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Abstract

We develop a new approach to Baxter Q-operators by relating them to the theory of Yangians, which
are the simplest examples for quantum groups. Here we open up a new chapter in this theory and study
certain degenerate solutions of the Yang–Baxter equation connected with harmonic oscillator algebras.
These infinite-state solutions of the Yang–Baxter equation serve as elementary, “partonic” building blocks
for other solutions via the standard fusion procedure. As a first example of the method we consider gl(n)

compact spin chains and derive the full hierarchy of operatorial functional equations for all related commut-
ing transfer matrices and Q-operators. This leads to a systematic and transparent solution of these chains,
where the nested Bethe equations are derived in an entirely algebraic fashion, without any reference to the
traditional Bethe Ansatz techniques.
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1. Introduction and overview

The method of functional relations and commuting transfer matrices, introduced by Baxter in
his seminal paper [1] on the exact solution of the eight-vertex model, plays a fundamental role
in the theory of integrable quantum systems. It is based on an explicit algebraic construction of
transfer matrices, which gives a priori knowledge about the analytic properties of their eigen-
values. A central part within this method involves the so-called Q-operators. These operators are
distinguished by the fact that zeroes of their eigenvalues precisely coincide with the roots of a
certain system of algebraic equations, which arises as a part of the coordinate [2] or algebraic [3]
Bethe Ansatz.

The underlying algebraic structure behind the construction of the commuting transfer ma-
trices, termed T-matrices or T-operators, is by now well understood. It is connected with the
simplest representations of quantum groups, which are closely related to the standard finite-
dimensional representations of classical Lie algebras. In contrast, the algebraic construction of
the Q-operators appears to be a more complicated and, at the same time, more interesting prob-
lem. Much progress in this direction has already been achieved from a case-by-case study of
various models, see e.g. [1,2,4–11] but the problem still continues to reveal its new features.

In this paper we develop a new approach to Q-operators by connecting them to the theory of
Yangians, which are the simplest examples of quantum groups. In doing so we shall develop new
aspects of the theory of infinite-dimensional representations of Yangians, naturally leading to a
systematic and transparent construction of the Q-operators. Here we illustrate our approach on
the compact gl(n)-spin chains,1 but the results may be readily generalized to other models, and
in particular to supersymmetric spin chains [12].

Let us then consider the integrable gl(n)-spin chain with the well-known Hamiltonian

Hn = 2
L∑

l=1

(
1 −

n∑
a,b=1

e
(l)
abe

(l+1)
ba

)
(1.1)

in the presence of twisted periodic boundary conditions,

e
(L+1)
ab := ei(Φa−Φb)e

(1)
ab , (1.2)

where Φ1,Φ2, . . . ,Φn is a set of fixed twist parameters (or fields). Here eab denotes the n × n

matrix unit (eab)ij = δaiδbj and the superscript “(l)” refers to the quantum space of the l-th
spin in the chain. Each “spin” can take n different values a = 1,2, . . . , n. It is easy to check
that for the quasi-periodic boundary conditions (1.2) the numbers m1,m2, . . . ,mn, counting the
total number of spins of type “1”, “2”, . . . , “n” in the chain, are conserved quantum numbers
for the Hamiltonian (1.1). Due to these conservation properties this integrable model can be
solved via the “nested” Bethe Ansatz technique [13,14], which leads to the well-known result
for the eigenvalues of (1.1), see (6.8) below. They are expressed through solutions of the already
mentioned algebraic equations, commonly called Bethe Ansatz equations.

It is relatively well known that there are different but equivalent forms of the Bethe Ansatz. In
fact, it is easy to argue that there are precisely n! different Bethe Ansätze in our case, related by
all possible permutations of the occupation numbers m1,m2, . . . ,mn. Indeed, there are n ways

1 Spin chains for which the quantum space is some finite-dimensional representation of gl(n) are often referred to as
su(n)-spin chains to stress their compact nature. In this paper we follow the nomenclature which is customary in the
Yangian literature.
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Fig. 1. a) Hasse diagram for gl(3); b) An elementary quadrilateral, whose bottom node corresponds to the set I =
{a1, a2, . . . , ap}.

to choose the bare vacuum state, then n − 1 ways to proceed on the second “nested” stage of
the Bethe Ansatz and so on.2 These options can be conveniently depicted by directed paths on a
Hasse diagram which spans an n-dimensional hypercube. The nodes of the hypercube are labeled
by increasing integer sets I = {a1, a2, . . . , ap} ⊆ {1,2, . . . , n}, where 0 � p � n. See the n = 3
example in Fig. 1a). There are exactly 2n nodes on the diagram and exactly n! ordered paths from
the bottom to the top. Then each path is related to a particular variant of the Bethe Ansatz, while
nodes on that path are related to the so-called Q-functions entering the corresponding Bethe
Ansatz equations. This concise description was proposed in [16]. Note that the usual nested
Bethe Ansatz proceeds from the top to the bottom of this diagram.

Our approach precisely reproduces this picture. We explicitly construct the 2n different Q-
operators, corresponding to the nodes of the Hasse diagram, and subsequently derive the nested
Bethe Ansatz equations and eigenvalues of the Hamiltonian (1.1) without any reference to the
eigenvector construction. The different Q-operators are not functionally independent. They sat-
isfy the so-called Hirota equations, defined on the direct product of the n-dimensional hypercube
and the real line. The equations have the same form for every quadrilateral of the Hasse diagram
(see Fig. 1b)),

�{a,b}QI∪a∪b(z)QI (z) = QI∪a

(
z − 1

2

)
QI∪b

(
z + 1

2

)− QI∪b

(
z − 1

2

)
QI∪a

(
z + 1

2

)
, (1.3)

where

�{a,b} = 2i sin

(
Φa − Φb

2

)
(1.4)

2 One should keep in mind, however, that the above argument only applies to the case where all fields Φa take generic,
non-zero values. If some or all of the fields vanish, or else take certain special values, only a few of the Bethe Ansätze are
well defined, while other ones typically suffer from multiple roots or the so-called “beyond the equator” problem [15].
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and the expression I ∪ a denote the union of the sets I and the one-element set {a}. The reader
might be aware that the Hirota equations frequently arise in the analysis of quantum integrable
models, see e.g. [17]. Eq. (1.3) for the Q-operators and their eigenvalues were gradually devel-
oped for various models related to gl(n) algebra in [6,18–20]. The form of the operatorial equa-
tions (1.3) presented here exactly coincide with that of the eigenvalue equations of Ref. [16].3

The most essential algebraic property of the Q-operators is concisely expressed by the single
factorization relation

T+(z,Λn) � Q{1}
(
z + λ′

1

)
Q{2}

(
z + λ′

2

) · · ·Q{n}
(
z + λ′

n

)
(1.5)

where T+(z,Λn) is the transfer matrix associated with a highest weight infinite-dimensional rep-
resentation (Verma module) with the gl(n)-weights Λn = (λ1, λ2, . . . , λn). Here Λ′

n = Λn + ρn

denotes the weights shifted by the half sum of the positive roots, ρn of the algebra sl(n). Remark-
ably, this relation alone allows to derive all functional relations, satisfied by various “fusion”
transfer matrices and Q-operators. As a result the model may then be solved in an entirely alge-
braic fashion. In particular, the transfer matrices

T(z,Λn) � det
∥∥Qi

(
z + λ′

j

)∥∥
1<i,j<n

(1.6)

associated with finite-dimensional representations, are expressed as the determinant of a matrix
constructed from Q-operators. This approach was originally developed mainly for field theory
models connected with quantized (or q-deformed) affine algebras [6,22,19,23,24].

