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Abstract. The full set of cosmological observables coming from linear scalar and tensor
perturbations of loop quantum cosmology is computed in the presence of inverse-volume
corrections. Background inflationary solutions are found at linear order in the quantum
corrections; depending on the values of quantization parameters, they obey an exact or
perturbed power-law expansion in conformal time. The comoving curvature perturbation is
shown to be conserved at large scales, just as in the classical case. Its associated Mukhanov
equation is obtained and solved. Combined with the results for tensor modes, this yields
the scalar and tensor indices, their running, and the tensor-to-scalar ratio, which are all first
order in the quantum correction. The latter could be sizable in phenomenological scenarios.
Contrary to a pure minisuperspace parametrization, the lattice refinement parametrization
is in agreement with both anomaly cancellation and our results on background solutions
and linear perturbations. The issue of the choice of parametrization is also discussed in
relation with a possible superluminal propagation of perturbative modes, and conclusions for
quantum spacetime structure are drawn.
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1 Introduction

Loop quantum cosmology (LQC) [1] provides the framework for implementing several effects
seen to arise for the quantum geometry of loop quantum gravity (LQG) [2–4] in a cosmological
setting. Strict formulations of loop quantum cosmology are defined on minisuperspace, where
one quantizes homogeneous spacetimes using the methods of loop quantum gravity. The
characteristic effects of discrete spatial geometry then emerge also in the reduced context,
changing the dynamics of expanding universe models. The dynamics changes in particular
at high densities, giving rise to mechanisms avoiding classical singularities.

Quantum corrections to the classical spacetime structure not only exist at high densities
but remain present, in weaker form, as the universe expands and dilutes. In such a regime,
non-linearities as well as corrections from loop quantum gravity can be treated perturbatively
in a gauge-invariant way. This has been done for linear perturbations around spatially flat
Friedmann-Robertson-Walker (FRW) models with one particular class of corrections expected
from loop quantum gravity. These corrections, related to spatial discreteness, arise whenever
an inverse of a certain metric component (or rather, densitized-triad components) appears
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in a matter Hamiltonian or in the Hamiltonian constraint of gravity. Such inverse compo-
nents are ubiquitous, for instance in kinetic matter terms, and thus the resulting corrections,
called inverse-volume corrections, are an unavoidable consequence of loop quantum gravity.
Specifically, the corrections are due to the fact that the quantized densitized triad has a
discrete spectrum, with the value zero contained in the spectrum. Such an operator does not
allow the existence of a densely-defined inverse, but an operator providing the inverse as the
classical limit can nevertheless be defined [5]. When one departs from the classical regime,
however, quantum corrections arise whose form can be computed in some models and which
can be parametrized sufficiently generally for phenomenological investigations. In the pres-
ence of these corrections, provided they are small, consistent gauge-invariant cosmological
perturbation equations have been determined [6].

Gauge invariance in general relativity and the candidates for its quantization is in-
timately related to spacetime structure because gauge transformations include changes of
coordinates. Accordingly, quantum corrections to gauge-invariant perturbation equations
show how fundamental quantum spacetime effects such as discrete geometry are reflected,
in physical terms, by implications for cosmological observables. Cosmology then provides an
intriguing link between the fundamental physics of spacetime and phenomenology, as it will
be explored in this paper.

Looking at the issue from the phenomenological side, linearization of dynamical equa-
tions in the presence of inhomogeneous perturbations is one of the most extensively studied
problems in cosmology. With recent progress in LQC, the context in which such questions
can be addressed has been extended to a new class of quantum-gravity effects with the aim
of making a prediction for early-universe spectra and, hopefully, constraining the theory.
The perturbed equations contain quantum correction functions and are augmented by coun-
terterms which guarantee cancellation of anomalies in the effective constraint algebra [7–9].
These contributions provide insights into the spacetime structure, modify the equations of
motion and, eventually, imply characteristic signatures for physical observables.

The perturbed equations of motion for scalar, vector, and tensor modes have been
computed, respectively, in [6–8], while the tensor spectrum and index have been found and
explored in [10, 11]. To close the set of cosmological consistency relations, it remains to
compute the scalar spectrum and its derived observables. Such is the first goal of this paper:
We shall find the Mukhanov equation of scalar perturbations for the first time and solve it.
With exactly the same procedure, we will rederive the solution of tensor modes with zero
effort. The scalar and tensor spectra and spectral indices will be obtained together with a
consistency relation between the tensor-to-scalar ratio and the tensor index. In doing so,
we will derive a conservation law for the curvature perturbation, extending the well-known
classical result to the quantum-corrected equations, and discuss its implications for quantum
spacetime structure.

All cosmological observables, including index running and higher-order quantities, are
linearly corrected by quantum terms δPl whose magnitude we cannot predict yet because we
have no control over the details of the underlying full quantum theory. The presence of extra
parameters would seem to at best make it possible to place upper bounds on the quantum
corrections δPl for a given inflationary potential. For instance, one can arrange to have large-
enough quantum corrections so that the scalar running be sizable. On the other hand, we
can naturally envisage a situation where δPl is much smaller than the slow-roll parameters,
and therefore completely negligible. Until better control over the theory is achieved, the
phenomenological consequences of inverse-volume (or other) corrections will remain unclear
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but here, as our second goal, we highlight the following issue: Different parametrization
schemes will lead to different background solutions and predictions for the size of δPl. In
particular, the usual minisuperspace parametrization of FRW loop quantum cosmology seems
to be incompatible with anomaly cancellation in inhomogeneous LQC, as well as with the
simplest power-law solutions. Conversely, the lattice refinement parametrization overcomes
all these problems, can predict much larger quantum corrections, but it might indicate a
problem related to superluminal propagation of the perturbations. We wish to stress all these
features and the importance of further investigating the lattice refinement parametrization,
which requires input from the full theory.

Since anomaly cancellation so far has been shown to occur only in the quasi-classical
regime where inverse-volume corrections and counterterms are small, we shall concentrate
on this case. Therefore it is not possible to draw comparisons with holonomy-correction
results [10, 12, 13] or with previous works which partially fixed the gauge, considered test
fields and neglected metric back-reaction, since they were devoted to the superinflationary
regime of a near-Planckian epoch [14–19].

In section 3 we review the LQC background equations of motion for a flat FRW model
and a scalar field, and the parametrizations arising in minisuperspace quantization and the
lattice refinement phenomenological approach. Background solutions with de Sitter and exact
or perturbed power-law expansion are found in section 4. Section 5 is completely devoted
to scalar perturbations. After a review and some important updates of the results of [6], we
show that the comoving curvature perturbation is conserved at large scales, as in the classical
case (section 5.3). The Mukhanov equation for a scalar perturbation variable is then found
and solved in section 5.4, while the set of linear cosmological observables (power spectrum,
index and index running) is derived in section 5.6. The set of observables is completed
in section 6, where the same analysis of the previous section is applied verbatim to tensor
perturbations. A discussion of the main achievements of this paper and future directions can
be found in section 7.

2 Spacetime structure and phenomenology

Loop quantum gravity has provided results that show the discreteness of spatial quantum
geometry: geometrical operators such as those for area and volume have discrete spec-
tra [20, 21]. Taken by themselves, these features are not observable because the corresponding
objects, the areas of spatial surfaces or the volumes of spatial regions, are not gauge invariant.
However, these mathematical properties, derived from the underlying principle of background
independence on which the theory is built, indicate new features of the quantum represen-
tation with important effects for the dynamics. The volume operator, for instance, enters
matter Hamiltonians [5] and the gravitational Hamiltonian constraint operator [22], and thus
influences their properties at the quantum level. In this way, once the dynamical equations
are sufficiently well understood, physical observables are affected and a potential comparison
with observations is made possible.

The dynamics of loop quantum gravity amounts to that of a coupled, interacting many-
body problem in which the elementary constituents are the fundamental building blocks
of space. Such equations governing the dynamics are difficult to solve exactly, but several
crucial effects visible in them are generic and characteristic; they provide the basis for phe-
nomenological evaluations. There are two main effects: (i) inverse-volume corrections and
(ii) holonomy corrections due to the fact that the background-independent quantization used
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in LQG allows the representation only of exponentiated curvature components, gathered
as the holonomies of connection variables. Inverse-volume corrections are currently under
much better control in cosmological perturbation equations, and so they will be our main
focus here.

To see implications of those effects in the dynamics, the many-body Hamiltonians must
be analyzed. There is by now a systematic procedure to do so, based on effective canonical
equations to describe semi-classical dynamics [23, 24]. Effective equations in this context,
analogous to low-energy effective actions for expansions around the ground state of anhar-
monic systems, are obtained from expectation values of the Hamiltonian (constraint) oper-
ators in a generic class of semi-classical states. So far, these equations have been computed
and analyzed only in isotropic cosmological models, in which a solvable system analogous to
the harmonic oscillator is available [25]. The form of the equations, however, is more general
and can be used also in the presence of inhomogeneous cosmological perturbations. To avoid
bias, one only has to ensure that correction functions are parametrized sufficiently gener-
ally, since the control over the theory is not yet strong enough to provide unique predictions
for them.

These equations, including parametrized quantum-gravity corrections, allow important
conclusions at the fundamental and phenomenological levels by a clear line of arguments.
First, the structure of spatial geometry changes according to LQG, affecting the form of the
constraints generating gauge transformations. Secondly, in the presence of quantum correc-
tions the algebra under Poisson brackets (or commutators when quantized) of the constraints
as gauge generators is modified, amounting to a different realization of the classical transfor-
mations of spacetime and the underlying gauge behaviour. This abstract feature has several
consequences. For instance, quantum-geometry corrections cannot be implemented by any
higher-curvature effective action because those corrections would not change the classical
constraint algebra and the underlying notion of gauge and covariance. An effective action
that can include all effects of LQG must be of a more general form, for instance allowing
for non-commutative geometry. Moreover, gauge transformations belonging to a deformed
algebra no longer correspond to ordinary coordinate transformations on a manifold. Thus,
effective line elements may be questionable because the transformations of metric compo-
nents and coordinate differentials collected in ds2 no longer match to make the line element
invariant. In such a context, physical information can be gained only from gauge-invariant
variables that take into account the new gauge structure. With these additional effects,
there is a chance that quantum gravity corrections may be stronger than usually expected,
for instance, from naive arguments based on the size of higher-curvature corrections.

