard.edu/abs/2007PhR...442..166N
http://adsabs.harvard.edu/abs/2007PhR...442..166N
http://dx.doi.org/10.1103/PhysRevLett.99.121102
http://adsabs.harvard.edu/abs/2007PhRvL..99l1102O
http://adsabs.harvard.edu/abs/2007PhRvL..99l1102O
http://dx.doi.org/10.1103/PhysRevD.82.101301
http://adsabs.harvard.edu/abs/2010PhRvD..82j1301O
http://adsabs.harvard.edu/abs/2010PhRvD..82j1301O
http://dx.doi.org/10.1051/0004-6361:20021398
http://adsabs.harvard.edu/abs/2002A&A...396..361R
http://adsabs.harvard.edu/abs/2002A&A...396..361R
http://dx.doi.org/10.1088/0264-9381/27/11/114105
http://dx.doi.org/10.1088/0264-9381/27/11/114105
http://adsabs.harvard.edu/abs/2010CQGra..27k4105R
http://adsabs.harvard.edu/abs/2010CQGra..27k4105R
http://dx.doi.org/10.1086/497062
http://adsabs.harvard.edu/abs/2005ApJ...634.1202R
http://adsabs.harvard.edu/abs/2005ApJ...634.1202R
http://dx.doi.org/10.1051/0004-6361/200912738
http://adsabs.harvard.edu/abs/2010A&A...514A..66R
http://adsabs.harvard.edu/abs/2010A&A...514A..66R
http://dx.doi.org/10.1143/PTP.96.917
http://adsabs.harvard.edu/abs/1996PThPh..96..917S
http://adsabs.harvard.edu/abs/1996PThPh..96..917S
http://dx.doi.org/10.1103/PhysRevD.79.044030
http://adsabs.harvard.edu/abs/2009PhRvD..79d4030S
http://adsabs.harvard.edu/abs/2009PhRvD..79d4030S
http://dx.doi.org/10.1103/PhysRevD.77.084015
http://adsabs.harvard.edu/abs/2008PhRvD..77h4015S
http://adsabs.harvard.edu/abs/2008PhRvD..77h4015S
http://dx.doi.org/10.1103/PhysRevD.77.044003
http://adsabs.harvard.edu/abs/2008PhRvD..77d4003T
http://adsabs.harvard.edu/abs/2008PhRvD..77d4003T
http://dx.doi.org/10.1086/308565
http://adsabs.harvard.edu/abs/2000ApJ...532..530W
http://adsabs.harvard.edu/abs/2000ApJ...532..530W
http://dx.doi.org/10.1103/PhysRevD.78.064054
http://adsabs.harvard.edu/abs/2008PhRvD..78f4054Y
http://adsabs.harvard.edu/abs/2008PhRvD..78f4054Y

	1. INTRODUCTION
	2. METHOD
	2.1. Neutron Star Deformation—The Affine Model
	2.2. Neutron Star Disruption
	2.3. Torus Mass Estimation

	3. TUNING AND VALIDATION OF THE MODEL
	4. RESULTS
	5. AN INTUITIVE INTERPRETATION
	6. CONCLUDING REMARKS
	APPENDIX. THE PARALLEL-PROPAGATED TETRAD
	REFERENCES