In [11] we applied the same idea to solve the famous Heisenberg XXX spin chain correspond-
ing to n = 2 in (1.1), which is much simpler than its q-deformed counterparts. This allowed us to
observe some new algebraic structures which were obscured or did not manifest themselves for
field theory models. We found that for the XXX model the relation (1.5) arises from very elegant
factorization properties of the gl(2)-invariant Lax operator

L+(z,Λ2) = z +
3∑

a=1

σa ⊗ Ja =
(

z + J3 J−

J+ z − J3

)
, (1.7)

which acts on the tensor product of a spin- 1
2 module C

2 and the infinite-dimensional highest
weight representation of gl(2) with an arbitrary spin j . The gl(2) generators J3, J± in this case
are realized in the Holstein–Primakoff form,

J− = b†(b†b − 2j
)
, J+ = −b, J3 = j − b†b, (1.8)

where b† and b are generators of the oscillator algebra

H: [
b,b†]= 1, h = b†b + 1

2 . (1.9)

Here we use gl(2) representation labels, such that Λ2 = (j,−j). The factorization in question
involves the two simpler “constituent” L-operators

L1(z) =
(

z − h1 b†
1

−b1 1

)
and L2(z) =

(
1 −b2

b†
2 z − h2

)
, (1.10)

with two sets of mutually commuting oscillators. The precise factorization formula reads

3 There are also various supersymmetric extensions of (1.3), the related bibliography can be found in [16,21].
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(
z1 − h1 b†

1

−b1 1

)(
1 −b2

b†
2 z2 − h2

)
= eb+

1 b+
2

(
z + J3 J−

J+ z − J3

)(
1 −b2
0 1

)
e−b+

1 b+
2 ,

(1.11)

where

z1 = z + j + 1
2 , z2 = z − j − 1

2 , (1.12)

and the generators J3, J±, are realized in the Holstein–Primakoff form (1.8) with b† and b
replaced by b†

1 and b1. It is useful to rewrite (1.11) in a compact form

L1(z1)L2(z2) = S L+(z,Λ2)G S −1, (1.13)

where

S = eb+
1 b+

2 , G =
(

1 −b2

0 1

)
. (1.14)

A similar formula for the reversed order product L2 L1 can also be found in [11]. These factor-
ization equations were used to derive the n = 2 version of (1.5) as well as the complete hierarchy
of all functional relations, leading to a new algebraic solution of the XXX magnetic spin chain.

It is interesting to note that the LHS of (1.11) contains two operators (1.10), which are first
order polynomials in the spectral parameter z, and, at the same time, their product in the RHS
is also a first order polynomial in z. This is explained by the fact that in (1.10) terms linear in z

are proportional to two different degenerate matrices whose product is equal to zero. Thus, in
contrast to (1.7), where the term containing z is proportional to the unit matrix, the operators
(1.10) start from degenerate matrices.

By extending this key observation to the gl(n) case, we have completely classified all first or-
der L-operators and studied their fusion and factorization properties. In general they correspond
to some special infinite-dimensional representations of the Yangian Y(gl(n)) related to a direct
product of gl(p) ⊗ Hp(n−p), involving the algebra gl(p) with p � n, and a number oscillator
algebras H. In particular, we find that the gl(n) Lax operator

L+(z,Λn) = z +
∑
a,b

eab ⊗ Jba (1.15)

for infinite-dimensional highest weight representations of the gl(n) generators Jab factorizes into
n partonic Lax operators La(z) (a = 1, . . . , n),

La(z) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −b1,a

. . .
...

1 −ba−1,a

b†
a,1 · · · b†

a,a−1 z − ha b†
a,a+1 · · · b†

a,n

−ba+1,a 1
...

. . .

−bn,a 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (1.16)

which is the generalization of (1.10) for the gl(n) case. Each of these operators contains n − 1
independent oscillator pairs (bba,b†

ab), b = 1,2, . . . , n, b �= a,[
bba,b†

ab

]= 1, ha =
∑(

b†
abbba + 1

2

)
. (1.17)
b �=a
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The factorization formula, generalizing (1.13), now reads

L1
(
z + λ′

1

)
L2
(
z + λ′

2

) · · ·Ln

(
z + λ′

n

)= SL L+(z | Λn)GL S −1
L . (1.18)

Here the shifted weights Λ′
n = Λn +ρn are as in (1.5), ρn is given by (4.18) and the quantities SL

and GL are generalizations of those in (1.14). Eq. (1.18) immediately implies the factorization
relation (1.5).

Finally, note that the formula (1.16) (and its generalization (2.20)) define extremely simple
first order solutions of the Yang–Baxter equation. The solutions are new and were not previously
considered in the literature. We will now proceed to derive and precise all above statements.

2. The Yang–Baxter equation and representations of Yangians

The Hamiltonian (1.1) with twisted boundary conditions commutes with a large commuting
family of T- and Q-operators. In this paper we explicitly construct these operators via traces
of certain monodromy matrices associated with infinite-dimensional representations of the har-
monic oscillator algebra. To do this we need to find appropriate solutions of the Yang–Baxter
equation

R(z1 − z2)
(
L(z1) ⊗ 1

)(
1 ⊗ L(z2)

)= (
1 ⊗ L(z2)

)(
L(z1) ⊗ 1

)
R(z1 − z2), (2.1)

where R(z) is an n2 × n2 matrix,

R(z): C
n ⊗ C

n → C
n ⊗ C

n, R(z) = z + P, (2.2)

acting in the direct product of two n-dimensional spaces Cn ⊗ Cn. The operator P permutes
the factors in this product. The operator L(z) is an n × n matrix, acting in a single copy of
the space C

n, whose matrix elements are operator-valued functions of the variable z belonging
to some associative algebra Y . To be more precise, the Yang–Baxter equation (2.1) provides
defining relations of the Yangian algebra Y = Y(gl(n)), introduced by Drinfeld [25] (for a recent
comprehensive review see [26]).

Let Lij (z), i, j = 1,2, . . . , n, denote the matrix elements of L(z). From (2.1) it follows that

(y − x)
[
Lij (x),Lk	(y)

]= Lkj (x)Li	(y) − Lkj (y)Li	(x), i, j, k, 	 = 1,2, . . . , n. (2.3)

Writing Lij (z) as a Laurent series with operator-valued coefficients

Lij (z) = L
(0)
ij + L

(1)
ij z−1 + L

(2)
ij z−2 + · · · , (2.4)

one obtains an infinite set of commutation relations

[
L

(r)
ij ,L

(s)
k	

]=
min(r,s)∑

a=1

(
L

(r+s−a)
kj L

(a−1)
i	 − L

(a−1)
kj L

(r+s−a)
i	

)
(2.5)

for the elements L
(r)
ij , r = 0,1,2, . . . ,∞. Thus the problem of solving Eq. (2.1) reduces to

the construction of representations of the infinite-dimensional quadratic algebra (2.5). In our
approach the most important role is played by the simplest representations, where the series
(2.4) truncates after the second term. To within a trivial change in the normalization these repre-
sentations correspond to L-operators, which are first order polynomials in the parameter z. All
previously known L-operators of this type can be brought to the form

Lij (z) = zδij + Jji , (2.6)
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where Jij , i, j = 1,2, . . . , n denotes the standard set of generating elements of the algebra gl(n),

[Jij , Jk	] = δkj Ji	 − δi	Jkj . (2.7)

The Yang–Baxter equation for the L-operator (2.6) is satisfied on the algebraic level by virtue of
the commutation relations (2.7). Therefore one can choose in (2.6) arbitrary gl(n) representations
for the generators Jij . It is obvious that the addition of a constant to the spectral parameter z

in (2.6) can be compensated by the subtraction of the same constant from the central element

Cn = J11 + J22 + · · · + Jnn (2.8)

of the algebra (2.7). Therefore it is tempting to eliminate this spurious degree of freedom by, for
instance, imposing the condition Cn = 0 and restricting (2.7) to the algebra sl(n). Here we will
not do so, but will instead work with the full algebra gl(n). This is helpful for clearly exposing
the Weyl group symmetry of the problem at hand.

We will now show that, excitingly, there exist further first order L-operators, different
from (2.6). We will present their complete classification. To begin, let us recall a simple symme-
try of the Yang–Baxter equation (2.1). The R-matrix (2.2) is GL(n)-invariant in the sense

R(z) = (G ⊗ G)R(z) (G ⊗ G)−1, G ∈ GL(n), (2.9)

where G is any non-degenerate n×n matrix. It follows that if L(z) satisfies (2.1), then any other
operator of the form

L̃(z) = FL(z)G, F,G ∈ GL(n), (2.10)

with arbitrary F,G ∈ GL(n) satisfies again the same equation. Furthermore, the matrices F, G

may contain operator-valued matrix elements, as long as these commute among themselves and
with all other elements of L(z).