One possible new phenomenon is of particular interest. When the constraint algebra
is deformed, the Bianchi identity or the conservation equation for stress-energy is modified.
There are still analogous identities if the deformation is consistent and anomaly-free, but they
may refer to different quantities than in the classical case. Then, the curvature perturbation
is no longer guaranteed to be conserved, a possibility which has already been raised [6, 26]. If
the curvature perturbation is no longer conserved, on the other hand, magnification effects for
modes outside the Hubble radius can be expected. Even though deviations from conservation
given by quantum gravity were small at any given (sufficiently late) time, expected to be
determined by the tiny ratio of the Planck length by the Hubble radius, the lever arm of
non-conservation during long times between horizon exit during inflation and re-entry might
magnify those tiny effects. In this way, a tight link is obtained between fundamental spacetime
structure and cosmological phenomenology.
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Here we will provide results in both directions, fundamental physics as well as phe-
nomenology. In particular, we will demonstrate that a subtle cancellation in the anomaly-
free correction functions of LQC does make the curvature perturbation conserved in spite of
the non-trivial deformation of the constraint algebra, a feature which has not been noticed
before. As a consequence, effective linear perturbations of Friedmann-Robertson-Walker ge-
ometries can be meaningfully constructed even in the presence of a deformed gauge structure.
Corrections to standard perturbation equations then follow naturally.

3 Background equations and parametrizations

To begin, we write down the LQC effective equations of motion for an FRW background ds2 =
a2(τ)(−dτ2+dxidxi) in conformal time τ (see, e.g., the review in [11] for a detailed derivation
of these results). We shall ignore holonomy corrections, which have not yet been considered in
the perturbed dynamics. Notice, however, that these contributions in some parametrizations
dominate over inverse-volume corrections as far as tensor modes are concerned [11, 13]; we
will further discuss this point in the final section. For a scalar field ϕ with potential V , the
effective Friedmann and Klein-Gordon equations read

H2 =
8πG

3
α

[

ϕ′2

2ν
+ pV (ϕ)

]

(3.1)

and

ϕ′′ + 2H
(

1 − d ln ν

d ln p

)

ϕ′ + νpV,ϕ = 0 , (3.2)

where G is the gravitational constant, H ≡ a′/a is the Hubble parameter, primes denote
derivatives with respect to conformal time, and p = a2 (in comoving volume units) is the
triad variable in minisuperspace. (Triad variables can take both signs depending on the
orientation of space. Here we assume p to be positive without loss of generality for effective
equations.) From equations (3.1) and (3.2) one obtains the Raychaudhuri equation

H′ =

(

1 +
d ln α

d ln p

)

H2 − 4πG
α

ν

(

1 − 1

3

d ln ν

d ln p

)

ϕ′2 . (3.3)

In these equations,

α ≈ 1 + α0δPl, (3.4)

ν ≈ 1 + ν0δPl, (3.5)

where

δPl ≡
(

pPl

p

)
σ

2

=
(aPl

a

)σ
, (3.6)

and σ and pPl = a2
Pl are constant.1 We will often need to switch from p to conformal

derivatives via
′ = 2H d

d ln p
(3.7)

1We put a subscript ‘Pl’ in the definition (3.6) in order to avoid confusion with perturbations such as δϕ.
However, the equations below do not rely on any particular characteristic scale aPl, which may differ from the
Planck length.
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and the formulæ
δ′Pl = −σHδPl , δ′′Pl = σH2(σ − 1 + ǫ)δPl , (3.8)

with ǫ = 1 −H′/H introduced as a slow-roll parameter below.
Functional forms of α(p) and ν(p) are fully computable in general form from operators

in exactly isotropic models [27] and for regular lattice states in the presence of inhomo-
geneities [28], with parametrizations of quantization ambiguities affecting the values of α0,
ν0 and σ [29, 30]. However, only the expanded forms (3.4) and (3.5) are needed in the pertur-
bative regime considered here. From these explicit calculations of inverse-volume operators
and their spectra, one can derive further properties characteristic of loop quantum gravity.
In particular, correction functions implementing inverse-volume corrections, when evaluated
at large values of the densitized triad or the scale factor in a nearly isotropic geometry, ap-
proach the classical value always from above. This consequence, which is a robust feature
under quantization ambiguities and will turn out to be important later, implies that the
coefficients α0 and ν0 introduced in the parametrizations used here must be positive.

3.1 Parametrizations

The above equations are derived in a minisuperspace Hamiltonian formalism where the super-
Hamiltonian (the only non-trivial constraint on homogeneous backgrounds) is first symmetry-
reduced, and then quantized with LQG techniques. The resulting equations then constitute
partial effective equations, which means that they capture the behaviour of expectation
values of observables in semi-classical states, but without taking all quantum corrections into
account. In particular, quantum back-reaction by fluctuations and the holonomy corrections
of loop quantum gravity are not included at the present stage. The LQG techniques consist
in a choice of canonical variables and operator ordering which make the final result quite
different with respect to the traditional minisuperspace Wheeler-DeWitt quantum cosmology.
At the semi-classical level, the main difference is the presence of correction functions (3.4)
and (3.5). The constants α0, ν0 and σ will enter the cosmological observables and it is
important to set their value range beforehand. This range strongly depends on the physical
interpretation of the model. We can identify two views on the issue, one purely homogeneous
and isotropic and the other associated with the natural presence of inhomogeneities.

3.1.1 Minisuperspace parametrization

On an ideal FRW background, open and flat universes have infinite spatial volume and the
super-Hamiltonian constraint is formally ill defined because it entails a divergent integration
of a spatially constant quantity over a comoving spatial slice Σ,

∫

Σ
d3x = +∞ .

To make the integral finite, it is customary to define the constraint on a freely chosen finite
region of size V = a3V0, where V0 is the corresponding comoving volume:

∫

Σ
d3x →

∫

Σ(V0)
d3x = V0 < +∞ .

The volume appears in the correction function (3.6) as δPl ∼ a−σ ∼ V−σ/3. To make δPl

adimensional, one can use the Planck length ℓPl to write

δPl ∼
(

ℓ3
Pl

V0

)

σ

3

a−σ . (3.9)
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To specify the coefficient further, one sometimes introduces the area gap ∆Pl ≡ 2
√

3πγℓ2
Pl,

where γ is the Barbero-Immirzi parameter.2 A detailed calculation then shows that the
constant coefficients α0 and ν0 are [11]

α0 =
(3q − σ)(6q − σ)

2234

(

∆Pl

pPl

)2

, ν0 =
σ(2 − l)

54

(

∆Pl

pPl

)2

. (3.10)

They depend on two sets of ambiguities, one (1/2 ≤ l < 1 and 1/3 ≤ q < 2/3) related to
different ways of quantizing the classical Hamiltonian3 and the other (σ) depending on which
geometrical minisuperspace variable has an equidistant stepsize in the dynamics: in terms of
the triad variable p, pσ/2 is equidistant if inverse-volume corrections with exponent σ in ∆Pl

appear. More physically, this parameter is related to how the number of plaquettes of an
underlying discrete state changes with respect to the volume as the universe expands. The
latter is a phenomenological prescription for the area of holonomy plaquettes, but ideally it
should be an input from the full theory [34].

In the minisuperspace context, a natural choice of these parameters is

σ = 6 , l = 3
4 , q = 1

2 , (3.11)

so that, assuming pPl = ∆Pl [33], one has

α0 = 1
24 ≈ 0.04 , ν0 = 5

36 ≈ 0.14 . (3.12)

Notice that σ = 6, motivated by holonomy corrections not becoming large at small curvature,
corresponds to the so-called ‘improved quantization scheme’ [33], a name which applies also
to values of l and q different from equation (3.11). A specific example provided in [33], for
instance, is q = 1 such that α0 = 0. Note, however, that the exact value α0 = 0 is obtained in
this case only due to a spurious cancellation in isotropic settings; it seems to suggest negligible
inverse-volume corrections but is unreliable compared with more general derivations. For
phenomenology at the current level of precision, the most significant parameter is σ, which
is not as much affected by different choices of the minisuperspace scheme.

Since δPl is V0-dependent, inverse-volume corrections cannot strictly be made sense of
in a pure minisuperspace treatment. Inverse-volume corrections, as used here, have never
been derived fully consistently in this context owing to the V-dependence. In particular,
as discussed in [35, 36], while the improved scheme does take into account refinement for
holonomies in an ad-hoc manner, it ignores these effects for inverse-volume corrections. This
failure to represent inverse-volume effects, which are crucial for well-defined Hamiltonians in
loop quantum gravity, presents a serious limitation of pure minisuperspace models which can
be overcome only by bringing in further ingredients to take into account the behaviour of
inhomogeneities, as indicated in what follows. Precise derivations become more complicated
in this situation, but by a combination with input from phenomenology one can obtain
valuable restrictions on the possible realizations.

We wish to make a further comment on this issue. In the context of inflation, one
has a set of observables given by the anisotropy spectra and their derivatives; all these

2The use of twice this value according to recent findings may be better justified [31] but the resulting
change in the values of α0 and ν0 is not relevant for what follows.

3The different interval for q with respect to the one given in [11] stems from the same argument in the full
theory which constrains the range of l [5, 32]. We set the natural value of q to be 1/2 rather than 1 [33] in
equation (3.11).
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quantities contain parameters of the inverse volume corrections. Since they are all evaluated
at horizon crossing, the comoving fiducial volume therein (implicitly conceived as greater than
the causal region ∼ H−3) can be naturally set to be the Hubble volume. If one maintained the
minisuperspace parametrization also in the presence of perturbations, the conclusion would be
that the fiducial volume problem is less severe than expected. However, the minisuperspace
setting pertains only to exactly isotropic models, and this solution of the problem is at
best incomplete. To get a clearer picture, we should include inhomogeneities already at the
fundamental level. The following argument shows how to do so qualitatively.

3.1.2 Lattice refinement parametrization

The chosen volume V is a purely mathematical object which should not appear in physical
observables, but it does appear in equation (3.9). Since δPl will enter the observables, we
might face a problem. To make the situation better behaved, we introduce generic effects of
inhomogeneities. One example for doing so is the lattice parametrization discussed in [11]
which, as one implication, extends the range of the parameters. Then, one has a large range
of σ,

4 < σ ≤ 6 , (3.13)

the value of the improved minisuperspace quantization scheme being included. When pPl =
∆Pl, for instance, varying over the range of σ (equation (3.13)), l and q (as specified below
equation (3.10)),

0 < α0 ≤ 5
81 ≈ 0.06 , (3.14)

0.07 ≈ 2
27 < ν0 < 1

6 ≈ 0.17 . (3.15)

Instead of repeating the arguments leading to equation (3.13), we consider an alternative
lattice parametrization where one uses the ‘patch’ volume of an underlying discrete state in
correction functions, rather than the much larger volume V [36]. In this parametrization,
motivated by key aspects of discrete spacetime dynamics, the ranges of parameters change
more significantly than in (3.13), with important consequences for phenomenology. Now,
corrections refer to the patch size

v ≡ V
N , (3.16)

with N , the main input from quantum gravity, the number of discrete patches in V. By
construction, v is independent of the size of the region, since both V0 and N scale in the
same way when the size of the region is changed. Physical predictions should not feature
the region one chooses unless one is specifically asking region-dependent questions (such as:
What is the number of vertices in a given volume?).

Given the available parameters and their dimensions, the leading-order quantum cor-
rection in α and ν is then of the form

δPl =

(

ℓ3
Pl

v

)

m

3

=

(

ℓ3
Pl

N
V

)
m

3

, (3.17)

where m > 0 is a positive integer parameter. It determines the power by which p appears
in leading corrections of an expansion of inverse-volume correction functions. Primarily, the
correction functions α and ν, and thus δPl as well, depend on flux values, corresponding
to p for the isotropic background. Since p changes sign under orientation reversal but the
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operators are parity invariant, only even powers of p can appear, giving m = 4 as the smallest
value. At this stage of development of the full theory, it is not entirely clear that general
correction functions depend only on the fluxes (rather than, e.g., also on the eigenvalues of
more complicated volume operators; for properties of their spectra see [37, 38]). Therefore
we set m ≥ 4.

A time-dependent N (t) corresponds to the dynamical ‘lattice-refinement’ behaviour [34].
For some stretches of time, one can choose to use the scale factor a as the time variable and
represent N (a) as a power law

N = N0a
−6x , (3.18)

where N0 is some (coordinate and V0-dependent) parameter and the power x describes dif-
ferent qualitative behaviours of changing lattices. Overall, we have

δPl =

(

ℓ3
Pl

N0

V0

)
m

3

a−(2x+1)m . (3.19)

This equation cannot be obtained in a pure minisuperspace setting (e.g., [11]) where only
one parameter σ enters as in (3.9). The presence of an extra parameter, compared to the
minisuperspace parametrization, may appear as a disadvantage, but we will see later that
it is required for being able to match with phenomenology; otherwise the model would be
ruled out.

In the lattice-refinement derivation, the parameter a plays two roles, one as a dynamical
geometric quantity and the other as internal time. While writing down the semi-classical
Hamiltonian with inverse-volume (and holonomy) corrections, one is at a non-dynamical
quantum-geometric level. Then, internal time is taken at a fixed value but the geometry still
varies on the whole phase space. In this setting, we must keep N fixed while formulating the
constraint as a composite operator. The net result is the Hamiltonian constraint operator
of the basic formulation of loop quantum cosmology [39, 40] not taking into account any
refinement, corresponding to x = 0 and m = σ. However, when one solves the constraint
or uses it for effective equations, one has to bring in the dynamical nature of N from an
underlying full state. This is the motivation for promoting N to a time-dependent quantity,
a step which captures operator as well as state properties of the effective dynamics. Its
parametrization as a power law of the scale factor is simply a way to encode the qualitative
(yet robust, see below) phenomenology of the theory. The general viewpoint is similar to
mean-field approximations which model effects of underlying degrees of freedom by a single,
physically motivated function.

Comparing with the earlier minisuperspace parametrization, equation (3.19) gives σ =
(2x + 1)m as far as the a-dependence is concerned. The number of vertices N must not
decrease with the volume, so x ≤ 0; it is constant for x = 0. Also, v = V/N ∼ a3(1+2x)

is the elementary geometry as determined by the state; in a discrete geometrical setting,
this quantity has a lower non-zero bound which requires −1/2 ≤ x ≤ 0. In particular,
for x = −1/2 we have a constant patch volume, corresponding to what is assumed in the
improved minisuperspace quantization scheme [33]. In contrast with the minisuperspace
parametrization (3.11), in the effective parametrization of equation (3.19) we have σ = 0
in this case. Thus, even for x = −1/2 is the parametrization new and different from the
minisuperspace representation, overcoming the problem of representing inverse-volume effects
in a pure minisuperspace treatment.
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To summarize the general lattice-refinement scheme, σ = (2x+1)m is a time-independent
or slowly changing parameter4 given by the reduction from the full theory and with range

σ ≥ 0 . (3.20)

Assuming this range will be of utmost importance for justifying the validity of the cosmolog-
ical perturbation spectra. In fact, we shall find that σ must be small in order for the spectra
to be almost scale invariant, a range of values that cannot occur for either the minisuper-
space parametrization or the first lattice parametrization (3.13). Responsible for the better
matching is the new parameter x, while m alone (or x = 0) would give a range similar to the
minisuperspace parametrization.

Note that, in principle, σ may be different in α and ν for an inhomogeneous model.
However, here we assume that the background equations (3.4) and (3.5) with the same δPl

are valid also in the perturbed case. Not only is this choice natural whenever background
quantities are considered, but it is also crucial for several simplifications to follow.

Before moving on, a remark is in order. The patches of volume v find a most natural
classical analog in inhomogeneous cosmologies, in particular within the separate universe
picture [41]. For quantum corrections, the regions of size v are provided by an underlying
discrete state and thus correspond to quantum degrees of freedom absent classically. However,
the discrete nature of the state implies that inhomogeneities are unavoidable and no perfectly
homogeneous geometry can exist. Given these inhomogeneities and their scale provided
by the state, one can reinterpret them in a classical context, making use of the separate
universe picture. There, the volume V can be regarded as a region of the universe where
inhomogeneities are non-zero but small. This region is coarse grained into smaller regions
of volume v, each centered at some point x, wherein the universe is FRW and described by
a ‘local’ scale factor a(t,x) = ax(t). The difference between scale factors separated by the
typical perturbation wavelength |x′−x| ∼ λ ≪ V1/3 defines a spatial gradient interpreted as
a metric perturbation. In a perfectly homogeneous context, v ∼ V and there is no sensible
notion of cell subdivision of V; this is tantamount to stating that only the fiducial volume
will enter the quantum corrections and the observables, N = N0. On the other hand, in an
inhomogeneous universe the quantity v carries a time dependence which, in turn, translates
into a momentum dependence. The details of the cell subdivision (number of cells per unit
volume) are intimately related to the structure of the small perturbations and their spectrum.
Thus, lattice refinement is better suitable in the cosmological perturbation analysis. As long
as perturbations are linear and almost scale invariant, the size of volume within which the
study is conducted is totally irrelevant.

3.1.3 Parameter estimates

Since the lattice refinement picture is phenomenological, presently we are unable to determine
the quantum correction δPl from first principles and, at this stage, the latter is regarded as a
free parameter which can be constrained by experiments. In the minisuperspace and lattice
parametrization (3.13), on the other hand, there may be an argument which estimates the
magnitude of δPl heuristically. In fact, in those parametrizations δPl = (δ0/V)σ/3, where
δ0 is some constant volume and V is the fiducial volume; for lack of better knowledge, one

4The creation or subdivision of new cells in a discrete state depends on the spatial geometry and can thus
be considered as changing more slowly than other processes in an expanding universe. On large time scales,
the parameter σ may change, distinguishing different microscopic epochs in the history of the universe.
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often assumes δ0 ∼ ℓ3
Pl. All inflationary observables are evaluated at horizon crossing, so the

volume V is very naturally fixed by the size of the Hubble horizon at that moment (denoted
with a ∗) [11]:

V ∼ H−3
∗ , (3.21)

where H = ȧ/a = H/a. (This equation is invariant under isotropic rescalings of the coordi-
nates. In terms of aPl introduced via δPl = (aPl/a)σ in the minisuperspace parametrization,
we may write aPl/a = ℓPlH∗.) The point here is that so far V has been arbitrary, the only
requirement being that it contains the Hubble region at any given moment. Provided δ0 is
fixed a priori, this equation fixes V once and for all because one is not at the liberty of chang-
ing the numerical factor in (3.21), which is O(1). Slightly different definitions of the Hubble
horizon differ only for O(1) coefficients, which do not affect the discussion qualitatively (on
the other hand, O(10) or O(0.1) coefficients are unacceptable because the observables here
are defined at, not before or after, horizon crossing).

To estimate δPl during inflation, we could take the grand-unification scale H∗ ∼ 1014 ÷
1017 GeV. As δPl = (ℓPlH∗)

σ and 4 < σ ≤ 6, one has the upper bound δPl . O(10−8). Typ-
ical prefactors in observable quantities may even carry an extra O(10−1) suppression, as we
will find, so none of the inverse volume corrections with these choices are observable, even in
the scalar running, as the slow-roll parameters are O(10−2). In comparison, the inflationary
tensor index gets an extra contribution δhol ∝ (ℓPlH∗)

2 . O(10−4) from holonomy correc-
tions [13], which dominate over δPl. Holonomy corrections in the perturbed scalar sector has
never been computed, but we expect a similar hierarchy of scales.

Unfortunately, these estimates rely on a particular choice for δ0 and the argument
cannot be regarded as robust. The size of this dimensionful constant strongly depends on
the underlying theory, and a change in magnitude of δ0 would modify the above results.
Moreover, we will see that the minisuperspace parametrizations are not compatible with re-
quirements on background solutions combined with anomaly freedom. The estimate of δPl

could thus at best be used as an external input for the lattice-refinement parametrization.
Then, once the scale of inverse-volume corrections is fixed, a further consistency condition
must be satisfied because inverse-triad corrections and holonomy corrections are determined
by the same parameter that specifies the underlying discreteness scale [36]. To evaluate this
condition, we use the alternative form of δPl = (ℓ3

Pl/v)m/3 = ℓ4
Pl/v

4/3 for m = 4. The un-
derlying discreteness scale, as a distance parameter, is then the linear dimension of patches,

L = v1/3 = ℓPl/δ
1/4
Pl = ℓPl/(ℓPlH∗)

σ/4. On the other hand, the strength of holonomy cor-
rections can be expressed in terms of the critical density ρcrit = 3/(8πGγ2L2);5 holonomy
corrections are weak when the matter density satisfies ρ ≪ ρcrit. With L as assumed here,

ρcrit =
3H2

∗ (ℓ2
PlH

2
∗ )

σ/4−1

8πGγ2
∼ ρ∗

(

ρ∗
ρPl

)σ/4−1

, (3.22)

with the matter density ρ∗ at the time of horizon crossing. Thus, for ρcrit ≫ ρ∗ to ensure that
holonomy corrections do not significantly alter the classical behaviour at horizon crossing, we
must require σ < 4. Then, δPl becomes larger than estimated above. For a critical density of
Planckian size, which is often desired so as to have strong quantum-gravity corrections only
in the Planckian regime, σ must be close to zero. For such values, δPl ∼ O(1) with the above

5As an explicit calculation shows, the true critical density is actually αρcrit [11]. Setting q = 1 and σ = 6
in the lattice parametrization one gets α = 1, as in [33]. In general α does appear, but the arguments in this
discussion are qualitative and we can ignore this issue.
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estimate of δ0, clearly dominating holonomy corrections at horizon crossing. (For σ = 2, the
critical density is the geometric mean ρcrit ∼ √

ρPlρ∗ and we have δPl ∼ δhol.)