From (2.5) it then immediately follows that the elements L
(0)
ij are central, i.e. they commute

among themselves and with all L
(r)
ij for r � 1. Therefore, we may regard L(0) as a numerical

n×n matrix. Applying the transformations (2.10), this matrix can always be brought to diagonal
form

L(0) = diag(1,1, . . . ,1︸ ︷︷ ︸
p-times

,0,0, . . . ,0︸ ︷︷ ︸
(n−p)-times

), p = 1,2, . . . , n, (2.11)

where p is an integer 1 � p � n. The number p coincides with the rank of the matrix L(0). It
is invariant under the linear transformations (2.10). Evidently, if p = n, the leading term in the
series expansion (2.4) is the unit matrix. This case is well studied in the existing representation
theory. In fact, the assumption that the series (2.4) starts with the unit matrix is usually included
into the definition of the Yangian. Here we will not make this assumption, and will consider
instead the more general case with arbitrary 1 � p � n.

Let us concentrate on the simple case when the series (2.4) truncates after the second term,
i.e. assume that all L

(r)
ij = 0 for r � 2. It is convenient to write the only remaining non-trivial

coefficient L(1) as a block matrix

L(1) = , (2.12)
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where A,B,C and D are operator-valued matrices of dimensions p×p, p×(n−p), (n−p)×p

and (n − p) × (n − p), respectively. We furthermore assume that all undotted indices run over
the values {1,2, . . . , p}, whereas their dotted counterparts take on the values {p + 1, . . . , n}.

1 � a, b � p, p + 1 � ȧ, ḃ � n. (2.13)

Substituting (2.11) and (2.12) into (2.5), one immediately realizes that the elements Dȧḃ are
central, i.e. they commute among themselves and with all other elements of L(1). The other
commutation relations read

[Aab,Ace] = δaeAcb − δcbAae, [Aab,Bcċ] = −δbcBaċ, [Aab,Cċc] = +δacCċb,

[Baḃ,Cȧb] = δabDȧḃ, [Baḃ,Bcė] = 0, [Cȧb,Cċe] = 0.

(2.14)

Using the remaining freedom of making transformations (2.10), which do not affect the form of
L(0) in (2.11), one can then bring the matrix D to diagonal form with zeroes and ones on the
diagonal, in similarity to (2.11). Here we are only interested in highest weight representations
of the algebra (2.14). These representations admit a definition of the trace, as required for the
construction of transfer matrices in Section 4 below. For this reason we only need to consider the
non-degenerate case,4 detD �= 0, where the diagonal form of D coincides with the (n − p) ×
(n − p) unit matrix

Dȧḃ = δȧḃ, p + 1 � ȧ, ḃ � n. (2.15)

The resulting algebra (2.14) can be realized as a direct product of the algebra gl(p) with p(n−p)

copies of the harmonic oscillator algebra:

An,p = gl(p) ⊗ H⊗p(n−p). (2.16)

Introduce p(n − p) independent oscillator pairs (bȧb,b†
bȧ), where ȧ = p + 1, . . . , n and b =

1, . . . , p, satisfying the relations[
bȧb,b†

cė

]= δȧėδbc. (2.17)

Furthermore, let Jab , a, b = 1,2, . . . , p, denote the generators of the algebra gl(p) defined
by (2.7), where n is replaced by p. The generators Jab commute with all oscillator operators
in (2.17). The connection of the algebra (2.14) with the product (2.16) is established by the
following relations

Aab = J ab −
n∑

ċ=p+1

(
b†

aċbċb + 1
2δab

)
, Baḃ = b†

aḃ
, Cȧb = −bȧb, (2.18)

where the upper bar in the notation J ab denotes the transposition of the indices a and b,

J ab ≡ Jba. (2.19)

The corresponding L-operator can be written as a block matrix,

4 It appears that for detD = 0 the algebra (2.14) does not admit a definition for a suitable trace as needed for the
construction of transfer matrices commuting with the Hamiltonian (1.1). See footnote 7 in Section 4 for additional
details.
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L{1,2,...,p}(z) = , (2.20)

where the rows are labeled by the indices a or ȧ and the columns by b or ḃ, in similarity to (2.12).
Note that the p × p matrix of the generators of gl(p), which enters the upper left block, is
transposed, i.e. the a-th row and b-th column in this block contains the element J ab = Jba .

The matrix (2.20) contains the parameter z only in its first p diagonal elements. By simultane-
ous permutations of rows and columns in (2.20) one can move these z-containing elements to p

arbitrary positions on the diagonal, labeled by a set of integers I = {a1, a2, . . . , ap}. We shall
denote the L-operator obtained in this way by LI (z). Within this convention the operator (2.20)
corresponds to the set I = {1,2, . . . , p}, as indicated by the subscript in the LHS of this equation.

The “partonic” L-operator (1.16) is a particular case of (2.20) with p = 1, while the standard
L-operator (2.6) corresponds to p = n. We would like to stress that for p < n the formula (2.20)
yields novel solutions of the Yang–Baxter equation (2.1). The only exception is the simple case
n = 2, p = 1, where this solution was previously known [27–29]. Note, also that the n = 3
solutions can be obtained in the rational limit of trigonometric solutions obtained in [30,31].

The formula (2.20) provides an evaluation homomorphism of the infinite-dimensional Yan-
gian algebra (2.5) into the finite-dimensional algebra (2.16),

Y
(
gl(n)

)→ gl(p) ⊗ H⊗p(n−p), 1 � p � n. (2.21)

This means that for any representation of this finite-dimensional algebra Eq. (2.20) automati-
cally defines a representation of the Yangian and a matrix solution of the Yang–Baxter equa-
tion (2.1). Conversely, any first order matrix L-operator with a rank p leading term L(0) and a
non-degenerate matrix D in (2.12) is, up to a transformation (2.10), equivalent to the canonical
L-operator (2.20) with some particular representation of the algebra (2.16). It is worth noting
that the transformation (2.10)

L{1,2,...,p}(z) → F L{1,2,...,p}(z)F
−1, (2.22)

where F is a block diagonal matrix containing the matrices Fp ∈ GL(p), Fn−p ∈ GL(n − p) on
the diagonal, leaves the form of (2.20) unchanged.

In preparation for a necessary analysis below we need to introduce some notation for the
irreducible highest weight representations of gl(n). The highest weight vector v0 is defined by
the conditions

Ja,a+1v0 = 0, a = 1,2, . . . , n − 1. (2.23)

Here we will use gl(n)-type representation labels5 Λn = (λ1, λ2, . . . , λn) where

Jaav0 = λav0, a = 1,2, . . . , n. (2.24)

5 The sl(n)-type weights μ = (μ1,μ2, . . . ,μn−1),

μa = λa − λa+1, a = 1,2, . . . , n − 1,

are inconvenient from the point of view of the Weyl group symmetry. They will not be used in this paper.
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We will denote by π+
Λn

the corresponding infinite-dimensional highest weight representation with
arbitrary weights, and by πΛn the finite-dimensional irreducible representation with

λ1 � λ2 � · · · � λn, λa − λb ∈ Z. (2.25)

The analysis of this section extends the previous results of [27] devoted to n = 2 case. The
properties of the finite-dimensional representation of the Yangian Y(gl(2)) associated with the
L-operator (2.6) can be found in [32,33,26].

3. Fusion and factorization of L-operators

An essential part of our analysis in the following is based on some remarkable decomposition
properties of the product of two L-operators of the form (2.20). The Yangian Y = Y(gl(n)) is a
Hopf algebra, see e.g. [26]. In particular, its co-multiplication

Y → Y ⊗ Y (3.1)

is generated by the matrix product of two L-operators, corresponding to two different copies of Y
appearing on the RHS of (3.1).

Our main observation is related to the co-product of two operators LI (z) and LJ (z), defined
by (2.20) for two non-intersecting sets I ∩ J = ∅,

L(z) = L[1]
I (z + z1)L[2]

J (z + z2), (3.2)

where the quantities z1,2 denote arbitrary constants, and the notation [1] and [2] corresponds to,
respectively, the left and right copies of Y on the RHS of (3.1). Let the sets I and J contain p1
and p2 elements, respectively. It is obvious that

(i) the product (3.2) is of the first order in the variable z, and that
(ii) the matrix rank of the term linear in z in (3.2) is equal to p1 + p2.