3.2 Slow-roll parameters

For later convenience, we define the first three slow-roll parameters as

ǫ ≡ 1 − H′

H2
, (3.23)

η ≡ 1 − ϕ′′

Hϕ′
, (3.24)

ξ2 ≡ 1

H2

(

ϕ′′

ϕ′

)′

+ ǫ + η − 1 , (3.25)

which coincide with the standard definitions in synchronous time

ǫ ≡ − Ḣ

H2
, η ≡ − ϕ̈

Hϕ̇
, ξ2 ≡ 1

H2

(

ϕ̈

ϕ̇

).

.

The parameter ǫ will be especially important later on and we can rewrite it as

ǫ = 4πG
α

ν

ϕ′2

H2

(

1 − 1

3

d ln ν

d ln p

)

− d lnα

d ln p

= 4πG
ϕ′2

H2

{

1 +
[

α0 + ν0

(σ

6
− 1
)]

δPl

}

+
σα0

2
δPl , (3.26)

using the Raychaudhuri equation (3.3) in the first step. Notice that the symbol = in the last
line of equation (3.26) implicitly hides the O(δPl) truncation. This note of caution applies to
any of the equations below, where O(δ2

Pl) terms are dropped as required for self-consistency
of perturbed equations. In contrast, the slow-roll approximation will always be invoked
explicitly and indicated with the symbol ≈.

The derivatives of ǫ and η are

ǫ′ = 2H
(

ǫ +
d ln α

d ln p

)

[

ǫ − η +
d lnα

d ln p
− d ln ν

d ln p
− 1

3

d2 ln ν

d ln p2

(

1 − 1

3

d ln ν

d ln p

)−1
]

− 2Hd2 ln α

d ln p2

= 2Hǫ(ǫ − η) − σHǫ̃δPl , (3.27)

η′ = H(ǫη − ξ2) , (3.28)

where

ǫ̃ ≡ α0

(σ

2
+ 2ǫ − η

)

+ ν0

(σ

6
− 1
)

ǫ . (3.29)

While in standard inflation ǫ is almost constant whenever it is small (since the classical part
of ǫ′ is quadratic in the parameters), depending on the size of the quantum correction σǫ̃δPl

the quantity ǫ′ could be of the same order as ǫ. However, we expect δPl to be small in the
typical setting.

For a given background a(τ) and ϕ(τ), the slow-roll parameters are functionally identical
to the classical case. Clearly, the potential required to give rise to such an evolution is
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different, as one can see also from the (later useful) relations

V,ϕ =
Hϕ′

νp

(

η − 3 + 2
d ln ν

d ln p

)

=
Hϕ′

νp
(η − 3 − σν0δPl) , (3.30)

V,ϕϕ =
H2

νp

[

3(ǫ + η) − η2 − ξ2 + 2(3 − ǫ − 2η)
d ln ν

d ln p
+ 4

d2 ln ν

d ln p2
− 4

(

d ln ν

d ln p

)2
]

=
1

νp

(

−m2
ϕ + H2σµϕδPl

)

, (3.31)

where

m2
ϕ ≡ H2[η2 + ξ2 − 3(ǫ + η)] , (3.32)

µϕ ≡ ν0 (σ − 3 + ǫ + 2η) . (3.33)

4 Background solutions

Let φ be a set of generic scalar variables and let us write the background equations of
motion, as well as the soon-to-be-found Mukhanov equation for the scalar perturbation, as
O[φ] = 0, where O is a (possibly non-linear) differential operator. One can drop quantum
terms of order higher than δPl and split each variable into a classical part φc and a quantum
correction φqδPl [11],

φ = φc + φqδPl , (4.1)

so that each equation becomes

Oc[φc] + {Oc[φq] + Oq[φc]} δPl = 0 . (4.2)

Requiring that the classical and quantum part vanish separately (a condition which defines
what is meant by φc) yields two equations:

Oc[φc] = 0 , Oc[φq] + Oq[φc] = 0 . (4.3)

This splitting strongly resembles the one into coarse- and fine-grained perturbations in
stochastic inflation [42–45]; in fact, for a Klein-Gordon scalar the second equation (4.3)
is nothing but a ‘complementary’ Langevin-type equation for a quantum variable with a
noise term sourced by the classical part.

For example, consider the scalar field and scale factor profiles

ϕ = ϕc + ϕqδPl , a = ac + aqδPl . (4.4)

The Hubble parameter can be written as

H = Hc + HqδPl , Hq =
aq

ac

[

a′q
aq

− (1 + σ)Hc

]

. (4.5)

Also, the scalar potential V is expanded in a Taylor series around ϕc,

V (ϕ) = V (ϕc) + V,ϕ(ϕc)ϕqδPl ≡ Vc + VqδPl , (4.6)

V,ϕ(ϕ) = V,ϕ(ϕc) + V,ϕϕ(ϕc)ϕqδPl ≡ V,ϕ c + V,ϕqδPl . (4.7)
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Plugging these expressions into the Friedmann and Klein-Gordon equations (3.1) and (3.2),
we obtain a pair of classical equations,

H2
c =

8πG

3

(

ϕ′
c
2

2
+ a2

cVc

)

, (4.8)

0 = ϕ′′
c + 2Hcϕ

′
c + a2

cV,ϕ c , (4.9)

plus another pair of relations involving the correction functions ϕq and aq:

HcHq =
4πG

3

[

ϕ′
c(ϕ

′
q − σHcϕq) +

α0 − ν0

2
ϕ′

c
2
+ a2

c(α0Vc + Vq) + 2aqVc

]

, (4.10)

0 = ϕ′′
q + 2Hc(1 − σ)ϕ′

q + σH2
c(σ + ǫc − 3)ϕq + a2

c(ν0V,ϕ c + V,ϕq)

+2aqV,ϕ c + ϕ′
c(2Hq + σν0Hc) . (4.11)

At this point we look for special background solutions with exactly constant slow-roll
parameter ǫ, i.e., with a scale factor expanding as a power-law:

a = ac = |τ |n , n ≤ −1 , (4.12)

where τ < 0 and the limit n ∼ −1 corresponds to de Sitter spacetime. By this definition,
the quantum corrections aq and Hq vanish identically. At the classical level, one gets the
power-law solution [46]

ϕc = ϕ0 ln |τ | = ±
√

n(n + 1)

4πG
ln |τ | , (4.13)

V = V0 e−2(n+1)ϕ/ϕ0 =
n(2n − 1)

8πG
e−2(n+1)ϕ/ϕ0 , (4.14)

for which Vc = V (ϕc) = V0|τ |−2n−2 and

ǫ = ηc = ξc = 1 +
1

n
. (4.15)

Let us see if there exist solutions of the form ϕq = ϕq0|τ |b, distinguishing two cases:

• If n 6= −1,

Vq = −2(n + 1)V0
ϕq0

ϕ0
|τ |b−2n−2 , (4.16)

for Vq as defined in (4.6). Equations (4.10) and (4.11) become

0 = ϕ0ϕq0

[

(b − σn) − 2(n + 1)
V0

ϕ2
0

]

|τ |b−2 + ϕ2
0

[

α0 − ν0

2
+ α0

V0

ϕ2
0

]

|τ |−2 ,

(4.17)

0 = ϕq0

[

b(b − 1) + 2bn(1 − σ) + σn(σn + 1 − 2n) + 4(n + 1)2
V0

ϕ2
0

]

|τ |b−2

+ν0ϕ0

[

σn − 2(n + 1)
V0

ϕ2
0

]

|τ |−2 . (4.18)
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It turns out that, if ϕq0 6= 0, the solution requires b = 0 and the equalities

ϕq0

ϕ0
=

(

3n

1 + n
α0 − ν0

)

1

2(σn + 2n − 1)
=

(

ν0 −
3

ǫ
α0

)

1 − ǫ

2(3 + σ − ǫ)
, (4.19)

0 = ν0 [6(3 − ǫ) − σ(3 + σ − ǫ)] − 3α0

[

2(3 − ǫ) − σ

ǫ
(3 − σ − ǫ)

]

. (4.20)

The potential then reads

V =

[

1 − 2(n + 1)
ϕq0

ϕ0
δPl

]

Vc , (4.21)

while the second and first slow-roll parameters are

η = ηc − σ2n
ϕq0

ϕ0
δPl , (4.22)

ξ2 = ξ2
c − σ2(σn + 1 + n)

ϕq0

ϕ0
δPl . (4.23)

An exact solution is

σ = 0 , α0 = ν0 , V = (1 − α0δPl)Vc , (4.24)

while for σ & O(1) and small ǫ the expression (4.20) is satisfied if α0 and ν0 obey

ν0 [18 − σ(3 + σ)] − 3α0

[

6 − σ

ǫ
(3 − σ)

]

≈ 0 . (4.25)

For 0 < σ < 3, the solution has α0, ν0 > 0 if ǫ > σ(3 − σ)/6 (e.g., ǫ > 1/3 if σ = 1
or σ = 2). Because of the lower bound on ǫ, this solution prefers the limiting values
σ ∼ 0, σ ∼ 3 if extreme slow roll is to be realized.

When σ ≥ 3, α0 and ν0 have opposite sign and |ν0| ≫ |α0|. This case is excluded by
the above considerations on inverse-volume operators, which require α0 and ν0 to be
both positive.

If ϕq0 = 0, equations (4.17) and (4.18) are solved for

α0 =
ǫ

3
ν0 , σ = 3 − ǫ , V = Vc . (4.26)

This solution has ν0 ≫ α0 and 2 < σ < 3. For a given background, ǫ is constant
per (4.15); a relation to the constant α0, ν0 and σ may thus be acceptable. However, the
required tuning of general quantization parameters to background parameters makes
this solution very special.

By construction and consistently, all these power-law solutions obey equation (3.26).
Their qualitative features are summarized in table 1.

• The last exact power-law case we consider is de Sitter, n = −1, whose classical solution
is ϕc = const. There we cannot use equation (4.16) because the potential (4.16) was
derived using (4.13) which is ill-defined for n = −1. From equation (4.10) we simply
obtain Vq = −α0Vc. Since Vq = V,ϕ(ϕc)ϕq, this implies that ϕq is constant. But δPl(a)
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ϕ σ α0, ν0

σ = 0 α0 = ν0

ϕc(t) + ϕq0δPl 0 < σ < 3 α0, ν0 > 0 if ǫ > σ(3−σ)
6

σ ≥ 3 sgn(α0) = −sgn(ν0), |ν0| ≫ |α0|
ϕc(t) 2 < σ . 3 α0 = ǫ

3 ν0 ≪ ν0

Table 1. Inflationary power-law solutions a = |τ |n with 0 < ǫ = 1 + 1/n < 1 and exponential
potential. ϕc(t) and ϕq0 are given by equations (4.13) and (4.19), respectively.

is not constant, so that ϕ is not constant and V (ϕ) can be reconstructed from the
evolution. Combining (4.1) and (4.6), we find

V (ϕ) = Vc(1 − α0δPl) = Vc + V,ϕ c(ϕ − ϕc) . (4.27)

Equation (4.11) becomes σ(σ − 3)τ−2ϕq0 + a2m2ϕq0 = 0, where m2 ≡ V,ϕϕ(ϕc). The
reconstructed potential above is linear in ϕ, so m2 = 0. If ϕq0 6= 0, this implies that
either σ = 0 or σ = 3.

In the next section we will find that not all of these solutions will be compatible with
a certain consistency relation on quantum counterterms. We have not shown that the above
solutions are attractors in configuration space, a necessary condition for adopting them as
valid backgrounds. In the next section we will assume this is the case, since in the quasi-
classical regime the dynamics is very close to general relativity. Anyway, the structure of
perturbation equations and observables does not change qualitatively if one expands about
a more general quasi-de Sitter solution.

Also, setting a = ac as in equation (4.12) will not result in any loss of generality in solv-
ing the Mukhanov equation. Since the coefficients in the second equation (4.3) will depend
only on Hc, the structure of the quantum corrections in the solution will be always the same,
regardless of Hq. However, here we see a possible drawback of assuming an exact power-law
expansion, equation (4.12): these background solutions constrain the range of σ, α0, and ν0,
and from this analysis it is not obvious whether more general, quasi-power-law backgrounds
will admit a different parameter space. We will leave also this question to future investi-
gations. For the time being, we show that there exist quasi-power-law expansions as exact
solutions and we briefly sketch a profile corresponding to a perturbed de Sitter background,
ac = −1/τ = Hc and aq 6= 0. Assuming that ϕq = ϕq0, Vq = const, equation (4.11) yields,
as before, either ϕq0 = 0 or m2 = σ(3 − σ), while equation (4.10) becomes

a′q +

(

1 + σ

τ
− 8πG

3
Vc

)

aq −
4πG

3

α0Vc + Vq

τ2
≡ a′q +

(

1 + σ

τ
− b1

)

aq −
b2

τ2
= 0 . (4.28)

The solution is

aq(t) =
eb1τ

τ

[a0

τσ
− b2E1−σ(b1τ)

]

, (4.29)

where E is the exponential integral function. For b1 > 0 and integer σ > 0,

aq =
a0e

b1τ + Pol[O(τσ−1)]

τσ+1
.

The last term, a polynomial of degree σ − 1, dominates at early times (τ → −∞) and
aq ∼ |τ |−2, while at late times (τ → 0) one has aq ∼ |τ |−1−σ.

When σ = 0, at early times E1(b2τ) ∼ e−b2τ/(b2τ) and aq ∼ |τ |−2, while at late times
E1(b2τ) ∼ − ln |τ | and aq ∼ ln |τ |/|τ |.
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5 Scalar perturbations

5.1 Counterterms

As mentioned in the introduction, the corrected perturbed equations feature counterterms
proportional to δPl in addition to the primary correction functions α and ν, which guarantee
consistency of the constraint algebra at O(δPl) order. Consistency in a given scheme then
uniquely relates the counterterms, which all vanish classically, to the primary correction
functions, but also restricts the range of parameters in α and ν. Before using the counterterms
in perturbation equations, we evaluate these consistency conditions in relation with table 1.
In the following, we shall rewrite the counterterms and equations of motion of [6] according
to the δPl-expansion. To keep notation light, background quantities will not be denoted with
bars as in [6]. Also, contrary to this reference we shall expand all intermediate expressions
to linear order in counterterms (for instance, (1+ f)(1+ h) = 1+ f + h+ O(δ2

Pl), and so on).
Explicitly, the counterterms are

f =
1

σ

d lnα

d ln p

= −α0

2
δPl , (5.1)

f1 = f − 1

3

d ln ν

d ln p

=
1

2

(σν0

3
− α0

)

δPl, (5.2)

h = 2
d ln α

d ln p
− f

= α0

(

1

2
− σ

)

δPl , (5.3)

and

g1 =
1

3

d ln α

d ln p
− d ln ν

d ln p
+

2

9

d2 ln ν

d ln p2
(5.4)

=
σ

2

(σν0

9
+ ν0 −

α0

3

)

δPl,

f3 = f1 − g1 (5.5)

=
1

2

[

α0

(σ

3
− 1
)

− 2σν0

3

(σ

6
+ 1
)

]

δPl .

There is also the extra consistency condition

2
df3

d ln p
+ 3(f3 − f) = 0 ,

which makes some of the parameters dependent:

α0

(σ

6
− 1
)

− ν0

(σ

6
+ 1
)(σ

3
− 1
)

= 0 , (5.6)
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so that

g1 =
[

ν0

(σ

3
+ 1
)

− α0

]

δPl , (5.7)

f3 =
[α0

2
− ν0

(σ

6
+ 1
)]

δPl (5.8)

=
1

2

3α0

σ − 3
δPl , (5.9)

the last expression being valid only if σ 6= 3.
It is interesting to notice that, for the second but not last time, the minisuperspace

and first lattice parametrization (3.13)–(3.15) show an incompatibility with independent
results: in these parametrizations, equation (5.6) is never respected. However, with the
new range (3.20) for σ, the equation can easily be satisfied by the solutions of table 1. Let
us compare case by case with equation (5.6). The solution in the first line of the table
(equation (4.24)) is also an exact solution of (5.6). This is the limiting case of the solution
in the second line (equation (4.25)) for σ ≪ 1, giving α0 ≈ ν0; for general values σ < 3 (e.g.,
x = 0 with m < 3 or x = −1/4 with m < 6) solutions exist in this class for positive α0 and
ν0, while α0 = 0 when σ = 3. The solutions in the third line of table 1 are already excluded
by the general constraint α0, ν0 > 0.6 Finally, the last solution in the table, equation (4.26)
combined with (5.6), is non-trivial and inflationary only if σ = 3, but this collapses to de
Sitter, ǫ = 0. To summarize, our solutions will span the range

0 ≤ σ ≤ 3 , (5.10)

with preference to the extremum values if α0 and ν0 are positive. In fact, ǫ & 1/3 is not very
small for 1 . σ . 2, which should lead to unviable deviations from scale invariance.

5.2 Scalar perturbation equations

An inhomogeneous perturbation δϕ in the scalar field induces two gauge-invariant scalar
modes Φ and Ψ in the metric, which are proportional to each other [6]:

Φ = (1 + h)Ψ . (5.11)

After solving the equations for Ψ, the expression for Φ will be readily obtained via equa-
tion (5.11). The scalar-field perturbation and Ψ are related by the diffeomorphism constraint
(equation (90) of [6])

4πG
α

ν
ϕ′δϕ = Ψ′ + (1 + f + h)HΨ . (5.12)

Using this equation, one can show that the perturbed equation for Ψ is7

Ψ′′ + HFΨ′ −
(

s2∆ + m2
Ψ

)

Ψ = 0. (5.14)

6Even ignoring the constraint on the sign, these solutions would be inconsistent or trivial. For 3 < σ < 6,
both (4.25) and (5.6) require α0 and ν0 to have opposite sign, but while |ν0| ≫ |α0| for (4.25), equation (5.6)
asks them to be of about the same magnitude. When σ = 6, a0 = 0 = ν0. If σ > 6, equation (5.6) requires
α0 and ν0 to have the same sign, in contrast with (4.25); so again a0 = 0 = ν0.