The simple meaning of the co-multiplication is that the matrix product of two L-operators, each
of which satisfies by itself the Yang–Baxter equation (2.1), solves this equation as well. All
solutions which possess the above properties (i) and (ii) were classified in the previous sec-
tion. Therefore, by using a transformation of type (2.9), the RHS of (3.2) can be brought to a
particular case of the canonical form (2.20) with p = p1 + p2. It turns out, however, that the
expressions for the matrix elements of the resulting L-operator are rather complicated and their
explicit connection to those of (2.20) is far from obvious, even though these elements satisfy
the same commutation relations. In order to make this connection more transparent we apply a
suitable operatorial similarity transformation S to each matrix element such that it rearranges the
basis of the oscillator algebras contained in An,p1 ⊗ An,p2 . Furthermore, the formula (3.2) con-
tains two constants z1 and z2. Obviously only their difference is an essential parameter, whereas
the sum may be absorbed into the spectral parameter z. Therefore, without loss of generality, one
can set

z1 = λ + p2
2 , z2 = −p1

2 , (3.3)

where λ is arbitrary. This particular parametrization is chosen to simplify the subsequent formu-
lae.
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Proceeding as described above, one obtains

L(z) = L[1]
I

(
z + λ + p2

2

)
L[2]

J

(
z − p1

2

)= S
(
LI∪J (z)G

)
S −1, (3.4)

where G is a z-independent matrix, whose elements commute among themselves and with all
elements of LI∪J (z). It should be stressed that the resulting L-operator LI∪J (z) is only a spe-
cial case of (2.20), since it is connected to some specific realization of the algebra An,p1+p2 in
terms of the direct product of the two algebras An,p1 ⊗ An,p2 as defined in (2.16). Note that the
RHS of (3.4) is of course a particular case of the transformation (2.10) with F ≡ 1. The explicit
expression for the matrices appearing in (3.4) are presented below. Some additional details of
calculations are given in Appendix A.

By permuting rows and columns any two non-intersecting sets I and J can be reduced to the
case when I = {1, . . . , p1} and J = {p1 + 1, . . . , p1 +p2}. So it is sufficient to consider this case
only. Introduce three types of indices

a, b,∈ I, ȧ, ḃ ∈ J, ä, b̈ ∈ {p1 + p2 + 1, . . . , n}. (3.5)

It will be convenient to rewrite (2.20) as a 3 × 3 block matrix

L[1]
I (z) = L[1]

{1,2,...,p1}(z)

= , (3.6)

where the size of the diagonal blocks is equal to p1 × p1, p2 × p2 and (n − p1 − p2) × (n −
p1 − p2), respectively. The superscript “[1]” indicates that the corresponding operators belong
to the “first” algebra in the co-multiplication (3.1), which in the considered case is realized by
the algebra An,p1 defined in (2.16). Similarly, one can write L[2]

J (z) as

L[2]
J (z) = L[2]

{p1+1,...,p1+p2}(z)

= , (3.7)

where superscript “[2]” labels operators from the “second” algebra, which is the algebra An,p2 .
By construction, all operators labeled by the superscript “[1]” commute with those labeled by
the superscript “[2]”. Recall also that the algebra (2.16) has a direct product structure, so the
generators J [1]

ab and J [2]
ȧḃ

commute with all oscillator operators.
With the notation introduced above the similarity transformation S has the form

S = S1 S2, (3.8)
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where

S1 = exp

(∑
c∈I

∑
ċ∈J

b† [1]
cċ b† [2]

ċc

)
, (3.9)

and

S2 = exp

(∑
c∈I

∑
ċ∈J

∑
c̈ /∈I∪J

b† [1]
cċ b† [2]

ċc̈ b[1]
c̈c

)
. (3.10)

The matrix G has the form

G = . (3.11)

The similarity transform S1 makes it manifest that the matrix entries of LI∪J (z) commute with
the entries of G, see also (3.17). The similarity transform S2 brings LI∪J (z) to the form (2.20).

Finally, we want to write the operator LI∪J (z) in (3.4) in the form (2.20) with p = p1 +p2. To
do this we need to make the following identifications for the generators Jij , i, j = 1, . . . , p1 +p2,
in the upper diagonal block of (2.20)

Jab = J [1]
ab −

∑
ċ∈J

b† [1]
aċ b[1]

ċb + λδab,

Jȧḃ = J [2]
ȧḃ

+
∑
c∈I

b† [1]
cȧ b[1]

ḃc
,

Jȧb = −b[1]
ȧb ,

Jaḃ =
(∑

c∈I

∑
ċ∈J

b† [1]
aċ b† [1]

cḃ
b[1]

ċc

)
− λb† [1]

aḃ
+
∑
ċ∈J

b† [1]
aċ J [2]

ċḃ
−
∑
c∈I

J [1]
ac b† [1]

cḃ
, (3.12)

where we have used the convention (3.5) for numerating indices and Jij ≡ Jji .
Furthermore, let the indices A, B run over the values 1,2, . . . , p1 +p2 and Ȧ, Ḃ over the values

p1 + p2 + 1, . . . , n. Introduce operators

cȦB =
{

b[1]
ȦB

, B ∈ I,

b[2]
ȦB

, B ∈ J,
c†

AḂ
=
{

b† [1]
AḂ

, A ∈ I,

b† [2]
AḂ

, A ∈ J.
(3.13)

Then the L-operator LI∪J (z) from (3.4) can be written as

L{1,2,...,p1+p2}(z) = , (3.14)

which has the required form as in (2.20).
The formulae (3.12) give a homomorphism of the algebra gl(p1 + p2) into the direct product

gl(p1 + p2) → gl(p1) ⊗ gl(p2) ⊗ H⊗p1p2 = Bp ,p , (3.15)
1 2
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which for p1,2 �= 0 has only infinite-dimensional representations6 (similar representations ap-
peared in [34]). An important feature of this map is that if one choses highest weight repre-
sentations for both algebras gl(p1) and gl(p2) then the formulae (3.12) define a highest weight
representation of gl(p1 + p2). It is easy to check that the conditions (2.23) are satisfied on the
product of the corresponding highest weight vectors v

[1]
0 , v

[2]
0 and the standard Fock vacuum for

all oscillator algebras appearing in (3.12). The gl(p1 +p2)-weight of the resulting representation
is easy to obtain from (3.12)

Λp1+p2 = (
λ

[1]
1 + λ,λ

[1]
2 + λ, . . . , λ[1]

p1
+ λ,λ

[2]
1 , λ

[2]
2 , . . . , λ[2]

p2

)
, (3.16)

where λ is an arbitrary parameter from (3.4).
The L-operators in the first product in (3.4) have the superscripts [1] and [2], which indicate

that they belong to different algebras (2.16) with p = p1 and p = p2, respectively. By the same
reason it is useful to rewrite the RHS of (3.4) supplying similar superscripts

(3.4) = S
(
L[1′]

I∪J (z)G
[2′])S −1, (3.17)

where the superscript [1′] indicates the algebra (3.15) and the superscript [2′] indicates the prod-
uct of oscillator algebras H⊗p1p2 . Note that the matrix G could be considered as a z-independent
L-operator, also satisfying the Yang–Baxter equation (2.1). In view of this Eq. (3.17) also de-
scribes the co-multiplication of two representations of the Yangian.

Consider now some particular consequences of formula (3.4). Using it iteratively with p1 = 1
and taking into account (3.16) one can obtain an arbitrary product of the elementary L-operators
(1.16). Let I = (a1, . . . , ap) be an ordered integer set, 1 � a1 < · · · < ap � n, and L+

I (z | Λp) a
specialization of the L-operator (2.20) to the infinite-dimensional highest weight representation
π+

Λp
of the algebra gl(p)

L+
I (z | Λp) = π+

Λp

[
LI (z)

]
, Λp = (λ1, λ2, . . . , λp). (3.18)

Define also the shifted weights (cf. (4.18))

Λ′
p = (

λ′
1, λ

′
2, . . . , λ

′
p

)
, λ′

j = λj + p − 2j + 1

2
, j = 1, . . . , p. (3.19)

Then it follows that from (3.4)

La1

(
z + λ′

1

)
La2

(
z + λ′

2

) · · ·Lap

(
z + λ′

p

)= SI L+
I (z | Λp)GI S −1

I (3.20)

where the matrices SI and GI are products of the expressions of types (3.8) and (3.11) arising
from the repeated use of the formula (3.4). In the particular case p = n the last formula provides
the factorization for the L-operator (2.6),

L+(z | Λn) = π+
Λn

[
L(z)

]
, (3.21)

evaluated for the infinite-dimensional highest weight representation π+
Λn

in the auxiliary space,

L1
(
z + λ′

1

)
L2
(
z + λ′

2

) · · ·Ln

(
z + λ′

n

)= SL L+(z | Λn)GL S −1
L . (3.22)

An independent proof of this fact is given in Appendix B.