7This is obtained by combining our equations (5.11) and (5.12) with equation (82) of [6]. In equation (82)
one should correct the typographical error ᾱ2∆Φ → ᾱ2∆Ψ [47]:

α2∆Ψ − 3H(1 + f)[Ψ′ + (1 + f + h)HΨ] = 4πG
α

ν
(1 + f3)

ˆ

ϕ′δϕ′ − ϕ′2(1 + f1 + h)Ψ + νpV,ϕδϕ
˜

, (5.13)

where ∆ is the Laplacian in comoving spatial coordinates. Also, in equation (91) of [6] one must replace
ᾱ2(1 + h)∆Ψ with ᾱ2∆Ψ. Unfortunately, this typo propagated in some of the other equations, so our results
supersede those of [6] when in disagreement.
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The friction term is

F = 2

(

1 − d ln α

d ln p

)

+ (1 + f + h) + 3(1 + f − f3) − 2

(

3 − 2
d ln ν

d ln p

)

+ 2η

= 2η + σF0δPl, (5.15)

where
F0 ≡ ν0

(σ

6
− 1
)

− α0

2
. (5.16)

The (squared) propagation speed of the perturbation is

s2 = α2(1 − f3) = 1 + χδPl , (5.17)

where
χ ≡ σν0

3

(σ

6
+ 1
)

+
α0

2

(

5 − σ

3

)

. (5.18)

Finally, the effective mass term is

m2
Ψ = H2

[

2(ǫ − η) − 2
df

d ln p
+ 3

d ln α

d ln p
− 3(f − f3) − 4

d ln ν

d ln p

+ǫ

(

1

3

d ln ν

d ln p
+ f1 + f + 2h

)

− 2(f + h)η − h′

H

]

= H2 [2(ǫ − η) − σµΨδPl] , (5.19)

where
µΨ ≡ [2(ǫ − η) + (1 + σ)]α0 + ν0

(σ

6
− 1
)

. (5.20)

Taking equation (84) of [6], expanding it to leading order in quantum corrections, and making
use of equations (3.30), (3.31), and (5.11), one obtains the perturbed Klein-Gordon equation
for the gauge-invariant perturbation δϕ:

δϕ′′ + 2HB1δϕ
′ − (s2∆ − νpV,ϕϕ)δϕ − B2ϕ

′Ψ′ + 2B3Hϕ′Ψ = 0 , (5.21)

where

B1 = 1 − d ln ν

d ln p
− dg1

d ln p

= 1 + B10δPl, (5.22a)

B2 = 4 + f1 + h + 3g1

= 4 + B20δPl, (5.22b)

B3 = (1 + f1 + h)
νpV,ϕ

Hϕ′
− dh

d ln p
− df3

d ln p

= η − 3 + B30δPl, (5.22c)

and

B10 ≡ σ
[

ν0

(σ

6
+ 1
)

− α0

2

]

, (5.22d)

B20 ≡ σ

2

(

σν0

3
+

10ν0

3
− 3α0

)

, (5.22e)

B30 ≡ σ
[(ν0

6
− α0

)

η − ν0

( σ

12
+ 2
)

+
α0

2
(7 − σ)

]

. (5.22f)
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Before proceeding, we notice a potentially serious problem. In order to avoid superlu-
minal propagation of signals, one should impose

s2 < α2 , (5.23)

where we used the fact that photons propagate with speed α greater than the classical one [8].
Then, it should be f3 > 0. For this to happen, we can have:

• 0 ≤ σ < 3: equation (5.9) imposes α0 < 0.

• σ = 3: equations (5.5) and (5.6) impose, respectively, ν0 < 0 and α0 = 0.

• 3 < σ < 6: equation (5.6) imposes α0 and ν0 to have opposite sign.

• σ = 6: equations (5.9) and (5.6) impose, respectively, α0 > 0 and ν0 = 0; this case is
allowed.

• σ > 6: this case, too, is allowed, with both α0 and ν0 strictly positive.

Unfortunately, for non-negative α0 and ν0, f3 is negative unless σ be large enough, and this
condition is hardly compatible with inflation; see table 1. (In [47], the values of parameters
given for subluminal evolution correspond to the case σ > 6 here.)

To check whether superluminal propagation is an artifact of linear perturbation theory
or of the expansion in δPl, one should go beyond linear order in both expansions. The
covariant formalism of non-linear perturbation theory could be a useful tool for analyzing
the consistency of the effective constraint algebra. A possibility is that holonomy corrections,
which we have ignored, would play an important role in this issue, which we shall put aside
in this paper. However, even if this were the case in some regimes, one can always find initial
conditions so as to have dominant inverse-volume corrections; thus, superluminal velocities
might constitute a conceptual problem with implications for the stability of the theory as
a whole. On the other hand, we note that inflationary models based on superluminally
propagating fields have been consistently formulated [48, 49]. The case of superluminal
motion found here therefore does not necessarily mean a severe problem.

We reemphasize the importance of equation (5.6) and of the counterterms it comes
from. It rules out the minisuperspace-related parametrizations and severely restricts the
lattice one. In this way, consistency alone already subjects the theory to strict tests even
before evaluating the phenomenology, to which we turn now.

5.3 Conservation of curvature perturbation

The gauge-invariant linear comoving curvature perturbation is [6]

R = Ψ +
H
ϕ′

(1 + f − f1) δϕ (5.24)

= Ψ +
H
ϕ′

(

1 − σν0

6
δPl

)

δϕ . (5.25)

In the absence of counterterms, conservation of the energy-momentum tensor implies that R
is constant at large scales [41]. One may ask if this result, which is not obvious in Hamiltonian
formalism and for equation (5.24), holds also in semi-classical LQC. To check it, we invert
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equation (5.13) with respect to δϕ′ and employ (5.12). Differentiating R with respect to
conformal time, we obtain

R′ = (αν + f − f1 − f3)
H

4πGϕ′2
∆Ψ + Cδϕ ,

where

C = 4πG
α

ν
ϕ′ +

H2

ϕ′

[

f ′ − f ′
1

H − (1 + f − f1)

(

ǫ + 2
d ln ν

d ln p
+ 3f − 3f3

)]

=
H2

ϕ′

[

f ′ − f ′
1

H +
d ln α

d ln p
+

(

1

3

d ln ν

d ln p
− f + f1

)

ǫ − 2
d ln ν

d ln p
− 3(f − f3)

]

= 0 . (5.26)

Here, after using (3.26), the prefactor of the parameter ǫ (which we are not assum-
ing to be small) vanishes by virtue of equation (5.2), which also implies (f ′ − f ′

1)/H =
(2/3)d2 ln ν/d ln p2. Together with f − f3 = −(2/3)d ln ν/d ln p + (1/3)d ln α/d ln p +
(2/9)d2 ln ν/d ln p2 from (5.5) and (5.4), all terms are zero. The resulting conservation of
power is consistent with the picture of an effective perturbed FRW geometry that models the
dynamics of a nearly isotropic universe in the presence of corrections from loop quantum grav-
ity. Quantum-geometry corrections from this theory, with the perturbation equations used
here, have been shown to deform not just the dynamics but also the underlying spacetime
structure, inferred by an analysis of the algebra of constraints. The gauge transformations
they generate no longer correspond to pure coordinate transformations because they do not
obey strictly the classical algebra of spacetime deformations. As a consequence, classical re-
sults about the conservation of power may no longer apply. As seen here, the linear curvature
perturbation is nevertheless conserved on large scales. This observation demonstrates that
perturbations in the presence of quantum corrections can still be seen as those of an effective
line element: The large-scale curvature perturbation of an FRW line element in conformal
time amounts simply to a spatially constant rescaling of the scale factor, which should not
be subject to non-trivial dynamics. By being conserved also in the presence of quantum
corrections, the interpretation of the effective geometry as a line element is still meaningful.

The result (5.26) is due to the delicate cancellations between counterterms. Therefore,

R′ =
[

1 +
(α0

2
+ 2ν0

)

δPl

] H
4πGϕ′2

∆Ψ , (5.27)

and the curvature perturbation is conserved at large scales.

5.4 Mukhanov equation

Conservation of R strongly suggests that one can write a simple Mukhanov equation in the
variable

u = zR , (5.28)

where z is some background function. We can anticipate the main result with a very efficient
trick, and then confirm it via a standard but tedious calculation. The trick is to notice that,
at super-horizon scales, the comoving curvature perturbation is approximately constant, so
that u′′ ≈ z′′R and

u′′ − z′′

z
u ≈ 0 .

– 21 –



J
C
A
P
0
3
(
2
0
1
1
)
0
3
2

The objective now is to find this friction-free Mukhanov equation from the perturbed equa-
tions of motion. Start from equation (5.21) and choose for simplicity a spatially flat slice
where Ψ ≈ 0. In order to remove the friction term, we need to define a field u = a(1−βδPl)δϕ,
where β = B10/σ. Then,

u′′

1 − βδPl
= δϕ′′ + 2H(1 + B10δPl)δϕ

′ + . . . .

Comparing with the Mukhanov variable (5.28) and equation (5.25), one finds

z ≡ aϕ′

H
[

1 +
(σν0

6
− β

)

δPl

]

=
aϕ′

H
[

1 +
(α0

2
− ν0

)

δPl

]

. (5.29)

The only missing term in the Mukhanov equation is the Laplacian, with coefficient s2 as an
inspection of equation (5.21) immediately shows. Thus we obtain

u′′ −
(

s2∆ +
z′′

z

)

u = 0 , (5.30)

a result valid exactly at all scales and at the linear perturbative level. The rigorous calculation
begins with the Mukhanov variable (5.28) and equation (5.29) with unknown β. Differenti-
ating u twice, using equations (5.14) and (5.21), and using equation (5.12) to develop the Ψ′

term, we obtain equation (5.30) plus just one extra term:

u′′ =

(

s2∆ +
z′′

z

)

u + 2σHδPl

[

ν0

(σ

6
+ 1
)

− α0

2
− β

]

(

HzΨ − ηHaδϕ − aδϕ′
)

+ O(δ2
Pl) .

The extra term vanishes if β is chosen as above.
It may seem that equation (5.30) is not covariant since only the spatial-derivative term

is corrected. However, despite appearance this is not the case: The quantum-corrected equa-
tions of motion correspond to a deformed algebra of constraints as found in [9], and the
constraints determine what form gauge transformations take. In general relativity, the gauge
transformations are spacetime diffeomorphisms or changes of coordinates whose classical form
implements the usual notion of covariance. With corrected constraints obeying a deformed
algebra, the gauge transformations are not of the classical form, and they do not correspond
to the usual notion of coordinate changes. Even though the underlying structure of a ‘quan-
tum manifold’ (perhaps non-commutative) on which the modified transformations could be
interpreted as simple coordinate changes is unknown, the (generalized) covariance of (5.30)
under these deformed transformations is guaranteed by the derivation of the equations of
motion used here from an anomaly-free set of constraints.

It is quite remarkable that scalar perturbations are ultimately governed by such a simple
equation as (5.30). However, the existence of one Mukhanov variable obeying one equation
in closed form is not unexpected, as it could have been inferred by using the Hamilton-
Jacobi method for constrained Hamiltonian systems developed in [50, 51]. In particular,
the reduced phase space obtained after solving the constraints and factoring out their gauge
flows has one local degree of freedom, parametrized by the curvature perturbation and its
conjugate momentum. There must be a closed form for the dynamics on this reduced phase
space, such that Hamiltonian first-order equations of motion exist involving only R and its
momentum, and they are linear thanks to the linear perturbation scheme used. As always,
first-order Hamiltonian equations of motion can be expressed as one second-order equation
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for the configuration variable, here R. The second-order equation in general may have terms
involving R′′, R′, as well as R, which on large scales is an ordinary differential equation with
gradient-free coefficients (in momentum space, they are independent of the wave number k
defined below). Thus, one may eliminate the last term involving R by substituting yR for R
for a suitable background function y, and a constant mode for yR results. As a consequence,
there must be a conserved quantity yR whose existence can be seen without any detailed
calculations. Details are required to derive the form of y, and the non-trivial result found
here is that y = 1.