6 The fact that the oscillator algebra has no finite-dimensional representation can be proved easily by taking trace of the

commutation relation [b,b†] = 1. If b,b† are represented by finite-dimensional matrices the trace of the LHS vanishes
while the RHS gives the dimension of the representation, leading to a contradiction.
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4. Construction of the Q-operators

The purpose of this section is to define the T- and Q-operators. They have to commute with
the Hamiltonian (1.1) of the twisted compact gl(n)-spin chain of length L. These operators act
on the quantum space V , which is an L-fold tensor product of the fundamental representations
of the algebra gl(n),

V = C
n ⊗ C

n ⊗ · · · ⊗ C
n︸ ︷︷ ︸

L-times

. (4.1)

As before, solutions of the Yang–Baxter equation (2.1) are considered as n by n matrices, acting
in the quantum space of a single spin. Their matrix elements are operators in some representation
space V of the Yangian algebra (2.3). This representation space will be called here the auxiliary
space. For each solution of (2.1) one can define a transfer matrix,

TV (z) = TrV
{
DL(z) ⊗ L(z) ⊗ · · · ⊗ L(z)

}
, (4.2)

where the tensor product is taken with respect to the quantum spaces C
n, while the operator

product and the trace is taken with respect to the auxiliary space V . The quantity D is a “boundary
twist” operator acting only in auxiliary space, i.e. it acts trivially in the quantum space. This
boundary operator is completely determined by the requirement of commutativity of the transfer
matrix (4.2) with the Hamiltonian (1.1), which leads to the following conditions

D
(
L(z)

)
ab

D
−1 = ei(Φb−Φa)

(
L(z)

)
ab

, a, b = 1, . . . , n, (4.3)

where the fields Φa are the same as in (1.2). Note that these fields enter (4.3) only through their
differences. It is convenient to set

n∑
a=1

Φa = 0. (4.4)

Solving (4.3) for the general L-operator (2.20) with an arbitrary set I = {a1, a2, . . . , ap}, one
obtains

DI = exp

{
i
∑
a∈I

Φa Jaa − i
∑
a∈I

∑
ḃ /∈I

(Φa − Φḃ)b
†
aḃ

b
ḃa

}
. (4.5)

Recall that DI is related to D in the same way as LI is related to L.
In the following we will use some important properties of the trace over the Fock representa-

tions of the oscillator algebra[
b,b†]= 1, [h,b] = −b,

[
h,b†]= b†, h = b†b + 1

2 . (4.6)

This algebra has two Fock representations,

F+: b|0〉 = 0, |k + 1〉 = b†|k〉, (4.7)

and

F−: b†|0〉 = 0, |k + 1〉 = b|k〉, (4.8)

spanned on the vectors |k〉, k = 0,1,2, . . . ,∞. These representations can be obtained from each
other via a simple automorphism of (4.6),
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b → −b†, b† → b, h → −h. (4.9)

Let P(b,b†) be an arbitrary polynomial of the operators b and b†. Below it will be convenient
to use a normalized trace over the representations F±,

T̂rF
{
eiΦhP(b,b†)

} def= TrF {eiΦhP(b,b†)}
TrF {eiΦh} , F = F±, (4.10)

where F is either F+ or F−, and TrF denotes the standard trace. An important feature of the
normalized trace (4.10) is that it is completely determined by the commutation relations (4.6) and
the cyclic property of the trace. It is therefore independent of a particular choice of representation
as long as the traces in the RHS of (4.10) converge. Alternatively, one can reproduce the same
result by using explicit expressions for the matrix elements of the oscillator operators in (4.10).
Then the trace over F+ converges when ImΦ > 0 and the trace over F− when ImΦ < 0. Both
ways of calculation lead to the same analytic expression for the normalized trace. Thus it is not
necessary to specify which of the two representations F± is used.

We are now ready to define various transfer matrices all commuting with the Hamilto-
nian (1.1). Consider the most general L-operator (2.20) with an arbitrary set I = {a1, a2, . . . , ap},
where p = 1,2, . . . , n. Recall that the matrix elements of (2.20) belong to the direct prod-
uct (2.16) of the algebra gl(p) and of p(n − p) oscillator algebras. Choose a finite-dimensional
representation πΛp

with the highest weight Λp for the gl(p)-factor of this product. Then substi-
tuting (2.20) and (4.5) into (4.2) one can define rather general transfer matrices

XI (z,Λp) = eiz(
∑

a∈I Φa) TrπΛp
T̂rF p(n−p)

{
MI (z)

}
, (4.11)

where MI (z) is the corresponding monodromy matrix,

MI (z) = DI LI (z) ⊗ LI (z) ⊗ · · · ⊗ LI (z). (4.12)

Here T̂rF p(n−p) denotes the normalized trace (4.10) for all involved oscillator algebras7 while
TrπΛp

denotes the standard trace over the representation πΛp of gl(p). The exponential scalar
factor in front of the trace is introduced for later convenience.

Similarly one can define a related quantity where the gl(p)-trace is taken over an infinite-
dimensional highest weight representation π+

Λp
,

X+
I (z,Λp) = eiz(

∑
a∈I Φa) Trπ+

Λp
T̂rF p(n−p)

{
MI (z)

}
, (4.13)

7 It is easy to check that all possible expressions under the trace in (4.11) for each oscillator algebra are exactly as in
the LHS of (4.10) for some polynomial P and some value of Φ . Thus the definition (4.10) is sufficient to calculate all
oscillator traces in (4.11).

We would like to stress that the possibility to define a non-trivial trace over representations of the algebra (2.14),
suitable for the definition of the transfer matrix (4.2) with twisted boundary conditions, heavily relies on the fact that
the matrix D

ȧḃ in (2.14) is non-degenerate. Indeed, if this non-degeneracy condition is not met then the algebra (2.14)
would contain at least one e(2) sub-algebra. The later is generated by three elements h,b,b∗, obeying the relations

e(2): [
b,b∗]= 0, [h,b] = −b,

[
h,b∗]= b∗.

Proceeding as above with the construction of the transfer matrix one would come across to the necessity of defining
traces of the form Tr{eiΦhP(b,b∗)}. However, for a non-zero field Φ , most of these traces must immediately vanish by
virtue of the cyclic property of the trace and the above commutation relations of the e(2) algebra. For instance, using
these relations one can easily show that

Tr
{
eiΦh(bb∗)k}= eikΦ Tr

{
eiΦh(bb∗)k} ⇒ Tr

{
eiΦh(bb∗)k}≡ 0, if Φ �= 0, k � 1.
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while the rest of the expression remains the same as in (4.11). Note that in the case of (4.11) the
weights Λp = (λ1, λ2, . . . , λp) satisfy the conditions (2.25). In contradistinction, in (4.13) these
weights are arbitrary.

In the limiting case p = n, the general L-operator (2.20) simplifies to (2.6), while the expres-
sion (4.5) simplifies to

D = D{1,2,...,n} = exp

{
i

n∑
a=1

Φa Jaa

}
. (4.14)

In this case the definition (4.11) reduces to that for the standard T-operator

TΛn(z) ≡ X{1,2,...,n}(z,Λn) = TrπΛn

{
D L(z) ⊗ L(z) ⊗ · · · ⊗ L(z)

}
, (4.15)

associated with the finite-dimensional representation πΛn of the algebra gl(n) in the auxiliary
space. Here L(z) denotes the L-operator (2.6). Likewise, the formula (4.13) reduces to the T-
operator

T+
Λn

(z) = X+
{1,2,...,n}(z,Λn) (4.16)

associated with the infinite-dimensional representation π+
Λn

. The above two T-operators are con-
nected due the Bernstein, Gel’fand and Gel’fand (BGG) resolution of the finite-dimensional
modules [35]. The BGG result allows one to express finite-dimensional highest weight modules
in terms of an alternating sum of infinite-dimensional highest weight modules. This implies that
the T-operator (4.15) for a finite-dimensional module can be written in terms of (4.16) as

TΛn(z) =
∑
σ∈Sn

(−1)l(σ )T+
σ(Λn+ρn)−ρn

(z), (4.17)

where ρn is a constant n-component vector

ρn =
(

n − 1

2
,
n − 3

2
, . . . ,

1 − n

2

)
, (4.18)

which coincides with the half sum of the positive roots of the algebra sl(n). The summation
in (4.17) is taken over all permutations of n elements, σ ∈ Sn, and l(σ ) is the parity of the
permutation σ . The relation (4.17) and its connection to the BGG resolution were first obtained
in [19] in the context of Uq(ŝl(3)), while the n = 2 case was previously considered in [6,22].

Similarly, for (4.11) one has

XI (z,Λp) =
∑
σ∈Sp

(−1)l(σ )X+
I

(
z, σ (Λp + ρp) − ρp

)
, (4.19)

where ρp is a p-component vector defined as in (4.18) with n replaced by p.
Another limiting case of (4.11) corresponds to the representation πΛp

turning into the trivial
one-dimensional representation of gl(p) with weight Λ = (0,0, . . . ,0). As we shall see below
the resulting operators

QI (z) = XI

(
z, (0)

)
(4.20)

are actually the Q-operators, whose eigenvalues appear in the nested Bethe Ansatz equations.
Let us enumerate these Q-operators. It is convenient to start formally from the exceptional case
p = 0, corresponding to an empty set I = ∅. By definition we set
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Q∅(z) ≡ 1. (4.21)

For the next level p = 1 there are obviously n sets I consisting of just one element I = {a},
a = 1,2, . . . , n. The general L-operator (2.20) in this case takes the simple form (1.16) and the
twist operator (4.5) simplifies to

Da ≡ D{a} = exp

{
−i

∑
ċ /∈I

(Φa − Φċ)b
†
aċbċa

}
, a = 1,2, . . . , n. (4.22)

In this way one obtains from (4.11)

Qa(z) ≡ Q{a}(z) = X{a}
(
z, (0)

)= eizΦa T̂rF (n−1)

{
Da La(z) ⊗ La(z) ⊗ · · · ⊗ La(z)

}
,

(4.23)

where a = 1,2, . . . , n and La(z) is given by (1.16).
More generally, for the level p there are

(
n
p

)
increasing integer sets I = {a1, . . . , ap} ⊆

{1,2, . . . , n}, which numerate the Q-operators (4.20). For the highest level p = n the definitions
(4.20) and (4.11) immediately lead to the result

Q{1,2,...,n}(z) = zL, (4.24)

where L is the length of the chain. Altogether there are 2n different Q-operators,8 includ-
ing (4.21) and (4.24). These operators form in conjunction with all T- and X-operators a com-
muting family and therefore can be simultaneously diagonalized. It is easy to see that their
eigenvalues have the form

QI (z) = eiz(
∑

a∈I Φa)

mI∏
k=1

(
z − zI

k

)
, mI =

∑
a∈I

ma, (4.25)

where, for each eigenstate, the numbers ma are the conserved occupation numbers,

m1 + m2 + · · · + mn = L, (4.26)

defined in the Introduction.
We would like to stress, that in general the operators XI (z,Λp), defined in (4.11), involve the

trace over a representation of the Lie algebra gl(p) and the trace over a number of Fock represen-
tations of the oscillator algebra, whereas the T-operators involve only the Lie algebra trace and
the Q-operator only the oscillator traces. This is why we denoted the “hybrid” operators (4.11)
by a distinct symbol X (thereby continuing a steady tradition of the field which already have
Y-systems, T-systems, Q-systems, etc., to occupy all letters of the alphabet).

5. Functional relations

The results of Section 3 imply various functional relations for the Q-operators. To derive them
we need to use some additional properties of the twist operators (4.5) which are not immediately
obvious from their definition (4.3). Let DI and DJ be the operators (4.5), corresponding to
L[1]

I (z) and L[2]
J (z) from the LHS of (3.4). By explicit calculation one can check that the product

of these operators commutes with the similarity transformation S defined in (3.8),

8 The Q-operators can be conveniently associated with nodes of a hypercubical Hasse diagram. They are labelled by
their index sets I = {a1, a2, . . . , ap}, ordered by inclusion. See next section, and Appendix C.
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[DI DJ , S] = 0. (5.1)

Moreover this product can be rewritten in the form

DI DJ = DI∪J DG, (5.2)

where DI∪J and DG are the twist operators obtained from (4.3) for the operator LI∪J (z) and
the z-independent L-operator G from the RHS of (3.4). Again the relation (5.2) is verified by
direct calculation, where one needs to take into account the explicit form of (3.11), (3.12), (3.13)
and (3.14).

Next, define a scalar factor, cf. (1.4),

�I (Φ) = �{a1,a2,...,ap}(Φ) =
∏

1�i<j�p

2i sin

(
Φai

− Φaj

2

)
, (5.3)

which depends on the set I and the fields Φ1,Φ2, . . . ,Φn. Combining (3.4) with the definition
(4.13) and taking into account (5.1) and (5.2) one obtains

�I X+
I

(
z + p2

2 ,Λp1

)
�J X+

J

(
z + λ − p1

2 ,Λp2

)= �I∪J X+
I∪J (z,Λp1+p2). (5.4)

There are two nontrivial steps in the derivation of the last formula which require explanations.
First, the simple transfer matrix

TG = T̂rF p1p2 {DG G ⊗ G ⊗ · · · ⊗ G} = 1 (5.5)

that arises in the calculations is equal to the identity operator. Second, the scalar factors in (5.4)
arise due to the difference in the definition of the trace over the oscillator algebras (normalized
trace (4.10)) and over the representation of gl(p) (standard trace). From (3.15) it is clear that
p1p2 oscillator pairs have to be included in the definition of the generators in (3.12) in order to
support the Holstein–Primakoff realization of the infinite-dimensional representation π+

Λp1+p2
of

the algebra gl(p1 + p2).
A particular simple case of (5.4) arises when p2 = 1 and J = {ap+1},

�I X+
I

(
z + 1

2 ,Λp

)
Qap+1

(
z + λp+1 − p

2

)= �I∪ap+1X+
I∪ap+1

(z,Λp+1), (5.6)

where by the definition (4.23) one has Qa(z) ≡ X{a}(z, (0)). Iterating the last formula one obtains

�I X+
I (z,Λp) = Qa1

(
z + λ′

1

)
Qa2

(
z + λ′

2

) · · ·Qap

(
z + λ′

p

)
, (5.7)

where the notation here is the same as in (3.19) and (3.20). Next, applying (4.19) one gets

�I XI (z,Λp) = det
∥∥Qai

(
z + λ′

j

)∥∥
1�i,j�p

, (5.8)

and setting Λp = (0) one finally arrives at

�I QI (z) = det
∥∥Qai

(
z − j + p+1

2

)∥∥
1�i,j�p

. (5.9)

Note also that in a particular case I = {1,2, . . . , n} the formula (5.8) leads to the determinant
expression [6,17,22,19,24] for transfer matrix (4.15),

�{1,2,...,n}TΛn(z) = det
∥∥Qi

(
z + λ′

j

)∥∥
1�i,j�n

, (5.10)

where �{...} is defined in (5.3) and λ′ in (3.19).
j
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Fig. 2. Jacobi determinant formula.

As previously mentioned the 2n different operators QI can be assigned to the nodes of a
hypercubic Hasse diagram. We will now show that four Q-operators belonging to the same
quadrilateral as in Fig. 5 satisfy a remarkably simple functional equation, which can be iden-
tified with the famous Hirota equation from the theory of classical discrete evolution equation.
Define a matrix

Mij ≡ Qai

(
z − j + p+1

2

)
, i, j ∈ {0, . . . , p + 1}, (5.11)

where {a0, a1, . . . , ap, ap+1} in an increasing sequence of p + 2 integers which contains the
subsequence I = {a1, . . . , ap}. Denote a ≡ a0 and b ≡ ap+1. Let us now use Jacobi’s formula
for determinants (see Fig. 2) for the matrix (5.11). Applying (5.9) for the subdeterminants one
obtains the following operatorial functional relation9

�{a,b}QI∪a∪b(z)QI (z) = QI∪a

(
z − 1

2

)
QI∪b

(
z + 1

2

)− QI∪b

(
z − 1

2

)
QI∪a

(
z + 1

2

)
, (5.12)

which was already stated in the introduction as (1.3), and where �a,b is given in (1.4). Since all
Q-operators commute with each other the same relation (5.12) holds also for the corresponding
eigenvalues. We will use it to derive Bethe equations in the next section.