From now on we expand linear perturbations in momentum space, a subscript k indi-
cating modes with comoving wavelength 2π/k. The Laplacian becomes ∆ → −k2, and the
Mukhanov equation

u′′
k +

(

s2k2 − z′′

z

)

uk = 0 . (5.31)

The effective mass term is a combination of slow-roll parameters and quantum corrections.
In fact,

z′

z
= H(1 + ǫ − η) + σ

(

ν0 −
α0

2

)

HδPl , (5.32)

z′′

z
= H2

(

2 + 2ǫ − 3η − 4ǫη + 2ǫ2 + η2 + ξ2 − σµuδPl

)

, (5.33)

µu ≡ 3α0

2
+ ν0(σ − 3) +

(

5α0

2
+

σν0

6
− 2ν0

)

ǫ + 2(ν0 − α0)η . (5.34)

When the slow-roll parameters are constant classically, as in any of the solutions of section 4,
one has

z′′

z
=

4µ2
1 − 1 + 4µ2δPl

4τ2
, (5.35)

where

µ1 =
1

2
− n , µ2 = σn2

[

σ(4n − σn + 1)
ϕq0

ϕ0
− µu

]

. (5.36)

An exact solution of the Mukhanov equation does exist but it is too complicated and not
very instructive. We proceed to solve this equation asymptotically.

5.5 Asymptotic solutions

The moment of horizon crossing is, as usual, defined when the effective mass term equals the
Laplacian term. Up to numerical factors, this happens when

k|τ | = 1 , (5.37)

as in standard inflation. Super-horizon modes are characterized by k|τ | ≪ 1, while modes well
inside the horizon have k|τ | ≫ 1. At large scales, we can ignore the k2 term in equation (5.31),
so that

uk
k|τ |≪1∼ C(k)z , (5.38)

where C(k) is a normalization constant. To determine it, we must find the asymptotic
behaviour of u at small scales. There, one can ignore the mass term and consider the
equation

u′′
k + (1 + χδPl)k

2uk ≈ 0 . (5.39)
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Since all the analysis is valid only at first order in the quantum corrections, it is consistent
to look for short-wavelength solutions of the form

uk≫H(τ) = uc(k, τ)[1 + y(k, τ)δPl] , (5.40)

where uc is the solution of the classical Mukhanov equation and y is some function. In
particular, the only choice compatible with the Bunch-Davies vacuum in the infinite past is
an incoming plane wave,

uc =
e−ikτ

√
2k

. (5.41)

The normalization here is the classical one, which one might have to change for a vacuum
matter state in a quantum geometry. In particular, the correction function ν multiplies the
kinetic term of the scalar Hamiltonian, and thus affects the value of vacuum fluctuations.
By the ansatz (5.40), all these effects will be included once the equation of motion for y is
solved.

Plugging the ansatz (5.40) into (5.39) we obtain an inhomogeneous equation for the
function y:

y′′ − 2(σH + ik)y′ + 2ikσHy + χk2 = 0 , (5.42)

where, for consistency, we have dropped the mass term σH2(σ + ǫ − 1)y. At this point we
expand y in a power series,

y =

+∞
∑

m=0

ymτm , (5.43)

and we pick a power-law background, H = n/τ . Then, equation (5.42) is

0 = 2σn(iky0 − y1)
1

τ
+ [2ik(σn − 1)y1 + 2(1 − 2σn)y2 + χk2]

+
+∞
∑

m=2

[2ik(σn − m)ym − (m + 1)(2σn − m)ym+1]τ
m−1 . (5.44)

These terms must vanish order by order separately. If σ = 0, then y0 is unconstrained, while
y1 = −i(y2/k + kχ/2) and ym = 2(2ik)m−2y2/m! for all m ≥ 2. Summing the series, one
obtains

y = y0 − i

(

y2

k
+

kχ

2

)

τ +
y2

2k2

(

1 + 2ikτ − e2ikτ
)

=
(

y0 +
y2

2k2

)

− ikχ

2
τ − y2

2k2
e2ikτ .

We can argue that y2 = 0 because otherwise u in equation (5.40) would contain also an
outgoing mode e+ikτ . If σ 6= 0, one obtains the following conditions:

y1 = iky0 , (5.45)

y2 =
k2

2(2σn − 1)
[χ − 2(σn − 1)y0] , (5.46)

ym+1 =
2ik(σn − m)

(m + 1)(2σn − m)
ym . (5.47)
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The recursive relation would determine the sum of the series (5.43), but analytic continuation
to the case σ = 0 requires ym = 0 for m ≥ 2. This fixes both y0 and y1 and the result is

y =
χ

2(σn − 1)
(1 + ikτ) . (5.48)

The normalization of equation (5.38) is thus obtained by imposing the junction condition
|uk≫H| = |uk≪H| at horizon crossing. Then,

|uk≪H|2 =
1

2k

[

1 +
χ

σn − 1
δPl(k)

] [

z

z(k)

]2

, (5.49)

where z(k) = z(τ = −1/k) and δPl(k) = δPl(τ = −1/k) ∝ knσ.

5.6 Scalar spectrum, spectral index and running

The scalar spectrum is defined as the two-point correlation function of the curvature pertur-
bation R over a momentum ensemble at large scales, evaluated at horizon crossing:

Ps ≡
k3

2π2z2

〈

|uk≪H|2
〉

∣

∣

∣

k|τ |=1
. (5.50)

The scalar spectral index is defined as

ns − 1 ≡ d lnPs

d ln k
. (5.51)

For a power-law background, we have

Ps(k) =
G

π
k2(1+n)

[

1 +

(

χ

σn − 1
− α0 + 2ν0 + 2σn

ϕq0

ϕ0

)

δPl

]

, (5.52)

ns − 1 = 2(1 + n) + σn

(

χ

σn − 1
− α0 + 2ν0 + 2σn

ϕq0

ϕ0

)

δPl . (5.53)

We can obtain more portable expressions by writing the spectrum on a general quasi-de Sitter
background. Since, using (3.26),

z2 =
a2

4πG

{

ǫ −
[

ν0

(σ

6
+ 1
)

ǫ +
σα0

2

]

δPl

}

,

we get

Ps =
G

π

H2

a2ǫ
(1 + γsδPl) , (5.54)

where we used k = H and

γs ≡ ν0

(σ

6
+ 1
)

+
σα0

2ǫ
− χ

σ + 1
. (5.55)

Notice that if σ = 0, the quantum correction is constant and the only change with respect
to the classical case is the normalization of the spectrum. In that case, γs = ν0 − 5α0/2
could be of either sign. If γs 6= 0, there is a large-scale enhancement of power because
δPl ∼ a−σ ∼ (1/|τ |)−σ ∼ k−σ at horizon crossing. The magnitude of the effect depends on
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the value of γs but we notice that, if σ 6= 0, γs ∼ 3α0/(2ǫ) unless ν0 ∼ α0/ǫ ≫ α0. Therefore,
one could obtain a sizable enhancement unless α0 . O(ǫ) (which is the case, typically). Since
this enhancement is of potential interest for comparisons with observations, we trace back
where the inverse of the slow-roll parameter in the expression for γs came from. It arises
due to the ǫ-independent term in z2 above, which in turn is a direct consequence of the
presence of gravity corrections in the Raychaudhuri equation (3.3), as opposed to just stress-
energy modifications. As with several other key phenomena pointed out here, this feature is
a consequence of corrections to the structure of spacetime geometry: corrections in the terms
H′, H2 of the Raychaudhuri equation (or the isotropic Einstein tensor) can be obtained only
by changing the geometrical form of gravity.

Momentum derivatives are converted into conformal time derivatives via

d

d ln k
≈ 1

H
d

dτ
,

so that the scalar index is

ns − 1 = 2η − 4ǫ + σγns
δPl , (5.56)

where

γns
≡ ǫ̃

ǫ
− α0

(

1 − η

ǫ

)

− γs = α0 − 2ν0 +
χ

σ + 1
. (5.57)

Since the quantum correction is small, the scalar index does not deviate too much from scale
invariance. If σ = 0, there are no corrections at all. If σ 6= 0, the sign of the correction
depends on the choice of the parameters in the parameter space. We have seen that power-
law/quasi de Sitter solutions have σ . 3, so it is immediate to associate scale invariance with
small values of σ. The naturalness of this range is further stressed in the concluding section
by an independent argument.

Interestingly, the running of the spectral index is dominated by the quantum correction
(unless σ = 0):

αs ≡ dns

d ln k
(5.58)

= 2(5ǫη − 4ǫ2 − ξ2) + σ(4ǫ̃ − σγns
)δPl ∼ δPl . (5.59)

This result signals a qualitative departure from classical inflation, since the quantum correc-
tion may be larger than O(ǫ2). The details will depend on the chosen background, as the
slow-roll parameter themselves can contain quantum corrections.

6 Tensor perturbations

The linearized equation of motion for tensor modes has been computed in [8] and solved
in [11] for quasi-classical inverse volume corrections. In this section we review and improve
these results, eventually obtaining the cosmological consistency relations.
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6.1 Mukhanov equation

When only inverse-volume corrections are taken into account and in the absence of anisotropic
stress, the equation of motion for the individual tensor mode hk is [8]

h′′
k + 2H

(

1 − d lnα

d ln p

)

h′
k + α2k2hk = 0 . (6.1)

Defining

wk ≡ ãhk , ã ≡ a
(

1 − α0

2
δPl

)

, (6.2)

we get the Mukhanov equation

w′′
k +

(

α2k2 − ã′′

ã

)

wk = 0 , (6.3)

where

ã′

ã
= H

(

1 +
σα0

2
δPl

)

, (6.4)

ã′′

ã
= H2

[

2 − ǫ + (3 − σ − ǫ)
σα0

2
δPl

]

. (6.5)

Equation (6.3) is formally identical to the scalar Mukhanov equation and the analysis is
exactly the same up to the substitutions

z → ã , χ → 2α0 .

The final result is the analogue of equation (5.49),

|wk≪H|2 =
1

2k

[

1 +
2α0

σn − 1
δPl(k)

] [

ã

ã(k)

]2

. (6.6)

6.2 Tensor spectrum, spectral index and running

The tensor spectrum is

Pt ≡
32G

π

k3

ã2

〈

|wk≪H|2
〉 ∣

∣

k|τ |=1
, (6.7)

so that in de Sitter (n = −1)

Pt ≡
16G

π

H2

a2
(1 + γtδPl) , (6.8)

where

γt ≡
σ − 1

σ + 1
α0 . (6.9)

As for the scalar spectrum, barring special values of the parameters (γt = 0 when σ = 1
or α0 = 0) there is a power enhancement at large scales because of δPl ∼ k−σ, albeit the
prefactor might not be as large as in equation (5.55). This type of enhancement has been
seen in earlier numerical studies of the LQC tensor power spectrum, but it is difficult to
exploit it observationally due to limitations by cosmic variance.
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The tensor index and its running are

nt ≡
d lnPt

d ln k
, αt ≡

dnt

d ln k
, (6.10)

so that

nt = −2ǫ − σγtδPl , (6.11)

and

αt = −4ǫ(ǫ − η) + σ(2ǫ̃ + σγt)δPl . (6.12)

6.3 Tensor-to-scalar ratio

The last piece of information we want to extract is the tensor-to-scalar ratio

r ≡ Pt

Ps
. (6.13)

From equations (5.54) and (6.8) one obtains

r = 16ǫ[1 + (γt − γs)δPl] , (6.14)

which yields the consistency relation

r = −8{nt + [nt(γt − γs) + σγt]δPl} . (6.15)

Here we implicitly assumed that γs is not too large, so that the expansion in δPl is still
meaningful. In quasi de Sitter regime ǫ ≪ 1, so that γs = O(1) if σα0 ∼ O(ǫ). This means
that either σ or α0 or both should be small.

Unless σ = 0 or σ = 1 (for which γt = 0), the tensor-to-scalar ratio is no longer
proportional to the tensor index. Detection of a non-zero r would require either a consistent
deviation from de Sitter in standard cosmology or a sufficiently large quantum correction in
de Sitter LQC.

As already explained for (5.30), equations (5.31) and (6.3) are covariant under the
deformed transformations generated by the anomaly-free set of corrected constraints. The
deformation gives rise to a new type of quantum effects which could not be present for
higher-curvature effective actions usually expected of quantum gravity; it is possible only
thanks to quantum corrections to the geometry of space or even the manifold structure. The
Mukhanov equations for scalar and tensor modes are not only corrected, they also acquire
corrections of different forms. The scalar equations has a correction given by s2 = α2(1−f3),
while the tensor equation is corrected by α2. The counterterm f3 cannot typically be set
to zero, and so the corrections for scalar and tensor modes differ. This difference, in turn,
makes possible changes to the tensor-to-scalar ratio which may provide a key signature of
loop quantum gravity.
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7 Discussion

To summarize the main results of this paper:

• Different parametrizations of LQC inverse-volume quantum corrections are presented.
A particular case is the so-called mini-superspace parametrization. Lattice refinement
parametrizations are introduced in a self-contained way reorganizing a number of re-
lated results in the literature.

• Cosmological solutions with power-law scale factor are found for the LQC background
equations of motion in the presence of small inverse-volume corrections δPl. Their
form depends on the parameter range, they generalize the unique classical power-law
solution with exponential potential and are first order in the quantum corrections.
These solutions are further restricted by an anomaly cancellation condition and the
requirement of slow roll.

• For the first time, the already-known equations of motion for scalar perturbations
with inverse-volume corrections are consistently rewritten as first-order expressions in
δPl and combined into a single Mukhanov equation. The LQC comoving curvature
perturbation is shown to be conserved at large scales, just as its classical counterpart.

• The Mukhanov equation is solved asymptotically and the scalar spectrum and index
are constructed.

• The already-known LQC Mukhanov equation for tensor perturbations is conveniently
rewritten and solved using the same techniques. Tensor observables are extracted and
combined with scalar observables, thus providing the full set of inflationary observables
in linear perturbation theory.

As long as the slow-roll approximation is valid, the structure of the cosmological ob-
servables is valid for any background, although the coefficients of the quantum corrections
themselves do depend on the background. In this final section we discuss how they can be
used to restrict models of loop quantum cosmology, making the framework falsifiable. Details
will be provided in separate publications [52]. For such an endeavor, it is crucial to obtain
independent information on the main correction parameter δPl and on different versions of
the parametrization. For instance, as seen in section 3.1.3, a combination with holonomy
corrections is interesting and shows a powerful interplay between these main two types of
quantum-geometry corrections.

If inflation is assumed, the minisuperspace parametrization is under tight pressure: nei-
ther consistent power-law background solutions nor a nearly scale-free spectrum can be found
in that case (unless δPl be very small; see below). On the other hand, the minisuperspace
parametrization may still be viable if an alternative scenario of structure formation can be
found. In this context, holonomy corrections are of particular interest not only by providing
an additional consistency condition in combination with inverse-volume corrections, but also
because they can easily trigger bounces at least in isotropic models whose matter energy is
dominated by the kinetic term. (In general, it has not been shown that isotropic bounces
occur as a natural consequence of holonomy corrections.) It would thus be of interest to de-
velop linear perturbation equations around those models and analyze the structure evolution
through the bounce, or perhaps new scenarios providing the generation of structure during a
phase before (not after) the big bang. However, compared to inverse-triad corrections such
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ideas are currently hampered by several major difficulties: (i) Holonomy corrections have so
far not been implemented in consistent deformations of linear perturbation equations. (ii)
Strong quantum-geometry corrections are required to evolve through the bounce; no expan-
sion in parameters such as δPl used here could be done. (iii) There are several indications
as to the strong sensitivity of evolution through the bounce to initial conditions of perturba-
tions [53] or even the quantum state [54], discussed in the context of cosmic forgetfulness.

The lattice parametrization is consistent with inflation and holonomy corrections at the
homogeneous level and could yield strong effects according to section 3.1.3 because σ can be
small, but that again depends on the details of δPl. We have seen that δPl is an eigenfunction
of the operator d/d ln k with eigenvalue −σ, so observables of higher order in the slow-roll
parameters (e.g., the index running) are corrected by a term which is always of the form
O(σn)δPl: it is first-order in δPl and n-th order in σ. If σ = O(1), this quantum correction
is equally important at any slow-roll order, if not increasing with the order. This situation
does not seem natural inasmuch as it would imply that higher-order k derivatives of the
inflationary spectra are all on the same footing. Then, the notion that the spectra can be
approximated by a power law would have to be abandoned. On the other hand, if σ ≪ 1
the quantum correction is suppressed by higher and higher powers of σ, so there is a sort of
balancing effect which keeps O(σn)δPl small at all orders in the slow-roll parameters. This
leads to the speculation that small values of σ are more sensible, because for large σ quantum
corrections would dominate in higher-order observables.

With σ ≪ 1 preferred, inverse-volume corrections are of the form 1 + cp−σ/2 with
a small exponent σ. They affect not only the equations for an expanding universe but
also the dispersion relations of waves propagating in a quantum spacetime. Corrections
for these equations are more difficult to derive because the situation is not as symmetric
as the one of perturbations of an isotropic spacetime. But if they turned out to be of a
similar form (δPl with small exponent σ) for a variable related to the particle’s energy, severe
observational pressure could be put on loop quantum gravity by a combination of cosmological
and astroparticle observations.

The first-order cosmological observables already give a wealth of information about
the early universe but it is natural to ask oneself what happens at second order, e.g., when
looking at the bispectrum and possible non-Gaussian signatures. Posed in LQC, this question
is less harmless than in classical general relativity. In fact, when going to higher orders in
perturbation theory one would get more parameters initially, because there are more options
for counterterms. The counterterms would then be fixed by consistency conditions. This
would not necessarily add extra conditions for the parameters arising at lower orders, but
something like this might happen. We do not know yet whether loop quantum gravity as
a whole is consistent, so at some point parameters might be overconstrained. If that were
the case, at least in LQC, one would have to understand if a non-perturbative cancellation
of anomalies (which one did not see at the perturbative level) takes place. Therefore, an
extension of our results to a second-order analysis would be most welcome not only for the
purpose of finding the bispectrum, but also in order to further check the self-consistency of
the theory.

Before we conclude, we emphasize that we have considered in detail only one type
of corrections (inverse-volume) and no complete set of effective equations implementing all
the effects expected from loop quantum gravity. Even so, the conclusions we draw are
reliable because they point out characteristic phenomena from the corrections considered. An
elimination of these effects by including other phenomena (most importantly, those due to
holonomies) can be expected only under very fine-tuned conditions. The equations provided
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here can thus be used to place bounds on the free parameters of loop quantum gravity, and
to rule out some parametrizations as extensively done in this paper. In all these cases, we
see the importance of sufficiently general parametrizations for models to be able to stand up
to phenomenological pressure; conceptual preferences or ‘natural’ choices of parameters may
not always be the ones that survive stringent analysis. As our examples demonstrate, it is
important to combine constraints from different sources. For instance, the minisuperspace
parametrization is ruled out by (i) the consistency condition provided by anomaly-freedom,
(ii) the interplay of inverse-volume with holonomy corrections, and (iii) the phenomenological
requirement of a nearly scale-invariant spectrum. A single inconsistency could always be
evaded by questioning the condition violated, especially in a situation in which no tight
derivations from an underlying full theory exist. But as inconsistencies pile up, models
should eventually be dropped. In this way, models of loop quantum gravity and loop quantum
cosmology are already falsifiable not just by internal consistency considerations but also by
comparison with observations.

Our results are interesting also because they highlighted a number of issues which are
definitely worthy of further attention:

• The consistency of the slow-roll background solutions, of the anomaly cancellations,
and of the physical observables only with respect to the second lattice parametrization
urges us to study the latter in greater detail. Such an endeavor requires a better
understanding of the full theory and its reduction to perturbations around isotropic
models.

• Perturbations can propagate with superluminal speed. Either this is an artifact of
linear perturbation theory, is curable with a particular choice of the parameters, or
may give rise to non-standard inflationary scenarios as in [49]. The minisuperspace
parametrization is safe as f3 > 0 in that case (large σ > 3), while the lattice refinement
parametrization with σ ≪ 1 requires α0 ≤ 0. This observation may be the one putting
the most severe constraints on the lattice refinement parametrization, while the min-
isuperspace parametrization is under much stronger pressure from other consistency
conditions.

We believe that addressing these points and the mutual tension between different
parametrizations and the physical viability of the perturbations will stimulate the advance
in the field.
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