6. Bethe equations

The connection between the Hirota equations (5.12) and the Bethe Ansatz equations is well
understood [6,18–20,36,16]. Consider Eq. (5.12) at the eigenvalue level. The reader might find
it useful to look at the examples of Hasse diagrams in the introduction and in Appendix C when
following through the following derivation. Let us denote the zeroes of QI∪a(z) by zI∪a

k . Taking
z + 1

2 = zI∪a
k and z − 1

2 = zI∪a
k , Eq. (5.12) reads

QI∪a∪b

(
zI∪a
k − 1

2

)
QI

(
zI∪a
k − 1

2

)∼ QI∪a

(
zI∪a
k − 1

)
QI∪b

(
zI∪a
k

)
, (6.1)

QI∪a∪b

(
zI∪a
k + 1

2

)
QI

(
zI∪a
k + 1

2

)∼ −QI∪a

(
zI∪a
k + 1

)
QI∪b

(
zI∪a
k

)
, (6.2)

respectively, where a, b /∈ I . Taking the ratio of these two equations above one obtains

−1 = QI (z
I∪a
k − 1

2 )

QI (z
I∪a
k + 1

2 )

QI∪a(z
I∪a
k + 1)

QI∪a(z
I∪a
k − 1)

QI∪a∪b(z
I∪a
k − 1

2 )

QI∪a∪b(z
I∪a
k + 1

2 )
. (6.3)

Here I can also be the empty set. In this case we can remove Q∅(z) from the equation using
(4.21). The number of elements in I ∪ a ∪ b cannot exceed n, therefore I contains at most n − 2
elements. Thus one obtains n−1 different relations of the type (6.3), with various cardinalities of
the set I . This exactly matches the number of levels of nested Bethe equations for the gl(n)-spin
chain.

9 More general relations involving operators (5.8) can be obtained in the same way by replacing the arguments of the
Q-operators in (5.11) with arbitrary constants zj , j = 0, . . . , p + 1.
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Let us take any sequence (a1, . . . , an) of elements of the set {1, . . . , n}. We construct a se-
quence of ascending sets ∅ = I0 ⊂ I1 ⊂ · · · ⊂ In = {1, . . . , n} such that10 Ii = Ii−1 ∪ ai . Then
for each Ii , i = 1, . . . , n − 1, we can rewrite (6.3) as

−1 = QIi−1(z
Ii

k − 1
2 )

QIi−1(z
Ii

k + 1
2 )

QIi
(z

Ii

k + 1)

QIi
(z

Ii

k − 1)

QIi+1(z
Ii

k − 1
2 )

QIi+1(z
Ii

k + 1
2 )

. (6.4)

We will call an equation with zIi roots the i-th level equation. One need to use (4.21) for the
lowest level, i = 1, and (4.24) for the highest level equation with i = n − 1.

It is not difficult to see that the system of functional equations (6.3) already corresponds to the
nested system of Bethe equations of the gl(n) compact magnets. To recover their traditional form,
we merely need to substitute the eigenvalue formula (4.25) into (6.4). The crucial point of our
approach is that the analytic structure of (4.25) is rigorously derived without any assumptions.
It immediately follows from the explicit construction of the Q-operators in Section 4. Then one
can rewrite (6.4) as

ei(Φa2 −Φa1 ) =
∏
k �=l

z
I1
l − z

I1
k + 1

z
I1
l − z

I1
k − 1

∏
k

z
I1
l − zI2 − 1

2

z
I1
k − zI2 + 1

2

, (6.5)

for the lowest level,

e
i(Φai+1 −Φai

) =
∏
k

z
Ii

l − z
Ii−1
k − 1

2

z
Ii

l − z
Ii−1
k + 1

2

∏
k �=l

z
Ii

l − z
Ii

k + 1

z
Ii

l − z
Ii

k − 1

∏
k

z
Ii

l − zIi+1 − 1
2

z
Ii

k − zIi+1 + 1
2

, (6.6)

for i = 2, . . . , n − 2 and for the highest level

e
i(Φan−Φan−1 )

(
z
In−1
l + 1

2

z
In−1
l − 1

2

)L

=
∏
k

z
In−1
l − z

In−2
k − 1

2

z
In−1
l − z

In−2
k + 1

2

∏
k �=l

z
In−1
l − z

In−1
k + 1

z
In−1
l − z

In−1
k − 1

. (6.7)

Eqs. (6.5)–(6.7) are exactly the Bethe equations for the compact gl(n) symmetric spin chain. It
is obvious that there are n! alternative forms of the above Bethe Ansatz equations, corresponding
to n! permutations of the elements of the set I , which in turn are associated with the n! different
bottom-to-top paths on the Hasse diagram.

To conclude our new solution procedure for the gl(n)-spin chain we give the expression for
the eigenvalues of (1.1). It only involves the roots zIn−1 on the last-level

E = 2

mIn−1∑
k=1

1
1
4 − (z

In−1
k )2

, (6.8)

where mIn−1 is the number of roots of the eigenvalue QIn−1(z), which according to (4.25) is equal
to

mIn−1 = ma1 + ma2 + · · · + man−1 = L − man. (6.9)

The derivation of the energy (6.8) from the functional relations is given in Appendix D.

10 This construction can easily be obtained by choosing a path on the Hasse diagram leading from ∅ to {1, . . . , n}. See
Appendix C for more details.
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7. Conclusions and outlook

In this paper we developed a novel, systematic procedure for constructing the Baxter Q-
operators connected with the gl(n)-spin chain (1.1) with quasi-periodic boundary conditions.
This fills an important gap in the literature: Q-operators have been originally designed to solve
quantum integrable models for which no suitable pseudovacuum exists, a pre-condition for the
application of Bethe’s Ansatz. They have furthermore mostly been constructed for cases where
the rank of the symmetry algebra is one. In order to develop a universal theory of the Q-operator
it therefore seems indispensable to fill the gap and construct these operators also in the cases
where the Bethe Ansatz does work, and to generalize to arbitrary ranks of the symmetry algebra.
For illustration purposes we confined ourselves to the case where the quantum space is a multiple
tensor product of the compact, unitary, fundamental representation of su(n). The Q-operators are
constructed as transfer matrices associated with infinite-dimensional representations of the Yan-
gian Y(gl(n)) built from Fock representations of the harmonic oscillator algebra. This involves
rather simple, but hitherto unknown solutions (2.20) of the Yang–Baxter equations with first or-
der dependence on the spectral parameter. These solutions provide fundamental building blocks
for all other required solutions via the standard fusion procedure. As a result we derived the full
set of functional relations, which enabled us to obtain a new algebraic solution of the gl(n)-spin
chain independent of the Bethe Ansatz.

The reader might wonder why we have confined ourselves in our search for novel solutions of
the Yang–Baxter equation to truncating the series in (2.4) after the second term, i.e. evaluation
representation. The answer is that this is fully sufficient in order to treat the gl(n)-spin chains
studied in this paper. Moreover, having in mind previous results about representations of Yan-
gians [32,33,26], we suspect that taking into account higher terms in (2.4) will not lead to new
solutions not obtainable by fusion from the ones of the form (2.12). However, it would certainly
be interesting to investigate this issue in some detail.

The construction we have presented in this paper generalizes in a beautiful fashion to com-
pact spin chains with gl(n|m) supersymmetry. In particular, the partonic Lax operators (1.16)
naturally generalize to the supersymmetric case. Details on this will be reported elsewhere [12].

Our methodology also generalizes to more general representations in the quantum space: Re-
call that in this paper we always took it to be a tensor product of L fundamental n-dimensional
representations. Particularly relevant is the case of non-compact spin chains. It will be interest-
ing to spell out the exact relation between our construction of Q-operators and a rather different
approach proposed in [37] and a large number of earlier work cited therein.
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Appendix A. Fusion of the canonical L-operators

The calculations which one has to perform in order to prove formula (3.4) are tedious but
rather straightforward. It is enough to calculate the matrix product of the operator-valued matrices
(3.6) and (3.7), and subsequently use the similarity transforms (3.9) and (3.10), keeping in mind
the commutation relations between the various oscillators. For the convenience of the reader we
present here the explicit action of these similarity transforms S1 and S2 on the oscillators.

A.1. Similarity transform S1

S1b[1]
ȧb S −1

1 = b[1]
ȧb − b† [2]

ȧb , (A.1)

S1b[2]
bȧ S −1

1 = b[2]
bȧ − b† [1]

bȧ . (A.2)

All other oscillators are unchanged.

A.2. Similarity transform S2

S2b[1]
ȧb S −1

2 = b[1]
ȧb −

∑
c̈ /∈I∪J

b† [2]
ȧc̈ b[1]

c̈b , (A.3)

S2b[2]
äḃ

S −1
2 = b[2]

äḃ
−
∑
c∈I

b† [1]
cḃ

b[1]
äc , (A.4)

S2b† [1]
bä S −1

2 = b† [1]
bä +

∑
ċ∈J

b† [1]
bċ b† [2]

ċä . (A.5)

All other oscillators are unchanged.

Appendix B. Proof of the factorization formula

In this appendix we prove that the ordered product of the n different partonic Lax operators,
each containing n−1 pairs of oscillators, indeed can be disentangled by a similarity transform SL
into the product of the gl(n) invariant Lax operator L+ and a compensating matrix GL. Further
details were discussed in Section 1. Instead of using the prescription developed in Section 3
to derive Eq. (1.18) inductively, we consider the following decomposition of the partonic Lax
operators:

La(za) = U−1
a

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
. . .

1
za − n−1

2
D̃a+1,a 1

...
. . .

D̃n,a 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Ua+1, (B.1)

with za = z + λ′
a .

The matrices Ua do not depend on the spectral parameter. They are of the form
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Ua =
(

I +
∑

1�b<c<a

bbcebc

)−1
(

I −
a−1∑
b=1

n∑
c=a

b†
cbecb

)(
I −

∑
a�b<c�n

b†
bcebc

)
. (B.2)

The entries in the column below the spectral parameter of the middle matrix on the right-hand
side of Eq. (B.1) take the values

D̃ab = +b†
ab − bab +

b−1∑
c=1

b†
acbcb +

n∑
c=a+1

b†
acbcb, (B.3)

the remaining non-diagonal entries vanish.
From this decomposition it is obvious that the product of the n partonic Lax operators can be

written as

L1(z1) · · ·Ln(zn) = U−1
1

⎛⎜⎜⎜⎝
z1 − n−1

2

D̃2,1
. . .

...
. . .

. . .

D̃n,1 · · · D̃n,n−1 zn − n−1
2

⎞⎟⎟⎟⎠Un+1, (B.4)

where two matrices U1 and Un+1 only contain an upper triangular part:

U1 =

⎛⎜⎜⎜⎝
1 −b†

12 · · · −b†
1n

. . .
. . .

...
. . . −b†

n−1n

1

⎞⎟⎟⎟⎠ , Un+1 =

⎛⎜⎜⎜⎝
1 b12 · · · b1n

. . .
. . .

...
. . . bn−1n

1

⎞⎟⎟⎟⎠
−1

. (B.5)

Up to now, the lower triangular matrix in Eq. (B.4) contains all n − 1 oscillators. A short calcu-
lation shows that half of them can be absorbed by the similarity transform SL = Sn · · ·S1 with

Sa = exp

[
a−1∑
b=1

(
b†

ba +
a−1∑

c=b+1

b†
cabbc

)
b†

ab

]
. (B.6)

This transformation coincides with the one that can be obtained from the method11 established
in Section 3. Furthermore, it leaves U1 invariant and its action on Un+1 factorizes as

SLUn+1 S −1
L = U−1

1 Un+1. (B.7)

As a result one obtains that the ordered product of n partonic Lax operators can be written as

L1(z1) · · ·Ln(zn) = SLU−1
1

⎛⎜⎜⎜⎝
z1 − n−1

2

D2,1
. . .

...
. . .

. . .

Dn,1 · · · Dn,n−1 zn − n−1
2

⎞⎟⎟⎟⎠U1Un+1 S −1
L , (B.8)

where

11 As we are interested in the factorization formula where the compensating matrix appears on the right-hand side of
the Lax operator it is convenient to start from the partonic Lax operators Ln(zn) and multiply the remaining ones in the
desired ordering from the left.
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Fig. 3. Hasse diagram for gl(2).

Dab = −bab +
n∑

c=a+1

b†
acbcb. (B.9)

We identify the gl(n) invariant Lax operator in its factorized form (see e.g. [40])

L+ ≡ U−1
1

⎛⎜⎜⎜⎝
z1 − n−1

2

D2,1
. . .

...
. . .

. . .

Dn,1 · · · Dn,n−1 zn − n−1
2

⎞⎟⎟⎟⎠U1 (B.10)

and

GL ≡ Un+1. (B.11)

Appendix C. Hasse diagrams

The quadratic functional relations (5.12) possess an interesting graphical interpretation,
cf. Fig. 5. The full set of functional equations is then nicely depicted by so-called Hasse dia-
grams, cf. [16] and references therein. These diagrams are used to represent partially ordered
sets. In our case we take a power set of {1, . . . , n} with order given by the inclusion relation,
namely A < B ⇔ A ⊂ B . Then QI will inherit this ordering, giving us a partially ordered set
containing all Q-operators. By way of example, Hasse diagrams for n = 2,3,4 are presented in
the Figs. 3, 1 and 4, respectively. To read off the functional relations it is enough to take any
4-cycle in these diagrams, using the equivalence depicted in Fig. 5.

Every path in the Hasse diagram which leads from Q∅ to Q{1,...,n} defines a system of equiv-
alent but distinct nested Bethe equations. To find each such system, it is enough to take all
Q-operators on a given path and write one relation for any three subsequent functions on the
path. Such relation can be written for every three subsequent Q’s because there always exists
a unique 4-cycle containing them. Finally, it is interesting to point out that the Hasse diagram
corresponding to the gl(n) algebra forms an n-dimensional ordered hypercube.

Appendix D. Energy formula

Let us choose a path on the Hasse diagram given by the ordered set {a1, . . . , an} = {1, . . . , n}.
We define Ik = Ik−1 ∪ {ak} with I0 = ∅. The formula for the energy in terms of the Bethe roots
depends only on the last-level Q’s and is given by
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Fig. 4. Hasse diagram for gl(4).

2i sin ϕab
2 QI∪a∪b(z)QI (z) = QI∪a

(
z − 1

2

)
QI∪b

(
z + 1

2

)− QI∪b

(
z − 1

2

)
QI∪a

(
z + 1

2

)
Fig. 5. Graphical depiction of the functional relations (5.12).

E = 2

mIn−1∑
k=1

1
1
4 − (z

In−1
k )2

(D.1)

where mIn−1 is the number of roots of the QIn−1(z) function. To prove (6.8) it is enough to take
the functional relation

XIk
(z0, z2, . . . , zk)

XIk
(z1, z2, . . . , zk)

= XIk
(z0, z1, . . . , zk−1)

XIk
(z1, z2, . . . , zk)

XIk−1(z2, . . . , zk)

XIk−1(z1, z2, . . . , zk−1)

+ XIk−1(z0, z2, . . . , zk−1)

Xk−1(z1, z2, . . . , zk−1)
(D.2)

where XIk
is an eigenvalue of XIk

defined in (4.11). It holds for k = 1, . . . , n and originates from
the fact that every XIk

can be written as a determinant of partonic Q-functions as (see (5.8))

�Ik
XIk

(z1, . . . , zk) = det Qa(zb). (D.3)

a,b∈Ik
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In this case the relation (D.2) is just a version of the Plücker relations and is valid for any num-
bers za . In (D.2) we omitted an explicit dependence on the spectral parameter which can be
recover for every XIk

just by taking the mean value of all z’s present there.
If we take k = n and put za = z − a + n+1

2 then using this relation recursively we get

T�(z + 1
n
)

QIn(z)
=

n−1∑
k=0

QIn−k
(z + 1 + k

2 )

QIn−k
(z + k

2 )

QIn−k−1(z − 1
2 + k

2 )

QIn−k−1(z + 1
2 + k

2 )
(D.4)

where T� denotes an eigenvalue of the transfer matrix in the fundamental representation. In order
to prove (6.8) it is enough to use the well-known relation

E = 2L − 2
d

dz
log T�

(
z + 1

n

)∣∣∣∣
z=0

(D.5)

and the fact that QIn(z) = zL where L is the length of the spin chain.
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